1
|
Chen J, Huang YH, Yang J, Huang Y, Lu YL, Jiao Z, Su CY. Unlocking Photocycloaddition Reactivity of Tropolone by Cage-Confined Visible-Light Photocatalysis for Multilevel Selective Transformation. J Am Chem Soc 2024. [PMID: 39541569 DOI: 10.1021/jacs.4c12290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The precise asymmetric photochemical transformation of organic compounds containing multiple reactive sites presents significant progress in synthetic chemistry. Herein, we report an unprecedented visible-light-induced cascade transformation of tropolone cyclic triene derivatives by using chiral photoactive metal-organic cages (cPMOCs) as enzyme-mimicking multipocket photocatalysts. The cage-confined photocatalysis promotes three successive elementary steps, i.e., enantioselective [2 + 2] photocycloaddition with chalcone, regio-, and diastereoselective α-ketol rearrangement, and a stereoselective 1,3-acyl shift, resulting in bicyclo[3.2.2]nonane skeleton with multichiral-centers unattainable by other methods. This study demonstrates how complex synthetic challenges of peri-, chemo-, and stereoselectivities could be subtly manipulated by cage-confined supramolecular catalysis for exploration of new reactivities.
Collapse
Affiliation(s)
- Jie Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yin-Hui Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jie Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yongxian Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhiwei Jiao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Yu X, Desvals A, Chang Z, Orève V, Aitken DJ, Boddaert T. Light-Initiated Four-Step Domino-Multicomponent Synthesis of Functionalized Alkylidenecyclobutanes. Org Lett 2024. [PMID: 39532304 DOI: 10.1021/acs.orglett.4c03741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A four-step domino-multicomponent reaction (domino-MCR) is described for the synthesis of functionalized E-alkylidenecyclobutanes from 4-hydroxy-2-methylcyclopent-2-enone derivatives and three other simple reagents. The domino-MCR is accomplished in a single protocol, comprising a tandem photochemical [2 + 2]-cycloaddition/Norrish-I/γ-H transfer reaction followed by an acetal protection and an allylic substitution reaction. In parallel, a consecutive process has been established with distinct photochemical and nonradiative sequences. An intramolecular version of these reactions provides access to complex fused-bicyclic alkylidenecyclobutanes.
Collapse
Affiliation(s)
- Xiaodan Yu
- Université Paris-Saclay, CNRS, ICMMO, 91405 Orsay, France
| | - Arthur Desvals
- Université Paris-Saclay, CNRS, ICMMO, 91405 Orsay, France
| | - Zong Chang
- Université Paris-Saclay, CNRS, ICMMO, 91405 Orsay, France
| | - Vincent Orève
- Université Paris-Saclay, CNRS, ICMMO, 91405 Orsay, France
| | - David J Aitken
- Université Paris-Saclay, CNRS, ICMMO, 91405 Orsay, France
| | | |
Collapse
|
3
|
Peng Q, Hwang MU, Rentería-Gómez Á, Mukherjee P, Young RM, Qiu Y, Wasielewski MR, Gutierrez O, Scheidt KA. Photochemical phosphorus-enabled scaffold remodeling of carboxylic acids. Science 2024; 385:1471-1477. [PMID: 39325876 DOI: 10.1126/science.adr0771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
The excitation of carbonyl compounds by light to generate radical intermediates has historically been restricted to ketones and aldehydes; carboxylic acids have been overlooked because of high energy requirements and low quantum efficiency. A successful activation strategy would necessitate a bathochromic shift in the absorbance profile, an increase in triplet diradical lifetime, and ease of further functionalization. We present a single-flask transformation of carboxylic acids to acyl phosphonates that can access synthetically useful triplet diradicals under visible light or near-ultraviolet irradiation. The use of phosphorus circumvents unproductive Norrish type I processes, promoting selectivity that enables hydrogen-atom transfer reactivity. Use of this strategy promotes the efficient scaffold remodeling of carboxylic acids through various annulation, contraction, and expansion manifolds.
Collapse
Affiliation(s)
- Qiupeng Peng
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Meemie U Hwang
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | | | - Poulami Mukherjee
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Ryan M Young
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL 60208, USA
| | - Yunfan Qiu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL 60208, USA
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL 60208, USA
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
4
|
Yamada S, Honda Y. Solid-state [2+2] photodimerization of eniminium salts: stereoselective syntheses of 1,3-diacetylcyclobutanes. Chem Commun (Camb) 2024; 60:9821-9824. [PMID: 39171390 DOI: 10.1039/d4cc03691c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Solid-state [2+2] photodimerization of eniminium ions oriented in a head-to-tail manner controlled by cation-π interactions produced synHT dimers in high yields. As the resulting dimer is readily converted to 1,3-diacetylcyclobutane, the iminium serves as a removable orientation-controlling group for the conjugated ketones.
Collapse
Affiliation(s)
- Shinji Yamada
- Professional University of Beauty & Wellness, 3-9-3 Ushikubo, Tsuzuki-ku, Yokohama 224-0012, Japan.
| | - Yuka Honda
- Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
5
|
Xu Y, Lin Y, Homölle SL, Oliveira JC, Ackermann L. Enantioselective Cobaltaphotoredox-Catalyzed C-H Activation. J Am Chem Soc 2024; 146:24105-24113. [PMID: 39143928 PMCID: PMC11363020 DOI: 10.1021/jacs.4c08459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
The quest for sustainable strategies in molecular synthesis has spurred the emergence of photocatalysis as a particularly powerful technique. In recent years, the application of photocatalysis in this context has greatly promoted the development of asymmetric catalysis. Despite the impressive advances, enantioselective photoinduced strong arene C-H activations by cobalt catalysis remain unexplored. Herein, we report a strategy that merges organic photoredox catalysis and enantioselective cobalt-catalyzed C-H activation, enabling the regio- and stereoselective dual functionalization of indoles in an enantioselective fashion. Thereby, the assembly of various chiral indolo[2,3-c]isoquinolin-5-ones was realized with high enantioselectivities of up to 99%. The robustness of the cobaltaphotoredox catalysis was demonstrated through enantioselective C-H activation and annulations in a continuous flow to provide straightforward access to central and axially chiral molecules.
Collapse
Affiliation(s)
| | | | - Simon L. Homölle
- Wöhler-Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität
Göttingen Tammannstraße 2, Göttingen 37077, Germany
| | - João C.
A. Oliveira
- Wöhler-Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität
Göttingen Tammannstraße 2, Göttingen 37077, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität
Göttingen Tammannstraße 2, Göttingen 37077, Germany
| |
Collapse
|
6
|
Alfano AI, Smyth M, Wharry S, Moody TS, Nuño M, Butters C, Baumann M. Multiphase photochemistry in flow mode via an integrated continuous stirred tank reactor (CSTR) approach. Chem Commun (Camb) 2024; 60:7037-7040. [PMID: 38895750 DOI: 10.1039/d4cc02477j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A new photochemical CSTR system capable of handling solids in scaled continuous processes is presented. High-power UV-LEDs are integrated in these CSTRs containing an insoluble base that aids in generating pyrazolines via cycloaddition between alkenes and in situ generated diazo species. Contrary to reported batch methods product degradation via ring contraction is suppressed whilst generating gram quantities of spirocyclic pyrazolines.
Collapse
Affiliation(s)
| | - Megan Smyth
- Almac Sciences, Technology Department, Craigavon BT63 5QD, UK
| | - Scott Wharry
- Almac Sciences, Technology Department, Craigavon BT63 5QD, UK
| | - Thomas S Moody
- Almac Sciences, Technology Department, Craigavon BT63 5QD, UK
- Arran Chemical Company, Monksland Industrial Estate, Roscommon N37 DN24, Ireland
| | - Manuel Nuño
- Vapourtec, Fornham St Genevieve, Bury St Edmunds, Suffolk, IP28 6TS, UK
| | - Chris Butters
- Vapourtec, Fornham St Genevieve, Bury St Edmunds, Suffolk, IP28 6TS, UK
| | - Marcus Baumann
- School of Chemistry, University College Dublin, Science Centre South, Dublin 4, Ireland.
| |
Collapse
|
7
|
Valloli LK, Manal K, Lewis B, Jockusch S, Sivaguru J. Chemoselective light-induced reactivity of β-enaminones. Photochem Photobiol 2024; 100:1068-1077. [PMID: 38009436 DOI: 10.1111/php.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/28/2023]
Abstract
The irradiation of β-enaminones, generated in situ from cyclic 1,3-diketones and activated alkenes leads to polyheterocyclic skeletons. The photoproduct chemoselectivity depends on the type of cyclic 1,3-diketones employed viz., 2-acetylcyclopentanone and 2-acetylcyclohexanone. The observed chemoselectivity was rationalized based on the Dieckmann-Kon rule.
