1
|
Yang ZX, Albalawi S, Zhao S, Li YG, Zhang H, Zou YL, Hou S, Chen LC, Shi J, Yang Y, Wu Q, Lambert C, Hong W. Single-Molecule Cross-Plane Conductance of Polycyclic Aromatic Hydrocarbon Derivatives. Chemistry 2024; 30:e202402095. [PMID: 38943462 DOI: 10.1002/chem.202402095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
In the cross-plane single-molecule junctions, the correlation between molecular aromaticity and conductance remained puzzling. Cross-plane break junction (XPBJ) provides new insight into understanding the role of aromaticity and conjugation to molecules on charge transport through the planar molecules. In this work, we investigated the modulation of cross-plane charge transport in pyrene derivatives by hydrogenation and substituents based on the XPBJ method that differs from those used in-plane transport. We measured the electrical conductance of the hydrogenated derivatives of the pyrenes and found that hydrogenation reduces conductance, and the fully hydrogenated molecule has the lowest conductance. Conductance of pyrene derivatives increased after substitution by both electron-donating and electron-withdrawing groups. By calculating, the trend in decreased conductance of hydrogenated pyrene was found to be consistent with the change in aromaticity. Electron-withdrawing substituents reduce the aromaticity of the molecule and narrow the HOMO-LUMO gap, while electron-donating groups increase the aromaticity but also narrow the gap. Our work reveals the potential of fine-tuning the structure of the pyrene molecule to control the cross-plane charge transport through the single-molecule junctions.
Collapse
Affiliation(s)
- Zi-Xian Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Shadiah Albalawi
- Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk, Saudi Arabia
| | - Shiqiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Yao-Guang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Hewei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Yu-Ling Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Songjun Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Li-Chuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Colin Lambert
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| |
Collapse
|
2
|
Mattioli EJ, Cipriani B, Zerbetto F, Marforio TD, Calvaresi M. Interaction of Au(III) with amino acids: a vade mecum for medicinal chemistry and nanotechnology. J Mater Chem B 2024; 12:5162-5170. [PMID: 38687242 DOI: 10.1039/d4tb00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Au(III) is highly reactive. At odds with its reduced counterpart, Au(I), it is hardly present in structural databases. And yet, it is the starting reactant to form gold nanoclusters (AuNCs) and the constitutive component of a new class of drugs. Its reactivity is a world apart from that of the iso-electronic Pt(II) species. Rather than DNA, it targets proteins. Its interaction with amino acid residues is manifold. It can strongly interact with the residue backbones, amino acid side chains and protein ends, it can form appropriate complexes whose stabilization energy reaches up to more than 40 kcal mol-1, it can affect the pKa of amino acid residues, and it can promote charge transfer from the residues to the amount that it is reduced. Here, quantum chemical calculations provide quantitative information on all the processes where Au(III) can be involved. A myriad of structural arrangements are examined in order to determine the strongest interactions and quantify the amount of charge transfer between protonated and deprotonated residues and Au(III). The calculated interaction energies of the amino acid side chains with Au(III) quantitatively reproduce the experimental tendency of Au(III) to interact with selenocysteine, cysteine and histidine and negatively charged amino acids such as Glu and Asp. Also, aromatic residues such as tyrosine and tryptophan strongly interact with Au(III). In proteins, basic pH plays a role in the deprotonation of cysteine, lysine and tyrosine and strongly increases the binding affinity of Au(III) toward these amino acids. The amino acid residues in the protein can also trigger the reduction of Au(III) ions. Sulfur-containing amino acids (cysteine and methionine) and selenocysteine provide almost one electron to Au(III) upon binding. Tyrosine also shows a considerable tendency to act as a reductant. Other amino acids, commonly identified in Au-protein adducts, such as Ser, Trp, Thr, Gln, Glu, Asn, Asp, Lys, Arg and His, possess a notable reducing power toward Au(III). These results and their discussion form a vade mecum that can find application in medicinal chemistry and nanotech applications of Au(III).
Collapse
Affiliation(s)
- Edoardo Jun Mattioli
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Beatrice Cipriani
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Francesco Zerbetto
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Tainah Dorina Marforio
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Matteo Calvaresi
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
3
|
Zhang Y, Liang H, Qi P, Xu Z, Fei H, Guo C. Deciphering the Roles of Interfacial Amino Acids in Inter-Protein Charge Transport. NANO LETTERS 2024; 24:4178-4185. [PMID: 38552164 DOI: 10.1021/acs.nanolett.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Elucidating charge transport (CT) through proteins is critical for gaining insights into ubiquitous CT chain reactions in biological systems and developing high-performance bioelectronic devices. While intra-protein CT has been extensively studied, crucial knowledge about inter-protein CT via interfacial amino acids is still absent due to the structural complexity. Herein, by loading cytochrome c (Cyt c) on well-defined peptide self-assembled monolayers to mimic the protein-protein interface, we provide a precisely controlled platform for identifying the roles of interfacial amino acids in solid-state CT via peptide-Cyt c junctions. The terminal amino acid of peptides serves as a fine-tuning factor for both the interfacial interaction between peptides and Cyt c and the immobilized Cyt c orientation, resulting in a nearly 10-fold difference in current through peptide-Cyt c junctions with varied asymmetry. This work provides a valuable platform for studying CT across proteins and contributes to the understanding of fundamental principles governing inter-protein CT.
Collapse
Affiliation(s)
- Yongkang Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Han Liang
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Pan Qi
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Zhongchen Xu
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Houguo Fei
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Cunlan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| |
Collapse
|
4
|
Gibbs CA, Ghazi N, Tao J, Warren JJ. An Investigation of the Influence of Tyrosine Local Interactions on Electron Hopping in a Model Protein. Molecules 2024; 29:350. [PMID: 38257263 PMCID: PMC10818705 DOI: 10.3390/molecules29020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Multi-step electron transfer reactions are important to the function of many cellular systems. The ways in which such systems have evolved to direct electrons along specific pathways are largely understood, but less so are the ways in which the reduction-oxidation potentials of individual redox sites are controlled. We prepared a series of three new artificial variants of Pseudomonas aeruginosa azurin where a tyrosine (Tyr109) is situated between the native Cu ion and a Ru(II) photosensitizer tethered to a histidine (His107). Arginine, glutamine, or methionine were introduced as position 122, which is near to Tyr109. We investigated the rate of CuI oxidation by a flash-quench generated Ru(III) oxidant over pH values from 5 to 9. While the identity of the residue at position 122 affects some of the physical properties of Tyr109, the rates of CuI oxidation are only weakly dependent on the identity of the residue at 122. The results highlight that more work is still needed to understand how non-covalent interactions of redox active groups are affected in redox proteins.
Collapse
Affiliation(s)
| | | | | | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
5
|
Giese B, Karamash M, Fromm KM. Chances and challenges of long-distance electron transfer for cellular redox reactions. FEBS Lett 2023; 597:166-173. [PMID: 36114008 DOI: 10.1002/1873-3468.14493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/14/2023]
Abstract
Biological redox reactions often use a set-up in which final redox partners are localized in different compartments and electron transfer (ET) among them is mediated by redox-active molecules. In enzymes, these ET processes occur over nm distances, whereas multi-protein filaments bridge μm ranges. Electrons are transported over cm ranges in cable bacteria, which are formed by thousands of cells. In this review, we describe molecular mechanisms that explain how respiration in a compartmentalized set-up ensures redox homeostasis. We highlight mechanistic studies on ET through metal-free peptides and proteins demonstrating that long-distance ET is possible because amino acids Tyr, Trp, Phe, and Met can act as relay stations. This cuts one long ET into several short reaction steps. The chances and challenges of long-distance ET for cellular redox reactions are then discussed.
