1
|
Narendra AN, Howell EE, Narayana N. Crystal structure of the plasmid-encoded R67 dihydrofolate reductase complexed with Congo red an amyloid binding dye. Sci Rep 2025; 15:5212. [PMID: 39939735 PMCID: PMC11821888 DOI: 10.1038/s41598-025-89539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/06/2025] [Indexed: 02/14/2025] Open
Abstract
Plasmid-encoded bacterial R67 dihydrofolate reductase (DHFR) catalyzes the same reaction as the chromosomal counterpart but is highly resistant to the widely used antibiotic Trimethoprim (TMP) unlike the chromosomal enzyme. The structure of Q67H mutant of R67 DHFR complexed with a non-specific inhibitor Congo red (CGR) has been determined at 1.15 Å resolution. In the Fo-Fc map, one of the two naphthalene moieties in CGR is clearly observed, however, the biphenyl linker and the other naphthalene moiety are not seen owing to flexibility. CGR does not utilize its twofold axis to align with any of the three crystallographic twofold axes of the tetrameric protein instead, it binds like the asymmetrical folate and NADP+ at any one of the four symmetry-related positions in the active site pore. The naphthalene moiety with exocyclic sulphonate ion and amino group, interacts with residues 66-68 from all four protomers via metal-based ionic, van der Waals, stacking, and hydrogen bonding interactions. Preliminary modeling studies suggest variant fragments of CGR targeting one or both Lys32 residues at the site of enlarging pore may yield specific and potent inhibitors. Based on the CGR - protein interactions in the present work, we propose a putative model for the binding of CGR to cross-β amyloid.
Collapse
Affiliation(s)
- Akshay N Narendra
- UCHealth Parkview Medical Center, 400 West 16th street, Pueblo, CO, 81003, USA
| | - Elizabeth E Howell
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996-0840, USA
| | - Narendra Narayana
- Department of Physical & Environmental Sciences, College of Science, Texas A&M University, 6300 Ocean Drive, Corpus Christi, TX, 78412, USA.
| |
Collapse
|
2
|
Kachkin D, Zelinsky AA, Romanova NV, Kulichikhin KY, Zykin PA, Khorolskaya JI, Deckner ZJ, Kajava AV, Rubel AA, Chernoff YO. Prion-like Properties of Short Isoforms of Human Chromatin Modifier PHC3. Int J Mol Sci 2025; 26:1512. [PMID: 40003978 PMCID: PMC11855497 DOI: 10.3390/ijms26041512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
The formation of self-perpetuating protein aggregates such as amyloids is associated with various diseases and provides a basis for transmissible (infectious or heritable) protein isoforms (prions). Many human proteins involved in the regulation of transcription contain potentially amyloidogenic regions. Here, it is shown that short N-terminal isoforms of the human protein PHC3, a component of the chromatin-modifying complex PRC1 (Polycomb repressive complex 1), can form prion-like aggregates in yeast assays, exhibit amyloid properties in the E. coli-based C-DAG assay, and produce detergent-resistant aggregates when ectopically expressed in cultured human cells. Moreover, aggregates of short isoforms can sequester the full-length PHC3 protein, causing its accumulation in the cytosol instead of the nucleus. The introduction of an aggregating short PHC3 isoform alters the transcriptional profile of cultured human cells. It is proposed that the aggregation of short isoforms is involved in the feedback downregulation of PRC1 activity, leading to more open chromatin configuration.
Collapse
Affiliation(s)
- Daniil Kachkin
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.K.); (A.A.Z.); (N.V.R.); (K.Y.K.)
| | - Andrew A. Zelinsky
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.K.); (A.A.Z.); (N.V.R.); (K.Y.K.)
| | - Nina V. Romanova
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.K.); (A.A.Z.); (N.V.R.); (K.Y.K.)
| | - Konstantin Y. Kulichikhin
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.K.); (A.A.Z.); (N.V.R.); (K.Y.K.)
| | - Pavel A. Zykin
- Department of Cytology and Histology, St. Petersburg State University, St. Petersburg 199034, Russia;
| | - Julia I. Khorolskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia;
| | - Zachery J. Deckner
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA;
| | - Andrey V. Kajava
- Cell Biology Research Center, UMR 5237, National Center for Scientific Research (CNRS), University of Montpellier, 34293 Montpellier, France;
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.K.); (A.A.Z.); (N.V.R.); (K.Y.K.)
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA;
| |
Collapse
|
3
|
Westermark GT, Nyström E, Nyström S, Nilsson KPR, Hammarström P, Westermark P. The question of strains in AA amyloidosis. Sci Rep 2025; 15:3684. [PMID: 39881136 PMCID: PMC11779915 DOI: 10.1038/s41598-025-87239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
The existence of transmissible amyloid fibril strains has long intrigued the scientific community. The strain theory originates from prion disorders, but here, we provide evidence of strains in systemic amyloidosis. Human AA amyloidosis manifests as two distinct clinical phenotypes called common AA and vascular AA. Glomerular amyloid deposition of the kidney defines the common form, while in the vascular type amyloid deposits are massive in the renal medulla and in arteries throughout the body, while glomeruli are spared. By electron microscopy the two types appeared morphologically different. The common type was composed of dispersed fibrils which tended to be clustered whereas the vascular type was composed of longer and more distinct less clustered fibrils. Staining with fluorescent amyloid binding ligands analyzed by hyperspectral microscopy showed differential staining patterns between the two groups supporting the notion of human AA amyloid strains. AA amyloid staining was significantly different from systemic AL amyloid. Both types of AA (common and vascular) and AL amyloid fibrils were isolated and used to seed mouse AA amyloid in groups of inflamed NMRI mice (n = 9-10 per group). All but two mice showed amyloid deposits in the spleen induced by the human seeds. Amyloid binding ligand analysis was applied on the splenic amyloid deposits and revealed no clear significant difference between mice seeded with AA fibrils from different donors being vascular or common, but the AA deposits of mice given AL fibrils showed significantly different amyloid fluorescent signals compared to all groups of mice receiving AA fibrils. The combined results support the hypothesis that AA amyloid fibril structures can vary depending on the seed and may manifest as amyloid strains.
Collapse
Affiliation(s)
| | - Ebba Nyström
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - Per Hammarström
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, C11, 75185, Uppsala, Sweden.
| |
Collapse
|
4
|
Gardon L, Becker N, Rähse N, Hölbling C, Apostolidis A, Schulz CM, Bochinsky K, Gremer L, Heise H, Lakomek NA. Amyloid fibril formation kinetics of low-pH denatured bovine PI3K-SH3 monitored by three different NMR techniques. Front Mol Biosci 2023; 10:1254721. [PMID: 38046811 PMCID: PMC10691488 DOI: 10.3389/fmolb.2023.1254721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction: Misfolding of amyloidogenic proteins is a molecular hallmark of neurodegenerative diseases in humans. A detailed understanding of the underlying molecular mechanisms is mandatory for developing innovative therapeutic approaches. The bovine PI3K-SH3 domain has been a model system for aggregation and fibril formation. Methods: We monitored the fibril formation kinetics of low pH-denatured recombinantly expressed [U-13C, 15N] labeled bovine PI3K-SH3 by a combination of solution NMR, high-resolution magic angle spinning (HR-MAS) NMR and solid-state NMR spectra. Solution NMR offers the highest sensitivity and, therefore, allows for the recording of two-dimensional NMR spectra with residue-specific resolution for individual time points of the time series. However, it can only follow the decay of the aggregating monomeric species. In solution NMR, aggregation occurs under quiescent experimental conditions. Solid-state NMR has lower sensitivity and allows only for the recording of one-dimensional spectra during the time series. Conversely, solid-state NMR is the only technique to detect disappearing monomers and aggregated species in the same sample by alternatingly recoding scalar coupling and dipolar coupling (CP)-based spectra. HR-MAS NMR is used here as a hybrid method bridging solution and solid-state NMR. In solid-state NMR and HR-MAS NMR the sample is agitated due to magic angle spinning. Results: Good agreement of the decay rate constants of monomeric SH3, measured by the three different NMR methods, is observed. Moderate MAS up to 8 kHz seems to influence the aggregation kinetics of seeded fibril formation only slightly. Therefore, under sufficient seeding (1% seeds used here), quiescent conditions (solution NMR), and agitated conditions deliver similar results, arguing against primary nucleation induced by MAS as a major contributor. Using solid-state NMR, we find that the amount of disappeared monomer corresponds approximately to the amount of aggregated species under the applied experimental conditions (250 µM PI3K-SH3, pH 2.5, 298 K, 1% seeds) and within the experimental error range. Data can be fitted by simple mono-exponential conversion kinetics, with lifetimes τ in the 14-38 h range. Atomic force microscopy confirms that fibrils substantially grew in length during the aggregation experiment. This argues for fibril elongation as the dominant growth mechanism in fibril mass (followed by the CP-based solid-state NMR signal). Conclusion: We suggest a combined approach employing both solution NMR and solid-state NMR, back-to-back, on two aliquots of the same sample under seeding conditions as an additional approach to follow monomer depletion and growth of fibril mass simultaneously. Atomic force microscopy images confirm fibril elongation as a major contributor to the increase in fibril mass.
Collapse
Affiliation(s)
- Luis Gardon
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nina Becker
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nick Rähse
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Christoph Hölbling
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Athina Apostolidis
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Celina M. Schulz
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Kevin Bochinsky
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Lothar Gremer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Henrike Heise
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nils-Alexander Lakomek
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Tao Y, Xia W, Zhao Q, Xiang H, Han C, Zhang S, Gu W, Tang W, Li Y, Tan L, Li D, Liu C. Structural mechanism for specific binding of chemical compounds to amyloid fibrils. Nat Chem Biol 2023; 19:1235-1245. [PMID: 37400537 DOI: 10.1038/s41589-023-01370-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/26/2023] [Indexed: 07/05/2023]
Abstract
Amyloid fibril is an important pharmaceutical target for diagnostic and therapeutic treatment of neurodegenerative diseases. However, rational design of chemical compounds that interact with amyloid fibrils is unachievable due to the lack of mechanistic understanding of the ligand-fibril interaction. Here we used cryoelectron microscopy to survey the amyloid fibril-binding mechanism of a series of compounds including classic dyes, (pre)clinical imaging tracers and newly identified binders from high-throughput screening. We obtained clear densities of several compounds in complex with an α-synuclein fibril. These structures unveil the basic mechanism of the ligand-fibril interaction, which exhibits remarkable difference from the canonical ligand-protein interaction. In addition, we discovered a druggable pocket that is also conserved in the ex vivo α-synuclein fibrils from multiple system atrophy. Collectively, these findings expand our knowledge of protein-ligand interaction in the amyloid fibril state, which will enable rational design of amyloid binders in a medicinally beneficial way.
