1
|
Ruan B, Zheng Z, Kayitmazer AB, Ahmad A, Ramzan N, Rafique MS, Wang J, Xu Y. Polymeric pH-Responsive Metal-Supramolecular Nanoparticles for Synergistic Chemo-Photothermal Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39075714 DOI: 10.1021/acs.langmuir.4c01208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Stimuli-responsive drug delivery carriers, particularly those exhibiting pH sensitivity, have attracted significant scholarly interest due to their promising potential in anticancer therapeutic applications. This phenomenon can primarily be ascribed to the inherently acidic nature of tumor microenvironments. However, pH-responsive carriers frequently require the incorporation of functional groups or materials sensitive to pH changes. Given the pH-sensitive characteristics of metal coordination with natural small-molecule drugs, organometallic supramolecules present a facile and effective strategy for integrating pH-responsive behavior into these systems. Meanwhile, utilizing the natural compound luteolin in conjunction with iron ions (Fe3+) through the advanced engineering technique of flash nanoprecipitation (FNP) results in the synthesis of stable, highly loaded nanoparticles (NPs) exhibiting a supramolecular photothermal effect. Our experimental findings substantiate that the photothermal effect persists over time, even after the pH-responsive release phase has ended. Consequently, these polymeric pH-responsive metallic supramolecular nanoparticles integrate chemotherapy and photothermal therapy, creating a synergistic approach to cancer treatment. This bifunctional platform, which exhibits both pH-responsive and photothermal properties, presents a highly promising avenue for biomedical applications, particularly in the area of tumor therapies. Its dual function offers a potentially efficacious approach to tumor treatment.
Collapse
Affiliation(s)
- Bowen Ruan
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhiyuan Zheng
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | | | - Ayyaz Ahmad
- Department of Chemical Engineering, Muhammad Nawaz Sharif University of Engineering and Technology, Multan 60600, Pakistan
| | - Naveed Ramzan
- Faculty of Chemical, Metallurgical, and Polymer Engineering, University of Engineering and Technology, Lahore 54000, Pakistan
| | | | - Jie Wang
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yisheng Xu
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
2
|
Pamshong SR, Bhatane D, Sarnaik S, Alexander A. Mesoporous silica nanoparticles: An emerging approach in overcoming the challenges with oral delivery of proteins and peptides. Colloids Surf B Biointerfaces 2023; 232:113613. [PMID: 37913702 DOI: 10.1016/j.colsurfb.2023.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Proteins and peptides (PPs), as therapeutics are widely explored in the past few decades, by virtue of their inherent advantages like high specificity and biocompatibility with minimal side effects. However, owing to their macromolecular size, poor membrane permeability, and high enzymatic susceptibility, the effective delivery of PPs is often challenging. Moreover, their subjection to varying environmental conditions, when administered orally, results in PPs denaturation and structural conformation, thereby lowering their bioavailability. Hence, for effective delivery with enhanced bioavailability, protection of PPs using nanoparticle-based delivery system has gained a growing interest. Mesoporous silica nanoparticles (MSNs), with their tailored morphology and pore size, high surface area, easy surface modification, versatile loading capacity, excellent thermal stability, and good biocompatibility, are eligible candidates for the effective delivery of macromolecules to the target site. This review highlights the different barriers hindering the oral absorption of PPs and the various strategies available to overcome them. In addition, the potential benefits of MSNs, along with their diversifying role in controlling the loading of PPs and their release under the influence of specific stimuli, are also discussed in length. Further, the tuning of MSNs for enhanced gene transfection efficacy is also highlighted. Since extensive research is ongoing in this area, this review is concluded with an emphasis on the potential risks of MSNs that need to be addressed prior to their clinical translation.
Collapse
Affiliation(s)
- Sharon Rose Pamshong
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Dhananjay Bhatane
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Santosh Sarnaik
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
3
|
Wang S, Huang H, Wang X, Zhou Z, Luo Y, Huang K, Cheng N. Recent Advances in Personal Glucose Meter-Based Biosensors for Food Safety Hazard Detection. Foods 2023; 12:3947. [PMID: 37959066 PMCID: PMC10649190 DOI: 10.3390/foods12213947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Food safety has emerged as a significant concern for global public health and sustainable development. The development of analytical tools capable of rapidly, conveniently, and sensitively detecting food safety hazards is imperative. Over the past few decades, personal glucose meters (PGMs), characterized by their rapid response, low cost, and high degree of commercialization, have served as portable signal output devices extensively utilized in the construction of biosensors. This paper provides a comprehensive overview of the mechanism underlying the construction of PGM-based biosensors, which consists of three fundamental components: recognition, signal transduction, and signal output. It also detailedly enumerates available recognition and signal transduction elements, and their modes of integration. Then, a multitude of instances is examined to present the latest advancements in the application of PGMs in food safety detection, including targets such as pathogenic bacteria, mycotoxins, agricultural and veterinary drug residues, heavy metal ions, and illegal additives. Finally, the challenges and prospects of PGM-based biosensors are highlighted, aiming to offer valuable references for the iterative refinement of detection techniques and provide a comprehensive framework and inspiration for further investigations.
Collapse
Affiliation(s)
- Su Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Huixian Huang
- College of Environmental and Food Engineering, Liuzhou Vocational and Technical College, Liuzhou 545000, China;
| | - Xin Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Ziqi Zhou
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Yunbo Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| |
Collapse
|
4
|
Adam A, Mertz D. Iron Oxide@Mesoporous Silica Core-Shell Nanoparticles as Multimodal Platforms for Magnetic Resonance Imaging, Magnetic Hyperthermia, Near-Infrared Light Photothermia, and Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1342. [PMID: 37110927 PMCID: PMC10145772 DOI: 10.3390/nano13081342] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The design of core-shell nanocomposites composed of an iron oxide core and a silica shell offers promising applications in the nanomedicine field, especially for developing efficient theranostic systems which may be useful for cancer treatments. This review article addresses the different ways to build iron oxide@silica core-shell nanoparticles and it reviews their properties and developments for hyperthermia therapies (magnetically or light-induced), combined with drug delivery and MRI imaging. It also highlights the various challenges encountered, such as the issues associated with in vivo injection in terms of NP-cell interactions or the control of the heat dissipation from the core of the NP to the external environment at the macro or nanoscale.
Collapse
|
5
|
Ahmadi F, Sodagar-Taleghani A, Ebrahimnejad P, Pouya Hadipour Moghaddam S, Ebrahimnejad F, Asare-Addo K, Nokhodchi A. A review on the latest developments of mesoporous silica nanoparticles as a promising platform for diagnosis and treatment of cancer. Int J Pharm 2022; 625:122099. [PMID: 35961417 DOI: 10.1016/j.ijpharm.2022.122099] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/24/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Cancer is the second cause of human mortality after cardiovascular disease around the globe. Conventional cancer therapies are chemotherapy, radiation, and surgery. In fact, due to the lack of absolute specificity and high drug concentrations, early recognition and treatment of cancer with conventional approaches have become challenging issues in the world. To mitigate against the limitations of conventional cancer chemotherapy, nanomaterials have been developed. Nanomaterials exhibit particular properties that can overcome the drawbacks of conventional therapies such as lack of specificity, high drug concentrations, and adverse drug reactions. Among nanocarriers, mesoporous silica nanoparticles (MSNs) have gained increasing attention due to their well-defined pore size and structure, high surface area, good biocompatibility and biodegradability, ease of surface modification, and stable aqueous dispersions. This review highlights the current progress with the use of MSNs for the delivery of chemotherapeutic agents for the diagnosis and treatment of cancer. Various stimuli-responsive gatekeepers, which endow the MSNs with on-demand drug delivery, surface modification strategies for targeting purposes, and multifunctional MSNs utilized in drug delivery systems (DDSs) are also addressed. Also, the capability of MSNs as flexible imaging platforms is considered. In addition, physicochemical attributes of MSNs and their effects on cancer therapy with a particular focus on recent studies is emphasized. Moreover, major challenges to the use of MSNs for cancer therapy, biosafety and cytotoxicity aspects of MSNs are discussed.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arezoo Sodagar-Taleghani
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Seyyed Pouya Hadipour Moghaddam
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA; Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Farzam Ebrahimnejad
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
| | - Kofi Asare-Addo
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK; Lupin Pharmaceutical Research Inc., Coral Springs, FL, USA.
| |
Collapse
|
6
|
Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev 2022; 51:5365-5451. [PMID: 35642539 PMCID: PMC9252171 DOI: 10.1039/d1cs00659b] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/12/2022]
Abstract
The present review details a chronological description of the events that took place during the development of mesoporous materials, their different synthetic routes and their use as drug delivery systems. The outstanding textural properties of these materials quickly inspired their translation to the nanoscale dimension leading to mesoporous silica nanoparticles (MSNs). The different aspects of introducing pharmaceutical agents into the pores of these nanocarriers, together with their possible biodistribution and clearance routes, would be described here. The development of smart nanocarriers that are able to release a high local concentration of the therapeutic cargo on-demand after the application of certain stimuli would be reviewed here, together with their ability to deliver the therapeutic cargo to precise locations in the body. The huge progress in the design and development of MSNs for biomedical applications, including the potential treatment of different diseases, during the last 20 years will be collated here, together with the required work that still needs to be done to achieve the clinical translation of these materials. This review was conceived to stand out from past reports since it aims to tell the story of the development of mesoporous materials and their use as drug delivery systems by some of the story makers, who could be considered to be among the pioneers in this area.
