1
|
Das G, Harikrishna S, Gore KR. Investigating the Effect of Chemical Modifications on the Ribose Sugar Conformation, Watson-Crick Base Pairing, and Intrastrand Stacking Interactions: A Theoretical Approach. J Phys Chem B 2024; 128:8313-8331. [PMID: 39172066 DOI: 10.1021/acs.jpcb.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Over the last few decades, chemically modified sugars have been incorporated into nucleic acid-based therapeutics to improve their pharmacological potential. Chemical modification can influence the sugar conformation, Watson-Crick hydrogen (W-C) bonding, and nucleobase stacking interactions, which play major roles in the structural integrity and dynamic properties of nucleic acid duplexes. In this study, we categorized 33 uridine (U*) and cytidine (C*) sugar modifications and calculated their sugar conformational parameters. We also calculated the Watson-Crick hydrogen bond energies of the modified RNA-type base pairs (U*:A and C*:G) using DFT and sSAPT0 methods. The W-C base pairing energy calculations suggested that the South-type modified sugar strengthens the C*:G base pair and weakens the U*:A base pair compared to the unmodified one. In contrast, the North-type sugar modifications form weaker C*:G base pair and marginally stronger U*:A base pair compared to the South-type modified sugars. Moreover, intrastrand base stacking energies were calculated for 15 modifications incorporated at the fourth position in 7-mer non-self-complementary RNA duplexes [(GCAU*GAC)2 and (GCAC*GAC)2], utilizing molecular dynamics simulation and quantum mechanical (DFT and sSAPT0) methods. The sugar modifications were found to have minimal effect on the intrastrand base-stacking interactions. However, the glycol nucleic acid modification disturbs the intrastrand base-stacking significantly, corroborating the experimental data.
Collapse
Affiliation(s)
- Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - S Harikrishna
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
2
|
Genna V, Reyes-Fraile L, Iglesias-Fernandez J, Orozco M. Nucleic acids in modern molecular therapies: A realm of opportunities for strategic drug design. Curr Opin Struct Biol 2024; 87:102838. [PMID: 38759298 DOI: 10.1016/j.sbi.2024.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
RNA vaccines have made evident to society what was already known by the scientific community: nucleic acids will be the "drugs of the future." By modifying the genome, interfering in transcription or translation, and by introducing new catalysts into the cell or by mimicking antibody effects, nucleic acids can generate therapeutic activities that are not accessible by any other therapeutic agents. There are, however, challenges that need to be solved in the next few years to make nucleic acids usable in a wide range of therapeutic scenarios. This review illustrates how simulation methods can help achieve this goal.
Collapse
Affiliation(s)
- Vito Genna
- NBD|Nostrum Biodiscovery, Josep Tarradellas 8-10, Barcelona 08019, Spain. https://twitter.com/_VitoGenna_
| | - Laura Reyes-Fraile
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; Sixfold Bioscience Ltd, Translational & Innovation Hub, 84 Wood Ln, London W12 0BZ, United Kingdom
| | | | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
3
|
Chen X, Xie L, Zhang C, Tian S, Tang Z, Xiang M, Tian W, Lu P, Yang X. Synthesis of Nucleotides Bearing the 2'-O-Trifluoromethyl Group and Their Application in RNA Analogs Preparation. Curr Protoc 2024; 4:e956. [PMID: 38230581 DOI: 10.1002/cpz1.956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The integration of fluorine atoms into biologically active organic compounds has proved to be a vital technique in small molecule drugs. This technique can substantially enhance crucial properties, including metabolic stability, lipophilicity, and bioavailability, often with a mere addition of a single fluorine atom or a trifluoromethyl group. Over the past few decades, this concept has also been applied in nucleic acid chemistry. A commonly employed 2'-OH substitution is the introduction of a 2'-deoxy-2'-fluoro (2'-F) group. The strong electronegativity of fluorine prompts the modified siRNA to readily adopt a C3'-endo conformation, resulting in significant advantages in terms of binding affinity. To enrich the toolbox of chemical modification of oligonucleotides, the replacement of the 2'-OH with the 2'-O-trifluoromethyl group has been developed in RNA analog synthesis. Oligodeoxynucleotides containing the 2'-O-trifluoromethyl group can greatly increase the thermal stability of DNA/RNA duplexes depending on the position and amount of the modification. Moreover, 2'-O-trifluoromethylated oligodeoxynucleotide also exhibited a slightly higher resistance to snake venom phosphodiesterase than the unmodified oligodeoxynucleotide. The 2'-O-trifluoromethylated oligonucleotides can emerge as a label to study RNA structure and function as well, or to develop DNA/RNA-based diagnostics. Hence, it is necessary to report an effective method for the synthesis, deprotection, purification, and characterization of oligonucleotides bearing a 2'-O-trifluoromethyl group. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Preparation of 6-N-benzoyl-5'-O-dimethoxytrityl-2'-O-trifluoromethyl adenosine 3'-(2-cyanoethyl N,N-diisopropyl)phosphoramidite Basic Protocol 2: Preparation of 4-N-acetyl-5'-O-dimethoxytrityl-2'-O-trifluoromethyl cytidine 3'-(2-cyanoethyl N,N-diisopropyl)phosphoramidite Basic Protocol 3: Preparation of 2-N-isobutyryl-5'-O-dimethoxytrityl-2'-O-trifluoromethyl guanine 3'-(2-cyanoethyl N,N-diisopropyl)phosphoramidite Basic Protocol 4: Preparation of 5'-O-dimethoxytrityl-2'-O-2-trifluoromethyl uridine 3'-(2-cyanoethyl N,N-diisopropyl) phosphoramidite Basic Protocol 5: Solid-phase synthesis of 2'-O-trifluoromethylated RNA analogs Basic Protocol 6: Deprotection and purification of 2'-O-trifluoromethyl-RNAs.
Collapse
|
4
|
Eichler C, Himmelstoß M, Plangger R, Weber LI, Hartl M, Kreutz C, Micura R. Advances in RNA Labeling with Trifluoromethyl Groups. Chemistry 2023; 29:e202302220. [PMID: 37534701 PMCID: PMC10947337 DOI: 10.1002/chem.202302220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Fluorine labeling of ribonucleic acids (RNA) in conjunction with 19 F NMR spectroscopy has emerged as a powerful strategy for spectroscopic analysis of RNA structure and dynamics, and RNA-ligand interactions. This study presents the first syntheses of 2'-OCF3 guanosine and uridine phosphoramidites, their incorporation into oligoribonucleotides by solid-phase synthesis and a comprehensive study of their properties. NMR spectroscopic analysis showed that the 2'-OCF3 modification is associated with preferential C2'-endo conformation of the U and G ribose in single-stranded RNA. When paired to the complementary strand, slight destabilization of the duplex caused by the modification was revealed by UV melting curve analysis. Moreover, the power of the 2'-OCF3 label for NMR spectroscopy is demonstrated by dissecting RNA pseudoknot folding and its binding to a small molecule. Furthermore, the 2'-OCF3 modification has potential for applications in therapeutic oligonucleotides. To this end, three 2'-OCF3 modified siRNAs were tested in silencing of the BASP1 gene which indicated enhanced performance for one of them. Importantly, together with earlier work, the present study completes the set of 2'-OCF3 nucleoside phosphoramidites to all four standard nucleobases (A, U, C, G) and hence enables applications that utilize the favorable properties of the 2'-OCF3 group without any restrictions in placing the modification into the RNA target sequence.
Collapse
Affiliation(s)
- Clemens Eichler
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Maximilian Himmelstoß
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Raphael Plangger
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Leonie I. Weber
- Institute of BiochemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Markus Hartl
- Institute of BiochemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Christoph Kreutz
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Ronald Micura
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
5
|
Matsuda S, Bala S, Liao JY, Datta D, Mikami A, Woods L, Harp JM, Gilbert JA, Bisbe A, Manoharan RM, Kim M, Theile CS, Guenther DC, Jiang Y, Agarwal S, Maganti R, Schlegel MK, Zlatev I, Charisse K, Rajeev KG, Castoreno A, Maier M, Janas MM, Egli M, Chaput JC, Manoharan M. Shorter Is Better: The α-(l)-Threofuranosyl Nucleic Acid Modification Improves Stability, Potency, Safety, and Ago2 Binding and Mitigates Off-Target Effects of Small Interfering RNAs. J Am Chem Soc 2023; 145:19691-19706. [PMID: 37638886 DOI: 10.1021/jacs.3c04744] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Chemical modifications are necessary to ensure the metabolic stability and efficacy of oligonucleotide-based therapeutics. Here, we describe analyses of the α-(l)-threofuranosyl nucleic acid (TNA) modification, which has a shorter 3'-2' internucleotide linkage than the natural DNA and RNA, in the context of small interfering RNAs (siRNAs). The TNA modification enhanced nuclease resistance more than 2'-O-methyl or 2'-fluoro ribose modifications. TNA-containing siRNAs were prepared as triantennary N-acetylgalactosamine conjugates and were tested in cultured cells and mice. With the exceptions of position 2 of the antisense strand and position 11 of the sense strand, the TNA modification did not inhibit the activity of the RNA interference machinery. In a rat toxicology study, TNA placed at position 7 of the antisense strand of the siRNA mitigated off-target effects, likely due to the decrease in the thermodynamic binding affinity relative to the 2'-O-methyl residue. Analysis of the crystal structure of an RNA octamer with a single TNA on each strand showed that the tetrose sugar adopts a C4'-exo pucker. Computational models of siRNA antisense strands containing TNA bound to Argonaute 2 suggest that TNA is well accommodated in the region kinked by the enzyme. The combined data indicate that the TNA nucleotides are promising modifications expected to increase the potency, duration of action, and safety of siRNAs.
Collapse
Affiliation(s)
- Shigeo Matsuda
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Saikat Bala
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Jen-Yu Liao
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Dhrubajyoti Datta
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Atsushi Mikami
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Lauren Woods
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Joel M Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-0146, United States
| | - Jason A Gilbert
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Anna Bisbe
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Rajar M Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - MaryBeth Kim
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Christopher S Theile
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Dale C Guenther
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Yongfeng Jiang
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Saket Agarwal
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Rajanikanth Maganti
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Mark K Schlegel
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Klaus Charisse
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | | | - Adam Castoreno
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Martin Maier
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Maja M Janas
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-0146, United States
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
6
|
Koyasu K, Chandela A, Ueno Y. Non-terminal conjugation of small interfering RNAs with spermine improves duplex binding and serum stability with position-specific incorporation. RSC Adv 2023; 13:25169-25181. [PMID: 37622021 PMCID: PMC10445083 DOI: 10.1039/d3ra04918c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
The conjugation of small interfering RNAs (siRNAs) has been studied using lipid and ligand conjugates for efficient delivery. However, most conjugates have been inserted at the terminal position; very few have been inserted at non-terminal positions. Herein, we synthesized a 4'-C-propyllevulinate-2'-O-methyluridine analog for non-terminal conjugation of spermine into the passenger strand of siRNA. Solid-phase oligonucleotide synthesis using this analog was successful, with the conjugation of one or two spermine molecules. The siRNAs conjugated with spermine displayed improved thermodynamic stability and resistance against nucleases, which depended on the site of conjugation in each case. Circular dichroism spectroscopy revealed that the A-type helical structure of the RNA duplex was not altered by these modifications. However, the gene-silencing activity of conjugated siRNAs was reduced and further decreased when the number of spermine molecules was increased. Hence, this work supplies valuable information and provides scope for the further development of drug-delivery systems through non-terminal conjugation.