Collapse
Affiliation(s)
- Bernd Giese
- Department of Chemistry, University of Fribourg, Switzerland
| | - Maksym Karamash
- Department of Chemistry, University of Fribourg, Switzerland
| | | |
Collapse
|
6
|
Guo C, Gavrilov Y, Gupta S, Bendikov T, Levy Y, Vilan A, Pecht I, Sheves M, Cahen D. Electron transport via tyrosine-doped oligo-alanine peptide junctions: role of charges and hydrogen bonding. Phys Chem Chem Phys 2022; 24:28878-28885. [PMID: 36441625 DOI: 10.1039/d2cp02807g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A way of modulating the solid-state electron transport (ETp) properties of oligopeptide junctions is presented by charges and internal hydrogen bonding, which affect this process markedly. The ETp properties of a series of tyrosine (Tyr)-containing hexa-alanine peptides, self-assembled in monolayers and sandwiched between gold electrodes, are investigated in response to their protonation state. Inserting a Tyr residue into these peptides enhances the ETp carried via their junctions. Deprotonation of the Tyr-containing peptides causes a further increase of ETp efficiency that depends on this residue's position. Combined results of molecular dynamics simulations and spectroscopic experiments suggest that the increased conductance upon deprotonation is mainly a result of enhanced coupling between the charged C-terminus carboxylate group and the adjacent Au electrode. Moreover, intra-peptide hydrogen bonding of the Tyr hydroxyl to the C-terminus carboxylate reduces this coupling. Hence, the extent of such a conductance change depends on the Tyr-carboxylate distance in the peptide's sequence.
Collapse
Affiliation(s)
- Cunlan Guo
- Departments of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 761001, Israel. .,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yulian Gavrilov
- Departments of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761001, Israel.,Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Satyajit Gupta
- Departments of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 761001, Israel. .,Department of Chemistry, Indian Institute of Technology, Bhilai, 492015, India
| | - Tatyana Bendikov
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Yaakov Levy
- Departments of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Ayelet Vilan
- Departments of Chemical & Biological Physics, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Israel Pecht
- Department of immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Mordechai Sheves
- Departments of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 761001, Israel.
| | - David Cahen
- Departments of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 761001, Israel.
| |
Collapse
|
7
|
Li X, Sun W, Qin X, Xie Y, Liu N, Luo X, Wang Y, Chen X. An interesting possibility of forming special hole stepping stones with high-stacking aromatic rings in proteins: three-π five-electron and four-π seven-electron resonance bindings. RSC Adv 2021; 11:26672-26682. [PMID: 35479969 PMCID: PMC9037495 DOI: 10.1039/d1ra05341h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022] Open
Abstract
Long-range hole transfer of proteins plays an important role in many biological processes of living organisms. Therefore, it is highly useful to examine the possible hole stepping stones, which can facilitate hole transfer in proteins. However, the structures of stepping stones are diverse because of the complexity of the protein structures. In the present work, we proposed a series of special stepping stones, which are instantaneously formed by three and four packing aromatic side chains of amino acids to capture a hole, corresponding to three-π five-electron (π:π∴π↔π∴π:π) and four-π seven-electron (π:π∴π:π↔π:π:π∴π) resonance bindings with appropriate binding energies. The aromatic amino acids include histidine (His), phenylalanine (Phe), tyrosine (Tyr) and tryptophan (Trp). The formations of these special stepping stones can effectively reduce the local ionization potential of the high π-stacking region to efficiently capture the migration hole. The quick formations and separations of them promote the efficient hole transfer in proteins. More interestingly, we revealed that a hole cannot delocalize over infinite aromatic rings along the high π-π packing structure at the same time and the micro-surroundings of proteins can modulate the formations of π:π∴π↔π∴π:π and π:π∴π:π↔π:π:π∴π bindings. These results may contribute a new avenue to better understand the potential hole transfer pathway in proteins.
Collapse
Affiliation(s)
- Xin Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Weichao Sun
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Xin Qin
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Yuxin Xie
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Nian Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Xin Luo
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Yuanying Wang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Xiaohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| |
Collapse
|
8
|
Song X, Bu Y. Electric field controlled uphill electron migration along α-helical oligopeptides. Phys Chem Chem Phys 2021; 23:1464-1474. [PMID: 33399139 DOI: 10.1039/d0cp05085g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A systematic study on applied electric field effects (Eapp) on electron transfer along the peptides is very important for the regulation of electron transfer behaviors so as to realize the functions of proteins. In this work, we computationally investigated the uphill migration behaviors of excess electrons along the peptide chains under Eapp using the density functional theory method. We examined the electronic property changes of the model α-helical oligopeptides, the dynamics behavior of an excess electron along the peptide chains under Eapp opposite to the internal dipole field of peptides. We found that Eapp of different intensities can effectively modulate the electron-binding abilities, Frontier molecular orbital (FMO) energies and distributions, dipole moments and other corresponding properties with different degrees. The electron-binding abilities of α-helical oligopeptides revealed by vertical electron affinity and FMO energies decrease in weak Eapp and then increase greatly in high Eapp, while the dipole moments change mildly in weak Eapp and increase significantly until a threshold and then become gentle in high Eapp. Analysis of FMO and electron distributions indicates that an excess electron can migrate uphill from the N-terminus to the C-terminus of the α-helical peptides in an irregular jump mode as Eapp linearly increases. Another interesting finding is that α-helical peptides with diverse chain lengths have different sensitivities to Eapp. The longer the peptide is, the more obvious the effects of Eapp are. Additionally, compared to the Eapp effect on linear oligopeptides, we summarized the systematic rule about the Eapp effect on excess electron migration uphill along the peptide chains. Clearly, this work not only enriches the information of the Eapp effect on electronic properties and electron transfers in the helical peptides, but also provides a new perspective for modulating electron migration behaviors in protein electronics engineering.
Collapse
Affiliation(s)
- Xiufang Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
| |
Collapse
|
9
|
Wörner S, Leier J, Michenfelder NC, Unterreiner A, Wagenknecht H. Directed Electron Transfer in Flavin Peptides with Oligoproline-Type Helical Conformation as Models for Flavin-Functional Proteins. ChemistryOpen 2020; 9:1264-1269. [PMID: 33318882 PMCID: PMC7729625 DOI: 10.1002/open.202000199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/23/2020] [Indexed: 11/26/2022] Open
Abstract
To mimic the charge separation in functional proteins we studied flavin-modified peptides as models. They were synthesized as oligoprolines that typically form a polyproline type-II helix, because this secondary structure supports the electron transfer properties. We placed the flavin as photoexcitable chromophore and electron acceptor at the N-terminus. Tryptophans were placed as electron donors to direct the electron transfer over 0-3 intervening prolines. Spectroscopic studies revealed competitive photophysical pathways. The reference peptide without tryptophan shows dominant non-specific ET dynamics, leading to an ion pair formation, whereas peptides with tryptophans have weak non-specific ET and intensified directed electron transfer. By different excitation wavelengths, we can conclude that the corresponding ion pair state of flavin within the peptide environment has to be energetically located between the S1 and S4 states, whereas the directed electron transfer to tryptophan occurs directly from the S1 state. These photochemical results have fundamental significance for proteins with flavin as redoxactive cofactor.
Collapse
Affiliation(s)
- Samantha Wörner
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Julia Leier
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Nadine C. Michenfelder
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Andreas‐Neil Unterreiner
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Hans‐Achim Wagenknecht
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| |
Collapse
|
10
|
Derr JB, Tamayo J, Clark JA, Morales M, Mayther MF, Espinoza EM, Rybicka-Jasińska K, Vullev VI. Multifaceted aspects of charge transfer. Phys Chem Chem Phys 2020; 22:21583-21629. [PMID: 32785306 PMCID: PMC7544685 DOI: 10.1039/d0cp01556c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focusing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, catalysis, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.