Collapse
Affiliation(s)
- Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qinyue Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Huaijiang Xiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chao Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Gu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Wenjun Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
6
|
Wei Y, Ju J, Creton C, Narita T. Unexpected Fracture Behavior of Ultrasoft Associative Hydrogels Due to Strain-Induced Crystallization. ACS Macro Lett 2023; 12:1106-1111. [PMID: 37470675 DOI: 10.1021/acsmacrolett.3c00343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Strain-induced crystallization (SIC) is a well-known toughening strategy in elastomers, but is rarely observed in hydrogels due to their high-water content and limited deformability. Here we report a phenomenon of SIC in highly swollen and associative hydrogels by introducing an extremely large deformation by indentation with a needle. Using in situ birefringence imaging, we discovered that SIC occurs close to the needle tip upon large strain, displacing the nucleation of a crack from the needle tip to a position further away from the tip. The morphology of the fracture as well as the force to induce the gel fracture with the needle can be controlled by playing with temperature and cross-linking and hence triggering or not the SIC. Our discovery points to a future direction in creating SIC in highly swollen hydrogels, with potential implications for many biological material designs, and surgical injury prediction or prevention in associative tissues.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, ESPCI Paris, Sorbonne Université, PSL Université, 10 rue Vauquelin, 75005 Paris, France
| | - Jianzhu Ju
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, ESPCI Paris, Sorbonne Université, PSL Université, 10 rue Vauquelin, 75005 Paris, France
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, ESPCI Paris, Sorbonne Université, PSL Université, 10 rue Vauquelin, 75005 Paris, France
| | - Tetsuharu Narita
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, ESPCI Paris, Sorbonne Université, PSL Université, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
7
|
Xiang J, Tao Y, Xia Y, Luo S, Zhao Q, Li B, Zhang X, Sun Y, Xia W, Zhang M, Kang SS, Ahn EH, Liu X, Xie F, Guan Y, Yang JJ, Bu L, Wu S, Wang X, Cao X, Liu C, Zhang Z, Li D, Ye K. Development of an α-synuclein positron emission tomography tracer for imaging synucleinopathies. Cell 2023; 186:3350-3367.e19. [PMID: 37421950 PMCID: PMC10527432 DOI: 10.1016/j.cell.2023.06.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/16/2023] [Accepted: 06/07/2023] [Indexed: 07/10/2023]
Abstract
Synucleinopathies are characterized by the accumulation of α-synuclein (α-Syn) aggregates in the brain. Positron emission tomography (PET) imaging of synucleinopathies requires radiopharmaceuticals that selectively bind α-Syn deposits. We report the identification of a brain permeable and rapid washout PET tracer [18F]-F0502B, which shows high binding affinity for α-Syn, but not for Aβ or Tau fibrils, and preferential binding to α-Syn aggregates in the brain sections. Employing several cycles of counter screenings with in vitro fibrils, intraneuronal aggregates, and neurodegenerative disease brain sections from several mice models and human subjects, [18F]-F0502B images α-Syn deposits in the brains of mouse and non-human primate PD models. We further determined the atomic structure of the α-Syn fibril-F0502B complex by cryo-EM and revealed parallel diagonal stacking of F0502B on the fibril surface through an intense noncovalent bonding network via inter-ligand interactions. Therefore, [18F]-F0502B is a promising lead compound for imaging aggregated α-Syn in synucleinopathies.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurobiology, Fourth Military Medical University, Xi'an, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Biomedical Sciences, School of Medicine, JiangHan University, #8, Sanjiaohu Rd., Wuhan 430056, China
| | - Shilin Luo
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinyue Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bowei Li
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Science, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Yunpeng Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Mingming Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eun-Hee Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Lihong Bu
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shengxi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
8
|
Nikiforova A, Sedov I. Molecular Design of Magnetic Resonance Imaging Agents Binding to Amyloid Deposits. Int J Mol Sci 2023; 24:11152. [PMID: 37446329 DOI: 10.3390/ijms241311152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The ability to detect and monitor amyloid deposition in the brain using non-invasive imaging techniques provides valuable insights into the early diagnosis and progression of Alzheimer's disease and helps to evaluate the efficacy of potential treatments. Magnetic resonance imaging (MRI) is a widely available technique offering high-spatial-resolution imaging. It can be used to visualize amyloid deposits with the help of amyloid-binding diagnostic agents injected into the body. In recent years, a number of amyloid-targeted MRI probes have been developed, but none of them has entered clinical practice. We review the advances in the field and deduce the requirements for the molecular structure and properties of a diagnostic probe candidate. These requirements make up the base for the rational design of MRI-active small molecules targeting amyloid deposits. Particular attention is paid to the novel cryo-EM structures of the fibril aggregates and their complexes, with known binders offering the possibility to use computational structure-based design methods. With continued research and development, MRI probes may revolutionize the diagnosis and treatment of neurodegenerative diseases, ultimately improving the lives of millions of people worldwide.
Collapse
Affiliation(s)
- Alena Nikiforova
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| |
Collapse
|
9
|
Zhang S, Dong H, Bian J, Li D, Liu C. Targeting amyloid proteins for clinical diagnosis of neurodegenerative diseases. FUNDAMENTAL RESEARCH 2023; 3:505-519. [PMID: 38933553 PMCID: PMC11197785 DOI: 10.1016/j.fmre.2022.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Abnormal aggregation and accumulation of pathological amyloid proteins such as amyloid-β, Tau, and α-synuclein play key pathological roles and serve as histological hallmarks in different neurodegenerative diseases (NDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, various post-translational modifications (PTMs) have been identified on pathological amyloid proteins and are subjected to change during disease progression. Given the central role of amyloid proteins in NDs, tremendous efforts have been made to develop amyloid-targeting strategies for clinical diagnosis and molecular classification of NDs. In this review, we summarize two major strategies for targeting amyloid aggregates, with a focus on the trials in AD diagnosis. The first strategy is a positron emission tomography (PET) scan of protein aggregation in the brain. We mainly focus on introducing the development of small-molecule PET tracers for specifically recognizing pathological amyloid fibrils. The second strategy is the detection of PTM biomarkers on amyloid proteins in cerebrospinal fluid and plasma. We discuss the pathological roles of different PTMs in diseases and how we can use the PTM profile of amyloid proteins for clinical diagnosis. Finally, we point out the potential technical challenges of these two strategies, and outline other potential strategies, as well as a combination of multiple strategies, for molecular diagnosis of NDs.
Collapse
Affiliation(s)
- Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Bian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Björk L, Klingstedt T, Nilsson KPR. Thiophene-Based Ligands: Design, Synthesis and Their Utilization for Optical Assignment of Polymorphic-Disease-Associated Protein Aggregates. Chembiochem 2023; 24:e202300044. [PMID: 36891883 PMCID: PMC10404026 DOI: 10.1002/cbic.202300044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/10/2023]
Abstract
The development of ligands for detecting protein aggregates is of great interest, as these aggregated proteinaceous species are the pathological hallmarks of several devastating diseases, including Alzheimer's disease. In this regard, thiophene-based ligands have emerged as powerful tools for fluorescent assessment of these pathological entities. The intrinsic conformationally sensitive photophysical properties of poly- and oligothiophenes have allowed optical assignment of disease-associated protein aggregates in tissue sections, as well as real-time in vivo imaging of protein deposits. Herein, we recount the chemical evolution of different generations of thiophene-based ligands, and exemplify their use for the optical distinction of polymorphic protein aggregates. Furthermore, the chemical determinants for achieving a superior fluorescent thiophene-based ligand, as well as the next generation of thiophene-based ligands targeting distinct aggregated species are described. Finally, the directions for future research into the chemical design of thiophene-based ligands that can aid in resolving the scientific challenges around protein aggregation diseases are discussed.
Collapse
Affiliation(s)
- Linnea Björk
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
11
|
Lantz L, Shirani H, Ghetti B, Vidal R, Klingstedt T, Nilsson KPR. Thiophene-Based Ligands for Histological Multiplex Spectral Detection of Distinct Protein Aggregates in Alzheimer's Disease. Chemistry 2023; 29:e202203568. [PMID: 36645413 PMCID: PMC10101888 DOI: 10.1002/chem.202203568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
The aggregation and accumulation of proteins in the brain is the defining feature of many devastating neurodegenerative diseases. The development of fluorescent ligands that bind to these accumulations, or deposits, is essential for the characterization of these neuropathological lesions. We report the synthesis of donor-acceptor-donor (D-A-D) thiophene-based ligands with different emission properties. The D-A-D ligands displayed selectivity towards distinct disease-associated protein deposits in histological sections from postmortem brain tissue of individuals affected by Alzheimer's disease (AD). The ability of the ligands to selectively identify AD-associated pathological alterations, such as deposits composed of aggregates of the amyloid-β (Aβ) peptide or tau, was reduced when the chemical composition of the ligands was altered. When combining the D-A-D ligands with conventional thiophene-based ligands, superior spectral separation of distinct protein aggregates in AD tissue sections was obtained. Our findings provide the structural and functional basis for the development of new fluorescent ligands that can distinguish between aggregated proteinaceous species, as well as offer novel strategies for developing multiplex fluorescence detection of protein aggregates in tissue sections.
