1
|
Tharmatt A, Sahel DK, Jatyan R, Kumari A, Mishra A, Mittal A, Chitkara D. Lipo-polymeric nano-complexes for dermal delivery of a model protein. RSC Adv 2024; 14:20351-20364. [PMID: 38932980 PMCID: PMC11200120 DOI: 10.1039/d4ra02337d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Delivering macromolecules across the skin poses challenges due to the barrier properties of stratum corneum. Different strategies have been reported to cross this barrier, such as chemical penetration enhancers and physical methods like microneedles, sonophoresis, electroporation, laser ablation, etc. Herein, we explored a cationic lipo-polymeric nanocarrier to deliver a model protein across the skin. A cationic amphiphilic lipo-polymer was used to prepare blank nanoplexes, which were subsequently complexed with anionic fluorescein-tagged bovine serum albumin (FITC-BSA). Blank nanoplexes and FITC-BSA complexed nanoplexes showed sizes of 93.72 ± 5.8 (PDI-0.250) and 145.9 ± 3.2 nm (PDI-0.258), respectively, and zeta potentials of 25.6 ± 7.0 mV and 9.17 ± 1.20 mV. In vitro cell culture, and toxicity studies showed optimal use of these nanocarriers, with hemocompatibility data indicating non-toxicity. Ex vivo skin permeation analysis showed a skin permeation rate of 33% after 24 h. The optimized formulation was loaded in a carbopol-based gel that exhibits non-Newtonian flow characteristics with shear-thinning behavior and variable thixotropy. The nanoplexes delivered via gel demonstrated skin permeation of 57% after 24 h in mice skin ex vivo. In vivo skin toxicity testing confirmed the low toxicity profile of these nanocarriers. These results are promising for the transdermal/dermal delivery of macromolecules, such as protein therapeutics, using nanoplexes.
Collapse
Affiliation(s)
- Abhay Tharmatt
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Vidya Vihar Pilani Rajasthan 333031 India +91 9660 456 009 +91 1596 255 835
| | - Deepak Kumar Sahel
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Vidya Vihar Pilani Rajasthan 333031 India +91 9660 456 009 +91 1596 255 835
| | - Reena Jatyan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Vidya Vihar Pilani Rajasthan 333031 India +91 9660 456 009 +91 1596 255 835
| | - Anupma Kumari
- Centre for Comparative Medicine, Institute of Liver and Biliary Sciences (ILBS) New Delhi 110070 India
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur Rajasthan India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Vidya Vihar Pilani Rajasthan 333031 India +91 9660 456 009 +91 1596 255 835
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Vidya Vihar Pilani Rajasthan 333031 India +91 9660 456 009 +91 1596 255 835
| |
Collapse
|
2
|
Hou X, Li J, Hong Y, Ruan H, Long M, Feng N, Zhang Y. Advances and Prospects for Hydrogel-Forming Microneedles in Transdermal Drug Delivery. Biomedicines 2023; 11:2119. [PMID: 37626616 PMCID: PMC10452559 DOI: 10.3390/biomedicines11082119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Transdermal drug delivery (TDD) is one of the key approaches for treating diseases, avoiding first-pass effects, reducing systemic adverse drug reactions and improving patient compliance. Microneedling, iontophoresis, electroporation, laser ablation and ultrasound facilitation are often used to improve the efficiency of TDD. Among them, microneedling is a relatively simple and efficient means of drug delivery. Microneedles usually consist of micron-sized needles (50-900 μm in length) in arrays that can successfully penetrate the stratum corneum and deliver drugs in a minimally invasive manner below the stratum corneum without touching the blood vessels and nerves in the dermis, improving patient compliance. Hydrogel-forming microneedles (HFMs) are safe and non-toxic, with no residual matrix material, high drug loading capacity, and controlled drug release, and they are suitable for long-term, multiple drug delivery. This work reviewed the characteristics of the skin structure and TDD, introduced TDD strategies based on HFMs, and summarized the characteristics of HFM TDD systems and the evaluation methods of HFMs as well as the application of HFM drug delivery systems in disease treatment. The HFM drug delivery system has a wide scope for development, but the translation to clinical application still has more challenges.
Collapse
Affiliation(s)
- Xiaolin Hou
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Jiaqi Li
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Yongyu Hong
- Xiamen Hospital of Chinese Medicine, No. 1739 Xiangyue Road, Huli District, Xiamen 361015, China;
| | - Hang Ruan
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Meng Long
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Nianping Feng
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Yongtai Zhang
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| |
Collapse
|
3
|
Zhu M, Liu H, Cao W, Fang Y, Chen Z, Qi X, Luo D, Chen C. Transcytosis mechanisms of cell-penetrating peptides: Cation independent CC12 and cationic penetratin. J Pept Sci 2022; 28:e3408. [PMID: 35128758 DOI: 10.1002/psc.3408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/07/2022]
Abstract
Cell-penetrating peptides (CPPs) can aid in intracellular and in vivo drug delivery. However, the mechanisms of CPP-mediated penetration remain unclear, limiting the development and further application of CPPs. Flow cytometry and laser confocal fluorescence microscopy were performed to detect the effects of different endocytosis inhibitors on the internalization of CC12 and penetratin in ARPE-19 cells. The co-localization of CPPs with the lysosome and macropinosome was detected via an endocytosis tracing experiment. The flow cytometry results showed that chlorpromazine, wortmannin, cytochalasin D, and the ATP inhibitor oligomycin had dose-dependent endocytosis-inhibitory effects on CC12. The laser confocal fluorescence results showed that oligomycin had the most significant inhibitory effect on CC12 uptake; CC12 was co-located with the lysosome, but not with the macropinosome. For penetratin, cytochalasin D and oligomycin had obvious inhibitory effects. The laser confocal fluorescence results indicated that oligomycin had the most significant inhibitory effect on penetratin uptake; the co-localization of penetratin with the lysosome was higher than that with the macropinosome. Cation-independent CC12 and cationic penetratin may be internalized into cells primarily through caveolae and clathrin-mediated endocytosis, and they are typically dependent on ATP. The transport of penetratin could be partly achieved through the direct transmembrane pathway, as the positive charge of penetratin interacts with the negative charge of the cell membrane, and partly through the endocytic pathway.
Collapse
Affiliation(s)
- Minjiao Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Haiyang Liu
- Department of Respiratory Medicine, The People's Hospital of Dongtai, Dongtai, Jiangsu, China
| | - Wenjiao Cao
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yuefei Fang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, NO, Shanghai, China
| | - Zheng Chen
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Chong Chen
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
4
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Neha Tiwari
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ana Sonzogni
- Group of Polymers and Polymerization Reactors INTEC (Universidad Nacional del Litoral-CONICET) Güemes 3450 Santa Fe 3000 Argentina
| | - David Esporrín‐Ubieto
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Huiyi Wang
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Marcelo Calderón
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science 48009 Bilbao Spain
| |
Collapse
|
5
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022; 61:e202107960. [PMID: 34487599 PMCID: PMC9292798 DOI: 10.1002/anie.202107960] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/15/2022]
Abstract
Skin penetration of active molecules for treatment of diverse diseases is a major field of research owing to the advantages associated with the skin like easy accessibility, reduced systemic-derived side effects, and increased therapeutic efficacy. Despite these advantages, dermal drug delivery is generally challenging due to the low skin permeability of therapeutics. Although various methods have been developed to improve skin penetration and permeation of therapeutics, they are usually aggressive and could lead to irreversible damage to the stratum corneum. Nanosized carrier systems represent an alternative approach for current technologies, with minimal damage to the natural barrier function of skin. In this Review, the use of nanoparticles to deliver drug molecules, genetic material, and vaccines into the skin is discussed. In addition, nanotoxicology studies and the recent clinical development of nanoparticles are highlighted to shed light on their potential to undergo market translation.