Collapse
Affiliation(s)
- James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Molecular electrets – Why do dipoles matter for charge transfer and excited-state dynamics? J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Nam J, Lim HK, Kim NH, Park JK, Kang ES, Kim YT, Heo C, Lee OS, Kim SG, Yun WS, Suh M, Kim YH. Supramolecular Peptide Hydrogel-Based Soft Neural Interface Augments Brain Signals through a Three-Dimensional Electrical Network. ACS NANO 2020; 14:664-675. [PMID: 31895542 DOI: 10.1021/acsnano.9b07396] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recording neural activity from the living brain is of great interest in neuroscience for interpreting cognitive processing or neurological disorders. Despite recent advances in neural technologies, development of a soft neural interface that integrates with neural tissues, increases recording sensitivity, and prevents signal dissipation still remains a major challenge. Here, we introduce a biocompatible, conductive, and biostable neural interface, a supramolecular β-peptide-based hydrogel that allows signal amplification via tight neural/hydrogel contact without neuroinflammation. The non-biodegradable β-peptide forms a multihierarchical structure with conductive nanomaterial, creating a three-dimensional electrical network, which can augment brain signal efficiently. By achieving seamless integration in brain tissue with increased contact area and tight neural tissue coupling, the epidural and intracortical neural signals recorded with the hydrogel were augmented, especially in the high frequency range. Overall, our tissuelike chronic neural interface will facilitate a deeper understanding of brain oscillation in broad brain states and further lead to more efficient brain-computer interfaces.
Collapse
Affiliation(s)
- Jiyoung Nam
- Center for Neuroscience Imaging Research , Institute for Basic Science (IBS) , Suwon 16419 , Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University , Suwon 16419 , Korea
| | - Hyun-Kyoung Lim
- Center for Neuroscience Imaging Research , Institute for Basic Science (IBS) , Suwon 16419 , Korea
- Department of Biological Sciences , Sungkyunkwan University , Suwon 16419 , Korea
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University , Suwon 16419 , Korea
| | - Jong Kwan Park
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Korea
| | - Eun Sung Kang
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University , Suwon 16419 , Korea
| | - Yong-Tae Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University , Suwon 16419 , Korea
| | - Chaejeong Heo
- Center for Neuroscience Imaging Research , Institute for Basic Science (IBS) , Suwon 16419 , Korea
| | - One-Sun Lee
- Qatar Environment and Energy Research Institute , Hamad Bin Khalifa University , Doha , Qatar
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research , Institute for Basic Science (IBS) , Suwon 16419 , Korea
- Department of Biomedical Engineering , Sungkyunkwan University , Suwon 16419 , Korea
| | - Wan Soo Yun
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research , Institute for Basic Science (IBS) , Suwon 16419 , Korea
- Department of Biomedical Engineering , Sungkyunkwan University , Suwon 16419 , Korea
- Biomedical Institute for Convergence at SKKU (BICS) , Sungkyunkwan University , Suwon 16419 , Korea
| | - Yong Ho Kim
- Center for Neuroscience Imaging Research , Institute for Basic Science (IBS) , Suwon 16419 , Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University , Suwon 16419 , Korea
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Korea
- Biomedical Institute for Convergence at SKKU (BICS) , Sungkyunkwan University , Suwon 16419 , Korea
| |
Collapse
|
13
|
Morozova OB. Reduction of Transient Histidine Radicals by Tyrosine: Influence of the Protonation State of Reactants. Chemphyschem 2020; 21:43-50. [PMID: 31709709 DOI: 10.1002/cphc.201901020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Indexed: 11/07/2022]
Abstract
The role of tyrosine radicals as mediators of electron transfer reactions in enzymes is well established, as is the involvement of histidine as a binding partner. But how environmental factors affect these reactions remains poorly explored. In the study presented here, kinetic data on the influence of the protonation state of the reactants on the reduction of transient histidine radicals by tyrosine were obtained in neutral and basic aqueous solution (pH 6-12) using time-resolved chemically induced dynamic nuclear polarization (CIDNP). The histidine radicals were generated in the photo-induced reaction with the photosensitizer 3,3',4,4'-tetracarboxy benzophenone. From model simulations of the detected CIDNP kinetics, pH dependent second-order rate constants of the reduction of histidine radicals were obtained for four possible combinations of the amino acids and their N-acetyl derivatives, and also for the systems histidine-phenylalanine dipeptide/N-acetyl tyrosine, and N-acetyl histidine/tyrosine-glutamine dipeptide. The pH dependences of the rate constant of the reduction reaction are explained accounting for the protonation states of reactants, and also protonation state of the equilibrium form of the product - reduced form of histidine radical, which is histidine with neutral or a positively charged imidazole.
Collapse
Affiliation(s)
- Olga B Morozova
- International Tomography Center, Institutskaya 3a, 630090, Novosibirsk, Russia.,Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia
| |
Collapse
|
14
|
Yu J, Horsley JR, Abell AD. Unravelling electron transfer in peptide-cation complexes: a model for mimicking redox centres in proteins. Phys Chem Chem Phys 2020; 22:8409-8417. [DOI: 10.1039/d0cp00635a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We provide evidence that bound zinc promotes electron transfer in a peptide by changing the electronic properties of the peptide.
Collapse
Affiliation(s)
- Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| | - John R. Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| | - Andrew D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| |
Collapse
|
15
|
Song X, Fu Q, Bu Y. Nonlinear Migration Dynamics of Excess Electrons along Linear Oligopeptides Controlled by an Applied Electric Field. Chemphyschem 2019; 20:1497-1507. [PMID: 30912277 DOI: 10.1002/cphc.201900149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/16/2019] [Indexed: 11/06/2022]
Abstract
Migration of an excess electron along linear oligopeptides governed by the external electric field (Eex ) which is against the inner dipole electric field is theoretically investigated, including the effects of Eex on the structural and electronic properties of electron migration. Two structural properties including electron-binding ability and the dipole moment of linear oligopeptides are sensitive to the Eex values and can be largely modulated by Eex due to the competition of Eex and the inner electric field and electron transfer caused by Eex . In the case of low Eex values, two structural properties decrease slightly, while for high Eex values, the electron-binding ability continually increases strongly, with dipole moments firstly increasing significantly and then increasing more slowly at higher Eex . Additionally, linear oligopeptides of different chain lengths influence the modulation extent of Eex and the longer the chain length is, the more sensitive modulation of Eex is. In addition, electronic properties represented by electron spin densities and singly occupied molecular orbital distributions vary with Eex intensities, leading to an unusual electron migration behavior. As Eex increases, an excess electron transfers from the N-terminus to the C-terminus and jumps over a neighboring dipole unit of two termini to other units, respectively, instead of transferring by means of a one-by-one dipole unit hopping mechanism. These findings not only promote a deeper understanding of the connection between Eex and structural and electronic properties of electron transfer behavior in peptides, but also provide a new insight into the modulation of electron migration along the oligopeptides.
Collapse
Affiliation(s)
- Xiufang Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Qiang Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| |
Collapse
|
16
|
Schosser WM, Zotti LA, Cuevas JC, Pauly F. Doping hepta-alanine with tryptophan: A theoretical study of its effect on the electrical conductance of peptide-based single-molecule junctions. J Chem Phys 2019; 150:174705. [PMID: 31067872 DOI: 10.1063/1.5090457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Motivated by a recent experiment [C. Guo et al., Proc. Natl. Acad. Sci. U. S. A. 113, 10785 (2016)], we carry out a theoretical study of electron transport through peptide-based single-molecule junctions. We analyze the pristine hepta-alanine and its functionalizations with a single tryptophan unit, which is placed in three different locations along the backbone. Contrary to expectations from the experiment on self-assembled monolayers, we find that insertion of tryptophan does not raise the electrical conductance and that the resulting peptides instead remain insulating in the framework of a coherent transport picture. The poor performance of these molecules as conductors can be ascribed to the strongly off-resonant transport and low electrode-molecule coupling of the frontier orbitals. Although the introduction of tryptophan increases the energy of the highest occupied molecular orbital (HOMO) of the peptides in the gas phase, the new HOMO states are localized on the tryptophan unit and therefore essentially do not contribute to coherent charge transport.