Collapse
Affiliation(s)
- Linda Lantz
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Hamid Shirani
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, 46202, Indiana, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, 46202, Indiana, USA
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
12
|
Dervişoğlu R, Antonschmidt L, Nimerovsky E, Sant V, Kim M, Ryazanov S, Leonov A, Carlos Fuentes-Monteverde J, Wegstroth M, Giller K, Mathies G, Giese A, Becker S, Griesinger C, Andreas LB. Anle138b interaction in α-synuclein aggregates by dynamic nuclear polarization NMR. Methods 2023; 214:18-27. [PMID: 37037308 DOI: 10.1016/j.ymeth.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Small molecules that bind to oligomeric protein species such as membrane proteins and fibrils are of clinical interest for development of therapeutics and diagnostics. Definition of the binding site at atomic resolution via NMR is often challenging due to low binding stoichiometry of the small molecule. For fibrils and aggregation intermediates grown in the presence of lipids, we report atomic-resolution contacts to the small molecule at sub nm distance via solid-state NMR using dynamic nuclear polarization (DNP) and orthogonally labelled samples of the protein and the small molecule. We apply this approach to α-synuclein (αS) aggregates in complex with the small molecule anle138b, which is a clinical drug candidate for disease modifying therapy. The small central pyrazole moiety of anle138b is detected in close proximity to the protein backbone and differences in the contacts between fibrils and early intermediates are observed. For intermediate species, the 100 K condition for DNP helps to preserve the aggregation state, while for both fibrils and oligomers, the DNP enhancement is essential to obtain sufficient sensitivity.
Collapse
Affiliation(s)
- Rıza Dervişoğlu
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Leif Antonschmidt
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Evgeny Nimerovsky
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vrinda Sant
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Myeongkyu Kim
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sergey Ryazanov
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | - Andrei Leonov
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | | | - Melanie Wegstroth
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Karin Giller
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | - Stefan Becker
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
13
|
Liu J, Wu XL, Zeng YT, Hu ZH, Lu JX. Solid-state NMR studies of amyloids. Structure 2023; 31:230-243. [PMID: 36750098 DOI: 10.1016/j.str.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Amyloids have special structural properties and are involved in many aspects of biological function. In particular, amyloids are the cause or hallmarks of a group of notorious and incurable neurodegenerative diseases. The extraordinary high molecular weight and aggregation states of amyloids have posed a challenge for researchers studying them. Solid-state NMR (SSNMR) has been extensively applied to study the structures and dynamics of amyloids for the past 20 or more years and brought us tremendous progress in understanding their structure and related diseases. These studies, at the same time, helped to push SSNMR technical developments in sensitivity and resolution. In this review, some interesting research studies and important technical developments are highlighted to give the reader an overview of the current state of this field.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xia-Lian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu-Teng Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi-Heng Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
14
|
Björk L, Bäck M, Lantz L, Ghetti B, Vidal R, Klingstedt T, Nilsson KPR. Proteophenes - Amino Acid Functionalized Thiophene-based Fluorescent Ligands for Visualization of Protein Deposits in Tissue Sections with Alzheimer's Disease Pathology. Chemistry 2022; 28:e202201557. [PMID: 35950816 PMCID: PMC9643645 DOI: 10.1002/chem.202201557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 01/11/2023]
Abstract
Protein deposits composed of specific proteins or peptides are associated with several neurodegenerative diseases and fluorescent ligands able to detect these pathological hallmarks are vital. Here, we report the synthesis of a class of thiophene-based ligands, denoted proteophenes, with different amino acid side-chain functionalities along the conjugated backbone, which display selectivity towards specific disease-associated protein aggregates in tissue sections with Alzheimer's disease (AD) pathology. The selectivity of the ligands towards AD associated pathological hallmarks, such as aggregates of the amyloid-β (Aβ) peptide or tau filamentous inclusions, was highly dependent on the chemical nature of the amino acid functionality, as well as on the location of the functionality along the pentameric thiophene backbone. Finally, the concept of synthesizing donor-acceptor-donor proteophenes with distinct photophysical properties was shown. Our findings provide the structural and functional basis for the development of new thiophene-based ligands that can be utilized for optical assignment of different aggregated proteinaceous species in tissue sections.
Collapse
Affiliation(s)
- Linnea Björk
- Department of PhysicsChemistry and BiologyLinköping University581 83LinköpingSweden
| | - Marcus Bäck
- Department of PhysicsChemistry and BiologyLinköping University581 83LinköpingSweden
| | - Linda Lantz
- Department of PhysicsChemistry and BiologyLinköping University581 83LinköpingSweden
| | - Bernardino Ghetti
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolis46202IndianaUSA
| | - Ruben Vidal
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolis46202IndianaUSA
| | - Therése Klingstedt
- Department of PhysicsChemistry and BiologyLinköping University581 83LinköpingSweden
| | - K. Peter R. Nilsson
- Department of PhysicsChemistry and BiologyLinköping University581 83LinköpingSweden
| |
Collapse
|
15
|
Matlahov I, Boatz JC, C.A. van der Wel P. Selective observation of semi-rigid non-core residues in dynamically complex mutant huntingtin protein fibrils. J Struct Biol X 2022; 6:100077. [PMID: 36419510 PMCID: PMC9677204 DOI: 10.1016/j.yjsbx.2022.100077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Mutant huntingtin exon 1 fibrils feature a broad range of molecular dynamics. Molecular motion is coupled to water dynamics outside the fiber core. Dynamics-based spectral editing ssNMR reveals mobile non-core residues. Intermediate-motion selection via dipolar dephasing of rigid sites. Semi-mobile glutamines outside the fiber core observed and identified.
Many amyloid-forming proteins, which are normally intrinsically disordered, undergo a disorder-to-order transition to form fibrils with a rigid β-sheet core flanked by disordered domains. Solid-state NMR (ssNMR) and cryogenic electron microscopy (cryoEM) excel at resolving the rigid structures within amyloid cores but studying the dynamically disordered domains remains challenging. This challenge is exemplified by mutant huntingtin exon 1 (HttEx1), which self-assembles into pathogenic neuronal inclusions in Huntington disease (HD). The mutant protein’s expanded polyglutamine (polyQ) segment forms a fibril core that is rigid and sequestered from the solvent. Beyond the core, solvent-exposed surface residues mediate biological interactions and other properties of fibril polymorphs. Here we deploy magic angle spinning ssNMR experiments to probe for semi-rigid residues proximal to the fibril core and examine how solvent dynamics impact the fibrils’ segmental dynamics. Dynamic spectral editing (DYSE) 2D ssNMR based on a combination of cross-polarization (CP) ssNMR with selective dipolar dephasing reveals the weak signals of solvent-mobilized glutamine residues, while suppressing the normally strong background of rigid core signals. This type of ‘intermediate motion selection’ (IMS) experiment based on cross-polarization (CP) ssNMR, is complementary to INEPT- and CP-based measurements that highlight highly flexible or highly rigid protein segments, respectively. Integration of the IMS-DYSE element in standard CP-based ssNMR experiments permits the observation of semi-rigid residues in a variety of contexts, including in membrane proteins and protein complexes. We discuss the relevance of semi-rigid solvent-facing residues outside the fibril core to the latter’s detection with specific dyes and positron emission tomography tracers.
Collapse
|
16
|
Antonschmidt L, Matthes D, Dervişoğlu R, Frieg B, Dienemann C, Leonov A, Nimerovsky E, Sant V, Ryazanov S, Giese A, Schröder GF, Becker S, de Groot BL, Griesinger C, Andreas LB. The clinical drug candidate anle138b binds in a cavity of lipidic α-synuclein fibrils. Nat Commun 2022; 13:5385. [PMID: 36104315 PMCID: PMC9474542 DOI: 10.1038/s41467-022-32797-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
Aggregation of amyloidogenic proteins is a characteristic of multiple neurodegenerative diseases. Atomic resolution of small molecule binding to such pathological protein aggregates is of interest for the development of therapeutics and diagnostics. Here we investigate the interaction between α-synuclein fibrils and anle138b, a clinical drug candidate for disease modifying therapy in neurodegeneration and a promising scaffold for positron emission tomography tracer design. We used nuclear magnetic resonance spectroscopy and the cryogenic electron microscopy structure of α-synuclein fibrils grown in the presence of lipids to locate anle138b within a cavity formed between two β-strands. We explored and quantified multiple binding modes of the compound in detail using molecular dynamics simulations. Our results reveal stable polar interactions between anle138b and backbone moieties inside the tubular cavity of the fibrils. Such cavities are common in other fibril structures as well.