Collapse
Affiliation(s)
- Lakshmy Kannadi Valloli
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Kavyasree Manal
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Brieanna Lewis
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Steffen Jockusch
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Jayaraman Sivaguru
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| |
Collapse
|
8
|
Merski I, Yin J, VanderLinden RT, Rainier JD. The Role of N-Substitution in Regio- and Stereoselective Vinylogous Imidonaphthoquinone (VINAquinone) [2 + 2] Photocycloadditions. Org Lett 2024; 26:4921-4925. [PMID: 38814707 DOI: 10.1021/acs.orglett.4c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Described in this manuscript are intramolecular [2 + 2] photocycloadditions of readily available vinylogous imidonaphthoquinones whose regio- and diastereoselectivity is dependent on the substitution on the vinylogous imide. When exposed to 419 nm light, 2° vinylogous imidonaphthoquinones give novel bridged tetracyclic aza-anthraquinones from a rare crossed [2 + 2] cycloaddition reaction. In contrast, exposure of the corresponding 3° substrates to white light leads to linear adducts. Also outlined here are auxiliary controlled diastereoselective reactions and cyclobutane fragmentations as a means of generating the spirofused γ-lactam moiety present in the ansalactam family of natural product.
Collapse
Affiliation(s)
- Ian Merski
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84108, United States
| | - Jinya Yin
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84108, United States
| | - Ryan T VanderLinden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84108, United States
| | - Jon D Rainier
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84108, United States
| |
Collapse
|
9
|
Hou SY, Yan BC, Sun HD, Puno PT. Recent advances in the application of [2 + 2] cycloaddition in the chemical synthesis of cyclobutane-containing natural products. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:37. [PMID: 38861197 PMCID: PMC11166626 DOI: 10.1007/s13659-024-00457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Cyclobutanes are distributed widely in a large class of natural products featuring diverse pharmaceutical activities and intricate structural frameworks. The [2 + 2] cycloaddition is unequivocally the primary and most commonly used method for synthesizing cyclobutanes. In this review, we have summarized the application of the [2 + 2] cycloaddition with different reaction mechanisms in the chemical synthesis of selected cyclobutane-containing natural products over the past decade.
Collapse
Affiliation(s)
- Song-Yu Hou
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Bing-Chao Yan
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Han-Dong Sun
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Pema-Tenzin Puno
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
10
|
Yu J, Guo H, Zhang J, Hu J, He H, Chen C, Yang N, Yang F, Lin Z, Dai H, Ouyang L, Liu C, Lei X, Zhang L, Zhu G, Song F. Chrysomycins, Anti-Tuberculosis C-Glycoside Polyketides from Streptomyces sp. MS751. Mar Drugs 2024; 22:259. [PMID: 38921570 PMCID: PMC11204892 DOI: 10.3390/md22060259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
A new dimeric C-glycoside polyketide chrysomycin F (1), along with four new monomeric compounds, chrysomycins G (2), H (3), I (4), J (5), as well as three known analogues, chrysomycins A (6), B (7), and C (8), were isolated and characterised from a strain of Streptomyces sp. obtained from a sediment sample collected from the South China Sea. Their structures were determined by detailed spectroscopic analysis. Chrysomycin F contains two diastereomers, whose structures were further elucidated by a biomimetic [2 + 2] photodimerisation of chrysomycin A. Chrysomycins B and C showed potent anti-tuberculosis activity against both wild-type Mycobacterium tuberculosis and a number of clinically isolated MDR M. tuberculosis strains.
Collapse
Affiliation(s)
- Jiaming Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jiansen Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao He
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Chen
- Technology Transfer Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Na Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zexu Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huanqin Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cuihua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fuhang Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China; School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
11
|
Di Terlizzi L, Nicchio L, Protti S, Fagnoni M. Visible photons as ideal reagents for the activation of coloured organic compounds. Chem Soc Rev 2024; 53:4926-4975. [PMID: 38596901 DOI: 10.1039/d3cs01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent decades, the traceless nature of visible photons has been exploited for the development of efficient synthetic strategies for the photoconversion of colourless compounds, namely, photocatalysis, chromophore activation, and the formation of an electron donor/acceptor (EDA) complex. However, the use of photoreactive coloured organic compounds is the optimal strategy to boost visible photons as ideal reagents in synthetic protocols. In view of such premises, the present review aims to provide its readership with a collection of recent photochemical strategies facilitated via direct light absorption by coloured molecules. The protocols have been classified and presented according to the nature of the intermediate/excited state achieved during the transformation.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Luca Nicchio
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
12
|
Luz Tibaldi-Bollati M, Nicotra V, Oksdath-Mansilla G, García ME. Expanding Diterpene Complexity and Diversity via Photoinduced Ring Distortions. Chempluschem 2024; 89:e202300537. [PMID: 38029375 DOI: 10.1002/cplu.202300537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Natural products and their semi-synthetic derivatives undoubtedly constitute an important source of therapeutic agents. Their importance lies in their own origin and evolution, since they have great chemical diversity, biochemical specificity, and pharmacological properties. Currently, there is a renewed interest in the development of methodologies capable of efficiently modifying the chemical structure of these bioactive platforms. In this work, the photoderivatization of the diterpene solidagenone was performed using a complexity-to-diversity-oriented approach. By exploring [2+2]-photocycloaddition, photoinduced-hydrogen abstraction, and photoxygenation reactions, a set of solidagenone derivatives was obtained, showing different ring fusions, side chain rearrangements, and modifications of the original furan ring's substitution pattern. The derivatives obtained were characterised by NMR methodologies. To evaluate the structural diversity of the labdane-derived compounds, their physicochemical properties, structural similarity, and chemical space were analysed. These results suggest that photochemical reactions are a useful tool for performing ring distortion transformations, generating derivatives of natural compounds with wide diversity, structural complexity, and with potential biological properties.
Collapse
Affiliation(s)
- María Luz Tibaldi-Bollati
- Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Viviana Nicotra
- Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Gabriela Oksdath-Mansilla
- Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Manuela E García
- Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
13
|
Laskar R, Dutta S, Spies JC, Mukherjee P, Rentería-Gómez Á, Thielemann RE, Daniliuc CG, Gutierrez O, Glorius F. γ-Amino Alcohols via Energy Transfer Enabled Brook Rearrangement. J Am Chem Soc 2024; 146:10899-10907. [PMID: 38569596 PMCID: PMC11027157 DOI: 10.1021/jacs.4c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
In the long-standing quest to synthesize fundamental building blocks with key functional group motifs, photochemistry in the recent past has comprehensively established its attractiveness. Amino alcohols are not only functionally diverse but are ubiquitous in the biologically active realm of compounds. We developed bench-stable bifunctional reagents that could then access the sparsely reported γ-amino alcohols directly from feedstock alkenes through energy transfer (EnT) photocatalysis. A designed 1,3-linkage across alkenes is made possible by the intervention of a radical Brook rearrangement that takes place downstream to the EnT-mediated homolysis of our reagent(s). A combination of experimental mechanistic investigations and detailed computational studies (DFT) indicates a radical chain propagated reaction pathway.