Collapse
Affiliation(s)
- Werner M Schosser
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| | - Linda A Zotti
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Carlos Cuevas
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fabian Pauly
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
17
|
Hou S, Wu Q, Sadeghi H, Lambert CJ. Thermoelectric properties of oligoglycine molecular wires. NANOSCALE 2019; 11:3567-3573. [PMID: 30632577 DOI: 10.1039/c8nr08878k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have investigated the electrical and thermoelectrical properties of glycine chains with and without cysteine terminal groups. The electrical conductance of (Gly)n, (Gly)nCys and Cys(Gly)nCys molecules (where Gly, Cys represent glycine and cysteine and n = 1-3) was found to decay exponentially with length l as e-βl. Our results show that connecting the molecules to gold electrodes via the sulphur atom of the cysteine moiety leads to higher β factors of 1.57 Å-1 and 1.22 Å-1 for (Gly)nCys and Cys(Gly)nCys respectively, while β = 0.92 Å-1 for (Gly)n. We also find that replacing the peptide bond with a methylene group (-CH2-) increases the conductance of (Gly)3Cys. Furthermore, we find the (Gly)1Cys and Cys(Gly)1Cys systems show good thermoelectrical performance, because of their high Seebeck coefficients (∼0.2 mV K-1) induced by the sulphur of the cysteine(s). With the contributions of both electrons and phonons taken into consideration, a high figure of merit ZT = 0.8 is obtained for (Gly)1Cys at room temperature, which increases further with increasing temperature, suggesting that peptide-based SAM junctions are promising candidates for thermoelectric energy harvesting.
Collapse
Affiliation(s)
- Songjun Hou
- Quantum Technology Centre, Department of Physics, Lancaster University, LA1 4YB Lancaster, UK.
| | | | | | | |
Collapse
|
18
|
Ing NL, El-Naggar MY, Hochbaum AI. Going the Distance: Long-Range Conductivity in Protein and Peptide Bioelectronic Materials. J Phys Chem B 2018; 122:10403-10423. [DOI: 10.1021/acs.jpcb.8b07431] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Derr JB, Tamayo J, Espinoza EM, Clark JA, Vullev VI. Dipole-induced effects on charge transfer and charge transport. Why do molecular electrets matter? CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Charge transfer (CT) and charge transport (CTr) are at the core of life-sustaining biological processes and of processes that govern the performance of electronic and energy-conversion devices. Electric fields are invaluable for guiding charge movement. Therefore, as electrostatic analogues of magnets, electrets have unexplored potential for generating local electric fields for accelerating desired CT processes and suppressing undesired ones. The notion about dipole-generated local fields affecting CT has evolved since the middle of the 20th century. In the 1990s, the first reports demonstrating the dipole effects on the kinetics of long-range electron transfer appeared. Concurrently, the development of molecular-level designs of electric junctions has led the exploration of dipole effects on CTr. Biomimetic molecular electrets such as polypeptide helices are often the dipole sources in CT systems. Conversely, surface-charge electrets and self-assembled monolayers of small polar conjugates are the preferred sources for modifying interfacial electric fields for controlling CTr. The multifaceted complexity of such effects on CT and CTr testifies for the challenges and the wealth of this field that still remains largely unexplored. This review outlines the basic concepts about dipole effects on CT and CTr, discusses their evolution, and provides accounts for their future developments and impacts.
Collapse
Affiliation(s)
- James B. Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Jesse Tamayo
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Eli M. Espinoza
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - John A. Clark
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Valentine I. Vullev
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
20
|
Likhachev VN, Vinogradov GA. Charge Transfer in the Lattice with an Impurity Site. Reflection and Transmission of the Wave Packet. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2018. [DOI: 10.1134/s1990793118030272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Zotti LA, Cuevas JC. Electron Transport Through Homopeptides: Are They Really Good Conductors? ACS OMEGA 2018; 3:3778-3785. [PMID: 31458620 PMCID: PMC6641635 DOI: 10.1021/acsomega.7b01917] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/26/2018] [Indexed: 06/10/2023]
Abstract
Motivated by recent experiments, we performed a theoretical study of electron transport through single-molecule junctions incorporating four kinds of homopeptides (based on alanine, glutamic acid, lysine, and tryptophan). Our results suggest that these molecules are rather insulating and operate in off-resonance tunneling as their main transport mechanism. We ascribe their poor performance as conductors to the high localization of their frontier orbitals. We found that binding scenarios in which side chains lie on the side of gold protuberances could give rise to an increase in conductance with respect to end-to-end binding configurations. These findings provide an insight into the conductance mechanism of the building blocks of proteins and identify key issues that need to be further investigated.
Collapse
Affiliation(s)
- Linda A. Zotti
- Departamento
de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Ciudad Universitaria
de Cantoblanco, E-28049 Madrid, Spain
| | - Juan Carlos Cuevas
- Departamento
de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Ciudad Universitaria
de Cantoblanco, E-28049 Madrid, Spain
| |
Collapse
|
22
|
Joy S, Sureshbabu VV, Periyasamy G. Computational studies on ground and excited state charge transfer properties of peptidomimetics. Faraday Discuss 2018; 207:77-90. [PMID: 29359767 DOI: 10.1039/c7fd00183e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical modifications at various peptide positions result in peptidomimetics with unique physical and chemical properties that can be used for a range of applications. Among many peptidomimetics, ureidopeptides are interesting due to their ability to act as donor-bridge-acceptor systems through which charge transfer occurs in one direction and can be triggered by an electrochemical pulse without perturbing the nuclear position. In this regard, some UP mimetics with different chromophoric units are studied in this work to understand their role using DFT based methods. Computational results and natural charge analysis provide evidence for the extensive contribution of the substituents to the excitation and hole migration dynamics. Further, the results show that the UP backbone preserves its uni-directional charge transfer phenomenon from the ureido to carboxylate terminal irrespective of the terminal groups and position. However, the substituent affects the excitation energies and the time scales of the hole migration. Among the substituents studied here, fluorine migrates to the hole within a shorter time scale while phenyl groups take longer.
Collapse
Affiliation(s)
- Sherin Joy
- Department of Chemistry, Central College, Bangalore University, Bangalore, India.
| | | | | |
Collapse
|
23
|
Nathanael JG, Gamon LF, Cordes M, Rablen PR, Bally T, Fromm KM, Giese B, Wille U. Amide Neighbouring-Group Effects in Peptides: Phenylalanine as Relay Amino Acid in Long-Distance Electron Transfer. Chembiochem 2018; 19:922-926. [PMID: 29460322 DOI: 10.1002/cbic.201800098] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Indexed: 12/27/2022]
Abstract
In nature, proteins serve as media for long-distance electron transfer (ET) to carry out redox reactions in distant compartments. This ET occurs either by a single-step superexchange or through a multi-step charge hopping process, which uses side chains of amino acids as stepping stones. In this study we demonstrate that Phe can act as a relay amino acid for long-distance electron hole transfer through peptides. The considerably increased susceptibility of the aromatic ring to oxidation is caused by the lone pairs of neighbouring amide carbonyl groups, which stabilise the Phe radical cation. This neighbouring-amide-group effect helps improve understanding of the mechanism of extracellular electron transfer through conductive protein filaments (pili) of anaerobic bacteria during mineral respiration.