Collapse
Affiliation(s)
- María Vallet-Regí
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Daniel Lozano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Montserrat Colilla
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Miguel Manzano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
7
|
Rui Q, Yin Z, Cai W, Li J, Wu D, Kong Y. Hyaluronic acid encapsulated aminated mesoporous silica nanoparticles for
pH
‐responsive delivery of methotrexate and release kinetics. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qian Rui
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering Changzhou University Changzhou China
| | - Zheng‐Zhi Yin
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering Changzhou University Changzhou China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering Changzhou University Changzhou China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering Changzhou University Changzhou China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering Changzhou University Changzhou China
| |
Collapse
|
8
|
Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214309] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Baker A, Khan MS, Iqbal MZ, Khan MS. Tumor-targeted Drug Delivery by Nanocomposites. Curr Drug Metab 2021; 21:599-613. [PMID: 32433002 DOI: 10.2174/1389200221666200520092333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/30/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tumor-targeted delivery by nanoparticles is a great achievement towards the use of highly effective drug at very low doses. The conventional development of tumor-targeted delivery by nanoparticles is based on enhanced permeability and retention (EPR) effect and endocytosis based on receptor-mediated are very demanding due to the biological and natural complications of tumors as well as the restrictions on the design of the accurate nanoparticle delivery systems. METHODS Different tumor environment stimuli are responsible for triggered multistage drug delivery systems (MSDDS) for tumor therapy and imaging. Physicochemical properties, such as size, hydrophobicity and potential transform by MSDDS because of the physiological blood circulation different, intracellular tumor environment. This system accomplishes tumor penetration, cellular uptake improved, discharge of drugs on accurate time, and endosomal discharge. RESULTS Maximum drug delivery by MSDDS mechanism to target therapeutic cells and also tumor tissues and sub cellular organism. Poorly soluble compounds and bioavailability issues have been faced by pharmaceutical industries, which are resolved by nanoparticle formulation. CONCLUSION In our review, we illustrate different types of triggered moods and stimuli of the tumor environment, which help in smart multistage drug delivery systems by nanoparticles, basically a multi-stimuli sensitive delivery system, and elaborate their function, effects, and diagnosis.
Collapse
Affiliation(s)
- Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Mohd Salman Khan
- Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Muhammad Zafar Iqbal
- Department of Studies and Research in Zoology, Government First Grade College, Karwar, 581301, India
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| |
Collapse
|
10
|
Yan H, Dong J, Huang X, Du X. Protein-Gated Upconversion Nanoparticle-Embedded Mesoporous Silica Nanovehicles via Diselenide Linkages for Drug Release Tracking in Real Time and Tumor Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29070-29082. [PMID: 34101411 DOI: 10.1021/acsami.1c04447] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two novel stimuli-responsive drug delivery systems (DDSs) were successfully created from bovine serum albumin- or myoglobin-gated upconversion nanoparticle-embedded mesoporous silica nanovehicles (UCNP@mSiO2) via diselenide (Se-Se)-containing linkages. More importantly, multiple roles of each scaffold of the nanovehicles were achieved. The controlled release of the encapsulated drug doxorubicin (DOX) within the mesopores was activated by triple stimuli (acidic pH, glutathione, or H2O2) of tumor microenvironments, owing to the conformation/surface charge changes in proteins or the reductive/oxidative cleavages of the Se-Se bonds. Upon release of DOX, the Förster resonance energy transfer between the UCNP cores and encapsulated DOX was eliminated, resulting in an increase in ratiometric upconversion luminescence for DOX release tracking in real time. The two protein-gated DDSs showed some differences in the drug release performances, relevant to structures and properties of the protein nanogates. The introduction of the Se-Se linkages not only increased the versatility of reductive/oxidative cleavages but also showed less cytotoxicity to all cell lines. The DOX-loaded protein-gated nanovehicles showed the inhibitory effect on tumor growth in tumor-bearing mice and negligible damage/toxicity to the normal tissues. The constructed nanovehicles in a spatiotemporally controlled manner have fascinating prospects in targeted drug delivery for cancer chemotherapy.
Collapse
Affiliation(s)
- Hua Yan
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, Zhejiang Province 318000, People's Republic of China
| | - Jiangtao Dong
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xuan Huang
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xuezhong Du
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
11
|
Wagner J, Gößl D, Ustyanovska N, Xiong M, Hauser D, Zhuzhgova O, Hočevar S, Taskoparan B, Poller L, Datz S, Engelke H, Daali Y, Bein T, Bourquin C. Mesoporous Silica Nanoparticles as pH-Responsive Carrier for the Immune-Activating Drug Resiquimod Enhance the Local Immune Response in Mice. ACS NANO 2021; 15:4450-4466. [PMID: 33648336 DOI: 10.1021/acsnano.0c08384] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanoparticle-based delivery systems for cancer immunotherapies aim to improve the safety and efficacy of these treatments through local delivery to specialized antigen-presenting cells (APCs). Multifunctional mesoporous silica nanoparticles (MSNs), with their large surface areas, their tunable particle and pore sizes, and their spatially controlled functionalization, represent a safe and versatile carrier system. In this study, we demonstrate the potential of MSNs as a pH-responsive drug carrier system for the anticancer immune-stimulant R848 (resiquimod), a synthetic Toll-like receptor 7 and 8 agonist. Equipped with a biotin-avidin cap, the tailor-made nanoparticles showed efficient stimuli-responsive release of their R848 cargo in an environmental pH of 5.5 or below. We showed that the MSNs loaded with R848 were rapidly taken up by APCs into the acidic environment of the lysosome and that they potently activated the immune cells. Upon subcutaneous injection into mice, the particles accumulated in migratory dendritic cells (DCs) in the draining lymph nodes, where they strongly enhanced the activation of the DCs. Furthermore, simultaneous delivery of the model antigen OVA and the adjuvant R848 by MSNs resulted in an augmented antigen-specific T-cell response. The MSNs significantly improved the pharmacokinetic profile of R848 in mice, as the half-life of the drug was increased 6-fold, and at the same time, the systemic exposure was reduced. In summary, we demonstrate that MSNs represent a promising tool for targeted delivery of the immune modulator R848 to APCs and hold considerable potential as a carrier for cancer vaccines.
Collapse
Affiliation(s)
- Julia Wagner
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Dorothée Gößl
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Natasha Ustyanovska
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Mengyao Xiong
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Daniel Hauser
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland
| | - Olga Zhuzhgova
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Sandra Hočevar
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Betül Taskoparan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Laura Poller
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Stefan Datz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Hanna Engelke
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Youssef Daali
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Carole Bourquin
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
12
|
Yu J, Di S, Yu H, Ning T, Yang H, Zhu S. Insights into the structure-performance relationships of extraction materials in sample preparation for chromatography. J Chromatogr A 2020; 1637:461822. [PMID: 33360779 DOI: 10.1016/j.chroma.2020.461822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023]
Abstract
Sample preparation is one of the most crucial steps in analytical processes. Commonly used methods, including solid-phase extraction, dispersive solid-phase extraction, dispersive magnetic solid-phase extraction, and solid-phase microextraction, greatly depend on the extraction materials. In recent decades, a vast number of materials have been studied and used in sample preparation for chromatography. Due to the unique structural properties, extraction materials significantly improve the performance of extraction devices. Endowing extraction materials with suitable structural properties can shorten the pretreatment process and improve the extraction efficiency and selectivity. To understand the structure-performance relationships of extraction materials, this review systematically summarizes the structural properties, including the pore size, pore shape, pore volume, accessibility of active sites, specific surface area, functional groups and physicochemical properties. The mechanisms by which the structural properties influence the extraction performance are also elucidated in detail. Finally, three principles for the design and synthesis of extraction materials are summarized. This review can provide systematic guidelines for synthesizing extraction materials and preparing extraction devices.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hao Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Tao Ning
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China.