Collapse
Affiliation(s)
- Leif Antonschmidt
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dirk Matthes
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Rıza Dervişoğlu
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Benedikt Frieg
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Andrei Leonov
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- MODAG GmbH, Mikroforum Ring 3, 55234, Wendelsheim, Germany
| | - Evgeny Nimerovsky
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vrinda Sant
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sergey Ryazanov
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- MODAG GmbH, Mikroforum Ring 3, 55234, Wendelsheim, Germany
| | - Armin Giese
- MODAG GmbH, Mikroforum Ring 3, 55234, Wendelsheim, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gunnar F Schröder
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Physics Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Becker
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Bert L de Groot
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Christian Griesinger
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Loren B Andreas
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
17
|
Ni R, Chen Z, Deán-Ben XL, Voigt FF, Kirschenbaum D, Shi G, Villois A, Zhou Q, Crimi A, Arosio P, Nitsch RM, Nilsson KPR, Aguzzi A, Helmchen F, Klohs J, Razansky D. Multiscale optical and optoacoustic imaging of amyloid-β deposits in mice. Nat Biomed Eng 2022; 6:1031-1044. [PMID: 35835994 DOI: 10.1038/s41551-022-00906-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/27/2022] [Indexed: 12/26/2022]
Abstract
Deposits of amyloid-β (Aβ) in the brains of rodents can be analysed by invasive intravital microscopy on a submillimetre scale, or via whole-brain images from modalities lacking the resolution or molecular specificity to accurately characterize Aβ pathologies. Here we show that large-field multifocal illumination fluorescence microscopy and panoramic volumetric multispectral optoacoustic tomography can be combined to longitudinally assess Aβ deposits in transgenic mouse models of Alzheimer's disease. We used fluorescent Aβ-targeted probes (the luminescent conjugated oligothiophene HS-169 and the oxazine-derivative AOI987) to transcranially detect Aβ deposits in the cortex of APP/PS1 and arcAβ mice with single-plaque resolution (8 μm) and across the whole brain (including the hippocampus and the thalamus, which are inaccessible by conventional intravital microscopy) at sub-150 μm resolutions. Two-photon microscopy, light-sheet microscopy and immunohistochemistry of brain-tissue sections confirmed the specificity and regional distributions of the deposits. High-resolution multiscale optical and optoacoustic imaging of Aβ deposits across the entire brain in rodents thus facilitates the in vivo study of Aβ accumulation by brain region and by animal age and strain.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland.,Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Fabian F Voigt
- Zurich Neuroscience Center (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland.,Brain Research Institute, University of Zurich, Zurich, Switzerland
| | | | - Gloria Shi
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Alessia Villois
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Quanyu Zhou
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Alessandro Crimi
- Institute of Neuropathology, Universitätsspital Zurich, Zurich, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Zurich Neuroscience Center (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland.,Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - K Peter R Nilsson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Adriano Aguzzi
- Zurich Neuroscience Center (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland.,Institute of Neuropathology, Universitätsspital Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Zurich Neuroscience Center (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland.,Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland. .,Zurich Neuroscience Center (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland. .,Zurich Neuroscience Center (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland. .,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
19
|
Duan P, Chen KJ, Wijegunawardena G, Dregni AJ, Wang HK, Wu H, Hong M. Binding Sites of a Positron Emission Tomography Imaging Agent in Alzheimer's β-Amyloid Fibrils Studied Using 19F Solid-State NMR. J Am Chem Soc 2022; 144:1416-1430. [PMID: 35015530 PMCID: PMC8855532 DOI: 10.1021/jacs.1c12056] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amyloid imaging by positron emission tomography (PET) is an important method for diagnosing neurodegenerative disorders such as Alzheimer's disease. Many 11C- and 18F-labeled PET tracers show varying binding capacities, specificities, and affinities for their target proteins. The structural basis of these variations is poorly understood. Here we employ 19F and 13C solid-state NMR to investigate the binding sites of a PET ligand, flutemetamol, to the 40-residue Alzheimer's β-amyloid peptide (Aβ40). Analytical high-performance liquid chromatography and 19F NMR spectra show that flutemetamol binds the current Aβ40 fibril polymorph with a stoichiometry of one ligand per four to five peptides. Half of the ligands are tightly bound while the other half are loosely bound. 13C and 15N chemical shifts indicate that this Aβ40 polymorph has an immobilized N-terminus, a non-β-sheet His14, and a non-β-sheet C-terminus. We measured the proximity of the ligand fluorine to peptide residues using 19F-13C and 19F-1H rotational-echo double-resonance (REDOR) experiments. The spectra show that three segments in the peptide, 12VHH14, 18VFF20, and 39VV40, lie the closest to the ligand. REDOR-constrained docking simulations indicate that these three segments form multiple binding sites, and the ligand orientations and positions at these sites are similar across different Aβ polymorphs. Comparison of the flutemetamol-interacting residues in Aβ40 with the small-molecule binding sites in other amyloid proteins suggest that conjugated aromatic compounds preferentially bind β-sheet surface grooves lined by aromatic, polar, and charged residues. These motifs may explain the specificity of different PET tracers to different amyloid proteins.
Collapse
Affiliation(s)
- Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Kelly J. Chen
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Gayani Wijegunawardena
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount St, Wichita, KS 67260, United States
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Harrison K. Wang
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Haifan Wu
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount St, Wichita, KS 67260, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| |
Collapse
|
20
|
Liang L, Ji Y, Chen K, Gao P, Zhao Z, Hou G. Solid-State NMR Dipolar and Chemical Shift Anisotropy Recoupling Techniques for Structural and Dynamical Studies in Biological Systems. Chem Rev 2022; 122:9880-9942. [PMID: 35006680 DOI: 10.1021/acs.chemrev.1c00779] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the development of NMR methodology and technology during the past decades, solid-state NMR (ssNMR) has become a particularly important tool for investigating structure and dynamics at atomic scale in biological systems, where the recoupling techniques play pivotal roles in modern high-resolution MAS NMR. In this review, following a brief introduction on the basic theory of recoupling in ssNMR, we highlight the recent advances in dipolar and chemical shift anisotropy recoupling methods, as well as their applications in structural determination and dynamical characterization at multiple time scales (i.e., fast-, intermediate-, and slow-motion). The performances of these prevalent recoupling techniques are compared and discussed in multiple aspects, together with the representative applications in biomolecules. Given the recent emerging advances in NMR technology, new challenges for recoupling methodology development and potential opportunities for biological systems are also discussed.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Ji
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
21
|
Trusova V, Tarabara U, Zhytniakivska O, Vus K, Gorbenko G. Fӧrster resonance energy transfer analysis of amyloid state of proteins. BBA ADVANCES 2022; 2:100059. [PMID: 37082586 PMCID: PMC10074846 DOI: 10.1016/j.bbadva.2022.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The Förster resonance energy transfer (FRET) is a well-established and versatile spectroscopic technique extensively used for exploring a variety of biomolecular interactions and processes. The present review is intended to cover the main results of our FRET studies focused on amyloid fibrils, a particular type of disease-associated protein aggregates. Based on the examples of several fibril-forming proteins including insulin, lysozyme and amyloidogenic variants of N-terminal fragment of apolipoprotein A-I, it was demonstrated that: (i) the two- and three-step FRET with the classical amyloid marker Thioflavin T as an input donor has a high amyloid-sensing potential and can be used to refine the amyloid detection assays; (ii) the intermolecular time-resolved and single-molecule pulse interleaved excitation FRET can give quantitative information on the nucleation of amyloid fibrils; (iii) FRET between the membrane fluorescent probes and protein-associated intrinsic or extrinsic fluorophores is suitable for monitoring the membrane binding of fibrillar proteins, exploring their location relative to lipid-water interface and restructuring on a lipid matrix; (iv) the FRET-based distance estimation between fibril-bound donor and acceptor fluorophores can serve as one of the verification criteria upon structural modeling of amyloid fibrils.
Collapse
|
22
|
Roterman I, Stapor K, Gądek K, Gubała T, Nowakowski P, Fabian P, Konieczny L. On the Dependence of Prion and Amyloid Structure on the Folding Environment. Int J Mol Sci 2021; 22:ijms222413494. [PMID: 34948291 PMCID: PMC8707753 DOI: 10.3390/ijms222413494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/22/2023] Open
Abstract
Currently available analyses of amyloid proteins reveal the necessity of the existence of radical structural changes in amyloid transformation processes. The analysis carried out in this paper based on the model called fuzzy oil drop (FOD) and its modified form (FOD-M) allows quantifying the role of the environment, particularly including the aquatic environment. The starting point and basis for the present presentation is the statement about the presence of two fundamentally different methods of organizing polypeptides into ordered conformations—globular proteins and amyloids. The present study shows the source of the differences between these two paths resulting from the specificity of the external force field coming from the environment, including the aquatic and hydrophobic one. The water environment expressed in the fuzzy oil drop model using the 3D Gauss function directs the folding process towards the construction of a micelle-like system with a hydrophobic core in the central part and the exposure of polarity on the surface. The hydrophobicity distribution of membrane proteins has the opposite characteristic: Exposure of hydrophobicity at the surface of the membrane protein with an often polar center (as in the case of ion channels) is expected. The structure of most proteins is influenced by a more or less modified force field generated by water through the appropriate presence of a non-polar (membrane-like) environment. The determination of the proportion of a factor different from polar water enables the assessment of the protein status by indicating factors favoring the structure it represents.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, 31-034 Kopernika 7, 30-688 Krakow, Poland
- Correspondence:
| | - Katarzyna Stapor
- Department of Applied Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
| | - Krzysztof Gądek
- Sano Centre for Computation Medicine, Czarnowiejska 36, 30-054 Kraków, Poland; (K.G.); (T.G.); (P.N.)
| | - Tomasz Gubała
- Sano Centre for Computation Medicine, Czarnowiejska 36, 30-054 Kraków, Poland; (K.G.); (T.G.); (P.N.)
| | - Piotr Nowakowski
- Sano Centre for Computation Medicine, Czarnowiejska 36, 30-054 Kraków, Poland; (K.G.); (T.G.); (P.N.)
| | - Piotr Fabian
- Department of Algorithmics and Software, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
| | - Leszek Konieczny
- Department of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Kopernika 7, 31-034 Krakow, Poland;
| |
Collapse
|
23
|
Reif B. Deuteration for High-Resolution Detection of Protons in Protein Magic Angle Spinning (MAS) Solid-State NMR. Chem Rev 2021; 122:10019-10035. [PMID: 34870415 DOI: 10.1021/acs.chemrev.1c00681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton detection developed in the last 20 years as the method of choice to study biomolecules in the solid state. In perdeuterated proteins, proton dipolar interactions are strongly attenuated, which allows yielding of high-resolution proton spectra. Perdeuteration and backsubstitution of exchangeable protons is essential if samples are rotated with MAS rotation frequencies below 60 kHz. Protonated samples can be investigated directly without spin dilution using proton detection methods in case the MAS frequency exceeds 110 kHz. This review summarizes labeling strategies and the spectroscopic methods to perform experiments that yield assignments, quantitative information on structure, and dynamics using perdeuterated samples. Techniques for solvent suppression, H/D exchange, and deuterium spectroscopy are discussed. Finally, experimental and theoretical results that allow estimation of the sensitivity of proton detected experiments as a function of the MAS frequency and the external B0 field in a perdeuterated environment are compiled.