Collapse
Affiliation(s)
- Joses G Nathanael
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Luke F Gamon
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Meike Cordes
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Paul R Rablen
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, PA, 19081-1397, USA
| | - Thomas Bally
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Katharina M Fromm
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Bernd Giese
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Uta Wille
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| |
Collapse
|
24
|
Microbial nanowires - Electron transport and the role of synthetic analogues. Acta Biomater 2018; 69:1-30. [PMID: 29357319 DOI: 10.1016/j.actbio.2018.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
Electron transfer is central to cellular life, from photosynthesis to respiration. In the case of anaerobic respiration, some microbes have extracellular appendages that can be utilised to transport electrons over great distances. Two model organisms heavily studied in this arena are Shewanella oneidensis and Geobacter sulfurreducens. There is some debate over how, in particular, the Geobacter sulfurreducens nanowires (formed from pilin nanofilaments) are capable of achieving the impressive feats of natural conductivity that they display. In this article, we outline the mechanisms of electron transfer through delocalised electron transport, quantum tunnelling, and hopping as they pertain to biomaterials. These are described along with existing examples of the different types of conductivity observed in natural systems such as DNA and proteins in order to provide context for understanding the complexities involved in studying the electron transport properties of these unique nanowires. We then introduce some synthetic analogues, made using peptides, which may assist in resolving this debate. Microbial nanowires and the synthetic analogues thereof are of particular interest, not just for biogeochemistry, but also for the exciting potential bioelectronic and clinical applications as covered in the final section of the review. STATEMENT OF SIGNIFICANCE Some microbes have extracellular appendages that transport electrons over vast distances in order to respire, such as the dissimilatory metal-reducing bacteria Geobacter sulfurreducens. There is significant debate over how G. sulfurreducens nanowires are capable of achieving the impressive feats of natural conductivity that they display: This mechanism is a fundamental scientific challenge, with important environmental and technological implications. Through outlining the techniques and outcomes of investigations into the mechanisms of such protein-based nanofibrils, we provide a platform for the general study of the electronic properties of biomaterials. The implications are broad-reaching, with fundamental investigations into electron transfer processes in natural and biomimetic materials underway. From these studies, applications in the medical, energy, and IT industries can be developed utilising bioelectronics.
Collapse
|
25
|
Espinoza EM, Larsen-Clinton JM, Krzeszewski M, Darabedian N, Gryko DT, Vullev VI. Bioinspired approach toward molecular electrets: synthetic proteome for materials. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractMolecular-level control of charge transfer (CT) is essential for both, organic electronics and solar-energy conversion, as well as for a wide range of biological processes. This article provides an overview of the utility of local electric fields originating from molecular dipoles for directing CT processes. Systems with ordered dipoles, i.e. molecular electrets, are the centerpiece of the discussion. The conceptual evolution from biomimicry to biomimesis, and then to biological inspiration, paves the roads leading from testing the understanding of how natural living systems function to implementing these lessons into optimal paradigms for specific applications. This progression of the evolving structure-function relationships allows for the development of bioinspired electrets composed of non-native aromatic amino acids. A set of such non-native residues that are electron-rich can be viewed as a synthetic proteome for hole-transfer electrets. Detailed considerations of the electronic structure of an individual residue prove of key importance for designating the points for optimal injection of holes (i.e. extraction of electrons) in electret oligomers. This multifaceted bioinspired approach for the design of CT molecular systems provides unexplored paradigms for electronic and energy science and engineering.
Collapse
Affiliation(s)
- Eli M. Espinoza
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | | | - Maciej Krzeszewski
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Narek Darabedian
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Daniel T. Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Valentine I. Vullev
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
26
|
Zhao Q, Zhou H, Wu W, Wei X, Jiang S, Zhou T, Liu D, Lu Q. Sensitive electrochemical detection of tetrabromobisphenol A based on poly(diallyldimethylammonium chloride) modified graphitic carbon nitride-ionic liquid doped carbon paste electrode. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Peptides as Bio-inspired Molecular Electronic Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 29081052 DOI: 10.1007/978-3-319-66095-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Understanding the electronic properties of single peptides is not only of fundamental importance to biology, but it is also pivotal to the realization of bio-inspired molecular electronic materials. Natural proteins have evolved to promote electron transfer in many crucial biological processes. However, their complex conformational nature inhibits a thorough investigation, so in order to study electron transfer in proteins, simple peptide models containing redox active moieties present as ideal candidates. Here we highlight the importance of secondary structure characteristic to proteins/peptides, and its relevance to electron transfer. The proposed mechanisms responsible for such transfer are discussed, as are details of the electrochemical techniques used to investigate their electronic properties. Several factors that have been shown to influence electron transfer in peptides are also considered. Finally, a comprehensive experimental and theoretical study demonstrates that the electron transfer kinetics of peptides can be successfully fine tuned through manipulation of chemical composition and backbone rigidity. The methods used to characterize the conformation of all peptides synthesized throughout the study are outlined, along with the various approaches used to further constrain the peptides into their geometric conformations. The aforementioned sheds light on the potential of peptides to one day play an important role in the fledgling field of molecular electronics.
Collapse
|
28
|
Taira T, Yanagisawa S, Nagano T, Tsuji T, Endo A, Imura T. pH-induced conformational change of natural cyclic lipopeptide surfactin and the effect on protease activity. Colloids Surf B Biointerfaces 2017; 156:382-387. [PMID: 28551572 DOI: 10.1016/j.colsurfb.2017.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/01/2017] [Accepted: 05/07/2017] [Indexed: 10/19/2022]
Abstract
The cyclic lipopeptide surfactin (SF) is one of the promising environmental friendly biosurfactants abundantly produced by microorganisms such as Bacillus subtilis. SF shows excellent surface properties at various pH, together with lower toxicity and higher biodegradability than commonly used petroleum-based surfactants. However, the effect of the dissociation degree of SF on self-assembly is still incompletely understood, even though two acidic amino acid residues (Asp and Glu) are known to influence eventual surface and biological functions. Here, we report changes in the secondary structure of SF induced by increased pH, and the effect on protease activity. We found that the β-sheet and β-turn formation of SF are significantly enhanced through increased dissociation of Asp and Glu as revealed by a titration experiment of SF solution to estimate apparent pK1 and pK2 values together with circular dichroism spectroscopy. We also studied the activity of the common detergent enzyme subtilisin in SF solution at above its pK2 (pH 7.6) to understand the role of the dissociation degree in the interaction with the protein. The mixing of SF having a unique cyclic topological feature with subtilisin suppressed the decrease in protease activity observed in the presence of synthetic surfactants such as sodium dodecyl sulfate and polyoxyethylene alkyl ether. Thus, SF has great potential for use in laundry detergent formulations, to improve the stability and reliability of detergent enzymes.
Collapse
Affiliation(s)
- Toshiaki Taira
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-2, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Satohiro Yanagisawa
- New Business Development Division, Kaneka Corporation, 2-3-18, Nakanoshima, Kita ku, Osaka 530-8288, Japan
| | - Takuto Nagano
- New Business Development Division, Kaneka Corporation, 2-3-18, Nakanoshima, Kita ku, Osaka 530-8288, Japan
| | - Tadao Tsuji
- New Business Development Division, Kaneka Corporation, 2-3-18, Nakanoshima, Kita ku, Osaka 530-8288, Japan
| | - Akira Endo
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-2, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Tomohiro Imura
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-2, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
29
|
Accelerating Corrosion of Pure Magnesium Co-implanted with Titanium in Vivo. Sci Rep 2017; 7:41924. [PMID: 28167822 PMCID: PMC5294646 DOI: 10.1038/srep41924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Magnesium is a type of reactive metal, and is susceptible to galvanic corrosion. In the present study, the impact of coexistence of Ti on the corrosion behavior of high purity Mg (HP Mg) was investigated both in vitro and in vivo. Increased corrosion rate of HP Mg was demonstrated when Mg and Ti discs were not in contact. The in vivo experiments further confirmed accelerating corrosion of HP Mg screws when they were co-implanted with Ti screws into Sprague-Dawley rats’ femur, spacing 5 and 10 mm. Micro CT scan and 3D reconstruction revealed severe corrosion morphology of HP Mg screws. The calculated volume loss was much higher for the HP Mg screw co-implanted with Ti screw as compared to that co-implanted with another Mg screw. Consequently, less new bone tissue ingrowth and lower pullout force were found in the former group. It is hypothesized that the abundant blood vessels on the periosteum act as wires to connect the Mg and Ti screws and form a galvanic-like cell, accelerating the corrosion of Mg. Therefore, a certain distance is critical to maintain the mechanical and biological property of Mg when it is co-implanted with Ti.