Collapse
Affiliation(s)
- Ranjini Laskar
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Subhabrata Dutta
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Jan C. Spies
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Poulami Mukherjee
- Department
of Chemistry, Texas A&M University, 77843 College Station, Texas, United States
| | - Ángel Rentería-Gómez
- Department
of Chemistry, Texas A&M University, 77843 College Station, Texas, United States
| | - Rebecca E. Thielemann
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Osvaldo Gutierrez
- Department
of Chemistry, Texas A&M University, 77843 College Station, Texas, United States
| | - Frank Glorius
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| |
Collapse
|
14
|
Barik S, Sankar G, Biju AT. Enantioselective synthesis of tricyclic oxoquinolines via NHC-catalyzed Michael-aldol-lactamization-dehydration cascade. Chem Commun (Camb) 2024; 60:4290-4293. [PMID: 38445724 DOI: 10.1039/d4cc00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The enantioselective synthesis of tricyclic oxoquinolines via NHC-catalyzed cascade reaction of enals with malonates bearing a 2-aminophenyl group is reported. The chiral α,β-unsaturated acylazoliums underwent a smooth Michael-aldol-lactamization-dehydration quadruple cascade with the amino malonate derivative to afford the desired tricyclic products.
Collapse
Affiliation(s)
- Shilpa Barik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Ganga Sankar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
15
|
Iqbal S, Farhanaz, Roohi, Zaheer MR, Shankar K, Hussain MK, Zia Q, Rehman MT, AlAjmi MF, Gupta A. Visible-light promoted catalyst-free (VLCF) multi-component synthesis of spiro indolo-quinazolinone-pyrrolo[3,4-a]pyrrolizine hybrids: evaluation of in vitro anticancer activity, molecular docking, MD simulation and DFT studies. J Biomol Struct Dyn 2024; 42:3145-3165. [PMID: 37227775 DOI: 10.1080/07391102.2023.2214229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
A new and highly efficient visible-light-promoted catalyst free (VLCF) strategy for neat and clean synthesis of spiro indolo-quinazolinone-pyrrolo[3,4-a]pyrrolizine hybrids (6a-d) has been introduced. We have performed visible-light triggered 1,3-Dipolar cycloaddition reaction of maleimide (5a-d) with azomethine ylide generated in situ derived from tryptanthrin (3) and L-proline (4) to obtain desired products (6a-d) in good to excellent yield. Authentication and characterization of product was done using various spectroscopic techniques such as IR, 1H NMR, 13C NMR, Mass spectrometry and single crystal XRD analysis. To explain the reaction spontaneity, product stability, reactivity as well as possible mode of the interaction a quantum chemical investigation was performed and depicted through DFT studies. The synthesized compound 6a was also evaluated for anti-proliferative activity against a panel of five cancer cell lines (MCF-7, MDA-MB-231, HeLa, PC-3 and Ishikawa) and normal human embryonic kidney (HEK-293) cell line by using MTT assay. Compound 6a showed very good in vitro anti-proliferative activity (IC50 = 6.58-17.98 μM) against four cancer cell lines and no cytotoxicity against normal HEK-293. In order to evaluate the anticancer potential of compounds 6a-d, molecular docking was performed against wild type and mutant EGFR. The results suggest that all the compounds occupied the active site of both enzymes, with a strong binding energy (-10.2 to -11.5 kcal/mol). These results have been confirmed by molecular dynamics simulation by evaluating root mean square deviation (RMSD) and root mean square fluctuation (RMSF), along with principal component analysis (PCA).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Safia Iqbal
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Farhanaz
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Roohi
- Protein Research Laboratory, Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Rehan Zaheer
- Department of Chemistry, R.M.P.S.P. Girls Post Graduate College, Basti, India
| | - Krapa Shankar
- Sun Pharmaceutical industries Ltd, Sarhaul, Sector 18, Gurgaon, India
| | | | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Md Tabish Rehman
- Department of pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Anamika Gupta
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
16
|
Qiu X, Seibert J, Fuhr O, Biedermann F, Bräse S. Reversing the stereoselectivity of intramolecular [2+2] photocycloaddition utilizing cucurbit[8]uril as a molecular flask. Chem Commun (Camb) 2024; 60:3267-3270. [PMID: 38465702 DOI: 10.1039/d3cc05783f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Macrocyclic hosts, such as cucurbit[8]uril (CB8), can significantly influence the outcomes of chemical reactions involving encapsulated reactive guests. In this study, we demonstrate that CB8 completely reverses the stereoselectivity of intramolecular [2+2] photo-cycloaddition reactions. Notably, it was also found that CB8 can trigger the unreactive diene to be reactive.
Collapse
Affiliation(s)
- Xujun Qiu
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
| | - Jasmin Seibert
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
| | - Olaf Fuhr
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
17
|
Zhu WF, Empel C, Pelliccia S, Koenigs RM, Proschak E, Hernandez-Olmos V. Photochemistry in Medicinal Chemistry and Chemical Biology. J Med Chem 2024. [PMID: 38457829 DOI: 10.1021/acs.jmedchem.3c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Photochemistry has emerged as a transformative force in organic chemistry, significantly expanding the chemical space accessible for medicinal chemistry. Light-induced reactions enable the efficient synthesis of intricate organic structures and have found applications throughout the different stages of the drug discovery and development processes. Moreover, photochemical techniques provide innovative solutions in chemical biology, allowing precise spatiotemporal drug activation and targeted delivery. In this Perspective, we highlight the already numerous remarkable applications and the even more promising future of photochemistry in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- W Felix Zhu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
18
|
Komogortsev AN, Melekhina VG, Lichitskii BV. Anionic photochemical rearrangement of 3-hydroxypyran-4-ones bearing oxazol-2-one fragment. Org Biomol Chem 2024; 22:1686-1692. [PMID: 38304927 DOI: 10.1039/d3ob01957h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The photochemical behavior of in situ generated anions of 3-hydroxypyran-4-ones containing an oxazol-2-one moiety was studied. For the first time, it was demonstrated that blue LED light irradiation (450 nm) of substituted 3-hydroxypyran-4-ones in the presence of a base leads regiospecifically to the formation of isomeric 3-hydroxypyran-2-ones. Transformation of the starting 3-hydroxypyran-4-ones into the corresponding anions is necessary for the presented photoprocess. Based on the considered visible light induced rearrangement, a general method for the synthesis of 3-hydroxypyran-2-ones with an oxazol-2-one moiety was elaborated. The structure of one of the synthesized compounds was confirmed by X-ray diffraction.
Collapse
Affiliation(s)
- Andrey N Komogortsev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation.
| | - Valeriya G Melekhina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation.
| | - Boris V Lichitskii
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation.
| |
Collapse
|
19
|
Sivaraj C, Maiti D, Gandhi T. Photo-Catalyzed Acyl Azolium Promoted Selective α-C(sp 3 )-H Acylation of Acetone via HAT: Access to Thermodynamically Less Favoured (Z)-α,β-Unsaturated Ketones. Chemistry 2024; 30:e202303626. [PMID: 37997552 DOI: 10.1002/chem.202303626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Mono α-acylation of acetone has been achieved for the first time by reacting with bench-stable acyl azolium salts under violet-LED light at room temperature. The intermolecular hydrogen atom transfer (HAT) from acetone to triplet state of azolium salts under violet LED irradiation resulted in thermodynamically less favourable (Z)-α,β-unsaturated ketones with up to 99 : 1 selectivity via C-C bond formation. This compelling protocol access the desired α-C(sp3 )-H acylation product under metal-, ligand- and oxidant-free conditions on a wide range of substrates.
Collapse
Affiliation(s)
- Chandrasekaran Sivaraj
- Department of Chemistry, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
20
|
Dong J, Tang Z, Zou L, Zhou Y, Chen J. Visible light-induced hydrogen atom transfer trifluoromethylthiolation of aldehydes with bismuth catalyst. Chem Commun (Camb) 2024; 60:742-745. [PMID: 38116589 DOI: 10.1039/d3cc05048c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
By using a combination of BiCl3 and TBACl as a ligand-to-metal charge transfer (LMCT) photocatalyst, hydrogen atom transfer trifluoromethylthiolation of aldehydes was achieved under visible light irradiation. The present method provides economical and operationally simple access to trifluoromethylthioesters using low toxicity and cost-effective bismuth catalysts under mild reaction conditions. Based on the radical trapping experiments, the direct conversion of aldehydes to acyl radicals via chlorine radicals as HAT reagents was proposed as the reaction mechanism.