Collapse
Affiliation(s)
- Neha Tiwari
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ana Sonzogni
- Group of Polymers and Polymerization ReactorsINTEC (Universidad Nacional del Litoral-CONICET)Güemes 3450Santa Fe3000Argentina
| | - David Esporrín‐Ubieto
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Huiyi Wang
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Marcelo Calderón
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
- IKERBASQUE, Basque Foundation for Science48009BilbaoSpain
| |
Collapse
|
6
|
Jiang M, Zhao L, Cui X, Wu X, Zhang Y, Guan X, Ma J, Zhang W. Cooperating minimalist nanovaccine with PD-1 blockade for effective and feasible cancer immunotherapy. J Adv Res 2022; 35:49-60. [PMID: 35003793 PMCID: PMC8721234 DOI: 10.1016/j.jare.2021.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023] Open
Abstract
Facile antigen/adjuvant co-loaded nanovaccine made by convenient green preparation. The immunological activity of the antigen and adjuvant was maximally preserved. The minimalist nanovaccine had excellent stability and antitumor immune activation. Nanovaccine combined with PD-1 antibody synergistically enhanced therapy outcome. Good practicability for expanding clinical translation and personalized therapy.
Introduction Tumor vaccine has been a research boom for cancer immunotherapy, while its therapeutic outcome is severely depressed by the vulnerable in vivo delivery efficiency. Moreover, tumor immune escape is also another intractable issue, which has badly whittled down the therapeutic efficiency. Objectives Our study aims to solve the above dilemmas by cooperating minimalist nanovaccine with PD-1 blockade for effective and feasible cancer immunotherapy. Methods The minimalist antigen and adjuvant co-delivery nanovaccine was developed by employing natural polycationic protamine (PRT) to carry the electronegative ovalbumin (OVA) antigen and unmethylated Cytosine-phosphorothioate-Guanine (CpG) adjuvant via convenient chemical bench-free “green” preparation without chemical-synthesis and no organic solvent was required, which could preserve the immunological activities of the antigens and adjuvants. On that basis, PD-1 antibody (aPD-1) was utilized to block the tumor immune escape and cooperate with the nanovaccine by maintaining the tumoricidal-activity of the vaccine-induced T cells. Results Benefited from the polycationic PRT, the facile PRT/CpG/OVA nanovaccine displayed satisfactory delivery performance, involving enhanced cellular uptake in dendritic cells (DCs), realizable endosomal escape and promoted stimulation for DCs’ maturation. These features would be helpful for the antitumor immunotherapeutic efficiency of the nanovaccine. Furthermore, the cooperation of the nanovaccine with aPD-1 synergistically improved the immunotherapy outcome, profiting by the cooperation of the “T cell induction” competency of the nanovaccine and the “T cell maintenance” function of the aPD-1. Conclusion This study will provide new concepts for the design and construction of facile nanovaccines, and contribute valuable scientific basis for cancer immunotherapy.
Collapse
Affiliation(s)
- Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Liping Zhao
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xiaoming Cui
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xinghan Wu
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yuhan Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Jinlong Ma
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
7
|
Low molecular weight protamine-corticosteroid conjugate for topical treatment of psoriasis: A hypothesis. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Genetically-engineered "all-in-one" vaccine platform for cancer immunotherapy. Acta Pharm Sin B 2021; 11:3622-3635. [PMID: 34900541 PMCID: PMC8642616 DOI: 10.1016/j.apsb.2021.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
An essential step for cancer vaccination is to break the immunosuppression and elicit a tumor-specific immunity. A major hurdle against cancer therapeutic vaccination is the insufficient immune stimulation of the cancer vaccines and lack of a safe and efficient adjuvant for human use. We discovered a novel cancer immunostimulant, trichosanthin (TCS), that is a clinically used protein drug in China, and developed a well-adaptable protein-engineering method for making recombinant protein vaccines by fusion of an antigenic peptide, TCS, and a cell-penetrating peptide (CPP), termed an “all-in-one” vaccine, for transcutaneous cancer immunization. The TCS adjuvant effect on antigen presentation was investigated and the antitumor immunity of the vaccines was investigated using the different tumor models. The vaccines were prepared via a facile recombinant method. The vaccines induced the maturation of DCs that subsequently primed CD8+ T cells. The TCS-based immunostimulation was associated with the STING pathway. The general applicability of this genetic engineering strategy was demonstrated with various tumor antigens (i.e., legumain and TRP2 antigenic peptides) and tumor models (i.e., colon tumor and melanoma). These findings represent a useful protocol for developing cancer vaccines at low cost and time-saving, and demonstrates the adjuvant application of TCS—an old drug for a new application.
Collapse
|
9
|
Wang K, Yang Y, Xue W, Liu Z. Cell Penetrating Peptide-Based Redox-Sensitive Vaccine Delivery System for Subcutaneous Vaccination. Mol Pharm 2018; 15:975-984. [PMID: 29359945 DOI: 10.1021/acs.molpharmaceut.7b00905] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In immunotherapy, induction of potent cellular immunity by vaccination is essential to treat intracellular infectious diseases and tumors. In this work, we designed a new synthetic peptide carrier, Cys-Trp-Trp-Arg8-Cys-Arg8-Cys-Arg8-Cys, for vaccine delivery by integrating a redox-responsive disulfide bond cross-linking and cell-penetrating peptide arginine octamer. The carrier peptide bound to the antigen protein ovalbumin (OVA) via electrostatic self-assembly to form peptide/OVA nanocomposites. Then, the spontaneous oxidization of the thiols of the cysteine residues induced interpeptide disulfide bond cross-linking to construct denser peptide/OVA condensates. The cell-penetrating peptides incorporated in the carrier peptide could increase antigen uptake by antigen presenting cells. After being internalized by antigen presenting cells, the antigen could be rapidly released in cytoplasm along with degradation of the disulfide bonds by intracellular glutathione, which could promote potent CD8+ T cell immunity. The cross-linked peptide/OVA condensates were used for subcutaneous vaccination. The results showed that the peptide carrier mediated potent antigen-specific immune response by significantly increasing IgG titer; splenocyte proliferation; the secretion level of cytokines INF-γ, IL-12, IL-4, and IL-10; immune memory function, and the activation and maturation of dendritic cells. From the results, the low-molecular weight vaccine-condensing peptide with definite chemical composition could be developed as a novel class of vaccine delivery systems.