Collapse
|
30
|
Cosert KM, Steidl RJ, Castro-Forero A, Worden RM, Reguera G. Electronic characterization of Geobacter sulfurreducens pilins in self-assembled monolayers unmasks tunnelling and hopping conduction pathways. Phys Chem Chem Phys 2017; 19:11163-11172. [DOI: 10.1039/c7cp00885f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The peptide subunit of Geobacter nanowires (pili) metal-reducing bacterium Geobacter sulfurreducens was self-assembled as a conductive monolayer. Its electronic characterized revealed tunneling and hopping regimes.
Collapse
Affiliation(s)
- Krista M. Cosert
- Department of Microbiology and Molecular Genetics
- Michigan State University
- East Lansing
- USA
| | - Rebecca J. Steidl
- Department of Microbiology and Molecular Genetics
- Michigan State University
- East Lansing
- USA
| | | | - Robert M. Worden
- Department of Chemical Engineering
- Michigan State University
- East Lansing
- USA
| | - Gemma Reguera
- Department of Microbiology and Molecular Genetics
- Michigan State University
- East Lansing
- USA
| |
Collapse
|
31
|
Li X, Markandeya N, Jonusauskas G, McClenaghan ND, Maurizot V, Denisov SA, Huc I. Photoinduced Electron Transfer and Hole Migration in Nanosized Helical Aromatic Oligoamide Foldamers. J Am Chem Soc 2016; 138:13568-13578. [DOI: 10.1021/jacs.6b05668] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xuesong Li
- Univ. de Bordeaux, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
- CNRS, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Nagula Markandeya
- Univ. de Bordeaux, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
- CNRS, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Gediminas Jonusauskas
- Univ. de Bordeaux, Laboratoire Ondes et Matières
d’Aquitaine (UMR5798), 351 cours de la Libération, 33405 Talence cedex, France
| | - Nathan D. McClenaghan
- Univ. de Bordeaux, Institut des Sciences Moléculaires
(UMR5255), 351 cours de
la Libération, 33405 Talence cedex, France
| | - Victor Maurizot
- CNRS, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Sergey A. Denisov
- Univ. de Bordeaux, Institut des Sciences Moléculaires
(UMR5255), 351 cours de
la Libération, 33405 Talence cedex, France
| | - Ivan Huc
- CNRS, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| |
Collapse
|
32
|
Guo C, Yu X, Refaely-Abramson S, Sepunaru L, Bendikov T, Pecht I, Kronik L, Vilan A, Sheves M, Cahen D. Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping. Proc Natl Acad Sci U S A 2016; 113:10785-90. [PMID: 27621456 PMCID: PMC5047155 DOI: 10.1073/pnas.1606779113] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Charge migration for electron transfer via the polypeptide matrix of proteins is a key process in biological energy conversion and signaling systems. It is sensitive to the sequence of amino acids composing the protein and, therefore, offers a tool for chemical control of charge transport across biomaterial-based devices. We designed a series of linear oligoalanine peptides with a single tryptophan substitution that acts as a "dopant," introducing an energy level closer to the electrodes' Fermi level than that of the alanine homopeptide. We investigated the solid-state electron transport (ETp) across a self-assembled monolayer of these peptides between gold contacts. The single tryptophan "doping" markedly increased the conductance of the peptide chain, especially when its location in the sequence is close to the electrodes. Combining inelastic tunneling spectroscopy, UV photoelectron spectroscopy, electronic structure calculations by advanced density-functional theory, and dc current-voltage analysis, the role of tryptophan in ETp is rationalized by charge tunneling across a heterogeneous energy barrier, via electronic states of alanine and tryptophan, and by relatively efficient direct coupling of tryptophan to a Au electrode. These results reveal a controlled way of modulating the electrical properties of molecular junctions by tailor-made "building block" peptides.
Collapse
Affiliation(s)
- Cunlan Guo
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel 76100; Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Xi Yu
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Sivan Refaely-Abramson
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Lior Sepunaru
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel 76100; Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Tatyana Bendikov
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Israel Pecht
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Leeor Kronik
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Ayelet Vilan
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Mordechai Sheves
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100
| | - David Cahen
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel 76100;
| |
Collapse
|
33
|
Joy S, Sureshbabu VV, Periyasamy G. Computational Studies on Structural, Excitation, and Charge-Transfer Properties of Ureidopeptidomimetics. J Phys Chem B 2016; 120:6469-78. [PMID: 27314639 DOI: 10.1021/acs.jpcb.6b02210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptides with ureido group enclosing backbones are considered peptidomimetics and are known for their higher stabilities, biocompatibilities, antibiotic, inhibitor, and charge-transduction activities. These peptidomimetics have some unique applications, which are quite different from those of natural peptides. Hence, it is imperative to appreciate their properties at a microscopic level. In this regard, this work outlines, in detail, the charge transfer (CT) properties, hole-migration dynamics, and electronic structures of various experimentally comprehended ureidopeptidomimetic models using density functional theory (DFT). Time-dependent DFT and complete active space self-consistent field computations on basic models provide the necessary evidence for the viability of CT from the end enfolding the ureido group to the other end with a carboxylate entity. This donor-to-acceptor CT has been reflected in excitation studies, in which the higher intensity band corresponds to CT from the π orbital of the ureido group to the π* orbital of the carboxylate entity. Further, hole-migration studies have shown that charge can evolve from the ureido end, whereas the hole generated at the carboxylate end does not migrate. However, hole migration has been reported to occur from both ends (amino and carboxylate ends) in glycine oligopeptides, and our studies show that the ability to transfer and migrate charge can be tuned by modifying the donor and acceptor functional groups in both the neutral and cationic charge states. We have analyzed the possibility of hole migration following ionization using DFT-based wave-packet propagation and found its occurrence on a ∼2-5 fs time scale, which reflects the charge-transduction ability of peptidomimetics.