Collapse
Affiliation(s)
- Jun Dong
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
| | - Zhuang Tang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
| | - Luqian Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
| | - Yongyun Zhou
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
| |
Collapse
|
21
|
Li J, Zhuang Z, Guo J, Dong X, Gong J, Tang BZ, Zhao Z. Free Radical-Mediated Photocyclization of Triphenylphosphindole Oxides for Photoactivated and Self-Reported Lipid Peroxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305516. [PMID: 37870212 PMCID: PMC10724397 DOI: 10.1002/advs.202305516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/27/2023] [Indexed: 10/24/2023]
Abstract
Photocyclization is demonstrated as a powerful tool for building complicated polycyclic molecules. And efficient photocyclization is competent as an artful strategy to develop photo-responsive smart materials. Herein, an efficient free radical-mediated photocyclization for triphenylphosphindole oxide (TPPIO) derivatives to generate tribenzophosphindole oxide (TBPIO) derivatives at ambient condition is reported. The reaction mechanism and substituent effect on photocyclization efficiency are thoroughly investigated. Additionally, photophysical and photochemical properties of TPPIO and TBPIO derivatives are measured for comparison and deeply deciphered by theoretical calculation. TPPIO derivatives own typical aggregation-induced emission feature but barely generate reactive oxygen species (ROS), while TBPIO derivatives experience aggregation-caused quenching but show efficient Type I ROS generation capacity. Further, in vitro experiments demonstrate that this photo-conversion can efficiently occur in situ in living cells to activate photodynamic therapy (PDT) effect to trigger lipid peroxidation with selective fluorescence "light up" in lipid droplet area under continuous irradiation. This work extends the optoelectronically and biologically interesting phosphindole oxide-containing π-conjugated systems through an efficient synthetic strategy, provides in-depth mechanistic descriptions in the aspects of reaction and property, and further presents their great potentials for photoactivated and self-reported PDT.
Collapse
Affiliation(s)
- Jianqing Li
- State Key Laboratory of Luminescent Materials and DevicesKey Laboratory of Luminescence from Molecular Aggregates of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and DevicesKey Laboratory of Luminescence from Molecular Aggregates of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640China
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Jingjing Guo
- State Key Laboratory of Luminescent Materials and DevicesKey Laboratory of Luminescence from Molecular Aggregates of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640China
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Xiaobin Dong
- State Key Laboratory of Luminescent Materials and DevicesKey Laboratory of Luminescence from Molecular Aggregates of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640China
| | - Junyi Gong
- School of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhenGuangdong518172China
| | - Ben Zhong Tang
- School of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhenGuangdong518172China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and DevicesKey Laboratory of Luminescence from Molecular Aggregates of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640China
| |
Collapse
|
22
|
Latrache M, Lefebvre C, Abe M, Hoffmann N. Photochemically Induced Hydrogen Atom Transfer and Intramolecular Radical Cyclization Reactions with Oxazolones. J Org Chem 2023; 88:16435-16455. [PMID: 37983612 DOI: 10.1021/acs.joc.3c01951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Photochemically induced intramolecular hydrogen atom transfer in oxazolones is reported. An acetal or thioacetal function at the side chain acts as a hydrogen donor while the photochemical exited oxazolone is the acceptor. A one-step process─the electron and the proton are simultaneously transferred─is productive, while electron transfer followed by proton transfer is inefficient. Radical combination then takes place, leading to the formation of a C-C or C-N bond. The regioselectivity of the reaction is explained by the diradical/zwitterion dichotomy of radical intermediates at the singlet state. In the present case, the zwitterion structure plays a central role, and intramolecular electron transfer favors spin-orbit coupling and thus the intersystem crossing to the singlet state. The reaction of corresponding thioacetal derivatives is less efficient. In this case, photochemical electron transfer is competitive. The photoproducts resulting from C-C bond formation easily undergo stepwise thermal decarboxylation in which zwitterionic and polar transition states are involved. A computational study of this step has also been performed.
Collapse
Affiliation(s)
- Mohammed Latrache
- ICMR, Equipe de Photochimie, CNRS, Université de Reims Champagne-Ardenne, UFR Sciences, B.P. 1039, Reims 51687 France
| | - Corentin Lefebvre
- ICMR, Equipe de Photochimie, CNRS, Université de Reims Champagne-Ardenne, UFR Sciences, B.P. 1039, Reims 51687 France
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Hiroshima Research Center for Photo-Drug-Delivery Systems (Hi-P-DDS), 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Norbert Hoffmann
- ICMR, Equipe de Photochimie, CNRS, Université de Reims Champagne-Ardenne, UFR Sciences, B.P. 1039, Reims 51687 France
| |
Collapse
|
23
|
Im S, Jung Y. Substituent-Induced Hyperconjugation: Origin of the Structural Effects on the Efficiency of Photochemical Ring Opening. J Phys Chem A 2023; 127:9236-9243. [PMID: 37905965 DOI: 10.1021/acs.jpca.3c05280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Photochemical ring-opening reactions are among the most extensively employed chemical reactions in the field of chemistry. Owing to their significance, molecular-level studies of these reactions have been widely conducted. One of the major considerations in investigating the ring-opening dynamics of complex molecules on the molecular scale is the differences in dynamics between different conformers because the number of conformers arising from a specific substrate rapidly increases with the complexity of the substrate. However, to date, studies dealing with this problem have been limited to specific individual cases. That is, a rule applicable to arbitrary conformers to estimate and explain the effects of the molecular structure, such as substituents and conformations, on photochemical ring opening has not been established. Herein, we propose the concept of substituent-induced electron density leakage via hyperconjugation as a candidate for this general rule. Based on our hypothesis, we present an indicator that can predict the efficiency of the photochemical ring-opening reactions of various conformers. The relative error between the ring-opening efficiency as obtained from the indicator and that obtained from the nonadiabatic simulations was less than 25% in 56 of the 66 conformers arising from 1,3-cyclohexadiene and 12 distinct analogues. This approach offers the possibility of accurately and quickly predicting the photochemical ring-opening efficiency of arbitrary molecules in arbitrary conformations.
Collapse
Affiliation(s)
- Seongmin Im
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - YounJoon Jung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
24
|
Anghinoni JM, Ferreira SS, Piquini PC, Iglesias BA, Perin G, Penteado F, Lenardão EJ. Visible Light and Triselenium Dicyanide (TSD): New Horizons in the Synthesis of Organic Selenocyanates. Chemistry 2023; 29:e202301934. [PMID: 37544915 DOI: 10.1002/chem.202301934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/24/2023] [Accepted: 08/06/2023] [Indexed: 08/08/2023]
Abstract
Herein, we describe a new method for the synthesis of α-carbonyl selenocyanates by reacting triselenium dicyanide (TSD) and styrenes under blue light irradiation and O2 atmosphere. The reactions are triggered by the formation of Se-centered radical species, followed by the addition/oxidation of the styrene π-bond. α-Carbonyl selenocyanates and α-hydroxy selenocyanates were obtained in moderate to excellent yields from aryl- and alkyl-substituted alkenes, respectively. It was demonstrated that α-carbonyl selenocyanates could be used as a synthetic platform in a multicomponent reaction strategy to prepare 2-phenylimidazo[1,2-a]pyridine derivatives, which were evaluated for their photophysical properties. Overall, this new method provides a useful tool for synthesizing α-carbonyl selenocyanates, and demonstrates their potential for use in the synthesis of other compounds, thus giving new synthetic opportunities to construct organic selenocyanate compounds.