Collapse
Affiliation(s)
- Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at the Department of Chemistry, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany.,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
24
|
van der Wel PCA. Dihedral Angle Measurements for Structure Determination by Biomolecular Solid-State NMR Spectroscopy. Front Mol Biosci 2021; 8:791090. [PMID: 34938776 PMCID: PMC8685456 DOI: 10.3389/fmolb.2021.791090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
In structural studies of immobilized, aggregated and self-assembled biomolecules, solid-state NMR (ssNMR) spectroscopy can provide valuable high-resolution structural information. Among the structural restraints provided by magic angle spinning (MAS) ssNMR the canonical focus is on inter-atomic distance measurements. In the current review, we examine the utility of ssNMR measurements of angular constraints, as a complement to distance-based structure determination. The focus is on direct measurements of angular restraints via the judicious recoupling of multiple anisotropic ssNMR parameters, such as dipolar couplings and chemical shift anisotropies. Recent applications are highlighted, with a focus on studies of nanocrystalline polypeptides, aggregated peptides and proteins, receptor-substrate interactions, and small molecule interactions with amyloid protein fibrils. The review also examines considerations of when and where ssNMR torsion angle experiments are (most) effective, and discusses challenges and opportunities for future applications.
Collapse
Affiliation(s)
- Patrick C. A. van der Wel
- Solid-state NMR Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| |
Collapse
|
25
|
Stepanchuk AA, Joseph JT, Stys PK. Spectral photokinetic conversion of the fluorescent probes BSB and K114 for improved detection of amyloid assemblies. JOURNAL OF BIOPHOTONICS 2021; 14:e202100203. [PMID: 34499422 DOI: 10.1002/jbio.202100203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Cross-β-sheet-rich protein fibrils are infamous for their accumulation in the brains of patients diagnosed with a number of neurodegenerative diseases, including Alzheimer's disease (AD). Disease-relevant fibrils are a result of deviation of the proteins from their native structure to a misfolded state resulting in aggregation and formation of fibrils. In this study, we explored the phenomenon of light-induced fluorescence enhancement of amyloid assemblies stained with two amyloid probes (BSB and K114) using Bombyx mori silk and human AD brain sections. The photoconversion effect, accompanied by an increase in fluorescence intensity and spectral blue-shift, was highly dependent on the chemical structures of the dyes, pH, presence of glycerol and the type of amyloid. The degree of intensity and spectral change over time in response to high laser exposure were quantified and analyzed using custom-written analysis tools. Our findings provide further insight into possible mechanisms of amyloid-mediated photoconversion kinetics of K114 and BSB, and may provide more insight into the molecular nature of various amyloid assemblies.
Collapse
Affiliation(s)
- Anastasiia A Stepanchuk
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Jeffrey T Joseph
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Pathology and Laboratory Medicine, Alberta Health Services, Calgary, Alberta, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
26
|
Roterman I, Stapor K, Fabian P, Konieczny L. In Silico Modeling of the Influence of Environment on Amyloid Folding Using FOD-M Model. Int J Mol Sci 2021; 22:10587. [PMID: 34638925 PMCID: PMC8508659 DOI: 10.3390/ijms221910587] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
The role of the environment in amyloid formation based on the fuzzy oil drop model (FOD) is discussed here. This model assumes that the hydrophobicity distribution within a globular protein is consistent with a 3D Gaussian (3DG) distribution. Such a distribution is interpreted as the idealized effect of the presence of a polar solvent-water. A chain with a sequence of amino acids (which are bipolar molecules) determined by evolution recreates a micelle-like structure with varying accuracy. The membrane, which is a specific environment with opposite characteristics to the polar aquatic environment, directs the hydrophobic residues towards the surface. The modification of the FOD model to the FOD-M form takes into account the specificity of the cell membrane. It consists in "inverting" the 3DG distribution (complementing the Gaussian distribution), which expresses the exposure of hydrophobic residues on the surface. It turns out that the influence of the environment for any protein (soluble or membrane-anchored) is the result of a consensus factor expressing the participation of the polar environment and the "inverted" environment. The ratio between the proportion of the aqueous and the "reversed" environment turns out to be a characteristic property of a given protein, including amyloid protein in particular. The structure of amyloid proteins has been characterized in the context of prion, intrinsically disordered, and other non-complexing proteins to cover a wider spectrum of molecules with the given characteristics based on the FOD-M model.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Medyczna 7, 30-688 Kraków, Poland
| | - Katarzyna Stapor
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (K.S.); (P.F.)
| | - Piotr Fabian
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (K.S.); (P.F.)
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kopernika 7, 31-034 Kraków, Poland;
| |
Collapse
|
27
|
Salladini E, Gondelaud F, Nilsson JF, Pesce G, Bignon C, Murrali MG, Fabre R, Pierattelli R, Kajava AV, Horvat B, Gerlier D, Mathieu C, Longhi S. Identification of a Region in the Common Amino-terminal Domain of Hendra Virus P, V, and W Proteins Responsible for Phase Transition and Amyloid Formation. Biomolecules 2021; 11:1324. [PMID: 34572537 PMCID: PMC8471210 DOI: 10.3390/biom11091324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Henipaviruses are BSL-4 zoonotic pathogens responsible in humans for severe encephalitis. Their V protein is a key player in the evasion of the host innate immune response. We previously showed that the Henipavirus V proteins consist of a long intrinsically disordered N-terminal domain (NTD) and a β-enriched C-terminal domain (CTD). These terminals are critical for V binding to DDB1, which is a cellular protein that is a component of the ubiquitin ligase E3 complex, as well as binding to MDA5 and LGP2, which are two host sensors of viral RNA. Here, we serendipitously discovered that the Hendra virus V protein undergoes a liquid-to-hydrogel phase transition and identified the V region responsible for this phenomenon. This region, referred to as PNT3 and encompassing residues 200-310, was further investigated using a combination of biophysical and structural approaches. Congo red binding assays, together with negative-staining transmisison electron microscopy (TEM) studies, show that PNT3 forms amyloid-like fibrils. Fibrillation abilities are dramatically reduced in a rationally designed PNT3 variant in which a stretch of three contiguous tyrosines, falling within an amyloidogenic motif, were replaced by three alanines. Worthy to note, Congo red staining experiments provided hints that these amyloid-like fibrils form not only in vitro but also in cellula after transfection or infection. The present results set the stage for further investigations aimed at assessing the functional role of phase separation and fibrillation by the Henipavirus V proteins.
Collapse
Affiliation(s)
- Edoardo Salladini
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Frank Gondelaud
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Juliet F. Nilsson
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Giulia Pesce
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Christophe Bignon
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Maria Grazia Murrali
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (M.G.M.); (R.P.)
| | - Roxane Fabre
- Centre d’Immunologie de Marseille-Luminy (CIML), CNRS, Institut National de la Santé et de la Recherche Médicale (INSERM), Aix Marseille University, CEDEX 9, 13288 Marseille, France;
| | - Roberta Pierattelli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (M.G.M.); (R.P.)
| | - Andrey V. Kajava
- Centre de Recherche en Biologie Cellulaire de Montpellier, UMR 5237, CNRS, Université Montpellier, 34293 Montpellier, France;
| | - Branka Horvat
- Team Immunobiology of the Viral Infections, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM, U1111, CNRS, UMR 5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; (B.H.); (D.G.); (C.M.)
| | - Denis Gerlier
- Team Immunobiology of the Viral Infections, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM, U1111, CNRS, UMR 5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; (B.H.); (D.G.); (C.M.)
| | - Cyrille Mathieu
- Team Immunobiology of the Viral Infections, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM, U1111, CNRS, UMR 5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; (B.H.); (D.G.); (C.M.)
| | - Sonia Longhi
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| |
Collapse
|
28
|
Strategies in the design and development of (TAR) DNA-binding protein 43 (TDP-43) binding ligands. Eur J Med Chem 2021; 225:113753. [PMID: 34388383 DOI: 10.1016/j.ejmech.2021.113753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 01/09/2023]
Abstract
The human transactive responsive (TAR) DNA-binding protein 43 (TDP-43) is involved in a number of physiological processes in the body. Its primary function involves RNA regulation. The TDP-43 protein is also involved in many diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), Parkinson's disease (PD) and even cancers. These TDP-43 mediated diseases are collectively called as TDP-43 proteinopathies. Intense research in the last decade has increased our understanding on TDP-43 structure and function in biology. The three-dimensional structures of TDP-43 domains such as N-terminal domain (NTD), RNA-recognition motif-1 (RRM1), RNA-recognition motif-2 (RRM2) and the C-terminal domain (CTD) or low-complexity domain (LCD) have been solved. These structures have yielded insights into novel binding sites and pockets at various TDP-43 domains, which can be targeted by designing a diverse library of ligands including small molecules, peptides and oligonucleotides as molecular tools to (i) study TDP-43 function, (ii) develop novel diagnostic agents and (iii) discover disease-modifying therapies to treat TDP-43 proteinopathies. This review provides a summary on recent progress in the development of TDP-43 binding ligands and uses the solved structures of various TDP-43 domains to investigate putative ligand binding regions that can be exploited to discover novel molecular probes to modulate TDP-43 structure and function.
Collapse
|
29
|
Willbold D, Strodel B, Schröder GF, Hoyer W, Heise H. Amyloid-type Protein Aggregation and Prion-like Properties of Amyloids. Chem Rev 2021; 121:8285-8307. [PMID: 34137605 DOI: 10.1021/acs.chemrev.1c00196] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review will focus on the process of amyloid-type protein aggregation. Amyloid fibrils are an important hallmark of protein misfolding diseases and therefore have been investigated for decades. Only recently, however, atomic or near-atomic resolution structures have been elucidated from various in vitro and ex vivo obtained fibrils. In parallel, the process of fibril formation has been studied in vitro under highly artificial but comparatively reproducible conditions. The review starts with a summary of what is known and speculated from artificial in vitro amyloid-type protein aggregation experiments. A partially hypothetic fibril selection model will be described that may be suitable to explain why amyloid fibrils look the way they do, in particular, why at least all so far reported high resolution cryo-electron microscopy obtained fibril structures are in register, parallel, cross-β-sheet fibrils that mostly consist of two protofilaments twisted around each other. An intrinsic feature of the model is the prion-like nature of all amyloid assemblies. Transferring the model from the in vitro point of view to the in vivo situation is not straightforward, highly hypothetic, and leaves many open questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.,Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (State University), 141700 Dolgoprudny, Russia
| | - Birgit Strodel
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute of Theoretical and Computational Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Gunnar F Schröder
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Physics Department, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Henrike Heise
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
30
|
Lutter L, Aubrey LD, Xue WF. On the Structural Diversity and Individuality of Polymorphic Amyloid Protein Assemblies. J Mol Biol 2021; 433:167124. [PMID: 34224749 DOI: 10.1016/j.jmb.2021.167124] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/20/2021] [Accepted: 06/26/2021] [Indexed: 12/24/2022]
Abstract
The prediction of highly ordered three-dimensional structures of amyloid protein fibrils from the amino acid sequences of their monomeric self-assembly precursors constitutes a challenging and unresolved aspect of the classical protein folding problem. Because of the polymorphic nature of amyloid assembly whereby polypeptide chains of identical amino acid sequences under identical conditions are capable of self-assembly into a spectrum of different fibril structures, the prediction of amyloid structures from an amino acid sequence requires a detailed and holistic understanding of its assembly free energy landscape. The full extent of the structure space accessible to the cross-β molecular architecture of amyloid must also be resolved. Here, we review the current understanding of the diversity and the individuality of amyloid structures, and how the polymorphic landscape of amyloid links to biology and disease phenotypes. We present a comprehensive review of structural models of amyloid fibrils derived by cryo-EM, ssNMR and AFM to date, and discuss the challenges ahead for resolving the structural basis and the biological consequences of polymorphic amyloid assemblies.