Collapse
Affiliation(s)
- Sherin Joy
- Department of Chemistry, Central College Campus, Bangalore University , Bangalore 560 001, Karnataka, India
| | - Vommina V Sureshbabu
- Department of Chemistry, Central College Campus, Bangalore University , Bangalore 560 001, Karnataka, India
| | - Ganga Periyasamy
- Department of Chemistry, Central College Campus, Bangalore University , Bangalore 560 001, Karnataka, India
| |
Collapse
|
34
|
Najafpour MM, Ghobadi MZ, Sarvi B, Haghighi B. An engineered polypeptide around nano-sized manganese-calcium oxide: copying plants for water oxidation. Dalton Trans 2016; 44:15271-8. [PMID: 26017548 DOI: 10.1039/c5dt01443c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Synthesis of new efficient catalysts inspired by Nature is a key goal in the production of clean fuel. Different compounds based on manganese oxide have been investigated in order to find their water-oxidation activity. Herein, we introduce a novel engineered polypeptide containing tyrosine around nano-sized manganese-calcium oxide, which was shown to be a highly active catalyst toward water oxidation at low overpotential (240 mV), with high turnover frequency of 1.5 × 10(-2) s(-1) at pH = 6.3 in the Mn(III)/Mn(IV) oxidation range. The compound is a novel structural and efficient functional model for the water-oxidizing complex in Photosystem II. A new proposed clever strategy used by Nature in water oxidation is also discussed. The new model of the water-oxidizing complex opens a new perspective for synthesis of efficient water-oxidation catalysts.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | | | | | | |
Collapse
|
35
|
Bolag A, Sakai N, Matile S. Dipolar Photosystems: Engineering Oriented Push-Pull Components into Double- and Triple-Channel Surface Architectures. Chemistry 2016; 22:9006-14. [DOI: 10.1002/chem.201600213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Altan Bolag
- Department of Organic Chemistry; University of Geneva; Geneva Switzerland
- Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials; Inner Mongolia Normal University; Hohhot P. R. China
| | - Naomi Sakai
- Department of Organic Chemistry; University of Geneva; Geneva Switzerland
| | - Stefan Matile
- Department of Organic Chemistry; University of Geneva; Geneva Switzerland
| |
Collapse
|
36
|
Morozova OB, Panov MS, Vieth HM, Yurkovskaya AV. CIDNP study of sensitized photooxidation of S-methylcysteine and S-methylglutathione in aqueous solution. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Shah A, Adhikari B, Martic S, Munir A, Shahzad S, Ahmad K, Kraatz HB. Electron transfer in peptides. Chem Soc Rev 2015; 44:1015-27. [PMID: 25619931 DOI: 10.1039/c4cs00297k] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this review, we discuss the factors that influence electron transfer in peptides. We summarize experimental results from solution and surface studies and highlight the ongoing debate on the mechanistic aspects of this fundamental reaction. Here, we provide a balanced approach that remains unbiased and does not favor one mechanistic view over another. Support for a putative hopping mechanism in which an electron transfers in a stepwise manner is contrasted with experimental results that support electron tunneling or even some form of ballistic transfer or a pathway transfer for an electron between donor and acceptor sites. In some cases, experimental evidence suggests that a change in the electron transfer mechanism occurs as a result of donor-acceptor separation. However, this common understanding of the switch between tunneling and hopping as a function of chain length is not sufficient for explaining electron transfer in peptides. Apart from chain length, several other factors such as the extent of the secondary structure, backbone conformation, dipole orientation, the presence of special amino acids, hydrogen bonding, and the dynamic properties of a peptide also influence the rate and mode of electron transfer in peptides. Electron transfer plays a key role in physical, chemical and biological systems, so its control is a fundamental task in bioelectrochemical systems, the design of peptide based sensors and molecular junctions. Therefore, this topic is at the heart of a number of biological and technological processes and thus remains of vital interest.
Collapse
Affiliation(s)
- Afzal Shah
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada.
| | | | | | | | | | | | | |
Collapse
|
38
|
Fujisawa K, Humbert-Droz M, Letrun R, Vauthey E, Wesolowski TA, Sakai N, Matile S. Ion Pair−π Interactions. J Am Chem Soc 2015; 137:11047-56. [DOI: 10.1021/jacs.5b05593] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kaori Fujisawa
- School of Chemistry and Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Marie Humbert-Droz
- School of Chemistry and Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Romain Letrun
- School of Chemistry and Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Eric Vauthey
- School of Chemistry and Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Tomasz A. Wesolowski
- School of Chemistry and Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
39
|
Sepunaru L, Refaely-Abramson S, Lovrinčić R, Gavrilov Y, Agrawal P, Levy Y, Kronik L, Pecht I, Sheves M, Cahen D. Electronic Transport via Homopeptides: The Role of Side Chains and Secondary Structure. J Am Chem Soc 2015; 137:9617-26. [DOI: 10.1021/jacs.5b03933] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lior Sepunaru
- Department of Materials and Interfaces, ‡Department of Organic
Chemistry, §Department of Structural
Biology, and ∥Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sivan Refaely-Abramson
- Department of Materials and Interfaces, ‡Department of Organic
Chemistry, §Department of Structural
Biology, and ∥Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Robert Lovrinčić
- Department of Materials and Interfaces, ‡Department of Organic
Chemistry, §Department of Structural
Biology, and ∥Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yulian Gavrilov
- Department of Materials and Interfaces, ‡Department of Organic
Chemistry, §Department of Structural
Biology, and ∥Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Piyush Agrawal
- Department of Materials and Interfaces, ‡Department of Organic
Chemistry, §Department of Structural
Biology, and ∥Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yaakov Levy
- Department of Materials and Interfaces, ‡Department of Organic
Chemistry, §Department of Structural
Biology, and ∥Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Leeor Kronik
- Department of Materials and Interfaces, ‡Department of Organic
Chemistry, §Department of Structural
Biology, and ∥Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Israel Pecht
- Department of Materials and Interfaces, ‡Department of Organic
Chemistry, §Department of Structural
Biology, and ∥Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Mordechai Sheves
- Department of Materials and Interfaces, ‡Department of Organic
Chemistry, §Department of Structural
Biology, and ∥Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - David Cahen
- Department of Materials and Interfaces, ‡Department of Organic
Chemistry, §Department of Structural
Biology, and ∥Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
40
|
Amdursky N. Electron Transfer across Helical Peptides. Chempluschem 2015; 80:1075-1095. [DOI: 10.1002/cplu.201500121] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/06/2015] [Indexed: 02/05/2023]
|
41
|
Chen J, Wenger OS. Fluoride binding to an organoboron wire controls photoinduced electron transfer. Chem Sci 2015; 6:3582-3592. [PMID: 29511520 PMCID: PMC5659175 DOI: 10.1039/c5sc00964b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/20/2015] [Indexed: 12/28/2022] Open
Abstract
We demonstrate that the rates for long-range electron transfer can be controlled actively by tight anion binding to a rigid rod-like molecular bridge. Electron transfer from a triarylamine donor to a photoexcited Ru(bpy)32+ acceptor (bpy = 2,2'-bipyridine) across a 2,5-diboryl-1,4-phenylene bridge occurs within less than 10 ns in CH2Cl2 at 22 °C. Fluoride anions bind with high affinity to the organoboron bridge due to strong Lewis base/Lewis acid interactions, and this alters the electronic structure of the bridge drastically. Consequently, a large tunneling barrier is imposed on photoinduced electron transfer from the triarylamine to the Ru(bpy)32+ complex and hence this process occurs more than two orders of magnitude more slowly, despite the fact that its driving force is essentially unaffected by fluoride addition. Electron transfer rates in proteins could potentially be regulated via a similar fundamental principle, because interactions between charged amino acid side chains and counter-ions can modulate electronic couplings between distant redox partners. In artificial donor-bridge-acceptor compounds, external stimuli have been employed frequently to control electron transfer rates, but the approach of exploiting strong Lewis acid/Lewis base interactions to regulate the tunneling barrier height imposed by a rigid rod-like molecular bridge is conceptually novel and broadly applicable, because it is largely independent of the donor and the acceptor, and because the effect is not based on a change of the driving-force for electron transfer. The principle demonstrated here can potentially be used to switch between conducting and insulating states of molecular wires between electrodes.
Collapse
Affiliation(s)
- Jing Chen
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , CH-4056 Basel , Switzerland .