Collapse
Affiliation(s)
- João M Anghinoni
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, 96010-900, Pelotas, RS, Brazil
| | - Sabrina S Ferreira
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, 96010-900, Pelotas, RS, Brazil
| | - Paulo C Piquini
- Departamento de Física, Universidade Federal de Santa Maria, Av. Roraima, Building 13, 97105-900, Santa Maria, RS, Brazil
| | - Bernardo A Iglesias
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, Building 18, 97105-340, Santa Maria, RS, Brazil
| | - Gelson Perin
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, 96010-900, Pelotas, RS, Brazil
| | - Filipe Penteado
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, Building 18, 97105-340, Santa Maria, RS, Brazil
| | - Eder J Lenardão
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
25
|
Liang C, Zang J, Ndi C, Semple SJ, Buirchell B, Coriani S, Møller BL, Staerk D. Identification of new PTP1B-inhibiting decipiene diterpenoid esters from Eremophila clarkei by high-resolution PTP1B inhibition profiling, enzyme kinetics analysis, and molecular docking. Bioorg Chem 2023; 139:106744. [PMID: 37517158 DOI: 10.1016/j.bioorg.2023.106744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
In this study, an extract of the leaves of Eremophila clarkei Oldfield & F.Muell. showed protein tyrosine phosphatase 1B (PTP1B) inhibitory activity with an IC50 value of 33.0 μg/mL. The extract was therefore investigated by high-resolution PTP1B inhibition profiling to pinpoint the constituents responsible for the activity. Subsequent isolation and purification using analytical-scale HPLC led to identification of eight previously undescribed decipiene diterpenoids, eremoclarkanes A-H, as well as eremoclarkic acid, a biogenetically related new phenolic acid. In addition, one known decipiene diterpenoid and ten known O-methylated flavonoids were isolated. The structures of the isolated compounds were elucidated by extensive analysis of their HRMS and 1D and 2D NMR spectra. The absolute configuration of decipiene diterpenoids was determined by comparison of experimental and calculated ECD spectra. The flavonoid hispidulin (2b) and the four decipiene diterpenoids 13a, 13b, 13f, and 14b exhibited PTP1B inhibitory activity with IC50 values ranging from 22.8 to 33.6 μM. This is the first report of PTP1B inhibitory activity of decipienes, and enzyme kinetics revealed that 13a and 13b are competitive inhibitors of PTP1B, whereas 13f and 14b displayed mixed-type-mode inhibition of PTP1B. Finally, molecular docking indicated that 13a, 13b, 13f, and 14b showed comparable binding affinity towards the active and/or allosteric site of PTP1B enzyme. Structure-activity relationship (SAR) of the identified O-methylated flavonoids and decipiene diterpenoids towards PTP1B is discussed. Plausible enzymatic and photochemically driven routes for the formation of the decipienes and conversion products thereof are presented and discussed.
Collapse
Affiliation(s)
- Chao Liang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jie Zang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Chi Ndi
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Frome Road, Adelaide 5000, Australia
| | - Susan J Semple
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Frome Road, Adelaide 5000, Australia
| | - Bevan Buirchell
- Wise Owl Consulting, Como, Western Australia 6152, Australia
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
26
|
Chou TC, Temerova D, Wu CC, Tseng SM, Koshevoy IO, Chou PT. Photoinduced Aryl Transfer from Imidazolyl-Quinoline π-Conjugated Systems. J Am Chem Soc 2023; 145:18104-18114. [PMID: 37534396 DOI: 10.1021/jacs.3c06252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Aryl transfer between heteroatoms was photochemically available through radical initiation followed by a bimolecular reaction. However, such an excited-state reaction has rarely been reported through a photoinduced intramolecular pathway in the π-conjugated systems. Herein, we found, for the first time, a clean photoinduced intramolecular aryl shift for imidazolyl-quinoline derivatives 2NQ (imidazophenanthrene) and 4NQX (imidazophenanthroline), of which the photoproducts are thermally reversible. Upon light irradiation of the studied compounds in solution, an appreciable blue fluorescence along with a gradual change in color appearance was observed, the photoluminescence and photoconversion quantum yields of which were shown to be competitive in the same excited state. We were able to harness the photoconversion quantum yields of the NQ compounds with facile electronic modifications. These, in combination with time-resolved studies on the NQ compounds, gave an oxygen-insensitive aryl transfer rate within 1-100 ns. The anomalously slow intramolecular reaction rates were further proven to be associated with the ∼5.0 kcal/mol transition free energy. The photoproducts NQ_rs were isolated, identified by X-ray analyses, and also shown to demonstrate anti-Vavilov reverse reactions back to the NQ compounds in the higher-lying excited state. The discovery of photoinduced intramolecular aryl transfer paves a new pathway in the synthetic field, which may also be extended and far-reaching to solar-chemical storage under an appropriate design strategy.
Collapse
Affiliation(s)
- Tai-Che Chou
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617, Republic of China
| | - Diana Temerova
- Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| | - Chi-Chi Wu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617, Republic of China
| | - Sheng-Ming Tseng
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617, Republic of China
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617, Republic of China
| |
Collapse
|
27
|
Ali W, Saha A, Ge H, Maiti D. Photoinduced meta-Selective C-H Oxygenation of Arenes. JACS AU 2023; 3:1790-1799. [PMID: 37388693 PMCID: PMC10301684 DOI: 10.1021/jacsau.3c00231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
The merger of photocatalysis and transition-metal catalysis has recently emerged as an adaptable platform for the development of innovative and environmentally benign synthetic methodologies. In contrast to classical transformation by Pd complexes, photoredox Pd catalysis operates through a radical pathway in the absence of a radical initiator. Using the synergistic merger of photoredox and Pd catalysis, we have developed a highly efficient, regioselective, and general meta-oxygenation protocol for diverse arenes under mild reaction conditions. The protocol showcases the meta-oxygenation of phenylacetic acids and biphenyl carboxylic acids/alcohols and is also amenable for a series of sulfonyls and phosphonyl-tethered arenes, irrespective of the nature and position of the substituents. Unlike thermal C-H acetoxylation which operates through the PdII/PdIV catalytic cycle, this metallaphotocatalytic C-H activation involves PdII/PdIII/PdIV intermediacy. The radical nature of the protocol is established through radical quenching experiments and EPR analysis of the reaction mixture. Furthermore, the catalytic path of this photoinduced transformation is established through control reactions, absorption spectroscopy, luminescence quenching, and kinetic studies.
Collapse
Affiliation(s)
- Wajid Ali
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Argha Saha
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Haibo Ge
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409-1061, United States
| | - Debabrata Maiti
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
28
|
Gómez Fernández MA, Hoffmann N. Photocatalytic Transformation of Biomass and Biomass Derived Compounds-Application to Organic Synthesis. Molecules 2023; 28:4746. [PMID: 37375301 PMCID: PMC10301391 DOI: 10.3390/molecules28124746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Biomass and biomass-derived compounds have become an important alternative feedstock for chemical industry. They may replace fossil feedstocks such as mineral oil and related platform chemicals. These compounds may also be transformed conveniently into new innovative products for the medicinal or the agrochemical domain. The production of cosmetics or surfactants as well as materials for different applications are examples for other domains where new platform chemicals obtained from biomass can be used. Photochemical and especially photocatalytic reactions have recently been recognized as being important tools of organic chemistry as they make compounds or compound families available that cannot be or are difficultly synthesized with conventional methods of organic synthesis. The present review gives a short overview with selected examples on photocatalytic reactions of biopolymers, carbohydrates, fatty acids and some biomass-derived platform chemicals such as furans or levoglucosenone. In this article, the focus is on application to organic synthesis.
Collapse
Affiliation(s)
| | - Norbert Hoffmann
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| |
Collapse
|
29
|
Yavari I, Shaabanzadeh S. Migration from Photochemistry to Electrochemistry for [2 + 2] Cycloaddition Reaction. J Org Chem 2023. [PMID: 37289957 DOI: 10.1021/acs.joc.3c00817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyclobutane scaffolds are incorporated in several valuable natural and bioactive products. However, non-photochemical ways to synthesize cyclobutanes have scarcely been investigated. Herein, based on the principles of the electrosynthesis technique, we introduce a novel electrochemical approach for attaining cyclobutanes by a simple [2 + 2] cycloaddition of two electron-deficient olefins in the absence of photocatalysts or metal catalysts. This electrochemical strategy provides a suitable condition for synthesizing tetrasubstituted cyclobutanes with a variety of functional groups in good to excellent efficiency, compatible with gram-scale synthesis. In contrast to previous challenging methods, this approach strongly focuses on the convenient accessibility of the reaction instruments and starting materials for preparing cyclobutanes. Readily accessible and inexpensive electrode materials are firm evidence to prove the simplicity of this reaction. In addition, mechanistic insight into the reaction is obtained by investigation of the CV spectra of the reactants. Also, the structure of a product is identified by X-ray crystallography.