Collapse
Affiliation(s)
- Liisa Lutter
- School of Biosciences, Division of Natural Sciences, University of Kent, CT2 7NJ Canterbury, UK
| | - Liam D Aubrey
- School of Biosciences, Division of Natural Sciences, University of Kent, CT2 7NJ Canterbury, UK
| | - Wei-Feng Xue
- School of Biosciences, Division of Natural Sciences, University of Kent, CT2 7NJ Canterbury, UK.
| |
Collapse
|
31
|
Shi Y, Murzin AG, Falcon B, Epstein A, Machin J, Tempest P, Newell KL, Vidal R, Garringer HJ, Sahara N, Higuchi M, Ghetti B, Jang MK, Scheres SHW, Goedert M. Cryo-EM structures of tau filaments from Alzheimer's disease with PET ligand APN-1607. Acta Neuropathol 2021; 141:697-708. [PMID: 33723967 PMCID: PMC8043864 DOI: 10.1007/s00401-021-02294-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Tau and Aβ assemblies of Alzheimer’s disease (AD) can be visualized in living subjects using positron emission tomography (PET). Tau assemblies comprise paired helical and straight filaments (PHFs and SFs). APN-1607 (PM-PBB3) is a recently described PET ligand for AD and other tau proteinopathies. Since it is not known where in the tau folds PET ligands bind, we used electron cryo-microscopy (cryo-EM) to determine the binding sites of APN-1607 in the Alzheimer fold. We identified two major sites in the β-helix of PHFs and SFs and a third major site in the C-shaped cavity of SFs. In addition, we report that tau filaments from posterior cortical atrophy (PCA) and primary age-related tauopathy (PART) are identical to those from AD. In support, fluorescence labelling showed binding of APN-1607 to intraneuronal inclusions in AD, PART and PCA. Knowledge of the binding modes of APN-1607 to tau filaments may lead to the development of new ligands with increased specificity and binding activity. We show that cryo-EM can be used to identify the binding sites of small molecules in amyloid filaments.
Collapse
|
32
|
Solid-state NMR approaches to investigate large enzymes in complex with substrates and inhibitors. Biochem Soc Trans 2020; 49:131-144. [PMID: 33367567 DOI: 10.1042/bst20200099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022]
Abstract
Enzyme catalysis is omnipresent in the cell. The mechanisms by which highly evolved protein folds enable rapid and specific chemical transformation of substrates belong to the marvels of structural biology. Targeting of enzymes with inhibitors has immediate application in drug discovery, from chemotherapeutics over antibiotics to antivirals. NMR spectroscopy combines multiple assets for the investigation of enzyme function. The non-invasive technique can probe enzyme structure and dynamics and map interactions with substrates, cofactors and inhibitors at the atomic level. With experiments performed at close to native conditions, catalytic transformations can be monitored in real time, giving access to kinetic parameters. The power of NMR in the solid state, in contrast with solution, lies in the absence of fundamental size limitations, which is crucial for enzymes that are either membrane-embedded or assemble into large soluble complexes exceeding hundreds of kilodaltons in molecular weight. Here we review recent progress in solid-state NMR methodology, which has taken big leaps in the past years due to steady improvements in hardware design, notably magic angle spinning, and connect it to parallel biochemical advances that enable isotope labelling of increasingly complex enzymes. We first discuss general concepts and requirements of the method and then highlight the state-of-the-art in sample preparation, structure determination, dynamics and interaction studies. We focus on examples where solid-state NMR has been instrumental in elucidating enzyme mechanism, alone or in integrative studies.
Collapse
|
33
|
Niu Z, Sarkar R, Aichler M, Wester H, Yousefi BH, Reif B. Mapping the Binding Interface of PET Tracer Molecules and Alzheimer Disease Aβ Fibrils by Using MAS Solid-State NMR Spectroscopy. Chembiochem 2020; 21:2495-2502. [PMID: 32291951 PMCID: PMC7496087 DOI: 10.1002/cbic.202000143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Positron emission tomography (PET) tracer molecules like thioflavin T specifically recognize amyloid deposition in brain tissue by selective binding to hydrophobic or aromatic surface grooves on the β-sheet surface along the fibril axis. The molecular basis of this interaction is, however, not well understood. We have employed magic angle spinning (MAS) solid-state NMR spectroscopy to characterize Aβ-PET tracer complexes at atomic resolution. We established a titration protocol by using bovine serum albumin as a carrier to transfer hydrophobic small molecules to Aβ(1-40) fibrillar aggregates. The same Aβ(1-40) amyloid fibril sample was employed in subsequent titrations to minimize systematic errors that potentially arise from sample preparation. In the experiments, the small molecules 13 C-methylated Pittsburgh compound B (PiB) as well as a novel Aβ tracer based on a diarylbithiazole (DABTA) scaffold were employed. Classical 13 C-detected as well as proton-detected spectra of protonated and perdeuterated samples with back-substituted protons, respectively, were acquired and analyzed. After titration of the tracers, chemical-shift perturbations were observed in the loop region involving residues Gly25-Lys28 and Ile32-Gly33, thus suggesting that the PET tracer molecules interact with the loop region connecting β-sheets β1 and β2 in Aβ fibrils. We found that titration of the PiB derivatives suppressed fibril polymorphism and stabilized the amyloid fibril structure.
Collapse
Affiliation(s)
- Zheng Niu
- Munich Center for Integrated Protein Science (CIPS−M) Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
- Helmholtz-Zentrum MünchenInstitute of Structural Biology (STB)Ingolstädter Landstrasse 185764NeuherbergGermany
| | - Riddhiman Sarkar
- Munich Center for Integrated Protein Science (CIPS−M) Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
- Helmholtz-Zentrum MünchenInstitute of Structural Biology (STB)Ingolstädter Landstrasse 185764NeuherbergGermany
| | - Michaela Aichler
- Helmholtz Zentrum MünchenResearch Unit Analytical Pathology (AAP)Ingolstädter Landstrasse 185764NeuherbergGermany
| | - Hans‐Jürgen Wester
- Technische Universität MünchenDepartment of Pharmaceutical RadiochemistryWalther-Meißner-Strasse 385748GarchingGermany
| | - Behrooz Hooshyar Yousefi
- Technische Universität MünchenDepartment of Pharmaceutical RadiochemistryWalther-Meißner-Strasse 385748GarchingGermany
- Philipps University of MarburgDepartment of Nuclear MedicineBaldingerstrasse. 135043MarburgGermany
| | - Bernd Reif
- Munich Center for Integrated Protein Science (CIPS−M) Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
- Helmholtz-Zentrum MünchenInstitute of Structural Biology (STB)Ingolstädter Landstrasse 185764NeuherbergGermany
| |
Collapse
|
34
|
Frieg B, Gremer L, Heise H, Willbold D, Gohlke H. Binding modes of thioflavin T and Congo red to the fibril structure of amyloid-β(1-42). Chem Commun (Camb) 2020; 56:7589-7592. [PMID: 32510059 DOI: 10.1039/d0cc01161d] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding modes for the amyloid-β(1-42) fibril fluorescent dyes thioflavin T and Congo red were predicted by molecular dynamics simulations and binding free energy calculations. Both probes bind on the fibril surface to primarily hydrophobic grooves, with their long axis oriented almost parallel to the fibril axis. The computed binding affinities are in agreement with experimental values. The binding modes also explain observables from previous structural studies and, thus, provide a starting point for the systematic search and design of novel molecules, which may improve in vitro diagnostics for Alzheimer's disease.
Collapse
Affiliation(s)
- Benedikt Frieg
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | |
Collapse
|
35
|
Friedrich D, Perodeau J, Nieuwkoop AJ, Oschkinat H. MAS NMR detection of hydrogen bonds for protein secondary structure characterization. JOURNAL OF BIOMOLECULAR NMR 2020; 74:247-256. [PMID: 32185644 PMCID: PMC7211791 DOI: 10.1007/s10858-020-00307-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/09/2020] [Indexed: 05/26/2023]
Abstract
Hydrogen bonds are essential for protein structure and function, making experimental access to long-range interactions between amide protons and heteroatoms invaluable. Here we show that measuring distance restraints involving backbone hydrogen atoms and carbonyl- or α-carbons enables the identification of secondary structure elements based on hydrogen bonds, provides long-range contacts and validates spectral assignments. To this end, we apply specifically tailored, proton-detected 3D (H)NCOH and (H)NCAH experiments under fast magic angle spinning (MAS) conditions to microcrystalline samples of SH3 and GB1. We observe through-space, semi-quantitative correlations between protein backbone carbon atoms and multiple amide protons, enabling us to determine hydrogen bonding patterns and thus to identify β-sheet topologies and α-helices in proteins. Our approach shows the value of fast MAS and suggests new routes in probing both secondary structure and the role of functionally-relevant protons in all targets of solid-state MAS NMR.