| |
Collapse
|
13
|
Razavi M, Primavera R, Kevadiya BD, Wang J, Ullah M, Buchwald P, Thakor AS. Controlled Nutrient Delivery to Pancreatic Islets Using Polydopamine-Coated Mesoporous Silica Nanoparticles. NANO LETTERS 2020; 20:7220-7229. [PMID: 32909757 PMCID: PMC8121116 DOI: 10.1021/acs.nanolett.0c02576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In the present study, we created a nanoscale platform that can deliver nutrients to pancreatic islets in a controlled manner. Our platform consists of a mesoporous silica nanoparticle (MSNP), which can be loaded with glutamine (G: an essential amino acid required for islet survival and function). To control the release of G, MSNPs were coated with a polydopamine (PD) layer. With the optimal parameters (0.5 mg/mL and 0.5 h), MSNPs were coated with a layer of PD, which resulted in a delay of G release from MSNPs over 14 d (57.4 ± 4.7% release). Following syngeneic renal subcapsule islet transplantation in diabetic mice, PDG-MSNPs improved the engraftment of islets (i.e., enhanced revascularization and reduced inflammation) as well as their function, resulting in re-establishment of glycemic control. Collectively, our data show that PDG-MSNPs can support transplanted islets by providing them with a controlled and sustained supply of nutrients.
Collapse
Affiliation(s)
- Mehdi Razavi
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Palo Alto, California 94304, United States; Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine and Department of Materials Science & Engineering, University of Central Florida, Orlando, Florida 32827, United States
| | - Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Bhavesh D Kevadiya
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Jing Wang
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Palo Alto, California 94304, United States
| |
Collapse
|
14
|
Barui S, Cauda V. Multimodal Decorations of Mesoporous Silica Nanoparticles for Improved Cancer Therapy. Pharmaceutics 2020; 12:E527. [PMID: 32521802 PMCID: PMC7355899 DOI: 10.3390/pharmaceutics12060527] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
The presence of leaky vasculature and the lack of lymphatic drainage of small structures by the solid tumors formulate nanoparticles as promising delivery vehicles in cancer therapy. In particular, among various nanoparticles, the mesoporous silica nanoparticles (MSN) exhibit numerous outstanding features, including mechanical thermal and chemical stability, huge surface area and ordered porous interior to store different anti-cancer therapeutics with high loading capacity and tunable release mechanisms. Furthermore, one can easily decorate the surface of MSN by attaching ligands for active targeting specifically to the cancer region exploiting overexpressed receptors. The controlled release of drugs to the disease site without any leakage to healthy tissues can be achieved by employing environment responsive gatekeepers for the end-capping of MSN. To achieve precise cancer chemotherapy, the most desired delivery system should possess high loading efficiency, site-specificity and capacity of controlled release. In this review we will focus on multimodal decorations of MSN, which is the most demanding ongoing approach related to MSN application in cancer therapy. Herein, we will report about the recently tried efforts for multimodal modifications of MSN, exploiting both the active targeting and stimuli responsive behavior simultaneously, along with individual targeted delivery and stimuli responsive cancer therapy using MSN.
Collapse
Affiliation(s)
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| |
Collapse
|
15
|
Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. SMART MATERIALS IN MEDICINE 2020; 1:10-19. [PMID: 34553138 PMCID: PMC8455119 DOI: 10.1016/j.smaim.2020.04.001] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanoparticle-based drug delivery system (DDS) is considered promising for cancer treatment. Compared with traditional DDS, the nanoparticle-based DDS shows improved efficacy by: 1) increasing half-life of vulnerable drugs and proteins, 2) improving the solubility of hydrophobic drugs, and 3) allowing controlled and targeted release of drugs in diseased site. This review mainly focuses on nanoparticle-based DDS fabricated from chitosan, silica, and poly (lactic-co-glycolic acid). Their fabrication methods and applications in cancer treatment are introduced. The current limitations and future perspectives of the nanoparticle-based DDS are discussed.
Collapse
Affiliation(s)
- Yu Dang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
16
|
Synthesis of Polymer Assembled Mesoporous CaCO3 Nanoparticles for Molecular Targeting and pH-Responsive Controlled Drug Release. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/8749238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CaCO3 nanoparticles are very suitable as intelligent carriers because of their ideal biocompatibility and biodegradability, especially their sensitivity to pH. In this paper, we use mesoporous CaCO3 nanoparticles as intelligent carrier, sodium alginate, and chitosan as alternating assembly materials, folic acid as target molecules, and exploit layer-by-layer assembly technology to achieve sensitive molecular targeting and pH response drug release. Mesoporous CaCO3 hybrid nanoparticles have high drug loading on doxorubicin. The effects of different pH values on drug release in vitro were studied by regulating simulated body fluids with different pH values. The cytotoxicity, targeting effect, and drug release of human cervical cancer cell line (HeLa) were studied by cell vitality and imaging experiments. All the evidence suggests that the smart mesoporous CaCO3 nanoparticles may be a potential clinical application platform for cancer therapy.
Collapse
|
17
|
Wang L, Zhu F, Chen M, Xiong Y, Zhu Y, Xie S, Liu Q, Yang H, Chen X. Development of a "Dual Gates" Locked, Target-Triggered Nanodevice for Point-of-Care Testing with a Glucometer Readout. ACS Sens 2019; 4:968-976. [PMID: 30900441 DOI: 10.1021/acssensors.9b00072] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Developing a facile and sensitive sensing platform is of importance for point-of-care testing (POCT). Herein, a sensitive and portable POCT platform based on "dual gates" aminated magnetic mesoporous silica nanocomposites (AMMS) bearing polydopamine (PDA)-aptamer (Apt) two-tier shells, as a novel nanodevice, is designed for target detection through a target-triggered glucose (GO) release from AMMS with personal glucometer (PGM) readout. In the absence of target, GO can be firmly captured in pores by the designed "dual gates", which would decrease the high background signal of this system and ensure the accuracy of the detection results. Upon the introduction of the target molecules under acidic conditions (pH 5.5), the subsequent PDA self-degradation and the specific Apt-target reaction can cause the departure of "dual gates" and the opening of pores to release the loaded GO molecules, which could be quantitatively monitored by a portable PGM. It has been demonstrated that such POCT platform shows high sensitivity and excellent selectivity for aflatoxin B1 (AFB1) detection, accompanied by the well-presented reproducibility and stability. Importantly, this sensing platform was further validated by assaying contaminated samples, where the obtained results were well matched with that by HPLC. Regarding the features of portability, high sensitivity, and high throughput detection, the developed platform might find wide applications in POCT.
Collapse
Affiliation(s)
- Lumin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Fawei Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Miao Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yu Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yuqiu Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Siqi Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
18
|
Iyisan B, Landfester K. Polymeric Nanocarriers. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
von Baeckmann C, Guillet-Nicolas R, Renfer D, Kählig H, Kleitz F. A Toolbox for the Synthesis of Multifunctionalized Mesoporous Silica Nanoparticles for Biomedical Applications. ACS OMEGA 2018; 3:17496-17510. [PMID: 31458354 PMCID: PMC6644079 DOI: 10.1021/acsomega.8b02784] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/28/2018] [Indexed: 05/18/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) are considered as promising next-generation nanocarriers for health-related applications. However, their effectiveness mostly relies on their efficient and surface-specific functionalization. In this contribution, we explored different strategies for the rational multistep synthesis of functional MCM-48-type MSNs with selectively created active inner and/or external surfaces. Functional groups were first installed using a combination of (delayed) co-condensation and post-grafting procedures. Both amine [(3-aminopropyl)triethoxysilane (APTS)] and thiol [(3-mercaptopropyl)trimethoxysilane (MPTS)] silanes were used, in various addition sequences. Following this, the different platforms were further functionalized with polyethylene glycol and/or with a pro-chelate ligand used as a magnetic resonance imaging contrast agent (diethylenetriaminepentaacetic acid chelates) and/or loaded with quercetin and/or grafted with an organic dye (rhodamine). The efficiency of the multiple grafting strategies and the effects on the MSN carrier properties are presented. Finally, the colloidal stability of the different systems was evaluated in physiological media, and preliminary tests were performed to verify their drug release capability. The use of MPTS appeared beneficial when compared to APTS in delayed co-condensation procedures to preserve both selective distribution of the functional groups, reactive functionality, and pore ordering. Our results provide in-depth insights into the efficient design of (multi)functional MSNs and especially on the crucial role played by the sequence of step-by-step functionalization methods aiming to produce multipurpose and stable bioplatforms.