Collapse
Affiliation(s)
- Issa Yavari
- Department of Chemistry, Tarbiat Modares University, P.O. Box, 14115-175, Tehran 1411713116, Iran
| | - Sina Shaabanzadeh
- Department of Chemistry, Tarbiat Modares University, P.O. Box, 14115-175, Tehran 1411713116, Iran
| |
Collapse
|
30
|
Milyutin CV, Komogortsev AN, Lichitsky BV, Minyaev ME, Melekhina VG. Synthesis of substituted 8 H-benzo[ h]pyrano[2,3- f]quinazolin-8-ones via photochemical 6π-electrocyclization of pyrimidines containing an allomaltol fragment. Beilstein J Org Chem 2023; 19:778-788. [PMID: 37346494 PMCID: PMC10280060 DOI: 10.3762/bjoc.19.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
For the first time, we elaborated a method for the synthesis of pyrimidines containing an allomaltol unit. The suggested approach is based on the reaction of 2-(1-(dimethylamino)-3-oxo-3-arylprop-1-en-2-yl)-3-hydroxy-6-methyl-4H-pyran-4-ones with cyanamide. The photochemical behavior of the obtained pyrimidines was investigated. It was shown that for the hydroxy derivatives the main pathway of phototransformation is a 6π-electrocyclization of the 1,3,5-hexatriene system and subsequent [1,9]-H sigmatropic shift leading to dihydrobenzo[h]pyrano[2,3-f]quinazolines. At the same time, for methylated analogues the photoreaction proceeds in two directions resulting in the formation of a mixture of the corresponding dihydrobenzo[h]pyrano[2,3-f]quinazolines and polyaromatic products. The obtained dihydro derivatives are stable compounds and do not undergo aromatization upon further UV irradiation. The structures of two of the dihydrobenzo[h]pyrano[2,3-f]quinazolines were confirmed by X-ray diffraction analysis. Based on the performed studies, a two-stage telescopic method for the synthesis of polyaromatic benzo[h]pyrano[2,3-f]quinazolines including the initial photocyclization of the starting pyrimidines and the final dehydration was proposed.
Collapse
Affiliation(s)
- Constantine V Milyutin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr., 47, Moscow, 119991, Russian Federation
| | - Andrey Nikolaevich Komogortsev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr., 47, Moscow, 119991, Russian Federation
| | - Boris V Lichitsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr., 47, Moscow, 119991, Russian Federation
| | - Mikhail E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr., 47, Moscow, 119991, Russian Federation
| | - Valeriya G Melekhina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr., 47, Moscow, 119991, Russian Federation
| |
Collapse
|
31
|
Cocrystals for photochemical solid-state reactions: An account on crystal engineering perspective. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
32
|
Rogati F, Maioli C, Lauro G, Caprioglio D, Imperio D, Del Grosso E, Botta B, Mannina L, Bifulco G, Ingallina C, Minassi A. A Classic Photochemical Approach Inducing an Unexpected Rearrangement: Exploring the Photoreactivity of Pentacyclic Triterpenic Acids. JOURNAL OF NATURAL PRODUCTS 2023; 86:1025-1032. [PMID: 37036806 DOI: 10.1021/acs.jnatprod.3c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The discovery of new bioactivities is closely related to the generation of novel scaffolds, and in the past few years different strategies have been proposed to obtain unknown architectures from the manipulation of known compounds. In the present study, we exploited a vintage photochemical approach for the discovery of an unexpected pathway of reactivity related to Δ1-3-oxo-pentacyclic triterpenic acids gaining access to a new class of natural-unnatural 5(10→1)abeo-pentacyclic triterpenic acids.
Collapse
Affiliation(s)
- Federica Rogati
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Chiara Maioli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Gianluigi Lauro
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Diego Caprioglio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Daniela Imperio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Erika Del Grosso
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Bruno Botta
- Dipartimento di Chimica e Tecnologie del Farmaco, Università la Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Luisa Mannina
- Dipartimento di Chimica e Tecnologie del Farmaco, Università la Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Giuseppe Bifulco
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Cinzia Ingallina
- Dipartimento di Chimica e Tecnologie del Farmaco, Università la Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Alberto Minassi
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
- PlantaChem srls, Via Canobio 4/6, 28100 Novara, Italy
| |
Collapse
|
33
|
Bakanas I, Tang JC, Sarpong R. Skeletal diversification by C-C cleavage to access bicyclic frameworks from a common tricyclooctane intermediate. Chem Commun (Camb) 2023; 59:3858-3861. [PMID: 36916206 PMCID: PMC10518267 DOI: 10.1039/d3cc00945a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Herein, the diversification of tricyclo[3.2.1.03,6]octane scaffolds to afford diverse bicyclic scaffolds is described. The strained tricyclooctanes are prepared in two steps featuring a blue light-mediated [2+2] cycloaddition. Strategies for the cleavage of this scaffold were then explored resulting in the selective syntheses of the bicyclo[3.1.1]heptane, bicyclo[3.2.1]octane, and bicyclo[3.2.0]heptane cores. These findings may guide future studies of C-C cleavage reactions in strained carbon frameworks and their application in complex molecule synthesis.
Collapse
Affiliation(s)
- Ian Bakanas
- Department of Chemistry, University of California-Berkeley, Berkeley, California, USA.
| | - Jess C Tang
- Department of Chemistry, University of California-Berkeley, Berkeley, California, USA.
| | - Richmond Sarpong
- Department of Chemistry, University of California-Berkeley, Berkeley, California, USA.
| |
Collapse
|
34
|
Oger S, Duchemin N, Bendiab YM, Birlirakis N, Skiredj A, Rharrabti S, Jullian JC, Poupon E, Smietana M, Arseniyadis S, Evanno L. Expanding the 'aplysinospin cascade' through DNA-templated [2+2] photocycloaddition. Chem Commun (Camb) 2023; 59:4221-4224. [PMID: 36939749 DOI: 10.1039/d3cc00673e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Inspired by the unique ability of nucleic acids to template chemical transformations that are otherwise impossible in solution, we embarked on the generalisation of our DNA-templated [2+2] photo-induced homo- and heterodimerization of aplysinopsins. Our process ensures a straightforward access to cyclobutane containing natural products and analogues thereof. Most importantly, this conceptual biomimetic achievement presents interesting arguments to build a biosynthetic scenario.
Collapse
Affiliation(s)
- Samuel Oger
- Université Paris-Saclay, CNRS, BioCIS, 17, Avenue des Sciences, 91400, Orsay, France.
| | - Nicolas Duchemin
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Yara Mayssa Bendiab
- Université Paris-Saclay, CNRS, BioCIS, 17, Avenue des Sciences, 91400, Orsay, France.
| | - Nicolas Birlirakis
- Département de Chimie, Ecole Normale Supérieure, PSL Research University, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005, Paris, France
| | - Adam Skiredj
- Université Paris-Saclay, CNRS, BioCIS, 17, Avenue des Sciences, 91400, Orsay, France.
| | - Somia Rharrabti
- Université Paris-Saclay, CNRS, BioCIS, 17, Avenue des Sciences, 91400, Orsay, France.
| | | | - Erwan Poupon
- Université Paris-Saclay, CNRS, BioCIS, 17, Avenue des Sciences, 91400, Orsay, France.
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 Route de Mende, 34095, Montpellier, France.
| | - Stellios Arseniyadis
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Laurent Evanno
- Université Paris-Saclay, CNRS, BioCIS, 17, Avenue des Sciences, 91400, Orsay, France.
| |
Collapse
|
35
|
Chiminelli M, Serafino A, Ruggeri D, Marchiò L, Bigi F, Maggi R, Malacria M, Maestri G. Visible-Light Promoted Intramolecular para-Cycloadditions on Simple Aromatics. Angew Chem Int Ed Engl 2023; 62:e202216817. [PMID: 36705630 DOI: 10.1002/anie.202216817] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/28/2023]
Abstract
Dearomative cycloadditions are a powerful tool to access a large chemical space exploiting simple and ubiquitous building blocks. The energetic burden due to the loss of aromaticity has however greatly limited their synthetic potential. We devised a general intramolecular method that overcomes these limitations thanks to the photosensitization of allenamides. The visible-light-promoted process gives complex [2.2.2]-(hetero)-bicyclooctadienes at room temperature, likely through the stabilization of transient (bi)radicals by naphthalene. The reaction tolerates several valuable functionalities, offering a convenient handle for a myriad of applications, including original isoindoles and metal complexes.