Collapse
Affiliation(s)
- Keisuke Koyasu
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University Japan +81-58-293-2919 +81-58-293-2919
| | - Akash Chandela
- Course of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University Japan
| | - Yoshihito Ueno
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University Japan +81-58-293-2919 +81-58-293-2919
- Course of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University Japan
- United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
7
|
Sato H, Chandela A, Ueno Y. Synthesis and characterization of novel (S)-5'-C-aminopropyl-2'-fluorouridine modified oligonucleotides as therapeutic siRNAs. Bioorg Med Chem 2023; 87:117317. [PMID: 37196425 DOI: 10.1016/j.bmc.2023.117317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
The lack of stability of natural nucleosides limits their application in small interfering RNA (siRNA)-mediated RNA interference (RNAi). Various chemical modifications have been reported to improve their pharmacokinetic behavior; however, the development of potential candidates is still underway. In this study, we designed and synthesized (S)-5'-C-aminopropyl-2'-fluorouridine (5'-AP-2'-FU) and evaluated the properties of siRNAs containing this analog. A comparative thermodynamic study revealed the enhanced thermal stability of double-stranded RNAs (dsRNAs) containing 5'-AP-2'-FU in a position-specific manner, whereas (S)-5'-C-aminopropyl-2'-O-methyluridine (5'-AP-2'-MoU)-modified dsRNAs exhibited lower melting temperatures. This improved thermal stability of RNA duplexes is attributed to favorable entropy loss, which induces the duplex into an N-type (C3'-endo) conformation and enhances duplex binding in this case. The 5'-AP-2'-FU analog was also suitable for incorporation into the passenger strand to induce gene-silencing activity. Gene knockdown efficacy was comparable to that of unmodified siRNAs, and the best response was observed by introducing 5'-AP-2'-FU near the 3'-terminal end of the passenger strand. In addition, the single-stranded RNAs (ssRNAs) modified with 5'-AP-2'-FU showed strong resistance against decomposition by nucleases when treated with buffer containing bovine serum, which was similar to 5'-AP-2'-MoU.
Collapse
Affiliation(s)
- Hitotaka Sato
- United Graduate School of Agricultural Science, Gifu University, Japan
| | - Akash Chandela
- Course of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Japan
| | - Yoshihito Ueno
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, Japan; Course of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Japan; United Graduate School of Agricultural Science, Gifu University, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
8
|
Chandra G, Singh DV, Mahato GK, Patel S. Fluorine-a small magic bullet atom in the drug development: perspective to FDA approved and COVID-19 recommended drugs. CHEMICKE ZVESTI 2023; 77:1-22. [PMID: 37362786 PMCID: PMC10099028 DOI: 10.1007/s11696-023-02804-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/29/2023] [Indexed: 06/28/2023]
Abstract
During the last twenty years, organic fluorination chemistry established itself as an important tool to get a biologically active compound. This belief can be supported by the fact that every year, we are getting fluorinated drugs in the market in extremely significant numbers. Last year, also ten fluorinated drugs have been approved by FDA and during the COVID-19 pandemic, fluorinated drugs played a very crucial role to control the disease and saved many lives. In this review, we surveyed all ten fluorinated drugs approved by FDA in 2021 and all fluorinated drugs which were directly-indirectly used during the COVID-19 period, and emphasis has been given particularly to their synthesis, medicinal chemistry, and development process. Out of ten approved drugs, one drug pylarify, a radioactive diagnostic agent for cancer was approved for use in positron emission tomography imaging. Also, very briefly outlined the significance of fluorinated drugs through their physical, and chemical properties and their effect on drug development. Graphical abstract
Collapse
Affiliation(s)
- Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Durg Vijay Singh
- Department of Bioinformatics, School of Earth Biological and Environmental Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Gopal Kumar Mahato
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Samridhi Patel
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| |
Collapse
|
9
|
Guo Y, Li J, Yang H, Gu H, Xu G, Xu H. Multiplexed and accurate quantification strategy for miRNA based on specific terminal-mediated PCR with equivalent amplification. Talanta 2023; 258:124463. [PMID: 36940574 DOI: 10.1016/j.talanta.2023.124463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023]
Abstract
MicroRNAs (miRNAs) are recognized as potential biomarkers for the early diagnosis and prognosis of different diseases. Multiplexed and accurate miRNA quantification methods with equivalent detection efficiency are particularly crucial due to their complex biological functions and lack of a unified internal reference gene. Here, a unique multiplexed miRNA detection method, named Specific Terminal-Mediated miRNA PCR (STEM-Mi-PCR), was developed. It mainly includes a linear reverse transcription step using tailored-designed target specific capture primers, followed by an exponential amplification process using two universal primers to execute the multiplex assay. For proof of concept, four miRNAs were used as models to develop a multiplexed detection assay within one tube simultaneously and then evaluate the performance of the established STEM-Mi-PCR. The sensitivity of the 4-plexed assay was approximately 100 aM with an equivalent amplification efficiency (95.67 ± 8.58%), and had no cross-reactivity each other with high specificity. Quantification of different miRNAs in twenty patients' tissues shown variation from approximately pM to fM concentration level, demonstrating the possibility of practical application of the established method. Moreover, this method was extraordinarily capable of single nucleotide mutation discrimination in different let-7 family members with no more than 0.7% nonspecific detection signal. Hence, the STEM-Mi-PCR we proposed here paves an easy and promising way for miRNA profiling in future clinical applications.
Collapse
Affiliation(s)
- Yunfei Guo
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Jun Li
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Hao Yang
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Hongchen Gu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Gaolian Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| | - Hong Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| |
Collapse
|
10
|
Banerjee S, Hemmat MA, Shubham S, Gosai A, Devarakonda S, Jiang N, Geekiyanage C, Dillard JA, Maury W, Shrotriya P, Lamm MH, Nilsen-Hamilton M. Structurally Different Yet Functionally Similar: Aptamers Specific for the Ebola Virus Soluble Glycoprotein and GP1,2 and Their Application in Electrochemical Sensing. Int J Mol Sci 2023; 24:4627. [PMID: 36902059 PMCID: PMC10003157 DOI: 10.3390/ijms24054627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
The Ebola virus glycoprotein (GP) gene templates several mRNAs that produce either the virion-associated transmembrane protein or one of two secreted glycoproteins. Soluble glycoprotein (sGP) is the predominant product. GP1 and sGP share an amino terminal sequence of 295 amino acids but differ in quaternary structure, with GP1 being a heterohexamer with GP2 and sGP a homodimer. Two structurally different DNA aptamers were selected against sGP that also bound GP1,2. These DNA aptamers were compared with a 2'FY-RNA aptamer for their interactions with the Ebola GP gene products. The three aptamers have almost identical binding isotherms for sGP and GP1,2 in solution and on the virion. They demonstrated high affinity and selectivity for sGP and GP1,2. Furthermore, one aptamer, used as a sensing element in an electrochemical format, detected GP1,2 on pseudotyped virions and sGP with high sensitivity in the presence of serum, including from an Ebola-virus-infected monkey. Our results suggest that the aptamers interact with sGP across the interface between the monomers, which is different from the sites on the protein bound by most antibodies. The remarkable similarity in functional features of three structurally distinct aptamers suggests that aptamers, like antibodies, have preferred binding sites on proteins.
Collapse
Affiliation(s)
- Soma Banerjee
- Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, USA
| | - Mahsa Askary Hemmat
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Shambhavi Shubham
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Agnivo Gosai
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | | | - Nianyu Jiang
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | | | - Jacob A. Dillard
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 50011, USA
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 50011, USA
| | - Pranav Shrotriya
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Monica H. Lamm
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Marit Nilsen-Hamilton
- Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| |
Collapse
|
11
|
Rietmeyer L, Li De La Sierra-Gallay I, Schepers G, Dorchêne D, Iannazzo L, Patin D, Touzé T, van Tilbeurgh H, Herdewijn P, Ethève-Quelquejeu M, Fonvielle M. Amino-acyl tXNA as inhibitors or amino acid donors in peptide synthesis. Nucleic Acids Res 2022; 50:11415-11425. [PMID: 36350642 PMCID: PMC9723616 DOI: 10.1093/nar/gkac1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Xenobiotic nucleic acids (XNAs) offer tremendous potential for synthetic biology, biotechnology, and molecular medicine but their ability to mimic nucleic acids still needs to be explored. Here, to study the ability of XNA oligonucleotides to mimic tRNA, we synthesized three L-Ala-tXNAs analogs. These molecules were used in a non-ribosomal peptide synthesis involving a bacterial Fem transferase. We compared the ability of this enzyme to use amino-acyl tXNAs containing 1',5'-anhydrohexitol (HNA), 2'-fluoro ribose (2'F-RNA) and 2'-fluoro arabinose. L-Ala-tXNA containing HNA or 2'F-RNA were substrates of the Fem enzyme. The synthesis of peptidyl-XNA and the resolution of their structures in complex with the enzyme show the impact of the XNA on protein binding. For the first time we describe functional tXNA in an in vitro assay. These results invite to test tXNA also as substitute for tRNA in translation.