Collapse
Affiliation(s)
- Cornelia von Baeckmann
- Department
of Inorganic Chemistry−Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Rémy Guillet-Nicolas
- Department
of Inorganic Chemistry−Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Damien Renfer
- Department
of Chemistry, Université Laval, 1045 Avenue de la Médecine, G1V0A6 Quebec, Quebec, Canada
| | - Hanspeter Kählig
- Institute
of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Freddy Kleitz
- Department
of Inorganic Chemistry−Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| |
Collapse
|
20
|
Srivastava P, Hira SK, Gupta U, Singh VK, Singh R, Pandey P, Srivastava DN, Singh RA, Manna PP. Pepsin Assisted Doxorubicin Delivery from Mesoporous Silica Nanoparticles Downsizes Solid Tumor Volume and Enhances Therapeutic Efficacy in Experimental Murine Lymphoma. ACS APPLIED BIO MATERIALS 2018; 1:2133-2140. [DOI: 10.1021/acsabm.8b00559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Sumit Kumar Hira
- Department of Zoology, The University of Burdwan, Purba Burdwan 713104, India
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Li C, Yang XQ, Zhang MZ, Song YY, Cheng K, An J, Zhang XS, Xuan Y, Liu B, Zhao YD. In vivo Imaging-Guided Nanoplatform for Tumor Targeting Delivery and Combined Chemo-, Gene- and Photothermal Therapy. Am J Cancer Res 2018; 8:5662-5675. [PMID: 30555572 PMCID: PMC6276300 DOI: 10.7150/thno.28241] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023] Open
Abstract
Currently, a large number of anti-tumor drug delivery systems have been widely used in cancer therapy. However, due to the molecular complexity and multidrug resistance of tumors, monotherapies remain suboptimal. Thus, this study aimed to develop a multifunctional theranostic nanoplatform for effective cancer therapy. Methods: Folic acid-modified silver sulfide@mesoporous silica core-shell nanoparticle was first modified with desthiobiotin (db) on the surface, then doxorubicin (DOX) was loaded into pore. Avidin was employed as "gatekeeper" to prevent leakage of DOX via desthiobiotin-avidin interaction. Db-modified survivin antisense oligonucleotide (db-DNA) which could inhibit survivin expression was then grafted on avidin at the outer layer of nanoparticle. DOX release and db-DNA dissociation were simultaneously triggered by overexpressing biotin in cancer cells, then combining PTT from Ag2S QD to inhibit tumor growth. Results: This nanoprobe had satisfactory stability and photothermal conversion efficiency up to 33.86% which was suitable for PTT. Due to the good targeting ability and fluorescent anti-bleaching, its signal still existed at the tumor site after tail vein injection of probe into HeLa tumor-bearing nude mice for 48 h. In vitro and in vivo antitumor experiments both demonstrated that drug, gene and photothermal synergistic therapy significantly enhanced antitumor efficacy with minimal systemic toxicity. Conclusion: Our findings demonstrate that this novel nanoplatform for targeted image-guided treatment of tumor and tactfully integrated chemotherapy, photothermal therapy (PTT) and gene therapy might provide an insight for cancer theranostics.
Collapse
|
22
|
Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother 2018; 109:1100-1111. [PMID: 30551360 DOI: 10.1016/j.biopha.2018.10.167] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
Based on unique intrinsic properties of mesoporous silica nanoparticles (MSNs) such as high surface area, large pore size, good biocompatibility and biodegradability, stable aqueous dispersion, they have received much attention in the recent decades for their applications as a promising platform in the biomedicine field. These porous structures possess a pore size ranging from 2 to 50 nm which make them excellent candidates for various biomedical applications. Herein, at first we described the common approaches of cargo loading and release processes from MSNs. Then, the intracellular uptake, safety and cytotoxicity aspects of MSNs are discussed as well. This review also highlights the most recent advances in the biomedical applications of MSNs, including 1) MSNs-based carriers, 2) MSNs as bioimaging agents, 3) MSNs-based biosensors, 4) MSNs as therapeutic agents (photodynamic therapy), 5) MSN based quantum dots, 6) MSNs as platforms for upconverting nanoparticles, and 6) MSNs in tissue engineering.
Collapse
Affiliation(s)
- Samira Jafari
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Loghman Alaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Fattahi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
23
|
Fernandes C, Suares D, Yergeri MC. Tumor Microenvironment Targeted Nanotherapy. Front Pharmacol 2018; 9:1230. [PMID: 30429787 PMCID: PMC6220447 DOI: 10.3389/fphar.2018.01230] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Recent developments in nanotechnology have brought new approaches to cancer diagnosis and therapy. While enhanced permeability and retention effect promotes nano-chemotherapeutics extravasation, the abnormal tumor vasculature, high interstitial pressure and dense stroma structure limit homogeneous intratumoral distribution of nano-chemotherapeutics and compromise their imaging and therapeutic effect. Moreover, heterogeneous distribution of nano-chemotherapeutics in non-tumor-stroma cells damages the non-tumor cells, and interferes with tumor-stroma crosstalk. This can lead not only to inhibition of tumor progression, but can also paradoxically induce acquired resistance and facilitate tumor cell proliferation and metastasis. Overall, the tumor microenvironment plays a vital role in regulating nano-chemotherapeutics distribution and their biological effects. In this review, the barriers in tumor microenvironment, its consequential effects on nano-chemotherapeutics, considerations to improve nano-chemotherapeutics delivery and combinatory strategies to overcome acquired resistance induced by tumor microenvironment have been summarized. The various strategies viz., nanotechnology based approach as well as ligand-mediated, redox-responsive, and enzyme-mediated based combinatorial nanoapproaches have been discussed in this review.
Collapse
Affiliation(s)
| | | | - Mayur C Yergeri
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies - NMIMS, Mumbai, India
| |
Collapse
|
24
|
Wang J, Ma Q, Wang Y, Li Z, Li Z, Yuan Q. New insights into the structure-performance relationships of mesoporous materials in analytical science. Chem Soc Rev 2018; 47:8766-8803. [PMID: 30306180 DOI: 10.1039/c8cs00658j] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesoporous materials are ideal carriers for guest molecules and they have been widely used in analytical science. The unique mesoporous structure provides special properties including large specific surface area, tunable pore size, and excellent pore connectivity. The structural properties of mesoporous materials have been largely made use of to improve the performance of analytical methods. For instance, the large specific surface area of mesoporous materials can provide abundant active sites and increase the probability of contact between analytes and active sites to produce stronger signals, thus leading to the improvement of detection sensitivity. The connections between analytical performances and the structural properties of mesoporous materials have not been discussed previously. Understanding the "structure-performance relationship" is highly important for the development of analytical methods with excellent performance based on mesoporous materials. In this review, we discuss the structural properties of mesoporous materials that can be optimized to improve the analytical performance. The discussion is divided into five sections according to the analytical performances: (i) selectivity-related structural properties, (ii) sensitivity-related structural properties, (iii) response time-related structural properties, (iv) stability-related structural properties, and (v) recovery time-related structural properties.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Qinqin Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhiheng Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
25
|
Acosta C, Barat JM, Martínez-Máñez R, Sancenón F, Llopis S, González N, Genovés S, Ramón D, Martorell P. Toxicological assessment of mesoporous silica particles in the nematode Caenorhabditis elegans. ENVIRONMENTAL RESEARCH 2018; 166:61-70. [PMID: 29864634 DOI: 10.1016/j.envres.2018.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/05/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Here we report the toxicological evaluation of mesoporous silica particles (MSPs) in the nematode C. elegans. Specifically, we have investigated the effect of bare micro- (M0) and nano-sized (N0) MSPs, and their corresponding functionalized particles with a starch derivative (Glu-N) (M1 and N1, respectively) on C. elegans ageing parameters. The toxicity of MSPs, their impact on C. elegans lifespan, movement capacity, progeny and ability to survive upon exposure to acute oxidative stress were assessed. This study demonstrated that both size particles assayed (M0 and N0), labeled with rhodamine and monitored through fluorescence microscopy, are ingested by the nematode. Moreover, toxicity assays indicated that bare nano-sized particles (N0) have a negative impact on the C. elegans lifespan, reducing mobility and progeny production. By contrast, micro-sized particles (M0) proved innocuous for the nematodes. Furthermore, functionalization of nanoparticles with starch derivative reduced their toxicity in C. elegans. Thus, oral intake of N1 comparatively increased the mean lifespan and activity rates as well as resistance to oxidative stress. The overall findings presented here demonstrate the influence of MSP size and surface on their potential toxicity in vivo and indicate the silica-based mesoporous particles to be a potential support for encapsulation in oral delivery applications. Furthermore, the good correlation obtained between healthy aging variables and viability (mean lifespan) validates the use of C. elegans as a multicellular organism for nanotoxicology studies of MSPs.