Collapse
Affiliation(s)
- Daniel Friedrich
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA, 02215, USA
| | - Jacqueline Perodeau
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd., Piscataway, NJ, 08854, United States
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd., Piscataway, NJ, 08854, United States.
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany.
| |
Collapse
|
36
|
Espargaró A, Llabrés S, Saupe SJ, Curutchet C, Luque FJ, Sabaté R. On the Binding of Congo Red to Amyloid Fibrils. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-ChemistrySchool of Pharmacy and Food SciencesUniversity of Barcelona Joan XXIII, 27–31 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB) Spain
| | - Salomé Llabrés
- School of ChemistryUniversity of Edimburgh David Brewster Road EH9 3FJ Edinburgh UK
| | - Sven J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095CNRSUniversité de Bordeaux 1 rue Camille St Saens 33077 Bordeaux France
| | - Carles Curutchet
- Department of Pharmacy and Pharmaceutical Technology and Physical-ChemistrySchool of Pharmacy and Food SciencesUniversity of Barcelona Joan XXIII, 27–31 08028 Barcelona Spain
- Institute of Theoretical and Computational Chemistry (IQTCUB) Spain
| | - F. Javier Luque
- Institute of Theoretical and Computational Chemistry (IQTCUB) Spain
- Department of Nutrition, Food Sciences, and GastronomySchool of Pharmacy and Food SciencesUniversity of Barcelona Prat de la Riba 171 08921 Santa Coloma de Gramenet Spain
- Institute of Biomedicine (IBUB) Spain
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-ChemistrySchool of Pharmacy and Food SciencesUniversity of Barcelona Joan XXIII, 27–31 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB) Spain
| |
Collapse
|
37
|
Espargaró A, Llabrés S, Saupe SJ, Curutchet C, Luque FJ, Sabaté R. On the Binding of Congo Red to Amyloid Fibrils. Angew Chem Int Ed Engl 2020; 59:8104-8107. [DOI: 10.1002/anie.201916630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-ChemistrySchool of Pharmacy and Food SciencesUniversity of Barcelona Joan XXIII, 27–31 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB) Spain
| | - Salomé Llabrés
- School of ChemistryUniversity of Edimburgh David Brewster Road EH9 3FJ Edinburgh UK
| | - Sven J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095CNRSUniversité de Bordeaux 1 rue Camille St Saens 33077 Bordeaux France
| | - Carles Curutchet
- Department of Pharmacy and Pharmaceutical Technology and Physical-ChemistrySchool of Pharmacy and Food SciencesUniversity of Barcelona Joan XXIII, 27–31 08028 Barcelona Spain
- Institute of Theoretical and Computational Chemistry (IQTCUB) Spain
| | - F. Javier Luque
- Institute of Theoretical and Computational Chemistry (IQTCUB) Spain
- Department of Nutrition, Food Sciences, and GastronomySchool of Pharmacy and Food SciencesUniversity of Barcelona Prat de la Riba 171 08921 Santa Coloma de Gramenet Spain
- Institute of Biomedicine (IBUB) Spain
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-ChemistrySchool of Pharmacy and Food SciencesUniversity of Barcelona Joan XXIII, 27–31 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB) Spain
| |
Collapse
|
38
|
Gorbenko G, Trusova V, Deligeorgiev T, Gadjev N, Mizuguchi C, Saito H. Two-step FRET as a tool for probing the amyloid state of proteins. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Jaroniec CP. Two decades of progress in structural and dynamic studies of amyloids by solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:42-47. [PMID: 31311708 PMCID: PMC6703944 DOI: 10.1016/j.jmr.2019.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 05/09/2023]
Abstract
In this perspective article I briefly highlight the rapid progress made over the past two decades in atomic level structural and dynamic studies of amyloids, which are representative of non-crystalline biomacromolecular assemblies, by magic-angle spinning solid-state NMR spectroscopy. Given new and continuing developments in solid-state NMR instrumentation and methodology, ongoing research in this area promises to contribute to an improved understanding of amyloid structure, polymorphism, interactions, assembly mechanisms, and biological function and toxicity.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
40
|
Wang B, Queenan BN, Wang S, Nilsson KPR, Bazan GC. Precisely Defined Conjugated Oligoelectrolytes for Biosensing and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806701. [PMID: 30698856 DOI: 10.1002/adma.201806701] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Conjugated oligoelectrolytes (COEs) are a relatively new class of synthetic organic molecules with, as of yet, untapped potential for use in organic optoelectronic devices and bioelectronic systems. COEs also offer a novel molecular approach to biosensing, bioimaging, and disease therapy. Substantial progress has been made in the past decade at the intersection of chemistry, materials science, and the biological sciences developing COEs and their polymer analogues, namely, conjugated polyelectrolytes (CPEs), into synthetic systems with biological and biomedical utility. CPEs have traditionally attracted more attention in arenas of sensing, imaging, and therapy. However, the precisely defined molecular structures and interactions of COEs offer potential key advantages over CPEs, including higher reliability and fluorescence quantum efficiency, larger diversity of subcellular targeting strategies, and improved selectivity to biomolecules. Here, the unique-and sometimes overlooked-properties of COEs are discussed and the noticeable progress in their use for biological sensing, imaging, and therapy is reviewed.
Collapse
Affiliation(s)
- Bing Wang
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Bridget N Queenan
- Department of Mechanical Engineering, Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - K Peter R Nilsson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, SE, -581 83, Sweden
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
41
|
Orts J, Aulikki Wälti M, Ghosh D, Campioni S, Saupe SJ, Riek R. Rational Structure-Based Design of Fluorescent Probes for Amyloid Folds. Chembiochem 2019; 20:1161-1166. [PMID: 30548150 DOI: 10.1002/cbic.201800664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 11/09/2022]
Abstract
Amyloid fibrils are pathological hallmarks of various human diseases, including Parkinson's, Alzheimer's, amyotrophic lateral sclerosis (ALS or motor neurone disease), and prion diseases. Treatment of the amyloid diseases are hindered, among other factors, by timely detection and therefore, early detection of the amyloid fibrils would be beneficial for treatment against these disorders. Here, a small molecular fluorescent probe is reported that selectively recognize the fibrillar form of amyloid beta(1-42), α-synuclein, and HET-s(218-289) protein over their monomeric conformation. The rational design of the reporters relies on the well-known cross-β-sheet repetition motif, the key structural feature of amyloids.
Collapse
Affiliation(s)
- Julien Orts
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Marielle Aulikki Wälti
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Dhiman Ghosh
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Silvia Campioni
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland.,Present address: Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Sven J Saupe
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, Université de Bordeaux, 1, rue Camille Saint Saëns, 33077, Bordeaux, France
| | - Roland Riek
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| |
Collapse
|
42
|
Zhang J, Konsmo A, Sandberg A, Wu X, Nyström S, Obermüller U, Wegenast-Braun BM, Konradsson P, Lindgren M, Hammarström P. Phenolic Bis-styrylbenzo[c]-1,2,5-thiadiazoles as Probes for Fluorescence Microscopy Mapping of Aβ Plaque Heterogeneity. J Med Chem 2019; 62:2038-2048. [DOI: 10.1021/acs.jmedchem.8b01681] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jun Zhang
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Audun Konsmo
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Alexander Sandberg
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Xiongyu Wu
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Sofie Nyström
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Ulrike Obermüller
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- DZNE−German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
| | - Bettina M. Wegenast-Braun
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- DZNE−German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
| | - Peter Konradsson
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Mikael Lindgren
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Per Hammarström
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
43
|
Townsend D, Hughes E, Stewart KL, Griffin JM, Radford SE, Middleton DA. Orientation of a Diagnostic Ligand Bound to Macroscopically Aligned Amyloid-β Fibrils Determined by Solid-State NMR. J Phys Chem Lett 2018; 9:6611-6615. [PMID: 30354142 DOI: 10.1021/acs.jpclett.8b02448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
With amyloid diseases poised to become a major health burden in countries with aging populations, diagnostic molecules that aid the detection of amyloid in vitro and in vivo are of considerable clinical value. Understanding how such ligands recognize their amyloid targets would help to design diagnostics that target specific amyloid types associated with a particular disease, but methods to provide comprehensive information are underdeveloped. Here, solid-state NMR is used to determine the molecular orientation of the amyloid diagnostic 1-fluoro-2,5-bis[( E)-3-carboxy-4-hydroxystyryl]-benzene (FSB) when bound to fibrils of the Alzheimer's amyloid-β polypeptide aligned on a planar substrate. The 19F NMR spectrum of the aligned complex reveals that FSB is oriented approximately parallel with the fibril long axis and bridges four hydrogen-bonded β-sheets. In addition to providing atomic details to aid the design of amyloid-specific diagnostics, this approach will also illuminate the molecular mechanisms of accessory molecules in amyloid disease.