Collapse
Affiliation(s)
- Kewei Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou 510632 , China
| | - Yong Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou 510632 , China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou 510632 , China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
10
|
Cell-penetrating peptide-based non-invasive topical delivery systems. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0373-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Reimondez-Troitiño S, Alcalde I, Csaba N, Íñigo-Portugués A, de la Fuente M, Bech F, Riestra AC, Merayo-Lloves J, Alonso MJ. Polymeric nanocapsules: a potential new therapy for corneal wound healing. Drug Deliv Transl Res 2017; 6:708-721. [PMID: 27392604 DOI: 10.1007/s13346-016-0312-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Corneal injuries are one of the most frequently observed ocular diseases, leading to permanent damage and impaired vision if they are not treated properly. In this sense, adequate wound healing after injury is critical for keeping the integrity and structure of the cornea. The goal of this work was to assess the potential of polymeric nanocapsules, either unloaded or loaded with cyclosporine A or vitamin A, alone or in combination with mitomycin C, for the treatment of corneal injuries induced by photorefractive keratectomy surgery. The biopolymers selected for the formation of the nanocapsules were polyarginine and protamine, which are known for their penetration enhancement effect. The results showed that, following topical instillation to a mouse model of corneal injury, all the nanocapsule formulations, either unloaded or loaded with cyclosporine A or vitamin A, were able to stimulate corneal wound healing. In addition, the healing rate observed for the combination of unloaded protamine nanocapsules with mitomycin C was comparable to the one observed for the positive control Cacicol®, a biopolymer known as a corneal wound healing enhancer. Regarding the corneal opacity, the initial grade of corneal haze (>3) induced by the photorefractive keratectomy was more rapidly reduced in the case of the positive control, Cacicol®, than in corneas treated with the nanocapsules. In conclusion, this work shows that drug-free arginine-rich (polyarginine, protamine) nanocapsules exhibit a positive behavior with regard to their potential use for corneal wound healing.
Collapse
Affiliation(s)
- Sonia Reimondez-Troitiño
- Nanobiofar Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain.,Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| | - Noemi Csaba
- Nanobiofar Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| | - Almudena Íñigo-Portugués
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| | - María de la Fuente
- Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Federico Bech
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| | - Ana C Riestra
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain.
| | - María J Alonso
- Nanobiofar Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Teijeiro-Valiño C, Yebra-Pimentel E, Guerra-Varela J, Csaba N, Alonso MJ, Sánchez L. Assessment of the permeability and toxicity of polymeric nanocapsules using the zebrafish model. Nanomedicine (Lond) 2017; 12:2069-2082. [DOI: 10.2217/nnm-2017-0078] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To assess the capacity of a new drug delivery nanocapsule (NC) with a double shell of hyaluronic acid and protamine to overcome biological barriers using the zebrafish model. Materials & methods: NCs were prepared by the solvent displacement method, tagged with fluorescent makers and physicochemically characterized. Toxicity was evaluated according to the Fish Embryo Acute Toxicity test, and permeability was tested by exposing zebrafish, with and without chorion, to the fluorescent NCs. Results: Toxicity of NCs was very low as compared with that of a control nanoemulsion. Double-shell NCs were able to cross chorion and skin. Conclusion: Beyond the potential value of hyaluronic acid:protamine NCs for overcoming epithelial barriers, this works highlights the utility of zebrafish for fast screening of nanocarriers.
Collapse
Affiliation(s)
- Carmen Teijeiro-Valiño
- Nanobiofar Group, Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Elena Yebra-Pimentel
- ZF-Screens B.V., 2333 Leiden, The Netherlands
- Department of Zoology, Genetics & Anthropology, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Jorge Guerra-Varela
- Department of Zoology, Genetics & Anthropology, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Noemi Csaba
- Nanobiofar Group, Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - María J Alonso
- Nanobiofar Group, Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics & Anthropology, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
13
|
Choi JU, Lee SW, Pangeni R, Byun Y, Yoon IS, Park JW. Preparation and in vivo evaluation of cationic elastic liposomes comprising highly skin-permeable growth factors combined with hyaluronic acid for enhanced diabetic wound-healing therapy. Acta Biomater 2017; 57:197-215. [PMID: 28476587 DOI: 10.1016/j.actbio.2017.04.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 11/16/2022]
Abstract
To enhance the therapeutic effects of exogenous administration of growth factors (GFs) in the treatment of chronic wounds, we constructed GF combinations of highly skin-permeable epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), and platelet-derived growth factor-A (PDGF-A). We genetically conjugated a low-molecular-weight protamine (LMWP) to the N-termini of these GFs to form LMWP-EGF, LMWP-IGF-I, and LMWP-PDGF-A. Subsequently, these molecules were complexed with hyaluronic acid (HA). Combinations of native or LMWP-fused GFs significantly promoted fibroblast proliferation and the synthesis of procollagen, with a magnification of these results observed after the GFs were complexed with HA. The optimal proportions of LMWP-EGF, LMWP-IGF-I, LMWP-PDGF-A, and HA were 1, 1, 0.02, and 200, respectively. After confirming the presence of a synergistic effect, we incorporated the LMWP-fused GFs-HA complex into cationic elastic liposomes (ELs) of 107±0.757nm in diameter and a zeta potential of 56.5±1.13mV. The LMWP-fused GFs had significantly improved skin permeation compared with native GFs. The in vitro wound recovery rate of the LMWP-fused GFs-HA complex was 23% higher than that of cationic ELs composed of LMWP-fused GFs alone. Moreover, the cationic ELs containing the LMWP-fused GFs-HA complex significantly accelerated the wound closure rate in a diabetic mouse model and the wound size was maximally decreased by 65% and 58% compared to cationic ELs loaded with vehicle or native GFs-HA complex, respectively. Thus, topical treatment with cationic ELs loaded with the LMWP-fused GFs-HA complex synergistically enhanced the healing of chronic wounds, exerting both rapid and prolonged effects. STATEMENT OF SIGNIFICANCE We believe that our study makes a significant contribution to the literature, because it demonstrated the potential application of cationic elastic liposomes as topical delivery systems for growth factors (GFs) that have certain limitations in their therapeutic effects (e.g., low percutaneous absorption of GFs at the lesion site and the requirement for various GFs at different healing stages). Topical treatment with cationic elastic liposomes loaded with highly skin-permeable low-molecular-weight protamine (LMWP)-fused GFs-hyaluronic acid (HA) complex synergistically enhanced the healing of diabetic wounds, exerting both rapid and prolonged effects.
Collapse
Affiliation(s)
- Jeong Uk Choi
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seong Wook Lee
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Rudra Pangeni
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of Korea
| | - Youngro Byun
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| | - Jin Woo Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of Korea.