Collapse
Affiliation(s)
- Carolina Acosta
- Grupo de Investigación e Innovación Alimentaria(CUINA), Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia, Spain.
| | - Jose M Barat
- Grupo de Investigación e Innovación Alimentaria(CUINA), Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politecnica de València and Universitat de València, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politecnica de València and Universitat de València, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Silvia Llopis
- Department of Food Biotechnology, Biopolis S.L., Parc Científic Universitat de València, Spain
| | - Nuria González
- Department of Food Biotechnology, Biopolis S.L., Parc Científic Universitat de València, Spain
| | - Salvador Genovés
- Department of Food Biotechnology, Biopolis S.L., Parc Científic Universitat de València, Spain
| | - Daniel Ramón
- Department of Food Biotechnology, Biopolis S.L., Parc Científic Universitat de València, Spain
| | - Patricia Martorell
- Department of Food Biotechnology, Biopolis S.L., Parc Científic Universitat de València, Spain
| |
Collapse
|
26
|
Yang B, Chen Y, Shi J. Exogenous/Endogenous-Triggered Mesoporous Silica Cancer Nanomedicine. Adv Healthc Mater 2018; 7:e1800268. [PMID: 29938917 DOI: 10.1002/adhm.201800268] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/26/2018] [Indexed: 11/12/2022]
Abstract
Recent advances in nanomedicine-based theranostic platforms have catalyzed the generation of new theranostic modalities for pathological abnormalities, such as cancer. Mesoporous silica-based nanomedicines, which feature unique physicochemical properties and specific applicability, are extensively explored for numerous oncological applications. Due to the well-defined morphology, specific surface area, and pore volume, mesoporous silica nanoparticle (MSN)-based theranostic platforms have provided unprecedented opportunities for the development of next-generation cancer nanomedicine. However, current understanding on the underlying mechanisms of how these feasible theranostic platforms interact with exogenous/endogenous triggers and how this unique responsiveness for optimized cancer therapy can be taken advantage of is still preliminary. In this progress report, efforts are made to give a comprehensive overview of the development of MSN-based "smart" theranostic platforms, from exogenous physical irradiation-triggered platforms for localized therapy to endogenous biological stimulus-triggered platforms for tumor microenvironment responsiveness. It is highly expected that these elaborately fabricated MSN-based nanoformulations will play an indispensable role in the efficient cancer therapy based on their high therapeutic outcome and reduced side effects.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
| |
Collapse
|
27
|
Wang Y, Yu Z, Zhang Z, Ren R, Zhang S. Orderly nucleic acid aggregates by electrostatic self-assembly in single cells for miRNA detection and visualizing. Analyst 2018; 141:2861-4. [PMID: 27063644 DOI: 10.1039/c6an00160b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Orderly nucleic acid aggregates (ONAAs) self-assembled on mesoporous silica nanoparticles (MSNs) with positively charged aminopropyl groups (PC) were firstly developed. Interestingly, a novel electrostatic DNA self-assembly could realize hybridization chain reaction (HCR) on the surface of PCMSNs in single cells. Significantly, a non-destructive amplification strategy based on ONAAs-PCMSNs was successfully developed for miRNA detection and in situ imaging by the prominent and agminated fluorescence-bright spots in living cells.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Zhaopeng Yu
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| | - Zhen Zhang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| | - Rui Ren
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China and Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| | - Shusheng Zhang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| |
Collapse
|
28
|
Preparation and characterization of a pH-responsive mesoporous silica nanoparticle dual-modified with biopolymers. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Srivastava P, Hira SK, Sharma A, Kashif M, Srivastava P, Srivastava DN, Singh RA, Manna PP. Telomerase Responsive Delivery of Doxorubicin from Mesoporous Silica Nanoparticles in Multiple Malignancies: Therapeutic Efficacies against Experimental Aggressive Murine Lymphoma. Bioconjug Chem 2018; 29:2107-2119. [DOI: 10.1021/acs.bioconjchem.8b00342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Sumit Kumar Hira
- Department of Zoology, The University of Burdwan, Purba Bardhhaman-713104, India
| | - Amod Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-462 066, India
| | | | | | | | | | | |
Collapse
|
30
|
Improved photodynamic efficiency for methylene blue from silica-methylene blue@tannic acid-Fe(III) ions complexes in aqueous solutions. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Martínez-Carmona M, Lozano D, Colilla M, Vallet-Regí M. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater 2018; 65:393-404. [PMID: 29127069 DOI: 10.1016/j.actbio.2017.11.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/07/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023]
Abstract
A novel multifunctional nanodevice based in doxorubicin (DOX)-loaded mesoporous silica nanoparticles (MSNs) as nanoplatforms for the assembly of different building blocks has been developed for bone cancer treatment. These building blocks consists of: i) a polyacrylic acid (PAA) capping layer grafted to MSNs via an acid-cleavable acetal linker, to minimize premature cargo release and provide the nanosystem of pH-responsive drug delivery ability; and ii) a targeting ligand, the plant lectin concanavalin A (ConA), able to selectively recognize, bind and internalize owing to certain cell-surface glycans, such as sialic acids (SA), overexpressed in given tumor cells. This multifunctional nanosystem exhibits a noticeable higher internalization degree into human osteosarcoma cells (HOS), overexpressing SA, compared to healthy preosteoblast cells (MC3T3-E1). Moreover, the results indicate that small DOX loading (2.5 µg mL-1) leads to almost 100% of osteosarcoma cell death in comparison with healthy bone cells, which significantly preserve their viability. Besides, this nanodevice has a cytotoxicity on tumor cells 8-fold higher than that caused by the free drug. These findings demonstrate that the synergistic combination of different building blocks into a unique nanoplatform increases antitumor effectiveness and decreases toxicity towards normal cells. This line of attack opens up new insights in targeted bone cancer therapy. STATEMENT OF SIGNIFICANCE The development of highly selective and efficient tumor-targeted smart drug delivery nanodevices remains a great challenge in nanomedicine. This work reports the design and optimization of a multifunctional nanosystem based on mesoporous silica nanoparticles (MSNs) featuring selectivity towards human osteosarcoma cells and pH-responsive antitumor drug delivery capability. The novelty and originality of this manuscript relies on proving that the synergistic assembly of different building blocks into a unique nanoplatform increases antitumor effectiveness and decreases toxicity towards healthy cells, which constitutes a new paradigm in targeted bone cancer therapy.
Collapse
Affiliation(s)
- Marina Martínez-Carmona
- Dpto. Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Daniel Lozano
- Dpto. Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Montserrat Colilla
- Dpto. Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| | - María Vallet-Regí
- Dpto. Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| |
Collapse
|
32
|
Martínez-Carmona M, Lozano D, Baeza A, Colilla M, Vallet-Regí M. A novel visible light responsive nanosystem for cancer treatment. NANOSCALE 2017; 9:15967-15973. [PMID: 29019495 DOI: 10.1039/c7nr05050j] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel singlet-oxygen sensitive drug delivery nanocarrier able to release its cargo after exposure to visible (Vis) light from a common lamp is presented. This nanodevice is based on mesoporous silica nanoparticles (MSN) decorated with porphyrin-caps grafted via reactive oxygen species (ROS)-cleavable linkages. In the presence of Vis light porphyrin-nanocaps produce singlet oxygen molecules that break the sensitive-linker, which triggers pore uncapping and therefore allows the release of the entrapped cargo (topotecan, TOP). This new system takes advantage of the non-toxicity and greater penetration capacity of Vis radiation and a double antitumor effect due to the drug release and the ROS production. In vitro tests with HOS osteosarcoma cancer cells reveal that TOP is able to be released in a controlled fashion inside the tumor cells. This research work constitutes a proof of concept that opens up promising expectations in the search for new alternatives for the treatment of cancer.