Collapse
Affiliation(s)
- David Townsend
- Department of Chemistry , Lancaster University , Lancaster LA1 4YB , United Kingdom
| | - Eleri Hughes
- Department of Chemistry , Lancaster University , Lancaster LA1 4YB , United Kingdom
| | - Katie L Stewart
- Department of Physics , Emory University , Atlanta , Georgia 30322 , United States
| | - John M Griffin
- Materials Science Institute , Lancaster University , Lancaster LA1 4YB , United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology , Faculty of Biological Sciences, University of Leeds , Leeds LS2 9JT , United Kingdom
| | - David A Middleton
- Department of Chemistry , Lancaster University , Lancaster LA1 4YB , United Kingdom
| |
Collapse
|
44
|
Dapson RW. Amyloid from a histochemical perspective. A review of the structure, properties and types of amyloid, and a proposed staining mechanism for Congo red staining. Biotech Histochem 2018; 93:543-556. [PMID: 30403893 DOI: 10.1080/10520295.2018.1528385] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Amyloid is a diverse group of unrelated peptides or proteins that have positive functionality or are associated with various pathologies. Despite vast differences, all amyloids share several features that together uniquely define the group. 1) All amyloids possess a characteristic cross-ß pattern with X-ray diffraction typical of ß-sheet secondary protein structures. 2) All amyloids are birefringent and dichroic under polarizing microscopy after staining with Congo red, which indicates a crystalline-like (ordered) structure. 3) All amyloids cause a spectral shift in the peak wavelength of Congo red with conventional light microscopy due to perturbation of π electrons of the dye. 4) All amyloids show heightened intensity of fluorescence with Congo red, which suggests an unusual degree of packing of the dye onto the substrate. The ß portion of amyloid molecules, the only logical substrate for specific Congo red staining under histochemical conditions, consists of a stack of ß-sheets laminated by hydrophilic and hydrophobic interactions between adjacent pairs. Only the first and last ß-sheets are accessible to dyes. Each sheet is composed of numerous identical peptides running across the width of the sheet and arranged in parallel with side chains in register over the length of the fibril. Two sets of grooves are bordered by side chains. X grooves run perpendicular to the long axis of the fibril; these grooves are short (the width of the sheet) and number in the hundreds or thousands. Y grooves are parallel with the long axis. Each groove runs the entire length of the fibril, but there are very few of them. While Congo red is capable of ionic bonding with proteins via two sulfonic acid groups, physical constraints on the staining solution preclude ionic interactions. Hydrogen bonding between dye amine groups and peptide carbonyls is the most likely primary bonding mechanism, because all ß-sheets possess backbone carbonyls. Various amino acid residues may form secondary bonds to the dye via any of three van der Waals forces. It is possible that Congo red binds within the Y grooves, but that would not produce the characteristic staining features that are the diagnostic hallmarks of amyloid. Binding in the X grooves would produce a tightly packed series of dye molecules over the entire length of the fibril. This would account for the signature staining of amyloid by Congo red: dichroic birefringence, enhanced intensity of fluorescence and a shift in visible absorption wavelength.
Collapse
|
45
|
Kurnik M, Sahin C, Andersen CB, Lorenzen N, Giehm L, Mohammad-Beigi H, Jessen CM, Pedersen JS, Christiansen G, Petersen SV, Staal R, Krishnamurthy G, Pitts K, Reinhart PH, Mulder FAA, Mente S, Hirst WD, Otzen DE. Potent α-Synuclein Aggregation Inhibitors, Identified by High-Throughput Screening, Mainly Target the Monomeric State. Cell Chem Biol 2018; 25:1389-1402.e9. [PMID: 30197194 DOI: 10.1016/j.chembiol.2018.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/12/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022]
Abstract
α-Synuclein (αSN) aggregation is central to the etiology of Parkinson's disease (PD). Large-scale screening of compounds to identify aggregation inhibitors is challenged by stochastic αSN aggregation and difficulties in detecting early-stage oligomers (αSOs). We developed a high-throughput screening assay combining SDS-stimulated αSN aggregation with FRET to reproducibly detect initial stages in αSN aggregation. We screened 746,000 compounds, leading to 58 hits that markedly inhibit αSN aggregation and reduce αSOs' membrane permeabilization activity. The most effective aggregation inhibitors were derivatives of (4-hydroxynaphthalen-1-yl)sulfonamide. They interacted strongly with the N-terminal part of monomeric αSN and reduced αSO-membrane interactions, possibly by affecting electrostatic interactions. Several compounds reduced αSO toxicity toward neuronal cell lines. The inhibitors introduced chemical modifications of αSN that were, however, not a prerequisite for inhibitory activity. We also identified several phenyl-benzoxazol compounds that promoted αSN aggregation (proaggregators). These compounds may be useful tools to modulate αSN aggregation in cellula.
Collapse
Affiliation(s)
- Martin Kurnik
- iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Cagla Sahin
- iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | | | - Nikolai Lorenzen
- iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Lise Giehm
- iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Hossein Mohammad-Beigi
- iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
| | - Christian Moestrup Jessen
- iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Jan Skov Pedersen
- iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | | | | | | | | | - Keith Pitts
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Peter H Reinhart
- Forma Therapeutics, Inc.Institute for Applied Life Sciences, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA 01003-9364, USA
| | - Frans A A Mulder
- iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Scot Mente
- Forma Therapeutics, Inc., 500 Arsenal Street, Suite 100, Watertown, MA 02472, USA
| | | | - Daniel E Otzen
- iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark.
| |
Collapse
|
46
|
Reichhardt C, Cegelski L. The Congo red derivative FSB binds to curli amyloid fibers and specifically stains curliated E. coli. PLoS One 2018; 13:e0203226. [PMID: 30161215 PMCID: PMC6117054 DOI: 10.1371/journal.pone.0203226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/16/2018] [Indexed: 02/04/2023] Open
Abstract
The Congo red derivative (E,E)-1-fluoro-2,5-bis(3-hydroxycarbonyl-4-hydroxy) styrylbenzene (FSB) specifically stains the functional amyloid curli in Escherichia coli biofilms. FSB binds to curli with similar affinity as Congo red, yet exhibits much greater fluorescence upon binding to curli as compared to Congo red and does not exhibit undesired binding to the cellulosic component of the biofilm. Thus, FSB presents a powerful tool to identify and visualize curli in E. coli biofilms and also enables new biophysical investigations of curli.
Collapse
Affiliation(s)
- Courtney Reichhardt
- Department of Chemistry, Stanford University, Stanford, California, United States of America
- * E-mail: (CR); (LC)
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, California, United States of America
- * E-mail: (CR); (LC)
| |
Collapse
|
47
|
Yang X, Li Z, Xiao H, Wang N, Li Y, Xu X, Chen Z, Tan H, Li J. A Universal and Ultrastable Mineralization Coating Bioinspired from Biofilms. ADVANCED FUNCTIONAL MATERIALS 2018. [DOI: 10.1002/adfm.201802730] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiao Yang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; No. 24, South Section One of Yinhuan Road Chengdu 610065 P. R. China
| | - Zhenhua Li
- State Key Laboratory of Supramolecular Structure and Materials; Institute of Theoretical Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Hong Xiao
- Department of Pain Management; West China Hospital; Sichuan University; No. 37, GuoXue Xiang Chengdu 610041 P. R. China
| | - Ning Wang
- Regenerative Medicine Research Center; West China Hospital; Sichuan University; No. 37, GuoXue Xiang Chengdu 61004 P. R. China
| | - Yanpu Li
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; No. 24, South Section One of Yinhuan Road Chengdu 610065 P. R. China
| | - Xinyuan Xu
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; No. 24, South Section One of Yinhuan Road Chengdu 610065 P. R. China
| | - Zhijun Chen
- State Key Laboratory of Supramolecular Structure and Materials; Institute of Theoretical Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Hong Tan
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; No. 24, South Section One of Yinhuan Road Chengdu 610065 P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; No. 24, South Section One of Yinhuan Road Chengdu 610065 P. R. China
| |
Collapse
|
48
|
3D structure determination of amyloid fibrils using solid-state NMR spectroscopy. Methods 2018; 138-139:26-38. [DOI: 10.1016/j.ymeth.2018.03.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 01/08/2023] Open
|
49
|
Schütz AK, Hornemann S, Wälti MA, Greuter L, Tiberi C, Cadalbert R, Gantner M, Riek R, Hammarström P, Nilsson KPR, Böckmann A, Aguzzi A, Meier BH. Binding of Polythiophenes to Amyloids: Structural Mapping of the Pharmacophore. ACS Chem Neurosci 2018; 9:475-481. [PMID: 29178774 DOI: 10.1021/acschemneuro.7b00397] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Luminescent conjugated polythiophenes bind to amyloid proteins with high affinity. Their fluorescence properties, which are modulated by the detailed conformation in the bound state, are highly sensitive to structural features of the amyloid. Polythiophenes therefore represent diagnostic markers for the detection and differentiation of pathological amyloid aggregates. We clarify the binding site and mode of two different polythiophenes to fibrils of the prion domain of the HET-s protein by solid-state NMR and correlate these findings with their fluorescence properties. We demonstrate how amyloid dyes recognize distinct binding sites with specific topological features. Regularly spaced surface charge patterns and well-accessible grooves on the fibril surface define the pharmacophore of the amyloid, which in turn determines the binding mode and fluorescence wavelength of the polythiophene.
Collapse
Affiliation(s)
- Anne K. Schütz
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University Hospital of Zurich, University of Zürich, Schmelzbergstrasse 12, 8091 Zürich, Switzerland
| | - Marielle A. Wälti
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ladina Greuter
- Institute of Neuropathology, University Hospital of Zurich, University of Zürich, Schmelzbergstrasse 12, 8091 Zürich, Switzerland
| | - Cinzia Tiberi
- Institute of Neuropathology, University Hospital of Zurich, University of Zürich, Schmelzbergstrasse 12, 8091 Zürich, Switzerland
| | - Riccardo Cadalbert
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Matthias Gantner
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Roland Riek
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Per Hammarström
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| | - K. Peter R. Nilsson
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon 1, 7 passage du Vercors, 69367 Lyon, France
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, University of Zürich, Schmelzbergstrasse 12, 8091 Zürich, Switzerland
| | - Beat H. Meier
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
50
|
Abstract
Amyloid fibrils, which are closely associated with various neurodegenerative diseases, are the final products in many protein aggregation pathways. The identification of fibrils at low concentration is, therefore, pivotal in disease diagnosis and development of therapeutic strategies. We report a methodology for the specific identification of amyloid fibrils using chiroptical effects in plasmonic nanoparticles. The formation of amyloid fibrils based on α-synuclein was probed using gold nanorods, which showed no apparent interaction with monomeric proteins but effective adsorption onto fibril structures via noncovalent interactions. The amyloid structure drives a helical nanorod arrangement, resulting in intense optical activity at the surface plasmon resonance wavelengths. This sensing technique was successfully applied to human brain homogenates of patients affected by Parkinson's disease, wherein protein fibrils related to the disease were identified through chiral signals from Au nanorods in the visible and near IR, whereas healthy brain samples did not exhibit any meaningful optical activity. The technique was additionally extended to the specific detection of infectious amyloids formed by prion proteins, thereby confirming the wide potential of the technique. The intense chiral response driven by strong dipolar coupling in helical Au nanorod arrangements allowed us to detect amyloid fibrils down to nanomolar concentrations.
Collapse
|