| |
Collapse
|
14
|
Xu J, Xu B, Tao J, Yang Y, Hu Y, Huang Y. Microneedle-Assisted, DC-Targeted Codelivery of pTRP-2 and Adjuvant of Paclitaxel for Transcutaneous Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700666. [PMID: 28561892 DOI: 10.1002/smll.201700666] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/07/2017] [Indexed: 06/07/2023]
Abstract
This work aims at developing an immunotherapeutic strategy to deliver a cancer DNA vaccine targeting dendritic cells (DCs), to trigger their maturation and antitumor function, and reduce immune escape using a polymeric nanocomplex of paclitaxel (PTX)-encapsulated sulfobutylether-β-cyclodextrin (SBE)/mannosylated N,N,N-trimethylchitosan (mTMC)/DNA. To enhance DC-targeting and revoke immunosuppression is the major challenge for eliciting effective antitumor immunity. This codelivery system is characterized by using low-dose PTX as an adjuvant that is included inside SBE, and the PTX/SBE further serves as an anionic crosslinker to self-assemble with the cationic mTMC/DNA polyplexes. This system is used in combination with a microneedle for transcutaneous vaccination. Once penetrating into the epidermis, the mannosylated nanocomplexes would preferentially deliver the pTRP-2 DNA vaccine inside the DCs. Phenotypic maturation is demonstrated by the increased expression of costimulatory molecules of CD80 and CD86, and the elevated secretion of IL-12p70. The mixed leucocyte reactions reveal that the PTX/SBE-mTMC/DNA nanocomplexes enhance the proliferation of CD4+ and CD8+ T cells, and inhibit the generation of immune-suppressive FoxP3+ T cells. The system shows high antitumor efficacy in vivo. The PTX/SBE-mTMC/DNA nanocomplexes for DC-targeted codelivery of DNA vaccine and adjuvant PTX yield synergistic effects on the DC maturation and its presenting functions, thus increasing immune stimulation and reducing immune escape.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang, 315100, China
- Department of Medicine Wenzhou, Wenzhou Medical University, Zhejiang, 325035, China
| | - Beihua Xu
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang, 315100, China
| | - Jin Tao
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang, 315100, China
| | - Yunxu Yang
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang, 315100, China
| | - Ying Hu
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang, 315100, China
- Department of Medicine Wenzhou, Wenzhou Medical University, Zhejiang, 325035, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China
| |
Collapse
|
15
|
Niu J, Chu Y, Huang YF, Chong YS, Jiang ZH, Mao ZW, Peng LH, Gao JQ. Transdermal Gene Delivery by Functional Peptide-Conjugated Cationic Gold Nanoparticle Reverses the Progression and Metastasis of Cutaneous Melanoma. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9388-9401. [PMID: 28252938 DOI: 10.1021/acsami.6b16378] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Permeability barrier imposed by stratum corneum makes an extreme challenge for the topical delivery of plasmid DNA (pDNA), which is widely used in gene therapy. Existing techniques to overcome the skin barrier for bio-macromolecules delivery rely on sophisticated mechanical devices. It is still a big challenge to treat the skin cancer, for example, melanoma, that initiates in the dermal layer by topical gene therapy. To facilitate the skin penetration of pDNA deeply into the melanoma tissues, we here present a cell-penetrating peptide and cationic poly(ethyleneimine) conjugated gold nanoparticle (AuPT) that can compact the pDNAs into cationic nanocomplexes and penetrate through the intact stratum corneum without any additional enhancement used. Moreover, the AuPT is highly efficient in stimulating the intracellular uptake and nuclear targeting of the pDNAs in cells, which guarantees the effective transfection. This study provides evidence that penetrating peptide conjugated cationic gold nanoparticle offers a promising vehicle for both the skin penetration and transfection of pDNAs, possessing great potential in topical gene therapy.
Collapse
Affiliation(s)
- Jie Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Yang Chu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Yan-Fen Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Yee-Song Chong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Macau, P. R. China
| | - Zheng-Wei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, P. R. China
| | - Li-Hua Peng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Macau, P. R. China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| |
Collapse
|
16
|
Wang H, Moon C, Shin MC, Wang Y, He H, Yang VC, Huang Y. Heparin-Regulated Prodrug-Type Macromolecular Theranostic Systems for Cancer Therapy. Nanotheranostics 2017; 1:114-130. [PMID: 29071181 PMCID: PMC5646728 DOI: 10.7150/ntno.18292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/13/2017] [Indexed: 01/09/2023] Open
Abstract
Heparin is a kind of naturally occurring polymer with excellent biocompatibility and solubility. It is characterized by dense of negative charge, higher than any endogenous components. Heparin can bind with various cationic peptides and proteins, thereby providing a useful noncovalent linkage for building a drug delivery system. As a case in point, heparin/cell-penetrating peptides (CPP) interaction is strong, and remains stable in vivo. They can be used to modify different proteins, respectively, and subsequently, by simply mixing the modified proteins, a protein-protein conjugate can be form via the stable heparin/CPP linkage. This linkage could not be broken unless addition of protamine that bears higher cationic charge density than CPP, and CPP thus can be substituted and released. Of note, heparin is a potent antagonist of CPP, and their binding naturally inhibits CPP-mediated drug cell penetration. Based on this method, we developed a heparin-regulated macromolecular prodrug-type system, termed ATTEMPTS, for drug targeting delivery. In this review article, we mainly summary the application of ATTEMPTS in delivery of various macromolecular drugs for cancer therapy, and also introduce the heparin-regulated nanoprobes for tumor imaging.
Collapse
Affiliation(s)
- Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheol Moon
- College of Pharmacy, Sunchon National University, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Gyeongnam, Republic of Korea
| | - Yaping Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University Tianjin 300070, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University Tianjin 300070, China
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University Tianjin 300070, China.,University of Michigan, College of Pharmacy, MI 48109-1065, USA
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
17
|
Lin T, Zhao P, Jiang Y, Tang Y, Jin H, Pan Z, He H, Yang VC, Huang Y. Blood-Brain-Barrier-Penetrating Albumin Nanoparticles for Biomimetic Drug Delivery via Albumin-Binding Protein Pathways for Antiglioma Therapy. ACS NANO 2016; 10:9999-10012. [PMID: 27934069 DOI: 10.1021/acsnano.6b04268] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nutrient transporters have been explored for biomimetic delivery targeting the brain. The albumin-binding proteins (e.g., SPARC and gp60) are overexpressed in many tumors for transport of albumin as an amino acid and an energy source for fast-growing cancer cells. However, their application in brain delivery has rarely been investigated. In this work, SPARC and gp60 overexpression was found on glioma and tumor vessel endothelium; therefore, such pathways were explored for use in brain-targeting biomimetic delivery. We developed a green method for blood-brain barrier (BBB)-penetrating albumin nanoparticle synthesis, with the capacity to coencapsulate different drugs and no need for cross-linkers. The hydrophobic drugs (i.e., paclitaxel and fenretinide) yield synergistic effects to induce albumin self-assembly, forming dual drug-loaded nanoparticles. The albumin nanoparticles can penetrate the BBB and target glioma cells via the mechanisms of SPARC- and gp60-mediated biomimetic transport. Importantly, by modification with the cell-penetrating peptide LMWP, the albumin nanoparticles display enhanced BBB penetration, intratumoral infiltration, and cellular uptake. The LMWP-modified nanoparticles exhibited improved treatment outcomes in both subcutaneous and intracranial glioma models, with reduced toxic side effects. The therapeutic mechanisms were associated with induction of apoptosis, antiangiogenesis, and tumor immune microenvironment regulation. It provides a facile method for dual drug-loaded albumin nanoparticle preparation and a promising avenue for biomimetic delivery targeting the brain tumor based on combination therapy.
Collapse
Affiliation(s)
- Tingting Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University , Tianjin 300070, China
- Department of Pharmacy, Binzhou Medical University Hospital , 661 Huanghe Road, Binzhou 256603, China
| | - Pengfei Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
- Nanchang University College of Pharmacy , 461 Bayi Road, Nanchang 330006, China
| | - Yifan Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Yisi Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Hongyue Jin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Zhenzhen Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University , Tianjin 300070, China
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University , Tianjin 300070, China
- University of Michigan College of Pharmacy , 428 Church Street, Ann Arbor, Michigan 48108, United States
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
18
|
CPP-Assisted Intracellular Drug Delivery, What Is Next? Int J Mol Sci 2016; 17:ijms17111892. [PMID: 27854260 PMCID: PMC5133891 DOI: 10.3390/ijms17111892] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/16/2022] Open
Abstract
For the past 20 years, we have witnessed an unprecedented and, indeed, rather miraculous event of how cell-penetrating peptides (CPPs), the naturally originated penetrating enhancers, help overcome the membrane barrier that has hindered the access of bio-macromolecular compounds such as genes and proteins into cells, thereby denying their clinical potential to become potent anti-cancer drugs. By taking the advantage of the unique cell-translocation property of these short peptides, various payloads of proteins, nucleic acids, or even nanoparticle-based carriers were delivered into all cell types with unparalleled efficiency. However, non-specific CPP-mediated cell penetration into normal tissues can lead to widespread organ distribution of the payloads, thereby reducing the therapeutic efficacy of the drug and at the same time increasing the drug-induced toxic effects. In view of these challenges, we present herein a review of the new designs of CPP-linked vehicles and strategies to achieve highly effective yet less toxic chemotherapy in combating tumor oncology.