Collapse
Affiliation(s)
| | | | - Guy Schepers
- Laboratory of Medicinal Chemistry, Rega Institute for Biomedical Research, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Delphine Dorchêne
- INSERM UMR-S 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, F-75006 Paris, France
| | - Laura Iannazzo
- Université Paris Cité, CNRS UMR 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, F-75006Paris, France
| | - Delphine Patin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay 91198, Gif-sur-Yvette, France
| | - Thierry Touzé
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay 91198, Gif-sur-Yvette, France
| | - Herman van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay 91198, Gif-sur-Yvette, France
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega Institute for Biomedical Research, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mélanie Ethève-Quelquejeu
- Université Paris Cité, CNRS UMR 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, F-75006Paris, France
| | | |
Collapse
|
12
|
Rozners E. Chemical Modifications of CRISPR RNAs to Improve Gene-Editing Activity and Specificity. J Am Chem Soc 2022; 144:12584-12594. [PMID: 35796760 PMCID: PMC9636589 DOI: 10.1021/jacs.2c02633] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CRISPR (clustered, regularly interspaced, short palindromic repeats) has become a cutting-edge research method and holds great potential to revolutionize biotechnology and medicine. However, like other nucleic acid technologies, CRISPR will greatly benefit from chemical innovation to improve activity and specificity for critical in vivo applications. Chemists have started optimizing various components of the CRISPR system; the present Perspective focuses on chemical modifications of CRISPR RNAs (crRNAs). As with other nucleic acid-based technologies, early efforts focused on well-established sugar and backbone modifications (2'-deoxy, 2'-F, 2'-OMe, and phosphorothioates). Some more significant alterations of crRNAs have been done using bicyclic (locked) riboses and phosphate backbone replacements (phosphonoacetates and amides); however, the range of chemical innovation applied to crRNAs remains limited to modifications that have been successful in RNA interference and antisense technologies. The encouraging results given by these tried-and-true modifications suggest that, going forward, chemists should take a bolder approach─research must aim to investigate what chemistry will have the most impact on maturing CRISPR as therapeutic and other in vivo technologies. With an eye to the future, this Perspective argues that the complexity of CRISPR presents rich unprecedented opportunities for chemists to synergize advances in synthetic methodology and structural biochemistry to rationally optimize crRNA-protein interactions.
Collapse
Affiliation(s)
- Eriks Rozners
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| |
Collapse
|
13
|
Li X, Bhullar AS, Binzel DW, Guo P. The dynamic, motile and deformative properties of RNA nanoparticles facilitate the third milestone of drug development. Adv Drug Deliv Rev 2022; 186:114316. [PMID: 35526663 DOI: 10.1016/j.addr.2022.114316] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/25/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022]
Abstract
Besides mRNA, rRNA, and tRNA, cells contain many other noncoding RNA that display critical roles in the regulation of cellular functions. Human genome sequencing revealed that the majority of non-protein-coding DNA actually codes for non-coding RNAs. The dynamic nature of RNA results in its motile and deformative behavior. These conformational transitions such as the change of base-pairing, breathing within complemented strands, and pseudoknot formation at the 2D level as well as the induced-fit and conformational capture at the 3D level are important for their biological functions including regulation, translation, and catalysis. The dynamic, motile and catalytic activity has led to a belief that RNA is the origin of life. We have recently reported that the deformative property of RNA nanoparticles enhances their penetration through the leaky blood vessel of cancers which leads to highly efficient tumor accumulation. This special deformative property also enables RNA nanoparticles to pass the glomerulus, overcoming the filtration size limit, resulting in fast renal excretion and rapid body clearance, thus low or no toxicity. The biodistribution of RNA nanoparticles can be further improved by the incorporation of ligands for cancer targeting. In addition to the favorable biodistribution profiles, RNA nanoparticles possess other properties including self-assembly, negative charge, programmability, and multivalency; making it a great material for pharmaceutical applications. The intrinsic negative charge of RNA nanoparticles decreases the toxicity of drugs by preventing nonspecific binding to the negative charged cell membrane and enhancing the solubility of hydrophobic drugs. The polyvalent property of RNA nanoparticles allows the multi-functionalization which can apply to overcome drug resistance. This review focuses on the summary of these unique properties of RNA nanoparticles, which describes the mechanism of RNA dynamic, motile and deformative properties, and elucidates and prepares to welcome the RNA therapeutics as the third milestone in pharmaceutical drug development.
Collapse
Affiliation(s)
- Xin Li
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Abhjeet S Bhullar
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, United States
| | - Daniel W Binzel
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| | - Peixuan Guo
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States; College of Medicine, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
14
|
Beck KM, Nielsen P. Double-Headed 2'-Deoxynucleotides That Hybridize to DNA and RNA Targets via Normal and Reverse Watson-Crick Base Pairs. J Org Chem 2022; 87:5113-5124. [PMID: 35363467 DOI: 10.1021/acs.joc.1c03063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Through the use of modified nucleotides, synthetic nucleic acids have found several fields of application within biotechnology and in the pharmaceutical industry. We have previously introduced nucleotides with an additional functional nucleobase linked to C2' of arabinonucleotides (BX). These double-headed nucleotides fit neatly into DNA·DNA duplexes, where they can replace the corresponding natural dinucleotides and thus condense the molecular information. Here, we introduce a 2'-deoxy version of the BX design with inversion of the C2' stereochemistry (dSBX) with the aim of obtaining improved RNA recognition. Specifically, dSBX analogues with cytosine or isocytosine attached to C2' of 2'-deoxyuridine (dSUC and dSUiC) were synthesized and evaluated in duplexes. Whereas the dSBX design did not outperform the BX design in terms of mimicking dinucleotides in nucleic acid duplexes, it was able to engage in reverse Watson-Crick pairing using its 2'-base. This was evident from the ability of the dSUC cytosine to form stable mis-matching base pairs with opposite cytosines identified as hemiprotonated C·C+ pairs. Furthermore, specific base-pairing with guanine was only observed for the isocytosine-bearing dSUiC monomer. Very stable duplexes were obtained with dSUC/iC monomers in each strand indicating that fully modified double-headed nucleic acid sequences could be based on the dSBX design.
Collapse
Affiliation(s)
- Kasper M Beck
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
15
|
Pal S, Chandra G, Patel S, Singh S. Fluorinated Nucleosides: Synthesis, Modulation in Conformation and Therapeutic Application. CHEM REC 2022; 22:e202100335. [PMID: 35253973 DOI: 10.1002/tcr.202100335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/22/2022] [Indexed: 12/17/2022]
Abstract
Over the last twenty years, fluorination on nucleoside has established itself as the most promising tool to use to get biologically active compounds that could sustain the clinical trial by affecting the pharmacodynamics and pharmacokinetic properties. Due to fluorine's inherent unique properties and its judicious introduction into the molecule, makes the corresponding nucleoside metabolically very stable, lipophilic, and opens a new site of intermolecular binding. Fluorination on various nucleosides has been extensively studied as a result, a series of fluorinated nucleosides come up for different therapeutic uses which are either approved by the FDA or under the advanced stage of the clinical trial. Here in this review, we are summarizing the latest development in the chemistry of fluorination on nucleoside that led to varieties of new analogs like carbocyclic, acyclic, and conformationally biased nucleoside and their biological properties, the influence of fluorine on conformation, oligonucleotide stability, and their use in therapeutics.
Collapse
Affiliation(s)
- Shantanu Pal
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar Argul, Odisha, India, 752050
| | - Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar, India, 824236
| | - Samridhi Patel
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar, India, 824236
| | - Sakshi Singh
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar Argul, Odisha, India, 752050
| |
Collapse
|
16
|
Knott GJ, Chong YS, Passon DM, Liang XH, Deplazes E, Conte MR, Marshall AC, Lee M, Fox AH, Bond CS. Structural basis of dimerization and nucleic acid binding of human DBHS proteins NONO and PSPC1. Nucleic Acids Res 2021; 50:522-535. [PMID: 34904671 PMCID: PMC8754649 DOI: 10.1093/nar/gkab1216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/29/2022] Open
Abstract
The Drosophila behaviour/human splicing (DBHS) proteins are a family of RNA/DNA binding cofactors liable for a range of cellular processes. DBHS proteins include the non-POU domain-containing octamer-binding protein (NONO) and paraspeckle protein component 1 (PSPC1), proteins capable of forming combinatorial dimers. Here, we describe the crystal structures of the human NONO and PSPC1 homodimers, representing uncharacterized DBHS dimerization states. The structures reveal a set of conserved contacts and structural plasticity within the dimerization interface that provide a rationale for dimer selectivity between DBHS paralogues. In addition, solution X-ray scattering and accompanying biochemical experiments describe a mechanism of cooperative RNA recognition by the NONO homodimer. Nucleic acid binding is reliant on RRM1, and appears to be affected by the orientation of RRM1, influenced by a newly identified 'β-clasp' structure. Our structures shed light on the molecular determinants for DBHS homo- and heterodimerization and provide a basis for understanding how DBHS proteins cooperatively recognize a broad spectrum of RNA targets.
Collapse
Affiliation(s)
- Gavin J Knott
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Yee Seng Chong
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Daniel M Passon
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Xue-Hai Liang
- Department of Core Antisense Research, IONIS Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Evelyne Deplazes
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Andrew C Marshall
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Mihwa Lee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic 3086, Australia
| | - Archa H Fox
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
17
|
Ageely EA, Chilamkurthy R, Jana S, Abdullahu L, O'Reilly D, Jensik PJ, Damha MJ, Gagnon KT. Gene editing with CRISPR-Cas12a guides possessing ribose-modified pseudoknot handles. Nat Commun 2021; 12:6591. [PMID: 34782635 PMCID: PMC8593028 DOI: 10.1038/s41467-021-26989-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/01/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas12a is a leading technology for development of model organisms, therapeutics, and diagnostics. These applications could benefit from chemical modifications that stabilize or tune enzyme properties. Here we chemically modify ribonucleotides of the AsCas12a CRISPR RNA 5' handle, a pseudoknot structure that mediates binding to Cas12a. Gene editing in human cells required retention of several native RNA residues corresponding to predicted 2'-hydroxyl contacts. Replacing these RNA residues with a variety of ribose-modified nucleotides revealed 2'-hydroxyl sensitivity. Modified 5' pseudoknots with as little as six out of nineteen RNA residues, with phosphorothioate linkages at remaining RNA positions, yielded heavily modified pseudoknots with robust cell-based editing. High trans activity was usually preserved with cis activity. We show that the 5' pseudoknot can tolerate near complete modification when design is guided by structural and chemical compatibility. Rules for modification of the 5' pseudoknot should accelerate therapeutic development and be valuable for CRISPR-Cas12a diagnostics.
Collapse
Affiliation(s)
- Eman A Ageely
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, USA
| | - Ramadevi Chilamkurthy
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, IL, USA
| | - Sunit Jana
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Daniel O'Reilly
- Department of Chemistry, McGill University, Montreal, Canada
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Philip J Jensik
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Canada.
| | - Keith T Gagnon
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, USA.