Collapse
Affiliation(s)
- M Martínez-Carmona
- Dpto. Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | | | | | | | | |
Collapse
|
33
|
Srivastava P, Hira SK, Srivastava DN, Gupta U, Sen P, Singh RA, Manna PP. Protease-Responsive Targeted Delivery of Doxorubicin from Bilirubin-BSA-Capped Mesoporous Silica Nanoparticles against Colon Cancer. ACS Biomater Sci Eng 2017; 3:3376-3385. [DOI: 10.1021/acsbiomaterials.7b00635] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Sumit Kumar Hira
- Department
of Zoology, The University of Burdwan, Bardhaman 713104, India
| | | | | | - Pradip Sen
- Institute of Microbial Technology, Chandigarh, India
| | | | | |
Collapse
|
34
|
Zhou Y, Han X, Jing X, Chen Y. Construction of Silica-Based Micro/Nanoplatforms for Ultrasound Theranostic Biomedicine. Adv Healthc Mater 2017; 6. [PMID: 28795530 DOI: 10.1002/adhm.201700646] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/24/2017] [Indexed: 12/20/2022]
Abstract
Ultrasound (US)-based biomedicine has been extensively explored for its applications in both diagnostic imaging and disease therapy. The fast development of theranostic nanomedicine significantly promotes the development of US-based biomedicine. This progress report summarizes and discusses the recent developments of rational design and fabrication of silica-based micro/nanoparticles for versatile US-based biomedical applications. The synthetic strategies and surface-engineering approaches of silica-based micro/nanoparticles are initially discussed, followed by detailed introduction on their US-based theranostic applications. They have been extensively explored in contrast-enhanced US imaging, US-based multi-modality imaging, synergistic high-intensity focused US (HIFU) ablation, sonosensitizer-enhanced sonodynamic therapy (SDT), as well as US-triggered chemotherapy. Their biological effects and biosafety have been briefly discussed to guarantee further clinical translation. Based on the high biocompatibility, versatile composition/structure and high performance in US-based theranostic biomedicine, these silica-based theranostic agents are expected to pave a new way for achieving efficient US-based theranostics of disease by taking the specific advantages of material science, nanotechnology and US-based biomedicine.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Ultrasound the Third People's Hospital of Chengdu City the Affiliated Hospital of Southwest Jiaotong University Chengdu 600031 P. R. China
| | - Xiaoxia Han
- Institute of Ultrasound Imaging and Department of Ultrasound Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Xiangxiang Jing
- Department of Ultrasound Hainan General Hospital Haikou 570311 P. R. China
| | - Yu Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
35
|
MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2495-2505. [PMID: 28842375 DOI: 10.1016/j.nano.2017.08.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/26/2017] [Accepted: 08/12/2017] [Indexed: 01/12/2023]
Abstract
Mucin 1 (MUC1) is a cell surface protein overexpressed in breast cancer. Mesoporous silica nanoparticles (MSNs) loaded with safranin O, functionalized with aminopropyl groups and gated with the negatively charged MUC1 aptamer have been prepared (S1-apMUC1) for specific targeting and cargo release in tumoral versus non-tumoral cells. Confocal microscopy studies showed that the S1-apMUC1 nanoparticles were internalized in MDA-MB-231 breast cancer cells that overexpress MUC1 receptor with subsequent pore opening and cargo release. Interestingly, the MCF-10-A non-tumorigenic breast epithelial cell line that do not overexpress MUC1, showed reduced (S1-apMUC1) internalization. Negligible internalization was also found for S1-ap nanoparticles that contained a scrambled DNA sequence as gatekeeper. S2-apMUC1 nanoparticles (similar to S1-apMUC1 but loaded with doxorubicin) internalized in MDA-MB-231 cells and induced a remarkable reduction in cell viability. Moreover, S1-apMUC1 nanoparticles radio-labeled with 99mTc (S1-apMUC1-Tc) showed a remarkable tumor targeting in in vivo studies with MDA-MB-231 tumor-bearing Balb/c mice.
Collapse
|
36
|
Chai S, Guo Y, Zhang Z, Chai Z, Ma Y, Qi L. Cyclodextrin-gated mesoporous silica nanoparticles as drug carriers for red light-induced drug release. NANOTECHNOLOGY 2017; 28:145101. [PMID: 28281469 DOI: 10.1088/1361-6528/aa5e74] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Long wavelength light-responsive drug delivery systems based on mesoporous silica nanoparticles (MSNs) have attracted much attention in the last few years. In this paper, a red light (660 nm)-responsive drug delivery system based on low-cost cyclodextrin (CD)-gated MSNs containing a photodynamic therapy (PDT) photosensitizer (Chlorin e6, Ce6) was developed for the first time. The drug release experiment in water demonstrated that with the irradiation of red light, Ce6 can be excited to generate singlet oxygen, which can further cleave the singlet oxygen sensitive linker to trigger the departure of CD and the release of cargo. Further in vitro release experiments confirmed that cargo can be released from MSNs with the irradiation of red light and spread into the entire cell. The relative low power density (0.5 W cm-2) of excitation light together with the short irradiation time (one-three min) result in a low light dose (30-90 J cm-2) for the drug delivery, contributing to their potential clinical applications.
Collapse
Affiliation(s)
- Shiqiang Chai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Llopis-Lorente A, Lozano-Torres B, Bernardos A, Martínez-Máñez R, Sancenón F. Mesoporous silica materials for controlled delivery based on enzymes. J Mater Chem B 2017; 5:3069-3083. [PMID: 32263705 DOI: 10.1039/c7tb00348j] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review summarises examples of capped mesoporous silica materials for controlled delivery that use enzymes as external triggers or functional components of the gating ensemble.
Collapse
Affiliation(s)
- Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camí de Vera s/n, 46022 València, Spain
| | | | | | | | | |
Collapse
|
38
|
Chen B, Dai W, He B, Zhang H, Wang X, Wang Y, Zhang Q. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment. Theranostics 2017; 7:538-558. [PMID: 28255348 PMCID: PMC5327631 DOI: 10.7150/thno.16684] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects.
Collapse
Affiliation(s)
- Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiguang Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| |
Collapse
|
39
|
Zhu J, Niu Y, Li Y, Gong Y, Shi H, Huo Q, Liu Y, Xu Q. Stimuli-responsive delivery vehicles based on mesoporous silica nanoparticles: recent advances and challenges. J Mater Chem B 2017; 5:1339-1352. [DOI: 10.1039/c6tb03066a] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the past decade, stimuli-responsive drug delivery vehicles based on surface-functionalized mesoporous silica nanoparticles have attracted intense interest as a new type of drug carrier.
Collapse
Affiliation(s)
- Jianhua Zhu
- Department of Pharmacy
- Bengbu Medical College
- Bengbu 233030
- China
- School of Pharmacy
| | - Yimin Niu
- Department of Pharmacy
- Zhongda Hospital
- School of Medicine
- Southeast University
- Nanjing 210009
| | - Yang Li
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Yaxiang Gong
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Huihui Shi
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Qiang Huo
- Department of Pharmacy
- Bengbu Medical College
- Bengbu 233030
- China
| | - Yang Liu
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Qunwei Xu
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| |
Collapse
|
40
|
Wang S, Liu F, Li XL. Monitoring of “on-demand” drug release using dual tumor marker mediated DNA-capped versatile mesoporous silica nanoparticles. Chem Commun (Camb) 2017; 53:8755-8758. [DOI: 10.1039/c7cc02752d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We constructed a versatile drug delivery system using dual internal stimulus, achieving controllable release and monitoring simultaneously.
Collapse
Affiliation(s)
- Song Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers
- College of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
- P. R. China
| | - Fei Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers
- College of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
- P. R. China
| | - Xiang-Ling Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers
- College of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
- P. R. China
| |
Collapse
|
41
|
Song Y, Li Y, Xu Q, Liu Z. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook. Int J Nanomedicine 2016; 12:87-110. [PMID: 28053526 PMCID: PMC5191581 DOI: 10.2147/ijn.s117495] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With the development of nanotechnology, the application of nanomaterials in the field of drug delivery has attracted much attention in the past decades. Mesoporous silica nanoparticles as promising drug nanocarriers have become a new area of interest in recent years due to their unique properties and capabilities to efficiently entrap cargo molecules. This review describes the latest advances on the application of mesoporous silica nanoparticles in drug delivery. In particular, we focus on the stimuli-responsive controlled release systems that are able to respond to intracellular environmental changes, such as pH, ATP, GSH, enzyme, glucose, and H2O2. Moreover, drug delivery induced by exogenous stimuli including temperature, light, magnetic field, ultrasound, and electricity is also summarized. These advanced technologies demonstrate current challenges, and provide a bright future for precision diagnosis and treatment.