Collapse
|
19
|
Chen C, Liu K, Xu Y, Zhang P, Suo Y, Lu Y, Zhang W, Su L, Gu Q, Wang H, Gu J, Li Z, Xu X. Anti-angiogenesis through noninvasive to minimally invasive intraocular delivery of the peptide CC12 identified by in vivo-directed evolution. Biomaterials 2016; 112:218-233. [PMID: 27768975 DOI: 10.1016/j.biomaterials.2016.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 12/13/2022]
Abstract
Anti-vascular endothelial growth factor (VEGF) therapies are widely used for the treatment of neovascular fundus diseases such as diabetic retinopathy. However, these agents need to be injected intravitreally, because their strong hydrophilicity and high molecular weight prevent them from penetrating cell membranes and complex tissue barriers. Moreover, the repeated injections that are required can cause infection and tissue injury. In this study, we used in vivo-directed evolution phage display technology to identify a novel dodecapeptide, named CC12, with the ability to penetrate the ocular barrier in a noninvasive (via conjunctival sac instillation) or minimally invasive (via retrobulbar injection) manner. KV11, an antiangiogenesis peptide previously demonstrated to inhibit pathological neovascularization in the retina, was then used as a model antiangiogenesis cargo for CC12. We found that conjugation of KV11 peptide with CC12 peptide facilitated the delivery of KV11 to the retina, resulting in significant inhibition of retinal neovascularization development via topical application without tissue toxicity. Collectively, our data of multilevel evaluations demonstrate that CC12 may enable the noninvasive to minimally invasive intraocular delivery of antiangiogenic therapeutics.
Collapse
Affiliation(s)
- Chong Chen
- Department of Ophthalmology, Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Kun Liu
- Department of Ophthalmology, Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Yupeng Xu
- Department of Ophthalmology, Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Pengwei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Affiliated to Medical School of Shanghai Jiao Tong University, Shanghai 200032, PR China
| | - Yan Suo
- Department of Ophthalmology, Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Yi Lu
- Department of Ophthalmology, Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Wenyuan Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Li Su
- Department of Ophthalmology, Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Qing Gu
- Department of Ophthalmology, Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Huamao Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Affiliated to Medical School of Shanghai Jiao Tong University, Shanghai 200032, PR China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Affiliated to Medical School of Shanghai Jiao Tong University, Shanghai 200032, PR China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Affiliated to Medical School of Shanghai Jiao Tong University, Shanghai 200032, PR China.
| | - Xun Xu
- Department of Ophthalmology, Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, PR China.
| |
Collapse
|
20
|
Kitaoka M, Wakabayashi R, Kamiya N, Goto M. Solid-in-oil nanodispersions for transdermal drug delivery systems. Biotechnol J 2016; 11:1375-1385. [PMID: 27529824 PMCID: PMC5132072 DOI: 10.1002/biot.201600081] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 12/15/2022]
Abstract
Transdermal administration of drugs has advantages over conventional oral administration or administration using injection equipment. The route of administration reduces the opportunity for drug evacuation before systemic circulation, and enables long-lasting drug administration at a modest body concentration. In addition, the skin is an attractive route for vaccination, because there are many immune cells in the skin. Recently, solid-in-oil nanodisperison (S/O) technique has demonstrated to deliver cosmetic and pharmaceutical bioactives efficiently through the skin. S/O nanodispersions are nanosized drug carriers designed to overcome the skin barrier. This review discusses the rationale for preparation of efficient and stable S/O nanodispersions, as well as application examples in cosmetic and pharmaceutical materials including vaccines. Drug administration using a patch is user-friendly, and may improve patient compliance. The technique is a potent transcutaneous immunization method without needles.
Collapse
Affiliation(s)
- Momoko Kitaoka
- Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Rie Wakabayashi
- Graduate School of Engineering, Kyushu University, Fukuoka, Japan.,Center for Transdermal Drug Delivery, Kyushu University, Fukuoka, Japan
| | - Noriho Kamiya
- Graduate School of Engineering, Kyushu University, Fukuoka, Japan.,Center for Transdermal Drug Delivery, Kyushu University, Fukuoka, Japan.,Center for Future Chemistry, Kyushu University, Fukuoka, Japan
| | - Masahiro Goto
- Graduate School of Engineering, Kyushu University, Fukuoka, Japan.,Center for Transdermal Drug Delivery, Kyushu University, Fukuoka, Japan.,Center for Future Chemistry, Kyushu University, Fukuoka, Japan
| |
Collapse
|
21
|
Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides. Acta Pharm Sin B 2016; 6:352-8. [PMID: 27471676 PMCID: PMC4951590 DOI: 10.1016/j.apsb.2016.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/24/2016] [Accepted: 04/07/2016] [Indexed: 01/20/2023] Open
Abstract
Brain delivery of macromolecular therapeutics (e.g., proteins) remains an unsolved problem because of the formidable blood–brain barrier (BBB). Although a direct pathway of nose-to-brain transfer provides an answer to circumventing the BBB and has already been intensively investigated for brain delivery of small drugs, new challenges arise for intranasal delivery of proteins because of their larger size and hydrophilicity. In order to overcome the barriers and take advantage of available pathways (e.g., epithelial tight junctions, uptake by olfactory neurons, transport into brain tissues, and intra-brain diffusion), a low molecular weight protamine (LMWP) cell-penetrating peptide was utilized to facilitate nose-to-brain transport. Cell-penetrating peptides (CPP) have been widely used to mediate macromolecular delivery through many kinds of biobarriers. Our results show that conjugates of LMWP–proteins are able to effectively penetrate into the brain after intranasal administration. The CPP-based intranasal method highlights a promising solution for protein therapy of brain diseases.