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, IL, USA.
| |
Collapse
|
18
|
From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies. Biomedicines 2021; 9:biomedicines9050550. [PMID: 34068948 PMCID: PMC8156014 DOI: 10.3390/biomedicines9050550] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides interact with a target RNA via Watson-Crick complementarity, affecting RNA-processing reactions such as mRNA degradation, pre-mRNA splicing, or mRNA translation. Since they were proposed decades ago, several have been approved for clinical use to correct genetic mutations. Three types of mechanisms of action (MoA) have emerged: RNase H-dependent degradation of mRNA directed by short chimeric antisense oligonucleotides (gapmers), correction of splicing defects via splice-modulation oligonucleotides, and interference of gene expression via short interfering RNAs (siRNAs). These antisense-based mechanisms can tackle several genetic disorders in a gene-specific manner, primarily by gene downregulation (gapmers and siRNAs) or splicing defects correction (exon-skipping oligos). Still, the challenge remains for the repair at the single-nucleotide level. The emerging field of epitranscriptomics and RNA modifications shows the enormous possibilities for recoding the transcriptome and repairing genetic mutations with high specificity while harnessing endogenously expressed RNA processing machinery. Some of these techniques have been proposed as alternatives to CRISPR-based technologies, where the exogenous gene-editing machinery needs to be delivered and expressed in the human cells to generate permanent (DNA) changes with unknown consequences. Here, we review the current FDA-approved antisense MoA (emphasizing some enabling technologies that contributed to their success) and three novel modalities based on post-transcriptional RNA modifications with therapeutic potential, including ADAR (Adenosine deaminases acting on RNA)-mediated RNA editing, targeted pseudouridylation, and 2′-O-methylation.
Collapse
|
19
|
Cabrero C, Martín-Pintado N, Mazzini S, Gargallo R, Eritja R, Aviñó A, González C. Structural Effects of Incorporation of 2'-Deoxy-2'2'-Difluorodeoxycytidine (Gemcitabine) in A- and B-Form Duplexes. Chemistry 2021; 27:7351-7355. [PMID: 33772916 DOI: 10.1002/chem.202100503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 11/06/2022]
Abstract
We report the structural effect of 2'-deoxy-2',2'-difluorocytidine (dFdC) insertions in the DNA strand of a DNA : RNA hybrid duplex and in a self-complementary DNA : DNA duplex. In both cases, the modification slightly destabilizes the duplex and provokes minor local distortions that are more pronounced in the case of the DNA : RNA hybrid. Analysis of the solution structures determined by NMR methods show that dFdC is an adaptable derivative that adopts North type sugar conformation when inserted in pure DNA, or a South sugar conformation in the context of DNA : RNA hybrids. In this latter context, South sugar pucker favors the formation of a 2'F⋅⋅H8 attractive interaction with a neighboring purine, which compensates the destabilizing effect of base pair distortions. These interactions share some features with pseudohydrogen bonds described previously in other nucleic acids structures with fluorine modified sugars.
Collapse
Affiliation(s)
- Cristina Cabrero
- Instituto de Química Física Rocasolano, CSIC, Serrano, 119, 28006, Madrid, Spain
| | - Nerea Martín-Pintado
- Instituto de Química Física Rocasolano, CSIC, Serrano, 119, 28006, Madrid, Spain
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Raimundo Gargallo
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1, 08028, Barcelona, Spain.,BIOESTRAN associated unit UB-CSIC, 08028, Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) CIBER-BBN, Jordi, Girona 18-26, 08034, Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) CIBER-BBN, Jordi, Girona 18-26, 08034, Barcelona, Spain
| | - Carlos González
- Instituto de Química Física Rocasolano, CSIC, Serrano, 119, 28006, Madrid, Spain.,BIOESTRAN associated unit UB-CSIC, 08028, Barcelona, Spain
| |
Collapse
|
20
|
Liczner C, Duke K, Juneau G, Egli M, Wilds CJ. Beyond ribose and phosphate: Selected nucleic acid modifications for structure-function investigations and therapeutic applications. Beilstein J Org Chem 2021; 17:908-931. [PMID: 33981365 PMCID: PMC8093555 DOI: 10.3762/bjoc.17.76] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Over the past 25 years, the acceleration of achievements in the development of oligonucleotide-based therapeutics has resulted in numerous new drugs making it to the market for the treatment of various diseases. Oligonucleotides with alterations to their scaffold, prepared with modified nucleosides and solid-phase synthesis, have yielded molecules with interesting biophysical properties that bind to their targets and are tolerated by the cellular machinery to elicit a therapeutic outcome. Structural techniques, such as crystallography, have provided insights to rationalize numerous properties including binding affinity, nuclease stability, and trends observed in the gene silencing. In this review, we discuss the chemistry, biophysical, and structural properties of a number of chemically modified oligonucleotides that have been explored for gene silencing.
Collapse
Affiliation(s)
- Christopher Liczner
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Kieran Duke
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Gabrielle Juneau
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Martin Egli
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, and Center for Structural Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
21
|
Akabane-Nakata M, Erande ND, Kumar P, Degaonkar R, Gilbert JA, Qin J, Mendez M, Woods LB, Jiang Y, Janas M, O’Flaherty DK, Zlatev I, Schlegel M, Matsuda S, Egli M, Manoharan M. siRNAs containing 2'-fluorinated Northern-methanocarbacyclic (2'-F-NMC) nucleotides: in vitro and in vivo RNAi activity and inability of mitochondrial polymerases to incorporate 2'-F-NMC NTPs. Nucleic Acids Res 2021; 49:2435-2449. [PMID: 33577685 PMCID: PMC7969009 DOI: 10.1093/nar/gkab050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/13/2021] [Accepted: 02/07/2021] [Indexed: 02/01/2023] Open
Abstract
We recently reported the synthesis of 2'-fluorinated Northern-methanocarbacyclic (2'-F-NMC) nucleotides, which are based on a bicyclo[3.1.0]hexane scaffold. Here, we analyzed RNAi-mediated gene silencing activity in cell culture and demonstrated that a single incorporation of 2'-F-NMC within the guide or passenger strand of the tri-N-acetylgalactosamine-conjugated siRNA targeting mouse Ttr was generally well tolerated. Exceptions were incorporation of 2'-F-NMC into the guide strand at positions 1 and 2, which resulted in a loss of the in vitro activity. Activity at position 1 was recovered when the guide strand was modified with a 5' phosphate, suggesting that the 2'-F-NMC is a poor substrate for 5' kinases. In mice, the 2'-F-NMC-modified siRNAs had comparable RNAi potencies to the parent siRNA. 2'-F-NMC residues in the guide seed region position 7 and at positions 10, 11 and 12 were well tolerated. Surprisingly, when the 5'-phosphate mimic 5'-(E)-vinylphosphonate was attached to the 2'-F-NMC at the position 1 of the guide strand, activity was considerably reduced. The steric constraints of the bicyclic 2'-F-NMC may impair formation of hydrogen-bonding interactions between the vinylphosphonate and the MID domain of Ago2. Molecular modeling studies explain the position- and conformation-dependent RNAi-mediated gene silencing activity of 2'-F-NMC. Finally, the 5'-triphosphate of 2'-F-NMC is not a substrate for mitochondrial RNA and DNA polymerases, indicating that metabolites should not be toxic.
Collapse
Affiliation(s)
| | - Namrata D Erande
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Pawan Kumar
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Rohan Degaonkar
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Jason A Gilbert
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - June Qin
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Martha Mendez
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Lauren Blair Woods
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Yongfeng Jiang
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Maja M Janas
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Derek K O’Flaherty
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Mark K Schlegel
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| |
Collapse
|
22
|
Savage JC, Shinde P, Yao Y, Davare MA, Shinde U. A Broccoli aptamer chimera yields a fluorescent K + sensor spanning physiological concentrations. Chem Commun (Camb) 2021; 57:1344-1347. [PMID: 33432937 DOI: 10.1039/d0cc07042d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The RNA aptamer Broccoli accepts 2'fluorinated (2'F) pyrimidine nucleotide incorporation without perturbation of structure or fluorescence in the presence of potassium and DFHBI. However, the modification decreases Broccoli's apparent affinity for K+ >30-fold. A chimera of Broccoli RNAs with mixed chemistries displays linear fluorescent gain spanning physiological K+ concentrations, yielding an effective RNA-based fluorescent K+ sensor.
Collapse
Affiliation(s)
- Jonathan C Savage
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
23
|
Guo F, Trajkovski M, Li Q, Plavec J, Xi Z, Zhou C. Synthesis and Structure of 4'-CF 3-Uridine Modified Oligoribonucleotides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Gruenke PR, Alam KK, Singh K, Burke DH. 2'-fluoro-modified pyrimidines enhance affinity of RNA oligonucleotides to HIV-1 reverse transcriptase. RNA (NEW YORK, N.Y.) 2020; 26:1667-1679. [PMID: 32732393 PMCID: PMC7566575 DOI: 10.1261/rna.077008.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/24/2020] [Indexed: 06/01/2023]
Abstract
Nucleic acid aptamers can be chemically modified to enhance function, but modifying previously selected aptamers can have nontrivial structural and functional consequences. We present a reselection strategy to evaluate the impact of several modifications on preexisting aptamer pools. RNA aptamer libraries with affinity to HIV-1 reverse transcriptase (RT) were retranscribed with 2'-F, 2'-OMe, or 2'-NH2 pyrimidines and subjected to three additional selection cycles. RT inhibition was observed for representative aptamers from several structural families identified by high-throughput sequencing when transcribed with their corresponding modifications. Thus, reselection identified specialized subsets of aptamers that tolerated chemical modifications from unmodified preenriched libraries. Inhibition was the strongest with the 2'-F-pyrimidine (2'-FY) RNAs, as compared to inhibition by the 2'-OMeY and 2'-NH2Y RNAs. Unexpectedly, a diverse panel of retroviral RTs were strongly inhibited by all 2'-FY-modified transcripts, including sequences that do not inhibit those RTs as unmodified RNA. The magnitude of promiscuous RT inhibition was proportional to mole fraction 2'-FY in the transcript. RT binding affinity by 2'-FY transcripts was more sensitive to salt concentration than binding by unmodified transcripts, indicating that interaction with retroviral RTs is more ionic in character for 2'-FY RNA than for unmodified 2'-OH RNA. These surprising features of 2'-FY-modified RNA may have general implications for applied aptamer technologies.