Collapse
Affiliation(s)
- Yuanhui Song
- Wenzhou Institute of Biomaterials and Engineering (WIBE), Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yihong Li
- Wenzhou Institute of Biomaterials and Engineering (WIBE), Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Qien Xu
- Wenzhou Institute of Biomaterials and Engineering (WIBE), Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Zhe Liu
- Wenzhou Institute of Biomaterials and Engineering (WIBE), Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
42
|
Yang L, Yin T, Liu Y, Sun J, Zhou Y, Liu J. Gold nanoparticle-capped mesoporous silica-based H 2O 2-responsive controlled release system for Alzheimer's disease treatment. Acta Biomater 2016; 46:177-190. [PMID: 27619837 DOI: 10.1016/j.actbio.2016.09.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 12/17/2022]
Abstract
Metal ions promote Alzheimer's disease (AD) pathogenesis by accelerating amyloid-β (Aβ) aggregation and inducing formation of neurotoxic reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). Although metal chelators can block these effects, their therapeutic potential is marred by their inability to cross the blood-brain barrier (BBB) and by their non-specific interactions with metal ions necessary for normal cellular processes, which could result in adverse side effects. To overcome these limitations, we created a novel gold nanoparticle-capped mesoporous silica (MSN-AuNPs) based H2O2-responsive controlled release system for targeted delivery of the metal chelator CQ. In this system, CQ is released only upon exposure to conditions in which H2O2 levels are high, such as those in Aβ plaques. The conjugation of AuNPs on the surface of MSN did not affect their ability to cross the BBB. The AuNPs also help in decrease the Aβ self-assembly, due to this, MSN-CQ-AuNPs were more efficient than MSN-CQ in inhibiting Cu2+-induced Aβ40 aggregation. Furthermore, MSN-CQ-AuNPs reduced the cell membrane disruption, microtubular defects and ROS-mediated apoptosis induced by Aβ40-Cu2+ complexes. The high BBB permeability, efficient anti-Aβ aggregation, and good biocompatibility of MSN-CQ-AuNPs, together with the specific conditions necessary for its release of CQ, demonstrate its potential for future biomedical applications. STATEMENT OF SIGNIFICANCE Due to the low ability to cross the blood-brain barrier (BBB) and non-specific interactions with metal ions necessary for normal cellular processes of metal chelator or Aβ inhibitors, we created a novel gold nanoparticle-capped mesoporous silica (MSN-AuNPs)-based H2O2-responsive controlled release system for targeted delivery of the metal chelator CQ and AuNPs (Aβ inhibitor). In this system, CQ and AuNPs are released only upon exposure to conditions in which H2O2 levels are high, such as those in Aβ plaques. The AuNPs on the surface of MSN also help in decrease the Aβ self-assembly, due to this, MSN-CQ-AuNPs were more efficient than MSN-CQ in inhibiting Cu2+-induced Aβ40 aggregation. Furthermore, MSN-CQ-AuNPs reduced the cell membrane disruption, microtubular defects and ROS-mediated apoptosis induced by Aβ40-Cu2+ complexes. Our data suggest that this controlled release system may have widespread application in the field of medicine for Alzheimer's disease.
Collapse
|
43
|
Yang Y, Achazi K, Jia Y, Wei Q, Haag R, Li J. Complex Assembly of Polymer Conjugated Mesoporous Silica Nanoparticles for Intracellular pH-Responsive Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12453-12460. [PMID: 27467698 DOI: 10.1021/acs.langmuir.6b01845] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There is a great challenge in constructing pH-responsive drug delivery systems in biomedical application research. Many nanocomposites are intended to be pH-responsive as drug carriers because of a tumorous or intracellular mildly acidic environment. However, it is always difficult to find an appropriate system for quick response and release before the carrier is excreted from the living system. In this work, hyperbranched polymer, hyperbranched polyglycerol (hPG), and conjugated mesoporous silica nanoparticles (MSNs) were assembled as complexes to serve as drug carriers. Herein, the conjugated polymer-MSNs interacted through the Schiff base bond, which possessed a mildly acidic responsive property. Interestingly, the assembled system could rapidly respond and release guest molecules inside cancer cells. This would make the entrapped drug released before the carriers escape from the endosome counterpart. The results show that the assembled composite complexes can be considered to be a drug delivery system for cancer therapy.
Collapse
Affiliation(s)
- Yang Yang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Katharina Achazi
- Department of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid and Interface Science, Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190, China
| | - Qiang Wei
- Department of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Rainer Haag
- Department of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Junbai Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid and Interface Science, Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190, China
| |
Collapse
|
44
|
Tukappa A, Ultimo A, de la Torre C, Pardo T, Sancenón F, Martínez-Máñez R. Polyglutamic Acid-Gated Mesoporous Silica Nanoparticles for Enzyme-Controlled Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8507-15. [PMID: 27468799 DOI: 10.1021/acs.langmuir.6b01715] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) are highly attractive as supports in the design of controlled delivery systems that can act as containers for the encapsulation of therapeutic agents, overcoming common issues such as poor water solubility and poor stability of some drugs and also enhancing their bioavailability. In this context, we describe herein the development of polyglutamic acid (PGA)-capped MSNs that can selectively deliver rhodamine B and doxorubicin. PGA-capped MSNs remain closed in an aqueous environment, yet they are able to deliver the cargo in the presence of pronase because of the hydrolysis of the peptide bonds in PGA. The prepared solids released less than 20% of the cargo in 1 day in water, whereas they were able to reach 90% of the maximum release of the entrapped guest in ca. 5 h in the presence of pronase. Studies of the PGA-capped nanoparticles with SK-BR-3 breast cancer cells were also undertaken. Rhodamine-loaded nanoparticles were not toxic, whereas doxorubicin-loaded nanoparticles were able to efficiently kill more than 90% of the cancer cells at a concentration of 100 μg/mL.
Collapse
Affiliation(s)
- Asha Tukappa
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- Department of Biotechnology, Gulbarga University , Gulbarga 585106, Karnataka, India
| | - Amelia Ultimo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Cristina de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Teresa Pardo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València , Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|
45
|
Feng Y, Panwar N, Tng DJH, Tjin SC, Wang K, Yong KT. The application of mesoporous silica nanoparticle family in cancer theranostics. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Zheng H, Tai CW, Su J, Zou X, Gao F. Ultra-small mesoporous silica nanoparticles as efficient carriers for pH responsive releases of anti-cancer drugs. Dalton Trans 2016; 44:20186-92. [PMID: 26535559 DOI: 10.1039/c5dt03700j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesoporous silica has emerged as one of the most promising carriers for drug delivery systems. However, the synthesis of ultra-small mesoporous silica nanoparticles (UMSNs) and their application in drug delivery remains a significant challenge. Here, spherical UMSNs (∼25 nm) have been synthesized and tested as drug carriers. Anti-cancer drugs mitoxantrone (MX), doxorubicin (DOX) and methotrexate (MTX) have been utilized as model drugs. The pH-responsive drug delivery system can be constructed based on electrostatic interactions between carriers and drug molecules. The UMSNs could store drugs under physiological conditions and release them under acidic conditions. Different pH-responsive release profiles were obtained in phosphate buffer solutions (PBSs) at the designed pH values (from 4.0 to 7.4). MX and DOX can be used in the pH-responsive delivery system, while MTX cannot be used. Furthermore, we found that the physiological stabilities of these drug molecules in UMSNs are in a decreasing order MX > DOX > MTX, which follows the order of their isoelectric point (pI) values.
Collapse
Affiliation(s)
- Haoquan Zheng
- Berzelii Center EXSELENT on Porous Materials and Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Cheuk-Wai Tai
- Berzelii Center EXSELENT on Porous Materials and Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Jie Su
- Berzelii Center EXSELENT on Porous Materials and Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Xiaodong Zou
- Berzelii Center EXSELENT on Porous Materials and Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Feifei Gao
- Berzelii Center EXSELENT on Porous Materials and Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden.
| |
Collapse
|
47
|
Liu Z, Chen X, Zhang X, Gooding JJ, Zhou Y. Carbon-Quantum-Dots-Loaded Mesoporous Silica Nanocarriers with pH-Switchable Zwitterionic Surface and Enzyme-Responsive Pore-Cap for Targeted Imaging and Drug Delivery to Tumor. Adv Healthc Mater 2016; 5:1401-7. [PMID: 26987989 DOI: 10.1002/adhm.201600002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/04/2016] [Indexed: 12/17/2022]
Abstract
Mesoporous silica nanocarriers with pH-switchable antifouling zwitterionic surface, enzyme responsive drug release properties and blue fluorescence are reported. Prolonged circulation in the blood system with zero premature release as well as efficient cellular uptake and intracellular drug release in tumor tissue are achieved.