Collapse
|
22
|
Kim KS, Kim H, Park Y, Kong WH, Lee SW, Kwok SJJ, Hahn SK, Yun SH. Noninvasive Transdermal Vaccination Using Hyaluronan Nanocarriers and Laser Adjuvant. ADVANCED FUNCTIONAL MATERIALS 2016; 26:2512-2522. [PMID: 27833475 PMCID: PMC5098559 DOI: 10.1002/adfm.201504879] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Vaccines are commonly administered by injection using needles. Although transdermal microneedles are less-invasive promising alternatives, needle-free topical vaccination without involving physical damage to the natural skin barrier is still sought after as it can further reduce needle-induced anxiety and simply administration. However, this long-standing goal has been elusive since the intact skin is impermeable to most macromolecules. Here, we show an efficient, non-invasive transdermal vaccination in mice by employing two key innovations: first, the use of hyaluronan (HA) as vaccine carriers and, second, non-ablative laser adjuvants. Conjugates of a model vaccine ovalbumin (OVA) and HA-HA-OVA conjugates-induced more effective maturation of dendritic cells in vitro, compared to OVA or HA alone, through synergistic HA receptor-mediated effects. Following topical administration in the back skin, HA-OVA conjugates penetrated into the epidermis and dermis in murine and porcine skins up to 30% of the total applied quantity, as revealed by intravital microscopy and quantitative fluorescence assay. Topical administration of HA-OVA conjugates significantly elevated both anti-OVA IgG antibody levels in serum and IgA antibody levels in bronchioalveolar lavage, with peak levels at 4 weeks, while OVA alone had a negligible effect. An OVA challenge at week 8 elicited strong immune-recall humoral responses. With pre-treatment of the skin using non-ablative fractional laser beams (1410 nm wavelength, 10 ms pulse duration, 0.2 mJ/pulse) as laser adjuvant, strong immunization was achieved with much reduced doses of HA-OVA (1 mg/kg OVA). Our results demonstrate the potential of the non-invasive patch-type transdermal vaccination platform.
Collapse
Affiliation(s)
- Ki Su Kim
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, Massachusetts 02139, USA
- Department of Dermatology, Harvard Medical School, 40 Blossom St., Boston, Massachusetts 02140, USA
| | - Hyemin Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Yunji Park
- Division of Integrative Biosciences and Biotechnology, POSTECH, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Won Ho Kong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Seung Woo Lee
- Division of Integrative Biosciences and Biotechnology, POSTECH, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
- Department of Life Science, POSTECH, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Sheldon J. J. Kwok
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, Massachusetts 02139, USA
- Department of Dermatology, Harvard Medical School, 40 Blossom St., Boston, Massachusetts 02140, USA
| | - Sei Kwang Hahn
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, Massachusetts 02139, USA
- Department of Dermatology, Harvard Medical School, 40 Blossom St., Boston, Massachusetts 02140, USA
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Seok Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, Massachusetts 02139, USA
- Department of Dermatology, Harvard Medical School, 40 Blossom St., Boston, Massachusetts 02140, USA
| |
Collapse
|
23
|
Wang G, Zhou H, Nian QG, Yang Y, Qin CF, Tang R. Robust vaccine formulation produced by assembling a hybrid coating of polyethyleneimine-silica. Chem Sci 2016; 7:1753-1759. [PMID: 28936324 PMCID: PMC5592373 DOI: 10.1039/c5sc03847b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/08/2015] [Indexed: 02/05/2023] Open
Abstract
Exploring formulations that can improve the thermostability and immunogenicity of vaccines holds great promise in advancing the efficacy of vaccination to combat infectious diseases. Inspired by biomineralized core-shell structures in nature, we suggest a polyethyleneimine (PEI)-silica-PEI hybrid coated vaccine formulation to improve both thermostability and immunogenicity. Through electrostatic adsorption, in situ silicification and capping treatment, a hybrid coating of silica and PEI was assembled around a vaccine to produce vaccine@PEI-silica structures. Both in vitro and in vivo experiments demonstrated that the thermostability and immunogenicity of the modified vaccine were significantly improved. The modified vaccine could be used efficiently after long-term exposure at room temperature, which would facilitate vaccine transport and storage without a cold chain. Furthermore, mechanistic studies revealed that the PEI-silica-PEI coating acted as a physiochemical anchor as well as a mobility-restricting hydration layer to stabilize the enclosed vaccine. This achievement demonstrates a biomimetic surface-modification-based strategy to confer desired properties on biological products.
Collapse
Affiliation(s)
- Guangchuan Wang
- Qiushi Academy for Advanced Studies , Zhejiang University , Hangzhou , 310027 , China .
- Department of Virology , State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , 100071 , China .
| | - Hangyu Zhou
- Center for Biomaterials and Biopathways , Department of Chemistry , Zhejiang University , Hangzhou , 310027 , China
| | - Qing-Gong Nian
- Department of Virology , State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , 100071 , China .
| | - Yuling Yang
- Center for Biomaterials and Biopathways , Department of Chemistry , Zhejiang University , Hangzhou , 310027 , China
| | - Cheng-Feng Qin
- Department of Virology , State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , 100071 , China .
| | - Ruikang Tang
- Qiushi Academy for Advanced Studies , Zhejiang University , Hangzhou , 310027 , China .
- Center for Biomaterials and Biopathways , Department of Chemistry , Zhejiang University , Hangzhou , 310027 , China
- State Key Laboratory of Silicon Materials , Zhejiang University , Hangzhou , 310027 , China
| |
Collapse
|
24
|
Wang Y, Lin T, Zhang W, Jiang Y, Jin H, He H, Yang VC, Chen Y, Huang Y. A Prodrug-type, MMP-2-targeting Nanoprobe for Tumor Detection and Imaging. Am J Cancer Res 2015; 5:787-95. [PMID: 26000052 PMCID: PMC4440437 DOI: 10.7150/thno.11139] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/18/2015] [Indexed: 11/05/2022] Open
Abstract
Tumor-associated proteases (TAPs) have been intensively studied because of their critical roles in cancer development. As a case in point, expression of matrix metalloproteases (MMP) is significantly up-regulated in tumorigenesis, invasion, and metastasis among a majority of cancers. Here we present a prodrug-type, MMP-2-responsive nanoprobe system with high efficiency and low toxicity for detecting MMP-2-overexpressed tumors. The nanoprobe system is featured by its self-assembled fabrication and FRET effect. This prodrug-type nanoprobe is selectively activated by MMP-2, and thus useful for detection of the MMP-2-overexpressed cells and tumors. The nanoprobe system works successfully in various animal tumor models, including human fibrosarcoma and subcutaneous glioma xenograft. Furthermore, in order to overcome the blood brain barrier (BBB) and achieve brain tumor targeting, a transferrin-receptor targeting peptide (T7 peptide) is strategically incorporated into the nanoprobe. The T7-functionalized nanoprobe is capable of detecting the orthotopic brain tumor, with clear, real-time in vivo imaging. This method is promising for in vivo detection of brain tumor, and real-time monitor of a TAP (i.e., MMP-2).
Collapse
|
25
|
Do N, Weindl G, Grohmann L, Salwiczek M, Koksch B, Korting HC, Schäfer-Korting M. Cationic membrane-active peptides - anticancer and antifungal activity as well as penetration into human skin. Exp Dermatol 2014; 23:326-31. [PMID: 24661024 DOI: 10.1111/exd.12384] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2014] [Indexed: 12/28/2022]
Abstract
Cationic antimicrobial peptides are ancient natural broad-spectrum antibiotics, and several compounds also exhibit anticancer activity. However, most applications pertain to bacterial infections, and treatment for skin cancer is less frequently considered. The cytotoxicity of melittin, cecropin A, protegrin-1 and histatin 5 against squamous skin cancer cell lines and normal human keratinocytes was evaluated and compared to established drugs. The results show that melittin clearly outperforms 5-fluorouracil regarding antitumor activity. Importantly, combined melittin and 5-fluorouracil enhanced cytotoxic effects on cancer cells and reduced toxicity on normal keratinocytes. Additionally, minimum inhibitory concentrations indicate that melittin also shows superior activity against clinical and laboratory strains of Candida albicans compared to amphotericin B. To evaluate its potential for topical applications, human skin penetration of melittin was investigated ex vivo and compared to two non-toxic cell-penetrating peptides (CPPs), low molecular weight protamine (LMWP) and penetratin. The stratum corneum prevents penetration into viable epidermis over 6 h; however, the peptides gain access to the viable skin after 24 h. Inhibition of digestive enzymes during skin penetration significantly enhances the availability of intact peptide. In conclusion, melittin may represent an innovative agent for non-melanoma skin cancer and infectious skin diseases. In order to develop a drug candidate, skin absorption and proteolytic digestion by skin enzymes need to be addressed.