Collapse
Affiliation(s)
- Paige R Gruenke
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Khalid K Alam
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Kamal Singh
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA
| | - Donald H Burke
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65211, USA
- Department of Biological Engineering, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
25
|
Ghimire C, Wang H, Li H, Vieweger M, Xu C, Guo P. RNA Nanoparticles as Rubber for Compelling Vessel Extravasation to Enhance Tumor Targeting and for Fast Renal Excretion to Reduce Toxicity. ACS NANO 2020; 14:13180-13191. [PMID: 32902260 PMCID: PMC7799665 DOI: 10.1021/acsnano.0c04863] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Rubber is a fascinating material in both industry and daily life. The development of elastomeric material in nanotechnology is imperative due to its economic and technological potential. By virtue of their distinctive physicochemical properties, nucleic acids have been extensively explored in material science. The Phi29 DNA packaging motor contains a 3WJ with three angles of 97°, 125°, and 138°. Here, the rubber-like property of RNA architectures was investigated using optical tweezers and in vivo imaging technologies. The 3WJ 97° interior angle was contracted or stretched to 60°, 90°, and 108° at will to build elegant RNA triangles, squares, pentagons, cubes, tetrahedrons, dendrimers, and prisms. RNA nanoarchitecture was stretchable and shrinkable by optical tweezer with multiple extension and relaxation repeats like a rubber. Comparing to gold and iron nanoparticles with the same size, RNA nanoparticles display stronger cancer-targeting outcomes, while less accumulation in healthy organs. Generally, the upper limit of renal excretion is 5.5 nm; however, the 5, 10, and 20 nm RNA nanoparticles passed the renal filtration and resumed their original structure identified in urine. These findings solve two previous mysteries: (1) Why RNA nanoparticles have an unusually high tumor targeting efficiency since their rubber or amoeba-like deformation property enables them to squeeze out of the leaky vasculature to improve the EPR effect; and (2) why RNA nanoparticles remain non-toxic since they can be rapidly cleared from the body via renal excretion into urine with little accumulation in the body. Considering its controllable shape and size plus its rubber-like property, RNA holds great promises for industrial and biomedical applications especially in cancer therapeutics delivery.
Collapse
Affiliation(s)
| | | | | | - Mario Vieweger
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Congcong Xu
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
26
|
Himmelstoß M, Erharter K, Renard E, Ennifar E, Kreutz C, Micura R. 2'- O-Trifluoromethylated RNA - a powerful modification for RNA chemistry and NMR spectroscopy. Chem Sci 2020; 11:11322-11330. [PMID: 34094374 PMCID: PMC8162808 DOI: 10.1039/d0sc04520a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/18/2020] [Indexed: 11/21/2022] Open
Abstract
New RNA modifications are needed to advance our toolbox for targeted manipulation of RNA. In particular, the development of high-performance reporter groups facilitating spectroscopic analysis of RNA structure and dynamics, and of RNA-ligand interactions has attracted considerable interest. To this end, fluorine labeling in conjunction with 19F-NMR spectroscopy has emerged as a powerful strategy. Appropriate probes for RNA previously focused on single fluorine atoms attached to the 5-position of pyrimidine nucleobases or at the ribose 2'-position. To increase NMR sensitivity, trifluoromethyl labeling approaches have been developed, with the ribose 2'-SCF3 modification being the most prominent one. A major drawback of the 2'-SCF3 group, however, is its strong impact on RNA base pairing stability. Interestingly, RNA containing the structurally related 2'-OCF3 modification has not yet been reported. Therefore, we set out to overcome the synthetic challenges toward 2'-OCF3 labeled RNA and to investigate the impact of this modification. We present the syntheses of 2'-OCF3 adenosine and cytidine phosphoramidites and their incorporation into oligoribonucleotides by solid-phase synthesis. Importantly, it turns out that the 2'-OCF3 group has only a slight destabilizing effect when located in double helical regions which is consistent with the preferential C3'-endo conformation of the 2'-OCF3 ribose as reflected in the 3 J (H1'-H2') coupling constants. Furthermore, we demonstrate the exceptionally high sensitivity of the new label in 19F-NMR analysis of RNA structure equilibria and of RNA-small molecule interactions. The study is complemented by a crystal structure at 0.9 Å resolution of a 27 nt hairpin RNA containing a single 2'-OCF3 group that well integrates into the minor groove. The new label carries high potential to outcompete currently applied fluorine labels for nucleic acid NMR spectroscopy because of its significantly advanced performance.
Collapse
Affiliation(s)
- Maximilian Himmelstoß
- University of Innsbruck, Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI) Innrain 80-82 6020 Innsbruck Austria
| | - Kevin Erharter
- University of Innsbruck, Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI) Innrain 80-82 6020 Innsbruck Austria
| | - Eva Renard
- Université de Strasbourg, Architecture et Réactivité de l'ARN-CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire 67000 Strasbourg France
| | - Eric Ennifar
- Université de Strasbourg, Architecture et Réactivité de l'ARN-CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire 67000 Strasbourg France
| | - Christoph Kreutz
- University of Innsbruck, Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI) Innrain 80-82 6020 Innsbruck Austria
| | - Ronald Micura
- University of Innsbruck, Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI) Innrain 80-82 6020 Innsbruck Austria
| |
Collapse
|
27
|
Glazier DA, Liao J, Roberts BL, Li X, Yang K, Stevens CM, Tang W. Chemical Synthesis and Biological Application of Modified Oligonucleotides. Bioconjug Chem 2020; 31:1213-1233. [PMID: 32227878 DOI: 10.1021/acs.bioconjchem.0c00060] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA plays a myriad of roles in the body including the coding, decoding, regulation, and expression of genes. RNA oligonucleotides have garnered significant interest as therapeutics via antisense oligonucleotides or small interfering RNA strategies for the treatment of diseases ranging from hyperlipidemia, HCV, and others. Additionally, the recently developed CRISPR-Cas9 mediated gene editing strategy also relies on Cas9-associated RNA strands. However, RNA presents numerous challenges as both a synthetic target and a potential therapeutic. RNA is inherently unstable, difficult to deliver into cells, and potentially immunogenic by itself or upon modification. Despite these challenges, with the help of chemically modified oligonucleotides, multiple RNA-based drugs have been approved by the FDA. The progress is made possible due to the nature of chemically modified oligonucleotides bearing advantages of nuclease stability, stronger binding affinity, and some other unique properties. This review will focus on the chemical synthesis of RNA and its modified versions. How chemical modifications of the ribose units and of the phosphatediester backbone address the inherent issues with using native RNA for biological applications will be discussed along the way.
Collapse
Affiliation(s)
- Daniel A Glazier
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Junzhuo Liao
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Brett L Roberts
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xiaolei Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ka Yang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Christopher M Stevens
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
28
|
Scott T, Soemardy C, Morris KV. Development of a Facile Approach for Generating Chemically Modified CRISPR/Cas9 RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1176-1185. [PMID: 32069700 PMCID: PMC7019045 DOI: 10.1016/j.omtn.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
The RNA-guided, modified type II prokaryotic CRISPR with CRISPR-associated proteins (CRISPR/Cas9) system represents a simple gene-editing platform with applications in biotechnology and also potentially as a therapeutic modality. The system requires a small guide RNA (sgRNA) and a catalytic Cas9 protein to induce non-homologous end joining (NHEJ) at break sites, resulting in the formation of inactivating mutations, or through homology-directed repair (HDR) can engineer in specific sequence changes. Although CRISPR/Cas9 is a powerful technology, the effects can be limited as a result of nuclease-mediated degradation of the RNA components. Significant research has focused on the solid-phase synthesis of CRISPR RNA components with chemically modified bases, but this approach is technically challenging and expensive. Development of a simple, generic approach to generate chemically modified CRISPR RNAs may broaden applications that require nuclease-resistant CRISPR components. We report here the development of a novel, functional U-replaced trans-activating RNA (tracrRNA) that can be in vitro transcribed with chemically stabilizing 2'-fluoro (2'F)-pyrimidines. These data represent a unique and facile approach to generating chemically stabilized CRISPR RNA.
Collapse
Affiliation(s)
- Tristan Scott
- Center for Gene Therapy, City of Hope-Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Citradewi Soemardy
- Center for Gene Therapy, City of Hope-Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Kevin V Morris
- Center for Gene Therapy, City of Hope-Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
29
|
Li Q, Chen J, Trajkovski M, Zhou Y, Fan C, Lu K, Tang P, Su X, Plavec J, Xi Z, Zhou C. 4′-Fluorinated RNA: Synthesis, Structure, and Applications as a Sensitive 19F NMR Probe of RNA Structure and Function. J Am Chem Soc 2020; 142:4739-4748. [DOI: 10.1021/jacs.9b13207] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qiang Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jialiang Chen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Marko Trajkovski
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chaochao Fan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kuan Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Pingping Tang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuncheng Su
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
30
|
Akabane-Nakata M, Kumar P, Erande ND, Matsuda S, Manoharan M. Synthesis of 2'-Fluorinated Northern Methanocarbacyclic (2'-F-NMC) Nucleosides and Their Incorporation Into Oligonucleotides. ACTA ACUST UNITED AC 2020; 80:e103. [PMID: 31985895 DOI: 10.1002/cpnc.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article describes chemical synthesis of 2'-fluorinated Northern methanocarbacyclic (2'-F-NMC) nucleosides and phosphoramidites, based on a bicyclo[3.1.0]hexane scaffold bearing all four natural nucleobases (U, C, A, and G), and their incorporation into oligonucleotides by solid-supported synthesis. This synthesis starts from commercially available cyclopent-2-en-1-one to obtain the fluorinated carbocyclic pseudosugar intermediate (S.13), which can be converted to the uridine intermediate by condensation with isocyanate, followed by cyclization, and to adenine and guanine precursors by microwave-assisted reactions. All four 2'-F-NMC phosphoramidites are synthesized from S.13 in a convergent approach, and the monomers are used for synthesis of 2'-F-NMC-modified oligonucleotides. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Preparation of fluorinated carbocyclic pseudosugar intermediate Basic Protocol 2: Preparation of 2'-F-NMC uridine and cytidine phosphoramidites Basic Protocol 3: Preparation of 2'-F-NMC adenosine phosphoramidite Basic Protocol 4: Preparation of 2'-F-NMC guanosine phosphoramidite Basic Protocol 5: Synthesis of oligonucleotides containing 2'-F-NMC.