Collapse
Affiliation(s)
- Zhongning Liu
- Department of Prosthodontics Peking University School and Hospital of Stomatology Beijing 100081 China
| | - Xin Chen
- School of Chemical Engineering and Technology Shanxi Key Laboratory of Energy Chemical Process Intensification Xi'an Jiaotong University Xi'an 710049 China
| | - Xiaojin Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education Department of Chemistry Wuhan University Wuhan 430072 China
| | - John Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine University of New South Wales Sydney 2052 Australia
| | - Yongsheng Zhou
- Department of Prosthodontics National Engineering Lab for Digital and Material Technology of Stomatology Peking University School and Hospital of Stomatology Beijing 100081 China
| |
Collapse
|
48
|
Datz S, Argyo C, Gattner M, Weiss V, Brunner K, Bretzler J, von Schirnding C, Torrano AA, Spada F, Vrabel M, Engelke H, Bräuchle C, Carell T, Bein T. Genetically designed biomolecular capping system for mesoporous silica nanoparticles enables receptor-mediated cell uptake and controlled drug release. NANOSCALE 2016; 8:8101-8110. [PMID: 27021414 DOI: 10.1039/c5nr08163g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Effective and controlled drug delivery systems with on-demand release and targeting abilities have received enormous attention for biomedical applications. Here, we describe a novel enzyme-based cap system for mesoporous silica nanoparticles (MSNs) that is directly combined with a targeting ligand via bio-orthogonal click chemistry. The capping system is based on the pH-responsive binding of an aryl-sulfonamide-functionalized MSN and the enzyme carbonic anhydrase (CA). An unnatural amino acid (UAA) containing a norbornene moiety was genetically incorporated into CA. This UAA allowed for the site-specific bio-orthogonal attachment of even very sensitive targeting ligands such as folic acid and anandamide. This leads to specific receptor-mediated cell and stem cell uptake. We demonstrate the successful delivery and release of the chemotherapeutic agent Actinomycin D to KB cells. This novel nanocarrier concept provides a promising platform for the development of precisely controllable and highly modular theranostic systems.
Collapse
Affiliation(s)
- Stefan Datz
- Department of Chemistry, Nanosystems Initiative Munich (NIM), Center for Nano Science (CeNS), and Center for Integrated Protein Science Munich (CIPSM), University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Christian Argyo
- Department of Chemistry, Nanosystems Initiative Munich (NIM), Center for Nano Science (CeNS), and Center for Integrated Protein Science Munich (CIPSM), University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Michael Gattner
- Department of Chemistry, Nanosystems Initiative Munich (NIM), Center for Nano Science (CeNS), and Center for Integrated Protein Science Munich (CIPSM), University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Veronika Weiss
- Department of Chemistry, Nanosystems Initiative Munich (NIM), Center for Nano Science (CeNS), and Center for Integrated Protein Science Munich (CIPSM), University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Korbinian Brunner
- Department of Chemistry, Nanosystems Initiative Munich (NIM), Center for Nano Science (CeNS), and Center for Integrated Protein Science Munich (CIPSM), University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Johanna Bretzler
- Department of Chemistry, Nanosystems Initiative Munich (NIM), Center for Nano Science (CeNS), and Center for Integrated Protein Science Munich (CIPSM), University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Constantin von Schirnding
- Department of Chemistry, Nanosystems Initiative Munich (NIM), Center for Nano Science (CeNS), and Center for Integrated Protein Science Munich (CIPSM), University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Adriano A Torrano
- Department of Chemistry, Nanosystems Initiative Munich (NIM), Center for Nano Science (CeNS), and Center for Integrated Protein Science Munich (CIPSM), University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Fabio Spada
- Department of Chemistry, Nanosystems Initiative Munich (NIM), Center for Nano Science (CeNS), and Center for Integrated Protein Science Munich (CIPSM), University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Czech Republic
| | - Hanna Engelke
- Department of Chemistry, Nanosystems Initiative Munich (NIM), Center for Nano Science (CeNS), and Center for Integrated Protein Science Munich (CIPSM), University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Christoph Bräuchle
- Department of Chemistry, Nanosystems Initiative Munich (NIM), Center for Nano Science (CeNS), and Center for Integrated Protein Science Munich (CIPSM), University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Thomas Carell
- Department of Chemistry, Nanosystems Initiative Munich (NIM), Center for Nano Science (CeNS), and Center for Integrated Protein Science Munich (CIPSM), University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Thomas Bein
- Department of Chemistry, Nanosystems Initiative Munich (NIM), Center for Nano Science (CeNS), and Center for Integrated Protein Science Munich (CIPSM), University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany.
| |
Collapse
|
49
|
Heidegger S, Gössl D, Schmidt A, Niedermayer S, Argyo C, Endres S, Bein T, Bourquin C. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. NANOSCALE 2016; 8:938-48. [PMID: 26659601 DOI: 10.1039/c5nr06122a] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized antigen-presenting cells such as dendritic cells. The silica nanoparticles showed a favorable toxicity profile and did not affect the viability of primary immune cells from the spleen in relevant concentrations. Cargo-free MSN induced only very low immune responses in primary cells as determined by surface expression of activation markers and release of pro-inflammatory cytokines such as Interleukin-6, -12 and -1β. In contrast, when surface-functionalized MSN with a pH-responsive polymer capping were loaded with an immune-activating drug, the synthetic Toll-like receptor 7 agonist R848, a strong immune response was provoked. We thus demonstrate that MSN represent an efficient drug delivery vehicle to primary immune cells that is both non-toxic and non-inflammagenic, which is a prerequisite for the use of these particles in biomedical applications.
Collapse
Affiliation(s)
- Simon Heidegger
- Center for Integrated Protein Science Munich (CIPSM), Division of Clinical Pharmacology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, 80336 Munich, Germany. and III. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Dorothée Gössl
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), 81377 Munich, Germany.
| | - Alexandra Schmidt
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), 81377 Munich, Germany.
| | - Stefan Niedermayer
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), 81377 Munich, Germany.
| | - Christian Argyo
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), 81377 Munich, Germany.
| | - Stefan Endres
- Center for Integrated Protein Science Munich (CIPSM), Division of Clinical Pharmacology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), 81377 Munich, Germany.
| | - Carole Bourquin
- Center for Integrated Protein Science Munich (CIPSM), Division of Clinical Pharmacology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, 80336 Munich, Germany. and Chair of Pharmacology, Department of Medicine, Faculty of Science, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
50
|
Ultimo A, Giménez C, Bartovsky P, Aznar E, Sancenón F, Marcos MD, Amorós P, Bernardo AR, Martínez-Máñez R, Jiménez-Lara AM, Murguía JR. Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry 2016; 22:1582-6. [PMID: 26641630 DOI: 10.1002/chem.201504629] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 12/21/2022]
Abstract
We describe herein a Toll-like receptor 3 (TLR3) targeting delivery system based on mesoporous silica nanoparticles capped with the synthetic double stranded RNA polyinosinic-polycytidylic acid (poly(I:C)) for controlled cargo delivery in SK-BR-3 breast carcinoma cells. Our results show that poly(I:C)-conjugated nanoparticles efficiently targeted breast cancer cells due to dsRNA-TLR3 interaction. Such interaction also triggered apoptotic pathways in SK-BR-3, significantly decreasing cells viability. Poly(I:C) cytotoxic effect in breast carcinoma cells was enhanced by loading nanoparticles' mesopores with the anthracyclinic antibiotic doxorubicin, a commonly used chemotherapeutic agent.
Collapse
Affiliation(s)
- Amelia Ultimo
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Cristina Giménez
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Pavel Bartovsky
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Elena Aznar
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Félix Sancenón
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - M Dolores Marcos
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Pedro Amorós
- Instituto de Ciencia de los Materiales (ICMUV), Universitad de Valencia, Valencia, Spain
| | - Ana R Bernardo
- Instituto de Investigaciones Biomédicas A. Sols CSIC-UAM, Arturo Duperier, 4, 28029, Madrid, Spain
| | - Ramón Martínez-Máñez
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Ana M Jiménez-Lara
- Instituto de Investigaciones Biomédicas A. Sols CSIC-UAM, Arturo Duperier, 4, 28029, Madrid, Spain.
| | - José R Murguía
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|