Collapse
Affiliation(s)
- Maurizio Chiminelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| | - Andrea Serafino
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| | - Davide Ruggeri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| | - Luciano Marchiò
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| | - Franca Bigi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy.,IMEM-CNR, Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - Raimondo Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| | - Max Malacria
- IPCM (UMR CNRS 8232), Sorbonne Université, 4 place Jussieu, 75252, Paris Cedex 05, France
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| |
Collapse
|
36
|
Jacques A, Devaux A, Rubay C, Pennetreau F, Desmecht A, Robeyns K, Hermans S, Elias B. Polypyridine Iridium(III) and Ruthenium(II) Complexes for Homogeneous and Graphene‐Supported Photoredox Catalysis. ChemCatChem 2023. [DOI: 10.1002/cctc.202201672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Alexandre Jacques
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Alexandre Devaux
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Christophe Rubay
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Florence Pennetreau
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Antonin Desmecht
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Sophie Hermans
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Benjamin Elias
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
37
|
Chandra P, Choudhary N, Mobin SM. The game between molecular photoredox catalysis and hydrogen: The golden age of hydrogen budge. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Zhu JL, Schull CR, Tam AT, Rentería-Gómez Á, Gogoi AR, Gutierrez O, Scheidt KA. Photoinduced Acylations Via Azolium-Promoted Intermolecular Hydrogen Atom Transfer. J Am Chem Soc 2023; 145:1535-1541. [PMID: 36625715 DOI: 10.1021/jacs.2c12845] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Photoinduced hydrogen atom transfer (HAT) has been developed as a powerful tool to generate synthetically valuable radical species. The direct photoexcitation of ketones has been known to promote HAT or to generate acyl radicals through Norrish-type pathways, but these modalities remain severely limited by radical side reactions. We report herein a catalyst- and transition metal-free method for the acylation of C-H bonds that leverages the unique properties of stable, isolable acyl azolium species. Specifically, acyl azolium salts are shown to undergo an intermolecular and regioselective HAT upon LED irradiation with a range of substrates bearing active C-H bonds followed by C-C bond formation to afford ketones. Experimental and computational studies support photoexcitation of the acyl azolium followed by facile intersystem crossing to access triplet diradical species that promote selective HAT and radical-radical cross-coupling.
Collapse
Affiliation(s)
- Joshua L Zhu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| | - Cullen R Schull
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| | - Anthony T Tam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| | - Ángel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas77843, United States
| | - Achyut Ranjan Gogoi
- Department of Chemistry, Texas A&M University, College Station, Texas77843, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas77843, United States
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| |
Collapse
|
39
|
Golfmann M, Glagow L, Giakoumidakis A, Golz C, Walker JCL. Organophotocatalytic [2+2] Cycloaddition of Electron-Deficient Styrenes. Chemistry 2023; 29:e202202373. [PMID: 36282627 PMCID: PMC10100360 DOI: 10.1002/chem.202202373] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/05/2022]
Abstract
A visible-light organophotocatalytic [2+2] cycloaddition of electron-deficient styrenes is described. Photocatalytic [2+2] cycloadditions are typically performed with electron-rich styrene derivatives or α,β-unsaturated carbonyl compounds, and with transition-metal-based catalysts. We have discovered that an organic cyanoarene photocatalyst is able to deliver high-value cyclobutane products bearing electron-deficient aryl substituents in good yields. A range of electron-deficient substituents are tolerated, and both homodimerisations and intramolecular [2+2] cycloadditions to fused bicyclic systems are available by using this methodology.
Collapse
Affiliation(s)
- Maxim Golfmann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Louis Glagow
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Antonios Giakoumidakis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Johannes C L Walker
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
40
|
Jones B, Solon P, Popescu MV, Du JY, Paton R, Smith MD. Catalytic Enantioselective 6π Photocyclization of Acrylanilides. J Am Chem Soc 2022; 145:171-178. [PMID: 36571763 PMCID: PMC9837842 DOI: 10.1021/jacs.2c09267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Controlling absolute stereochemistry in catalytic photochemical reactions is generally challenging owing to high rates of background reactivity. Successful strategies broadly rely on selective excitation of the reaction substrate when associated with a chiral catalyst. Recent studies have demonstrated that chiral Lewis acid complexes can enable selective energy transfer from a photosensitizer to facilitate enantioselective triplet state reactions. Here, we apply this approach to the enantioselective catalysis of a 6π photocyclization through the design of an iridium photosensitizer optimized to undergo energy transfer to a reaction substrate only in the presence of a chiral Lewis acid complex. Among a group of iridium(III) sensitizers, enantioselectivity and yield closely correlate with photocatalyst triplet energy within a narrow window enabled by a modest reduction in substrate triplet energy upon binding a scandium/ligand complex. These results demonstrate that photocatalyst tuning offers a means to suppress background reactivity and improve enantioselectivity in photochemical reactions.
Collapse
Affiliation(s)
- Benjamin
A. Jones
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Pearse Solon
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Mihai V. Popescu
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.,Department
of Chemistry, Colorado State University, 1301 Center Avenue, Ft. Collins, Colorado 80523-1872, United States
| | - Ji-Yuan Du
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Robert Paton
- Department
of Chemistry, Colorado State University, 1301 Center Avenue, Ft. Collins, Colorado 80523-1872, United States,
| | - Martin D. Smith
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.,
| |
Collapse
|
41
|
Milyutin CV, Galimova RG, Komogortsev AN, Lichitsky BV, Migulin VA, Melekhina VG. Photochemical Synthesis of Tetrahydro‐6
H
‐cyclopenta[
b
]furan‐6‐ones from Substituted Allomaltols. ChemistrySelect 2022. [DOI: 10.1002/slct.202204000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Constantine V. Milyutin
- Laboratory of Heterocyclic Compounds N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47 Moscow 119991 Russian Federation
| | - Renata G. Galimova
- Laboratory of Heterocyclic Compounds N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47 Moscow 119991 Russian Federation
- Faculty of Chemistry M.V. Lomonosov Moscow State University Leninskie Gory, 1 Moscow 119991 Russian Federation
| | - Andrey N. Komogortsev
- Laboratory of Heterocyclic Compounds N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47 Moscow 119991 Russian Federation
| | - Boris V. Lichitsky
- Laboratory of Heterocyclic Compounds N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47 Moscow 119991 Russian Federation
| | - Vasily A. Migulin
- Laboratory of Heterocyclic Compounds N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47 Moscow 119991 Russian Federation
| | - Valeriya G. Melekhina
- Laboratory of Heterocyclic Compounds N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47 Moscow 119991 Russian Federation
| |
Collapse
|
42
|
Light-induced phosphine-catalyzed asymmetric functionalization of benzylic C-H bonds. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Filer CN. Cannabinoid Photochemistry: An Underexplored Opportunity. Cannabis Cannabinoid Res 2022; 7:725-727. [PMID: 36251456 DOI: 10.1089/can.2022.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Photochemistry is a powerful synthetic tool resulting in the construction of unique substances. Remarkably, photochemistry has been relatively underexplored in the cannabinoid area and represents a valuable opportunity for further discovery.