Collapse
Affiliation(s)
- Nhung Do
- Institute for Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Low molecular weight protamine (LMWP): A nontoxic protamine substitute and an effective cell-penetrating peptide. J Control Release 2014; 193:63-73. [DOI: 10.1016/j.jconrel.2014.05.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/21/2014] [Accepted: 05/27/2014] [Indexed: 01/07/2023]
|
27
|
Wang H, Zhao Y, Wang H, Gong J, He H, Shin MC, Yang VC, Huang Y. Low-molecular-weight protamine-modified PLGA nanoparticles for overcoming drug-resistant breast cancer. J Control Release 2014; 192:47-56. [PMID: 25003794 DOI: 10.1016/j.jconrel.2014.06.051] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/18/2014] [Accepted: 06/25/2014] [Indexed: 12/20/2022]
Abstract
Multidrug resistance (MDR) is a major challenge for cancer therapy. Herein, we report a simple yet effective system, cell-penetrating peptide (CPP)-assisted poly(lactic-co-glycolic acid nanoparticles (PLGA NPs), for improving doxorubicin (DOX) delivery and overcoming MDR cancer. We selected the naturally derived CPP low-molecular-weight protamine (LMWP) to modify PLGA NP for enhanced drug delivery. We demonstrated that multiple mechanisms ("synergistic multipronged delivery") were responsible for the anti-MDR effects of LMWP/PLGA NP. This delivery system could boost intracellular and intranuclear delivery, thereby circumventing drug efflux. Use of a P-glycoprotein inhibitor did not further increase the efficiency of intracellular delivery of LMWP/PLGA/DOX NP, suggesting that delivery of LMWP-based NP was not affected by transporter-mediated drug efflux. Importantly, enhanced uptake and penetration within the tumor was found in mice given LMWP-based NP. LMWP/PLGA NP effectively arrested tumor growth in mice harboring drug-resistant breast tumors, thereby improving treatment outcomes without detectable toxicities. These data suggest that our system could provide effective yet safe anti-MDR cancer therapy based on a synergistic, multipronged drug-delivery strategy.
Collapse
Affiliation(s)
- Huixin Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Road, Shanghai 201203, China; Zhengzhou University College of Pharmaceutical Sciences, 100 Science Road, Zhengzhou 450001, China
| | - Yongxing Zhao
- Zhengzhou University College of Pharmaceutical Sciences, 100 Science Road, Zhengzhou 450001, China
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Road, Shanghai 201203, China
| | - Junbo Gong
- Tianjin University School of Chemical Engineering and Technology, Tianjin 300072, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Meong Cheol Shin
- University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109-1065, USA
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109-1065, USA.
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Road, Shanghai 201203, China.
| |
Collapse
|
28
|
Kitaoka M, Imamura K, Hirakawa Y, Tahara Y, Kamiya N, Goto M. Needle-free immunization using a solid-in-oil nanodispersion enhanced by a skin-permeable oligoarginine peptide. Int J Pharm 2013. [DOI: 10.1016/j.ijpharm.2013.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Curb challenges of the "Trojan Horse" approach: smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv Drug Deliv Rev 2013; 65:1299-315. [PMID: 23369828 DOI: 10.1016/j.addr.2012.11.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/01/2012] [Accepted: 11/07/2012] [Indexed: 12/22/2022]
Abstract
Cell-penetrating peptide (CPP)-mediated intracellular drug delivery system, often specifically termed as "the Trojan horse approach", has become the "holy grail" in achieving effective delivery of macromolecular compounds such as proteins, DNA, siRNAs, and drug carriers. It is characterized by the unique cell- (or receptor-), temperature-, and payload-independent mechanisms, therefore offering potent means to improve poor cellular uptake of a variety of macromolecular drugs. Nevertheless, this "Trojan horse" approach also acts like a double-edged sword, causing serious safety and toxicity concerns to normal tissues or organs for in vivo application, due to lack of target selectivity of the powerful cell penetrating activity. To overcome this problem of potent yet non-selective penetration vs. targeting delivery, a number of "smart" strategies have been developed in recent years, including controllable CPP-based drug delivery systems based on various stimuli-responsive mechanisms. This review article provides a fundamental understanding of these smart systems, as well as a discussion of their real-time in vivo applicability.
Collapse
|
30
|
Abstract
Transcutaneous immunization refers to the topical application of antigens onto the epidermis. Transcutaneous immunization targeting the Langerhans cells of the skin has received much attention due to its safe, needle-free, and noninvasive antigen delivery. The skin has important immunological functions with unique roles for antigen-presenting cells such as epidermal Langerhans cells and dermal dendritic cells. In recent years, novel vaccine delivery strategies have continually been developed; however, transcutaneous immunization has not yet been fully exploited due to the penetration barrier represented by the stratum corneum, which inhibits the transport of antigens and adjuvants. Herein we review recent achievements in transcutaneous immunization, focusing on the various strategies for the enhancement of antigen delivery and vaccination efficacy. [BMB Reports 2013; 46(1): 17-24]
Collapse
Affiliation(s)
- Mi-Young Lee
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Korea.
| | | | | |
Collapse
|
31
|
Noh YW, Hong JH, Shim SM, Park HS, Bae HH, Ryu EK, Hwang JH, Lee CH, Cho SH, Sung MH, Poo H, Lim YT. Polymer nanomicelles for efficient mucus delivery and antigen-specific high mucosal immunity. Angew Chem Int Ed Engl 2013; 52:7684-9. [PMID: 23765547 DOI: 10.1002/anie.201302881] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Indexed: 01/23/2023]
Abstract
Micelles for mucosal immunity: A mucosal vaccine system based on γ-PGA nanomicelles and viral antigens was synthesized. The intranasal administration of the vaccine system induces a high immune response both in the humoral and cellular immunity (see picture).
Collapse
Affiliation(s)
- Young-Woock Noh
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Noh YW, Hong JH, Shim SM, Park HS, Bae HH, Ryu EK, Hwang JH, Lee CH, Cho SH, Sung MH, Poo H, Lim YT. Polymer Nanomicelles for Efficient Mucus Delivery and Antigen-Specific High Mucosal Immunity. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Guo Q, Wang H, Zhao Y, Wang H, Zeng F, Hua H, Xu Q, Huang Y. Cell-penetrating albumin conjugates for enhanced doxorubicin delivery. Polym Chem 2013. [DOI: 10.1039/c3py00742a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
The effect of epidermal growth factor (EGF) conjugated with low-molecular-weight protamine (LMWP) on wound healing of the skin. Biomaterials 2012; 33:8579-90. [DOI: 10.1016/j.biomaterials.2012.07.061] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/28/2012] [Indexed: 02/03/2023]
|
35
|
Liu J, Zhao Y, Guo Q, Wang Z, Wang H, Yang Y, Huang Y. TAT-modified nanosilver for combating multidrug-resistant cancer. Biomaterials 2012; 33:6155-61. [DOI: 10.1016/j.biomaterials.2012.05.035] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 05/16/2012] [Indexed: 11/27/2022]
|
36
|
Xiong Y, Qi J, Yao P. Amphiphilic cholic-acid-modified dextran sulfate and its application for the controlled delivery of superoxide dismutase. Macromol Biosci 2012; 12:515-24. [PMID: 22606704 DOI: 10.1002/mabi.201100367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A novel amphiphilic and biodegradable polyelectrolyte DS-CA is prepared by the esterification of DS with CA. DS-CA can self-assemble into stable nanoparticles in water. SOD can effectively associate with DS-CA at pH = 5.0 by virtue of electrostatic and hydrophobic interactions. SOD release from the complex nanoparticles is slow at pH = 1.2. The release at pH = 7.4 PBS shows an extended behavior and is tunable by changing the weight ratio of SOD to DS-CA as well as the CA substitution degree. Increasing the CA substitution degree of DS-CA can significantly enhance the cellular uptake of the loaded SOD. This study demonstrates that the amphiphilic DS-CA provides a promising strategy for oral delivery of protein/peptide drugs.