Collapse
Affiliation(s)
| | - Pawan Kumar
- Alnylam Pharmaceuticals, Cambridge, Massachusetts
| | | | | | | |
Collapse
|
31
|
O'Reilly D, Kartje ZJ, Ageely EA, Malek-Adamian E, Habibian M, Schofield A, Barkau CL, Rohilla KJ, DeRossett LB, Weigle AT, Damha MJ, Gagnon KT. Extensive CRISPR RNA modification reveals chemical compatibility and structure-activity relationships for Cas9 biochemical activity. Nucleic Acids Res 2019; 47:546-558. [PMID: 30517736 PMCID: PMC6344873 DOI: 10.1093/nar/gky1214] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeat) endonucleases are at the forefront of biotechnology, synthetic biology and gene editing. Methods for controlling enzyme properties promise to improve existing applications and enable new technologies. CRISPR enzymes rely on RNA cofactors to guide catalysis. Therefore, chemical modification of the guide RNA can be used to characterize structure-activity relationships within CRISPR ribonucleoprotein (RNP) enzymes and identify compatible chemistries for controlling activity. Here, we introduce chemical modifications to the sugar–phosphate backbone of Streptococcus pyogenes Cas9 CRISPR RNA (crRNA) to probe chemical and structural requirements. Ribose sugars that promoted or accommodated A-form helical architecture in and around the crRNA ‘seed’ region were tolerated best. A wider range of modifications were acceptable outside of the seed, especially D-2′-deoxyribose, and we exploited this property to facilitate exploration of greater chemical diversity within the seed. 2′-fluoro was the most compatible modification whereas bulkier O-methyl sugar modifications were less tolerated. Activity trends could be rationalized for selected crRNAs using RNP stability and DNA target binding experiments. Cas9 activity in vitro tolerated most chemical modifications at predicted 2′-hydroxyl contact positions, whereas editing activity in cells was much less tolerant. The biochemical principles of chemical modification identified here will guide CRISPR-Cas9 engineering and enable new or improved applications.
Collapse
Affiliation(s)
- Daniel O'Reilly
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Zachary J Kartje
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Eman A Ageely
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Elise Malek-Adamian
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Maryam Habibian
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Annabelle Schofield
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Christopher L Barkau
- Department of Biochemistry & Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Kushal J Rohilla
- Department of Biochemistry & Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Lauren B DeRossett
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Austin T Weigle
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Keith T Gagnon
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA.,Department of Biochemistry & Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois 62901, USA
| |
Collapse
|
32
|
Barkau CL, O'Reilly D, Rohilla KJ, Damha MJ, Gagnon KT. Rationally Designed Anti-CRISPR Nucleic Acid Inhibitors of CRISPR-Cas9. Nucleic Acid Ther 2019; 29:136-147. [PMID: 30990769 PMCID: PMC6555185 DOI: 10.1089/nat.2018.0758] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/15/2019] [Indexed: 12/22/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) RNAs and their associated effector (Cas) enzymes are being developed into promising therapeutics to treat disease. However, CRISPR-Cas enzymes might produce unwanted gene editing or dangerous side effects. Drug-like molecules that can inactivate CRISPR-Cas enzymes could help facilitate safer therapeutic development. Based on the requirement of guide RNA and target DNA interaction by Cas enzymes, we rationally designed small nucleic acid-based inhibitors (SNuBs) of Streptococcus pyogenes (Sp) Cas9. Inhibitors were initially designed as 2'-O-methyl-modified oligonucleotides that bound the CRISPR RNA guide sequence (anti-guide) or repeat sequence (anti-tracr), or DNA oligonucleotides that bound the protospacer adjacent motif (PAM)-interaction domain (anti-PAM) of SpCas9. Coupling anti-PAM and anti-tracr modules together was synergistic and resulted in high binding affinity and efficient inhibition of Cas9 DNA cleavage activity. Incorporating 2'F-RNA and locked nucleic acid nucleotides into the anti-tracr module resulted in greater inhibition as well as dose-dependent suppression of gene editing in human cells. CRISPR SNuBs provide a platform for rational design of CRISPR-Cas enzyme inhibitors that should translate to other CRISPR effector enzymes and enable better control over CRISPR-based applications.
Collapse
Affiliation(s)
- Christopher L. Barkau
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois
| | - Daniel O'Reilly
- Department of Chemistry, McGill University, Montreal, Canada
| | - Kushal J. Rohilla
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois
| | - Masad J. Damha
- Department of Chemistry, McGill University, Montreal, Canada
| | - Keith T. Gagnon
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois
| |
Collapse
|
33
|
Pfund E, Dupouy C, Rouanet S, Legay R, Lebargy C, Vasseur JJ, Lequeux T. Difluorophosphonylated Allylic Ether Moiety as a 2′-Modification of RNA-Type Molecules: Synthesis, Thermal, and Metabolic Studies. Org Lett 2019; 21:4803-4807. [DOI: 10.1021/acs.orglett.9b01689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emmanuel Pfund
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique, UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd du Maréchal Juin, 14050 Caen, France
| | - Christelle Dupouy
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier, CNRS, ENSCM, 34060 Montpellier, France
| | - Sonia Rouanet
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier, CNRS, ENSCM, 34060 Montpellier, France
| | - Rémi Legay
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique, UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd du Maréchal Juin, 14050 Caen, France
| | - Cyril Lebargy
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique, UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd du Maréchal Juin, 14050 Caen, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier, CNRS, ENSCM, 34060 Montpellier, France
| | - Thierry Lequeux
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique, UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd du Maréchal Juin, 14050 Caen, France
| |
Collapse
|
34
|
Savage JC, Shinde P, Bächinger HP, Davare MA, Shinde U. A ribose modification of Spinach aptamer accelerates lead(ii) cation association in vitro. Chem Commun (Camb) 2019; 55:5882-5885. [PMID: 31037281 DOI: 10.1039/c9cc01697j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Spinach aptamer fluorescence requires formation of a tripartite complex composed of folded RNA, a GFP-like fluorophore, and selective cation coordination. 2'F pyrimidine modified Spinach has retained fluorescence, increased chemical stability, and accelerated cation association via increased G-quadruplex dynamics, thereby reducing readout time and enhancing Spinach utility for aqueous Pb2+ detection.
Collapse
Affiliation(s)
- Jonathan C Savage
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Pushkar Shinde
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA. and MSC181105, Emory University Main Campus, 1762 Clifton Rd, Atlanta, GA 30022, USA
| | - Hans Peter Bächinger
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA. and Research Department, Shriners Hospital, Portland, OR 97239, USA
| | - Monika A Davare
- Papé Pediatric Research Institute, Division of Pediatric Hematology/Oncology, Department of Pediatrics, Oregon Health & Sciences University, Portland, OR, USA
| | - Ujwal Shinde
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| |
Collapse
|
35
|
Akabane-Nakata M, Kumar P, Das RS, Erande ND, Matsuda S, Egli M, Manoharan M. Synthesis and Biophysical Characterization of RNAs Containing 2'-Fluorinated Northern Methanocarbacyclic Nucleotides. Org Lett 2019; 21:1963-1967. [PMID: 30892051 DOI: 10.1021/acs.orglett.8b04153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2'-Fluorinated Northern methanocarbacyclic (2'-F-NMC) nucleosides and phosphoramidites, based on a bicyclo[3.1.0]hexane scaffold bearing all four natural nucleobases (U, C, A, and G), were synthesized to enable exploration of this novel nucleotide modification related to the clinically validated 2'-deoxy-2'-fluororibonucleotides (2'-F-RNA). Biophysical properties of the 2'-F-NMC-containing oligonucleotides were evaluated. A duplex of 2'-F-NMC-modified oligonucleotide with RNA exhibited thermal stability similar to that of the parent RNA duplex, 2'-F-NMC-modified oligonucleotides had higher stability against 5'- and 3'-exonucleolytic degradation than the corresponding oligonucleotides modified with 2'-F-RNA, and 2'-F-NMC-modified oligonucleotides exhibited higher lipophilicity than the corresponding RNA oligonucleotides as well as those modified with 2'-F-RNA.
Collapse
Affiliation(s)
- Masaaki Akabane-Nakata
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| | - Pawan Kumar
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| | - Rajat S Das
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| | - Namrata D Erande
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine , Vanderbilt University , Nashville , Tennessee 37232 , United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| |
Collapse
|
36
|
Shubham S, Hoinka J, Banerjee S, Swanson E, Dillard JA, Lennemann NJ, Przytycka TM, Maury W, Nilsen-Hamilton M. A 2'FY-RNA Motif Defines an Aptamer for Ebolavirus Secreted Protein. Sci Rep 2018; 8:12373. [PMID: 30120364 PMCID: PMC6098113 DOI: 10.1038/s41598-018-30590-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/30/2018] [Indexed: 11/23/2022] Open
Abstract
With properties such as stability to long-term storage and amenability to repetitive use, nucleic acid aptamers are compatible with many sensing/transducing platforms intended for use in remote locations. Sensors with these properties are important for quickly identifying ebolavirus outbreaks, which frequently start in locations that lack sophisticated equipment. Soluble glycoprotein (sGP), an excellent biomarker for ebolaviruses, is produced from the same gene as the ebolavirus glycoprotein GP1,2 that decorates the surface of the viral particle and is secreted in abundance into the blood stream even during the early stages of infection. Here, we report the selection and properties of a 2'fluoro pyrimidine (2'FY)-modified RNA aptamer, 39SGP1A, that specifically binds sGP. We demonstrate by computational and biochemical analysis that the recognition motif of 39SGP1A is a novel polypyrimidine-rich sequence. Replacement of -F by -OH in the 2' position of the ribose resulted in complete loss of affinity for sGP. The protein motif to which the aptamer binds requires an intact sGP dimer and binds to an epitope conserved between Ebola virus (EBOV) and Sudan virus (SUDV) sGP, the most divergent Ebolavirus species. This identifies 39SGP1A as an excellent option for integration on a sensor platform to detect ebolavirus infections.
Collapse
Affiliation(s)
- Shambhavi Shubham
- Iowa State University, Ames, IA, USA
- Integrated DNA Technologies, Coralville, IA, USA
| | - Jan Hoinka
- National Center for Biotechnology Information, NLM, NIH, Bethesda, MD, USA
| | | | - Emma Swanson
- Iowa State University, Ames, IA, USA
- Aptalogic Inc., Ames, IA, USA
| | - Jacob A Dillard
- Dept. Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | | | - Teresa M Przytycka
- National Center for Biotechnology Information, NLM, NIH, Bethesda, MD, USA
| | - Wendy Maury
- Dept. Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
37
|
Kano T, Katsuragi Y, Maeda Y, Ueno Y. Synthesis and properties of 4′-C-aminoalkyl-2′-fluoro-modified RNA oligomers. Bioorg Med Chem 2018; 26:4574-4582. [DOI: 10.1016/j.bmc.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 01/16/2023]
|
38
|
Mir A, Alterman JF, Hassler MR, Debacker AJ, Hudgens E, Echeverria D, Brodsky MH, Khvorova A, Watts JK, Sontheimer EJ. Heavily and fully modified RNAs guide efficient SpyCas9-mediated genome editing. Nat Commun 2018; 9:2641. [PMID: 29980686 PMCID: PMC6035171 DOI: 10.1038/s41467-018-05073-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022] Open
Abstract
RNA-based drugs depend on chemical modifications to increase potency and to decrease immunogenicity in vivo. Chemical modification will likely improve the guide RNAs involved in CRISPR-Cas9-based therapeutics as well. Cas9 orthologs are RNA-guided microbial effectors that cleave DNA. Here, we explore chemical modifications at all positions of the crRNA guide and tracrRNA cofactor. We identify several heavily modified versions of crRNA and tracrRNA that are more potent than their unmodified counterparts. In addition, we describe fully chemically modified crRNAs and tracrRNAs (containing no 2'-OH groups) that are functional in human cells. These designs will contribute to Cas9-based therapeutics since heavily modified RNAs tend to be more stable in vivo (thus increasing potency). We anticipate that our designs will improve the use of Cas9 via RNP and mRNA delivery for in vivo and ex vivo purposes.