- Xiamen Institute of Rare Earth Materials , Chinese Academy of Sciences , Xiamen 361021 , People's Republic of China
- Key Laboratory of Design and Assembly of Functional Nanostructures , Fujian Provincial Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , People's Republic of China
| | - Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , CH-4056 Basel , Switzerland .
| |
Collapse
|
42
|
Monney NPA, Bally T, Giese B. Electronic Structure of Hole-Conducting States in Polyprolines. J Phys Chem B 2015; 119:6584-90. [DOI: 10.1021/acs.jpcb.5b02580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Thomas Bally
- University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Bernd Giese
- University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
43
|
Sun W, Ren H, Tao Y, Xiao D, Qin X, Deng L, Shao M, Gao J, Chen X. Two Aromatic Rings Coupled a Sulfur-Containing Group to Favor Protein Electron Transfer by Instantaneous Formations of π∴S:π↔π:S∴π or π∴π:S↔π:π∴S Five-Electron Bindings. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2015; 119:9149-9158. [PMID: 26120374 PMCID: PMC4479289 DOI: 10.1021/acs.jpcc.5b01740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The cooperative interactions among two aromatic rings with a S-containing group are described, which may participate in electron hole transport in proteins. Ab initio calculations reveal the possibility for the formations of the π∴S:π↔π:S∴π and π∴π:S↔π:π∴S five-electron bindings in the corresponding microsurrounding structures in proteins, both facilitating electron hole transport as efficient relay stations. The relay functionality of these two special structures comes from their low local ionization energies and proper binding energies, which varies with the different aromatic amino acids, S-containing residues, and the arrangements of the same aromatic rings according to the local microsurroundings in proteins.
Collapse
Affiliation(s)
- Weichao Sun
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, People's Republic of China
| | - Haisheng Ren
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ye Tao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, People's Republic of China
| | - Dong Xiao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, People's Republic of China
| | - Xin Qin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, People's Republic of China
| | - Li Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, People's Republic of China
| | - Mengyao Shao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, People's Republic of China
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiaohua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, People's Republic of China
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
44
|
Houée-Lévin C, Bobrowski K, Horakova L, Karademir B, Schöneich C, Davies MJ, Spickett CM. Exploring oxidative modifications of tyrosine: An update on mechanisms of formation, advances in analysis and biological consequences. Free Radic Res 2015; 49:347-73. [DOI: 10.3109/10715762.2015.1007968] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Monney NPA, Bally T, Giese B. Proline as a charge stabilizing amino acid in peptide radical cations. J PHYS ORG CHEM 2015. [DOI: 10.1002/poc.3416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Thomas Bally
- University of Fribourg; Chemin du Musée 9; CH-1700 Fribourg Switzerland
| | - Bernd Giese
- University of Fribourg; Chemin du Musée 9; CH-1700 Fribourg Switzerland
| |
Collapse
|
46
|
Kracht S, Messerer M, Lang M, Eckhardt S, Lauz M, Grobéty B, Fromm KM, Giese B. Elektronentransfer in Peptiden: Bildung von Silbernanopartikeln. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Kracht S, Messerer M, Lang M, Eckhardt S, Lauz M, Grobéty B, Fromm KM, Giese B. Electron Transfer in Peptides: On the Formation of Silver Nanoparticles. Angew Chem Int Ed Engl 2015; 54:2912-6. [DOI: 10.1002/anie.201410618] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Indexed: 11/10/2022]
|
48
|
Yushchenko O, Hangarge RV, Mosquera-Vazquez S, Boshale SV, Vauthey E. Electron, Hole, Singlet, and Triplet Energy Transfer in Photoexcited Porphyrin-Naphthalenediimide Dyads. J Phys Chem B 2014; 119:7308-20. [DOI: 10.1021/jp5108685] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oleksandr Yushchenko
- Department
of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva, 4, Switzerland
| | - Rahul V. Hangarge
- Department
of Organic Chemistry, School of Chemical Sciences, North Maharashtra University, Jalgaon, 425 001 Maharashtra, India
| | - Sandra Mosquera-Vazquez
- Department
of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva, 4, Switzerland
| | - Sheshanath V. Boshale
- School of Applied
Sciences, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Eric Vauthey
- Department
of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva, 4, Switzerland
| |
Collapse
|
49
|
Bao D, Upadhyayula S, Larsen JM, Xia B, Georgieva B, Nuñez V, Espinoza EM, Hartman JD, Wurch M, Chang A, Lin CK, Larkin J, Vasquez K, Beran GJO, Vullev VI. Dipole-mediated rectification of intramolecular photoinduced charge separation and charge recombination. J Am Chem Soc 2014; 136:12966-73. [PMID: 25162490 DOI: 10.1021/ja505618n] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Controlling charge transfer at a molecular scale is critical for efficient light harvesting, energy conversion, and nanoelectronics. Dipole-polarization electrets, the electrostatic analogue of magnets, provide a means for "steering" electron transduction via the local electric fields generated by their permanent electric dipoles. Here, we describe the first demonstration of the utility of anthranilamides, moieties with ordered dipoles, for controlling intramolecular charge transfer. Donor-acceptor dyads, each containing a single anthranilamide moiety, distinctly rectify both the forward photoinduced electron transfer and the subsequent charge recombination. Changes in the observed charge-transfer kinetics as a function of media polarity were consistent with the anticipated effects of the anthranilamide molecular dipoles on the rectification. The regioselectivity of electron transfer and the molecular dynamics of the dyads further modulated the observed kinetics, particularly for charge recombination. These findings reveal the underlying complexity of dipole-induced effects on electron transfer and demonstrate unexplored paradigms for molecular rectifiers.
Collapse
Affiliation(s)
- Duoduo Bao
- Department of Bioengineering, ‡Department of Biochemistry, §Department of Chemistry, and ∥Materials Science and Engineering Program, University of California , Riverside, California 92521, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Horsley JR, Yu J, Moore KE, Shapter JG, Abell AD. Unraveling the interplay of backbone rigidity and electron rich side-chains on electron transfer in peptides: the realization of tunable molecular wires. J Am Chem Soc 2014; 136:12479-88. [PMID: 25122122 PMCID: PMC4156867 DOI: 10.1021/ja507175b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Indexed: 01/14/2023]
Abstract
Electrochemical studies are reported on a series of peptides constrained into either a 310-helix (1-6) or β-strand (7-9) conformation, with variable numbers of electron rich alkene containing side chains. Peptides (1 and 2) and (7 and 8) are further constrained into these geometries with a suitable side chain tether introduced by ring closing metathesis (RCM). Peptides 1, 4 and 5, each containing a single alkene side chain reveal a direct link between backbone rigidity and electron transfer, in isolation from any effects due to the electronic properties of the electron rich side-chains. Further studies on the linear peptides 3-6 confirm the ability of the alkene to facilitate electron transfer through the peptide. A comparison of the electrochemical data for the unsaturated tethered peptides (1 and 7) and saturated tethered peptides (2 and 8) reveals an interplay between backbone rigidity and effects arising from the electron rich alkene side-chains on electron transfer. Theoretical calculations on β-strand models analogous to 7, 8 and 9 provide further insights into the relative roles of backbone rigidity and electron rich side-chains on intramolecular electron transfer. Furthermore, electron population analysis confirms the role of the alkene as a "stepping stone" for electron transfer. These findings provide a new approach for fine-tuning the electronic properties of peptides by controlling backbone rigidity, and through the inclusion of electron rich side-chains. This allows for manipulation of energy barriers and hence conductance in peptides, a crucial step in the design and fabrication of molecular-based electronic devices.
Collapse
Affiliation(s)
- John R. Horsley
- ARC
Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of
Chemistry and Physics, The University of
Adelaide, Adelaide, South Australia 5005, Australia
| | - Jingxian Yu
- ARC
Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of
Chemistry and Physics, The University of
Adelaide, Adelaide, South Australia 5005, Australia
| | - Katherine E. Moore
- Centre
for Nanoscale Science and Technology, School of Chemical & Physical
Science, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Joe G. Shapter
- Centre
for Nanoscale Science and Technology, School of Chemical & Physical
Science, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Andrew D. Abell
- ARC
Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of
Chemistry and Physics, The University of
Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|