Collapse
Affiliation(s)
- Crist N Filer
- PerkinElmer Health Sciences, Inc., Waltham, Massachusetts, USA
| |
Collapse
|
44
|
Yang Y, Liu L, Fang WH, Shen L, Chen X. Theoretical Exploration of Energy Transfer and Single Electron Transfer Mechanisms to Understand the Generation of Triplet Nitrene and the C(sp 3)-H Amidation with Photocatalysts. JACS AU 2022; 2:2596-2606. [PMID: 36465545 PMCID: PMC9709952 DOI: 10.1021/jacsau.2c00490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 05/20/2023]
Abstract
Mechanistic explorations and kinetic evaluations were performed based on electronic structure calculations at the CASPT2//CASSCF level of theory, the Fermi's golden rule combined with the Dexter model, and the Marcus theory to unveil the key factors regulating the processes of photocatalytic C(sp3)-H amidation starting from the newly emerged nitrene precursor of hydroxamates. The highly reactive nitrene was found to be generated efficiently via a triplet-triplet energy transfer process and to be benefited from the advantages of hydroxamates with long-range charge-transfer (CT) excitation from the N-centered lone pair to the 3,5-bis(trifluoromethyl)benzoyl group. The properties of the metal-to-ligand charge-transfer (MLCT) state of photocatalysts, the functionalization of chemical moieties for substrates involved in the charge-transfer (CT) excitation, such as the electron-withdrawing trifluoromethyl group, and the energetic levels of singlet and triplet reaction pathways may regulate the reaction yield of C(sp3)-H amidation. Kinetic evaluations show that the triplet-triplet energy transfer is the main driving force of the reaction rather than the single electron transfer process. The effects of electronic coupling, molecular rigidity, and excitation energies on the energy transfer efficiency were further discussed. Finally, we investigated the inverted behavior of single-electron transfer, which is correlated unfavorably to the catalytic efficiency and amidation reaction. All theoretical explorations allow us to better understand the generation of nitrene with visible-light photocatalysts, to expand highly efficient substrate sources, and to broaden our scope of available photosensitizers for various cross-coupling reactions and the construction of N-heterocycles.
Collapse
|
45
|
Martyanov TP, Vorozhtsov AP, Aleksandrova NA, Sulimenkov IV, Ushakov EN, Gromov SP. Stereospecific Formation of the rctt Isomer of Bis-crown-Containing Cyclobutane upon [2 + 2] Photocycloaddition of an (18-Crown-6)stilbene Induced by Self-Assembly via Hydrogen Bonding. ACS OMEGA 2022; 7:42370-42376. [PMID: 36440159 PMCID: PMC9685742 DOI: 10.1021/acsomega.2c05295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The formation and the spectroscopic and structural properties of 1:1 and 2:1 (ligand-to-dication) complexes of an (18-crown-6)stilbene with ethane-1,2-diammonium diperchlorate in MeCN were studied by UV-vis and NMR spectroscopy and by density functional theory calculations. Prolonged UV irradiation of 2:1 mixtures of the crown stilbene and the diammonium salt led to the formation of two main photoproducts, namely, the single syn-"head-to-head" photodimer of the crown stilbene (rctt cyclobutane) due to supramolecular-assisted [2 + 2] photocycloaddition and a crown ether derivative of phenanthrene due to a photoinduced electrocyclization reaction. The rctt cyclobutane was isolated by preparative photolysis, followed by chromatography. The selectivity of the [2 + 2] photocycloaddition is explained by supramolecular pre-organization of crown stilbene molecules into the 2:1 complexes that have a pseudo-sandwich structure with stacking interactions between the stilbene moieties.
Collapse
Affiliation(s)
- Timofey P. Martyanov
- Federal
Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region142432, Russian Federation
- Photochemistry
Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov Str. 7A-1, Moscow119421, Russian Federation
| | - Artem P. Vorozhtsov
- Federal
Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region142432, Russian Federation
- Photochemistry
Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov Str. 7A-1, Moscow119421, Russian Federation
| | - Nadezhda A. Aleksandrova
- Photochemistry
Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov Str. 7A-1, Moscow119421, Russian Federation
| | - Ilia V. Sulimenkov
- Chernogolovka
Branch of the N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region142432, Russian Federation
| | - Evgeny N. Ushakov
- Federal
Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region142432, Russian Federation
- Photochemistry
Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov Str. 7A-1, Moscow119421, Russian Federation
| | - Sergey P. Gromov
- Photochemistry
Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov Str. 7A-1, Moscow119421, Russian Federation
- Department
of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow119991, Russian Federation
| |
Collapse
|
46
|
Szabó K, Goliszewska K, Szurmak J, Rybicka-Jasińska K, Gryko D. Site-Selective, Photocatalytic Vinylogous Amidation of Enones. Org Lett 2022; 24:8120-8124. [PMID: 36327199 PMCID: PMC9664488 DOI: 10.1021/acs.orglett.2c03161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 11/06/2022]
Abstract
Despite the broad interest in organic compounds possessing a γ-aminocarbonyl motif, limited strategies for their synthesis have been reported. Herein, we describe a mild and efficient method for the site-selective amidation of unsaturated enones with electrophilic N-centered radicals as a key intermediate. The photocatalytic vinylogous reaction of dienolates with N-amino pyridinium salts affords γ-amido carbonyl compounds. This process is high-yielding, scalable, and tolerates a broad range of unsaturated α,β-unsaturated carbonyls, including biologically relevant compounds, as starting materials.
Collapse
Affiliation(s)
- Kitti
Franciska Szabó
- Institute of Organic Chemistry,
Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Katarzyna Goliszewska
- Institute of Organic Chemistry,
Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jakub Szurmak
- Institute of Organic Chemistry,
Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Dorota Gryko
- Institute of Organic Chemistry,
Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
47
|
Nie C, Lin X, Zhao G, Wu K. Low‐Toxicity ZnSe/ZnS Quantum Dots as Potent Photoreductants and Triplet Sensitizers for Organic Transformations. Angew Chem Int Ed Engl 2022; 61:e202213065. [DOI: 10.1002/anie.202213065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Chengming Nie
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Xuyang Lin
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guohui Zhao
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
48
|
Lapuh MI, Cormier G, Chergui S, Aitken DJ, Boddaert T. Preparation of Thietane Derivatives through Domino Photochemical Norrish Type II/Thia-Paternò–Büchi Reactions. Org Lett 2022; 24:8375-8380. [DOI: 10.1021/acs.orglett.2c03428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maria I. Lapuh
- Université Paris-Saclay, CNRS, ICMMO, 91405 Orsay, France
| | | | | | | | | |
Collapse
|
49
|
4a,7a-Dihydroxy-1-(2-hydroxyethyl)-5-methyl-2′,3′,4a,5′,6′,7a-hexahydrospiro[cyclopenta[b]pyridine-4,4′-pyran]-2,7(1H,3H)-dione. MOLBANK 2022. [DOI: 10.3390/m1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
An environment-friendly photochemical approach to the synthesis of 4a,7a-dihydroxy-1-(2-hydroxyethyl)-5-methyl-2′,3′,4a,5′,6′,7a-hexahydrospiro[cyclopenta[b]pyridine-4,4′-pyran]-2,7(1H,3H)-dione from 2-(4-(3-hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)tetrahydro-2H-pyran-4-yl)-N-(2-hydroxyethyl)acetamide was elaborated. The suggested method is based on the ESIPT-promoted contraction of 3-hydroxypyran-4-one fragment followed by intramolecular cyclization of generated in situ α-hydroxy-1,2-diketone intermediate. The distinctive feature of the presented protocol is the employment of water as a solvent for the considered photoreaction. The structure of the obtained photoproduct was confirmed by 1H, 13C-NMR, IR spectroscopy and high-resolution mass spectrometry.
Collapse
|
50
|
Zhang T, Cusumano AQ, Hafeman NJ, Loskot SA, Reimann CE, Virgil SC, Goddard WA, Stoltz BM. Investigations of an Unexpected [2+2] Photocycloaddition in the Synthesis of (-)-Scabrolide A from Quantum Mechanics Calculations. J Org Chem 2022; 87:14115-14124. [PMID: 36269312 DOI: 10.1021/acs.joc.2c01693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We utilize ab initio quantum mechanics calculations to evaluate a range of plausible mechanistic pathways for the unexpected formation of a [6-4-4] ring system from an enone-olefin photocycloaddition in the synthesis of (-)-scabrolide A, previously reported by our group. We present a mechanistic analysis that is consistent with all current experimental observations, including the photoexcitation, the C-C bond formation, and the associated chemo- and diastereoselectivity.
Collapse
Affiliation(s)
- Tianyi Zhang
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alexander Q Cusumano
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Nicholas J Hafeman
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Steven A Loskot
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Christopher E Reimann
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Scott C Virgil
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - William A Goddard
- Materials and Process Simulation Center, Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|