Collapse
Affiliation(s)
- Aamir Mir
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Julia F Alterman
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Matthew R Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Alexandre J Debacker
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Edward Hudgens
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Michael H Brodsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
39
|
Guo F, Li Q, Zhou C. Synthesis and biological applications of fluoro-modified nucleic acids. Org Biomol Chem 2018; 15:9552-9565. [PMID: 29086791 DOI: 10.1039/c7ob02094e] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Owing to the unique physical properties of a fluorine atom, incorporating fluoro-modifications into nucleic acids offers striking biophysical and biochemical features, and thus significantly extends the breadth and depth of biological applications of nucleic acids. In this review, fluoro-modified nucleic acids that have been synthesized through either solid phase synthesis or the enzymatic approach are briefly summarised, followed by a section describing their biomedical applications in nucleic acid-based therapeutics, 18F PET imaging and mechanistic studies of DNA modifying enzymes. In the last part, the utility of 19F NMR and MRI for probing the structure, dynamics and molecular interactions of fluorinated nucleic acids is reviewed.
Collapse
Affiliation(s)
- Fengmin Guo
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | |
Collapse
|
40
|
Yin H, Song CQ, Suresh S, Wu Q, Walsh S, Rhym LH, Mintzer E, Bolukbasi MF, Zhu LJ, Kauffman K, Mou H, Oberholzer A, Ding J, Kwan SY, Bogorad RL, Zatsepin T, Koteliansky V, Wolfe SA, Xue W, Langer R, Anderson DG. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol 2017; 35:1179-1187. [PMID: 29131148 PMCID: PMC5901668 DOI: 10.1038/nbt.4005] [Citation(s) in RCA: 337] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 10/09/2017] [Indexed: 12/12/2022]
Abstract
Efficient genome editing with Cas9-sgRNA in vivo has required the use of viral delivery systems, which have limitations for clinical applications. Translational efforts to develop other RNA therapeutics have shown that judicious chemical modification of RNAs can improve therapeutic efficacy by reducing susceptibility to nuclease degradation. Guided by the structure of the Cas9-sgRNA complex, we identify regions of sgRNA that can be modified while maintaining or enhancing genome-editing activity, and we develop an optimal set of chemical modifications for in vivo applications. Using lipid nanoparticle formulations of these enhanced sgRNAs (e-sgRNA) and mRNA encoding Cas9, we show that a single intravenous injection into mice induces >80% editing of Pcsk9 in the liver. Serum Pcsk9 is reduced to undetectable levels, and cholesterol levels are significantly lowered about 35% to 40% in animals. This strategy may enable non-viral, Cas9-based genome editing in the liver in clinical settings.
Collapse
Affiliation(s)
- Hao Yin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Chun-Qing Song
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sneha Suresh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Qiongqiong Wu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stephen Walsh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Luke Hyunsik Rhym
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Esther Mintzer
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mehmet Fatih Bolukbasi
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kevin Kauffman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Haiwei Mou
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Alicia Oberholzer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Junmei Ding
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Suet-Yan Kwan
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Roman L Bogorad
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Timofei Zatsepin
- Center of Translational Biomedicine, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Victor Koteliansky
- Center of Translational Biomedicine, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
41
|
Copp W, Denisov AY, Xie J, Noronha AM, Liczner C, Safaee N, Wilds CJ, Gehring K. Influence of nucleotide modifications at the C2' position on the Hoogsteen base-paired parallel-stranded duplex of poly(A) RNA. Nucleic Acids Res 2017; 45:10321-10331. [PMID: 28973475 PMCID: PMC5737284 DOI: 10.1093/nar/gkx713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/17/2017] [Indexed: 12/17/2022] Open
Abstract
Polyadenylate (poly(A)) has the ability to form a parallel duplex with Hoogsteen adenine:adenine base pairs at low pH or in the presence of ammonium ions. In order to evaluate the potential of this structural motif for nucleic acid-based nanodevices, we characterized the effects on duplex stability of substitutions of the ribose sugar with 2'-deoxyribose, 2'-O-methyl-ribose, 2'-deoxy-2'-fluoro-ribose, arabinose and 2'-deoxy-2'-fluoro-arabinose. Deoxyribose substitutions destabilized the poly(A) duplex both at low pH and in the presence of ammonium ions: no duplex formation could be detected with poly(A) DNA oligomers. Other sugar C2' modifications gave a variety of effects. Arabinose and 2'-deoxy-2'-fluoro-arabinose nucleotides strongly destabilized poly(A) duplex formation. In contrast, 2'-O-methyl and 2'-deoxy-2'-fluoro-ribo modifications were stabilizing either at pH 4 or in the presence of ammonium ions. The differential effect suggests they could be used to design molecules selectively responsive to pH or ammonium ions. To understand the destabilization by deoxyribose, we determined the structures of poly(A) duplexes with a single DNA residue by nuclear magnetic resonance spectroscopy and X-ray crystallography. The structures revealed minor structural perturbations suggesting that the combination of sugar pucker propensity, hydrogen bonding, pKa shifts and changes in hydration determine duplex stability.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada.,Groupe de recherché axé sur la structure des protéines, Montréal, Québec H3G 0B1, Canada
| | - Alexey Y Denisov
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada.,Groupe de recherché axé sur la structure des protéines, Montréal, Québec H3G 0B1, Canada
| | - Jingwei Xie
- Groupe de recherché axé sur la structure des protéines, Montréal, Québec H3G 0B1, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Anne M Noronha
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada.,Groupe de recherché axé sur la structure des protéines, Montréal, Québec H3G 0B1, Canada
| | - Christopher Liczner
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada.,Groupe de recherché axé sur la structure des protéines, Montréal, Québec H3G 0B1, Canada
| | - Nozhat Safaee
- Groupe de recherché axé sur la structure des protéines, Montréal, Québec H3G 0B1, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada.,Groupe de recherché axé sur la structure des protéines, Montréal, Québec H3G 0B1, Canada
| | - Kalle Gehring
- Groupe de recherché axé sur la structure des protéines, Montréal, Québec H3G 0B1, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| |
Collapse
|
42
|
Guo X, Leonard P, Ingale SA, Seela F. Gemcitabine, Pyrrologemcitabine, and 2'-Fluoro-2'-Deoxycytidines: Synthesis, Physical Properties, and Impact of Sugar Fluorination on Silver Ion Mediated Base Pairing. Chemistry 2017; 23:17740-17754. [PMID: 28906062 DOI: 10.1002/chem.201703427] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/05/2017] [Indexed: 01/06/2023]
Abstract
The stability of silver-mediated "dC-dC" base pairs relies not only on the structure of the nucleobase, but is also sensitive to structural modification of the sugar moiety. 2'-Fluorinated 2'-deoxycytidines with fluorine atoms in the arabino (up) and ribo (down) configuration as well as with geminal fluorine substitution (anticancer drug gemcitabine) and the novel fluorescent phenylpyrrolo-gemcitabine (ph PyrGem) have been synthesized. All the nucleosides display the recognition face of naturally occurring 2'-deoxycytidine. The nucleosides were converted into phosphoramidites and incorporated into 12-mer oligonucleotides by solid-phase synthesis. The addition of silver ions to DNA duplexes with a fluorine-modified "dC-dC" pair near the central position led to significant duplex stabilization. The increase in stability was higher for duplexes with fluorinated sugar residues than for those with an unchanged 2'-deoxyribose moiety. Similar observations were made for "dC-dT" pairs and to a minor extent for "dC-dA" pairs. The increase in silver ion mediated base-pair stability was reversed by annulation of a pyrrole ring to the cytosine moiety, as shown for 2'-fluorinated ph PyrGem in comparison with phenylpyrrolo-dC (ph PyrdC). This phenomenon results from stereoelectronic effects induced by fluoro substitution, which are transmitted from the sugar moiety to the silver ion mediated base pairs. The extent of the effect depends on the number of fluorine substituents, their configuration, and the structure of the nucleobase.
Collapse
Affiliation(s)
- Xiurong Guo
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
| | - Sachin A Ingale
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| |
Collapse
|
43
|
Huang Z, Wen W, Wu A, Niu L. Chemically Modified, α-Amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) Receptor RNA Aptamers Designed for in Vivo Use. ACS Chem Neurosci 2017; 8:2437-2445. [PMID: 28872832 DOI: 10.1021/acschemneuro.7b00211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate ion channels have three subtypes, that is, α-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA), kainate, and N-methyl-d-aspartate (NMDA) receptors. Excessive activity of these receptor subtypes either individually or collectively is involved in various neurological disorders. RNA aptamers as antagonists of these receptors are potential therapeutics. For developing aptamer therapeutics, the RNA aptamers must be chemically modified to become ribonuclease-resistant or stable in biological fluids. Using systematic evolution of ligands by exponential enrichment (SELEX) and a chemically modified library, prepared enzymatically (i.e., the library contains RNAs with 2'-fluoro modified nucleoside triphosphates or ATPs, CTPs and UTPs, but regular GTPs), we have isolated an aptamer. The short aptamer (69 nucleotides) FN1040s selectively inhibits the GluA1 and GluA2Qflip AMPA receptor subunits, whereas the full-length aptamer (101 nucleotides) FN1040 additionally inhibits GluK1, but not GluK2, kainate receptor, and GluN1a/2A and GluN1a/2B, the two major native NMDA receptors. The two aptamers show similar potency (2-4 μM) and are stable with a half-life of at least 2 days in serum-containing medium or cerebrospinal fluid. Therefore, these two aptamers are amenable for in vivo use.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| | - Wei Wen
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| | - Andrew Wu
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| | - Li Niu
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| |
Collapse
|
44
|
Hamada M. In silico approaches to RNA aptamer design. Biochimie 2017; 145:8-14. [PMID: 29032056 DOI: 10.1016/j.biochi.2017.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
RNA aptamers are ribonucleic acids that bind to specific target molecules. An RNA aptamer for a disease-related protein has great potential for development into a new drug. However, huge time and cost investments are required to develop an RNA aptamer into a pharmaceutical. Recently, SELEX combined with high-throughput sequencers (i.e., HT-SELEX) has been widely used to select candidate RNA aptamers that bind to a target protein with high affinity and specificity. After candidate selection, further optimizations such as shortening and modifying candidate sequences are performed. In these steps, in silico approaches are expected to reduce the time and cost associated with aptamer drug development. In this article, we review existing in silico approaches to RNA aptamer development, including a method for ranking the candidates of RNA aptamers from HT-SELEX data, clustering a huge number of aptamer sequences, and finding motifs amidst a set of significant RNA aptamers. It is expected that further studies in addition to these methods will be utilized for in silico RNA aptamer design, permitting a minimal number of experiments to be performed through the utilization of sophisticated computational methods.