Collapse
Affiliation(s)
- Yubing Xiong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | | | | |
Collapse
|
37
|
In vivo delivery of cell-permeable antisense hypoxia-inducible factor 1α oligonucleotide to adipose tissue reduces adiposity in obese mice. J Control Release 2012; 161:1-9. [PMID: 22546680 DOI: 10.1016/j.jconrel.2012.04.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/13/2012] [Accepted: 04/18/2012] [Indexed: 01/06/2023]
Abstract
Ongoing research has gradually recognized and understood the importance of adipose tissue (AT) angiogenesis as a key modulating factor of adipogenesis in the development of obesity. Previously, we carried out the first in vitro demonstration of the down-regulation of hypoxic angiogenesis during adipogenesis using cell-permeable chemical conjugates composed of antisense hypoxia-inducible factor 1α (HIF1α) oligonucleotide (ASO) and low-molecular weight protamine (LMWP). To further confirm the in vivo feasibility, we administered ASO-LMWP conjugates (AL) to diet-induced obese (DIO) mice by intraperitoneal injection (IP). Results showed that the AL conjugates significantly reduced the body weight, total fat tissue weight, and plasma lipid concentrations in the mice. Moreover, the AL conjugates not only decreased liver weight and hepatic triglyceride concentration but also significantly attenuated subcutaneous adipocyte cell size, which was conversely increased in the AL-untreated high-fat diet (HFD) group. Interestingly, more blood vessels were observed in the HFD group than in the lean group, indicating that blood vessel development could induce growth of the fat mass. This pattern was reversed in the AL-treated groups, which displayed a decrease in blood vessel density compared to the AL-untreated HFD group. This study presents the first in vivo evidence, in an obese mouse model, of the feasibility of achieving a biological treatment modality for obesity by blocking the angiogenic transcriptional factor HIF1α, thereby limiting angiogenesis, via the use of an adipose tissue-permeable ASO-LMWP.
Collapse
|
38
|
Tahara Y, Honda S, Kamiya N, Goto M. Transdermal delivery of insulin using a solid-in-oil nanodispersion enhanced by arginine-rich peptides. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20059g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Yang Y, Jiang Y, Wang Z, Liu J, Yan L, Ye J, Huang Y. Skin-permeable quaternary nanoparticles with layer-by-layer structure enabling improved gene delivery. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm00121g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Xia H, Gao X, Gu G, Liu Z, Zeng N, Hu Q, Song Q, Yao L, Pang Z, Jiang X, Chen J, Chen H. Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials 2011; 32:9888-98. [PMID: 21937105 DOI: 10.1016/j.biomaterials.2011.09.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 09/01/2011] [Indexed: 12/14/2022]
Abstract
The development of new strategies for enhancing drug delivery to the brain is of great importance in diagnostics and therapeutics of central nervous diseases. Low-molecular-weight protamine (LMWP) as a cell-penetrating peptide possesses distinct advantages including high cell translocation potency, absence of toxicity of peptide itself, and the feasibility as an efficient carrier for delivering therapeutics. Therefore, it was hypothesized that brain delivery of nanoparticles conjugated with LMWP should be efficiently enhanced following intranasal administration. LMWP was functionalized to the surface of PEG-PLA nanoparticles (NP) via a maleimide-mediated covalent binding procedure. Important parameters such as particle size distribution, zeta potential and surface content were determined, which confirmed the conjugation of LMWP to the surface of nanoparticle. Using 16HBE14o- cells as the cell model, LMWP-NP was found to exhibit significantly enhanced cellular accumulation than that of unmodified NP via both lipid raft-mediated endocytosis and direct translocation processes without causing observable cytotoxic effects. Following intranasal administration of coumarin-6-loaded LMWP-NP, the AUC(0-8 h) of the fluorescent probe detected in the rat cerebrum, cerebellum, olfactory tract and olfactory bulb was found to be 2.03, 2.55, 2.68 and 2.82 folds, respectively, compared to that of coumarin carried by NP. Brain distribution analysis suggested LMWP-NP after intranasal administration could be delivered to the central nervous system along both the olfactory and trigeminal nerves pathways. The findings clearly indicated that the brain delivery of nanoparticles could be greatly facilitated by LMWP and the LMWP-functionalized nanoparticles appears as a effective and safe carrier for nose-to-brain drug delivery in potential diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Huimin Xia
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu Y, Wang H, Kamei KI, Yan M, Chen KJ, Yuan Q, Shi L, Lu Y, Tseng HR. Delivery of Intact Transcription Factor by Using Self-Assembled Supramolecular Nanoparticles. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005740] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Liu Y, Wang H, Kamei KI, Yan M, Chen KJ, Yuan Q, Shi L, Lu Y, Tseng HR. Delivery of intact transcription factor by using self-assembled supramolecular nanoparticles. Angew Chem Int Ed Engl 2011; 50:3058-62. [PMID: 21370360 DOI: 10.1002/anie.201005740] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/20/2010] [Indexed: 01/24/2023]
Affiliation(s)
- Yang Liu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095-1770, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Huang Y, Yu F, Park YS, Wang J, Shin MC, Chung HS, Yang VC. Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials 2010; 31:9086-91. [PMID: 20828812 DOI: 10.1016/j.biomaterials.2010.08.046] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/19/2010] [Indexed: 01/12/2023]
Abstract
An interesting nanoscale interfacial phenomenon mediated by gold nanoparticles (Au-NPs) was found, in that co-administration with Au-NPs enables percutaneous delivery of protein drugs. The Au-NPs with a mean size of 5 nm were revealed to be skin permeable, presumably due to the nano-bio interaction with skin lipids and the consequent induction of transient and reversible openings on the stratum corneum. Importantly, when simultaneously applied with Au-NPs, the protein drugs were also granted the ability to penetrate the skin barrier and migrate into the deep layers. This indicated that co-administration with the skin-permeable Au-NPs could mediate proteins across the skin barrier. Such co-delivery effect highlights a simple yet effective method for overcoming the skin barrier for percutaneous protein drug delivery. Employing this method, a non-invasive vaccine delivery strategy was developed, and by topically co-administrating antigens with Au-NPs, robust immune responses were elicited in the tested animals. The results provide the promise for achieving a needleless and self-administrable transcutaneous vaccination.
Collapse
Affiliation(s)
- Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Road, Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|