Collapse
Affiliation(s)
- Michiaki Hamada
- Bioinformatics Laboratory, Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1, Okubo Shinjuku-ku, Tokyo 169-8555, Japan; Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 63-520, 3-4-1, Okubo Shinjuku-ku, Tokyo 169-8555, Japan; Institute for Medical-oriented Structural Biology, Waseda University, 2-2, Wakamatsu-cho Shinjuku-ku, Tokyo 162-8480, Japan; Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan; Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| |
Collapse
|
45
|
Malek-Adamian E, Guenther DC, Matsuda S, Martínez-Montero S, Zlatev I, Harp J, Burai Patrascu M, Foster DJ, Fakhoury J, Perkins L, Moitessier N, Manoharan RM, Taneja N, Bisbe A, Charisse K, Maier M, Rajeev KG, Egli M, Manoharan M, Damha MJ. 4'-C-Methoxy-2'-deoxy-2'-fluoro Modified Ribonucleotides Improve Metabolic Stability and Elicit Efficient RNAi-Mediated Gene Silencing. J Am Chem Soc 2017; 139:14542-14555. [PMID: 28937776 DOI: 10.1021/jacs.7b07582] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We designed novel 4'-modified 2'-deoxy-2'-fluorouridine (2'-F U) analogues with the aim to improve nuclease resistance and potency of therapeutic siRNAs by introducing 4'-C-methoxy (4'-OMe) as the alpha (C4'α) or beta (C4'β) epimers. The C4'α epimer was synthesized by a stereoselective route in six steps; however, both α and β epimers could be obtained by a nonstereoselective approach starting from 2'-F U. 1H NMR analysis and computational investigation of the α-epimer revealed that the 4'-OMe imparts a conformational bias toward the North-East sugar pucker, due to intramolecular hydrogen bonding and hyperconjugation effects. The α-epimer generally conceded similar thermal stability as unmodified nucleotides, whereas the β-epimer led to significant destabilization. Both 4'-OMe epimers conferred increased nuclease resistance, which can be explained by the close proximity between 4'-OMe substituent and the vicinal 5'- and 3'-phosphate group, as seen in the X-ray crystal structure of modified RNA. siRNAs containing several C4'α-epimer monomers in the sense or antisense strands triggered RNAi-mediated gene silencing with efficiencies comparable to that of 2'-F U.
Collapse
Affiliation(s)
- Elise Malek-Adamian
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Dale C Guenther
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Saúl Martínez-Montero
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Ivan Zlatev
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Joel Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Mihai Burai Patrascu
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Donald J Foster
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Johans Fakhoury
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lydia Perkins
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Nicolas Moitessier
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Rajar M Manoharan
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Nate Taneja
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Anna Bisbe
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Klaus Charisse
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Martin Maier
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | | | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Masad J Damha
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
46
|
Østergaard ME, Nichols J, Dwight TA, Lima W, Jung ME, Swayze EE, Seth PP. Fluorinated Nucleotide Modifications Modulate Allele Selectivity of SNP-Targeting Antisense Oligonucleotides. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624195 PMCID: PMC5363678 DOI: 10.1016/j.omtn.2017.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antisense oligonucleotides (ASOs) have the potential to discriminate between subtle RNA mismatches such as SNPs. Certain mismatches, however, allow ASOs to bind at physiological conditions and result in RNA cleavage mediated by RNase H. We showed that replacing DNA nucleotides in the gap region of an ASO with other chemical modification can improve allele selectivity. Herein, we systematically substitute every position in the gap region of an ASO targeting huntingtin gene (HTT) with fluorinated nucleotides. Potency is determined in cell culture against mutant HTT (mtHTT) and wild-type HTT (wtHTT) mRNA and RNase H cleavage intensities, and patterns are investigated. This study profiled five different fluorinated nucleotides and showed them to have predictable, site-specific effects on RNase H cleavage, and the cleavage patterns were rationalized from a published X-ray structure of human RNase H1. The results herein can be used as a guide for future projects where ASO discrimination of SNPs is important.
Collapse
Affiliation(s)
| | - Josh Nichols
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Timothy A Dwight
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Walt Lima
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eric E Swayze
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Punit P Seth
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
47
|
Abstract
Oligonucleotide-based therapeutics have made rapid progress in the clinic for treatment of a variety of disease indications. Unmodified oligonucleotides are polyanionic macromolecules with poor drug-like properties. Over the past two decades, medicinal chemists have identified a number of chemical modification and conjugation strategies which can improve the nuclease stability, RNA-binding affinity, and pharmacokinetic properties of oligonucleotides for therapeutic applications. In this perspective, we present a summary of the most commonly used nucleobase, sugar and backbone modification, and conjugation strategies used in oligonucleotide medicinal chemistry.
Collapse
Affiliation(s)
- W Brad Wan
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Punit P Seth
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| |
Collapse
|
48
|
Assi HA, Harkness RW, Martin-Pintado N, Wilds CJ, Campos-Olivas R, Mittermaier AK, González C, Damha MJ. Stabilization of i-motif structures by 2'-β-fluorination of DNA. Nucleic Acids Res 2016; 44:4998-5009. [PMID: 27166371 PMCID: PMC4914123 DOI: 10.1093/nar/gkw402] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/02/2016] [Indexed: 01/12/2023] Open
Abstract
i-Motifs are four-stranded DNA structures consisting of two parallel DNA duplexes held together by hemi-protonated and intercalated cytosine base pairs (C:CH+). They have attracted considerable research interest for their potential role in gene regulation and their use as pH responsive switches and building blocks in macromolecular assemblies. At neutral and basic pH values, the cytosine bases deprotonate and the structure unfolds into single strands. To avoid this limitation and expand the range of environmental conditions supporting i-motif folding, we replaced the sugar in DNA by 2-deoxy-2-fluoroarabinose. We demonstrate that such a modification significantly stabilizes i-motif formation over a wide pH range, including pH 7. Nuclear magnetic resonance experiments reveal that 2-deoxy-2-fluoroarabinose adopts a C2′-endo conformation, instead of the C3′-endo conformation usually found in unmodified i-motifs. Nevertheless, this substitution does not alter the overall i-motif structure. This conformational change, together with the changes in charge distribution in the sugar caused by the electronegative fluorine atoms, leads to a number of favorable sequential and inter-strand electrostatic interactions. The availability of folded i-motifs at neutral pH will aid investigations into the biological function of i-motifs in vitro, and will expand i-motif applications in nanotechnology.
Collapse
Affiliation(s)
- Hala Abou Assi
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Robert W Harkness
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | | | - Christopher J Wilds
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | | | | | - Carlos González
- Instituto de Química Física 'Rocasolano', CSIC, 28006 Madrid, Spain
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
49
|
Yurenko YP, Novotný J, Nikolaienko TY, Marek R. Nucleotides containing variously modified sugars: energetics, structure, and mechanical properties. Phys Chem Chem Phys 2015; 18:1615-28. [PMID: 26672740 DOI: 10.1039/c5cp05478h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The influence of various sugar residue modifications on intrinsic energetic, conformational, and mechanical properties of 2'-deoxyribonucleotide-5'-monophosphates (dNs) was comprehensively investigated using modern quantum chemical approaches. In total, fourteen sugar modifications, including double bonds and heteroatoms (S and N) inside the sugar ring, as well as fluorination in various positions, were analyzed. Among hundreds of possible conformational states of dNs, only two - AI and BI, corresponding to the most biologically significant forms of a double-helical DNA, were considered for each dN. It was established that the most of the studied modifications tend to strongly stabilize either AI or BI conformation of dNs both in the gas phase and in aqueous solution (modelled by implicit solvent models). Therefore, some of these modifications can be used as a tool for reducing structural polymorphism of nucleic acids in solution as well as for designing oligonucleotides with specific structural features. The evaluation of relaxed force constants (RFC) for glycosidic bonds suggests that the majority of the studied modifications of the sugar residue yield increased strengths of glycosidic bonds in dNs, and can therefore be used for designing modified nucleic acids with an increased resistance to abasic lesions. The most significant reinforcement of the glycosidic bond occurs in dNs containing the CF2 group instead of the O4' oxygen and the fluorine atom at the 2'-α-position. The calculation of the RFC and vibrational root-mean-square (VRMS) deviations for conformational degrees of freedom revealed a strong dependence between mechanical properties of dNs and their energetic characteristics. In particular, electronic energies of AI and BI conformers of dNs calculated in vacuo are closely connected with the values of relaxed force constants (RFC) for the δ angle: the higher RFC(δ) values correspond to more energetically favorable conformers.
Collapse
Affiliation(s)
- Yevgen P Yurenko
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | | | | | | |
Collapse
|
50
|
Anosova I, Kowal EA, Dunn MR, Chaput JC, Van Horn WD, Egli M. The structural diversity of artificial genetic polymers. Nucleic Acids Res 2015; 44:1007-21. [PMID: 26673703 PMCID: PMC4756832 DOI: 10.1093/nar/gkv1472] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson-Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space.
Collapse
Affiliation(s)
- Irina Anosova
- The Biodesign Institute, Virginia G. Piper Center for Personalized Diagnostics, School of Molecular Sciences, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Ewa A Kowal
- Department of Biochemistry, Center for Structural Biology, and Vanderbilt Ingram Cancer Center, Vanderbilt University, School of Medicine, Nashville, TN 37232-0146, USA
| | - Matthew R Dunn
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, CA 92697, USA
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, CA 92697, USA
| | - Wade D Van Horn
- The Biodesign Institute, Virginia G. Piper Center for Personalized Diagnostics, School of Molecular Sciences, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Martin Egli
- Department of Biochemistry, Center for Structural Biology, and Vanderbilt Ingram Cancer Center, Vanderbilt University, School of Medicine, Nashville, TN 37232-0146, USA
| |
Collapse
|