1
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|
2
|
Almeida‐Pinto J, Lagarto MR, Lavrador P, Mano JF, Gaspar VM. Cell Surface Engineering Tools for Programming Living Assemblies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304040. [PMID: 37823678 PMCID: PMC10700290 DOI: 10.1002/advs.202304040] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/10/2023] [Indexed: 10/13/2023]
Abstract
Breakthroughs in precision cell surface engineering tools are supporting the rapid development of programmable living assemblies with valuable features for tackling complex biological problems. Herein, the authors overview the most recent technological advances in chemically- and biologically-driven toolboxes for engineering mammalian cell surfaces and triggering their assembly into living architectures. A particular focus is given to surface engineering technologies for enabling biomimetic cell-cell social interactions and multicellular cell-sorting events. Further advancements in cell surface modification technologies may expand the currently available bioengineering toolset and unlock a new generation of personalized cell therapeutics with clinically relevant biofunctionalities. The combination of state-of-the-art cell surface modifications with advanced biofabrication technologies is envisioned to contribute toward generating living materials with increasing tissue/organ-mimetic bioactivities and therapeutic potential.
Collapse
Affiliation(s)
- José Almeida‐Pinto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Matilde R. Lagarto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Pedro Lavrador
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - João F. Mano
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Vítor M. Gaspar
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
3
|
Leong SK, Chen YJ, Hsiao JC, Tsai CY, Shie JJ. Site-Specific and Multiple Fluorogenic Metabolic Glycan Labeling and Glycoproteomic Profiling in Live Cells. Chembiochem 2023; 24:e202300522. [PMID: 37489880 DOI: 10.1002/cbic.202300522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Multicolor labeling for monitoring the intracellular localization of the same target type in the native environment using chemical fluorescent dyes is a challenging task. This approach requires both bioorthogonal and biocompatible ligations with an excellent fluorescence signal-to-noise ratio. Here, we present a metabolic glycan labeling technique that uses homemade fluorogenic dyes to investigate glycosylation patterns in live cells. These dyes allowed us to demonstrate rapid and efficient simultaneous multilabeling of glycoconjugates with minimum fluorescence noise. Our results demonstrate that this approach is capable of not only probing sialylation and GlcNAcylation in cells but also specifically labeling the cell-surface and intracellular sialylated glycoconjugates in live cells. In particular, we performed site-specific dual-channel fluorescence imaging of extra and intracellular sialylated glycans in HeLa and PC9 cancer cells as well as identified fluorescently labeled sialylated glycoproteins and glycans by a direct enrichment approach combined with an MS-based proteomic analysis in the same experiment. In conclusion, this study provides multilabeling tools in cellular systems for simultaneous site-specific glycan imaging and glycoproteomic analysis to study potential cancer- and disease-associated glycoconjugates.
Collapse
Affiliation(s)
- Shwee Khuan Leong
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
- Taiwan International Graduate Program of Sustainable Chemical Science and Technology, Academia Sinica, Taipei, 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30013, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Jye-Chian Hsiao
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Chun-Yi Tsai
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| |
Collapse
|
4
|
Paliya BS, Sharma VK, Tuohy MG, Singh HB, Koffas M, Benhida R, Tiwari BK, Kalaskar DM, Singh BN, Gupta VK. Bacterial glycobiotechnology: A biosynthetic route for the production of biopharmaceutical glycans. Biotechnol Adv 2023; 67:108180. [PMID: 37236328 DOI: 10.1016/j.biotechadv.2023.108180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
The recent advancement in the human glycome and progress in the development of an inclusive network of glycosylation pathways allow the incorporation of suitable machinery for protein modification in non-natural hosts and explore novel opportunities for constructing next-generation tailored glycans and glycoconjugates. Fortunately, the emerging field of bacterial metabolic engineering has enabled the production of tailored biopolymers by harnessing living microbial factories (prokaryotes) as whole-cell biocatalysts. Microbial catalysts offer sophisticated means to develop a variety of valuable polysaccharides in bulk quantities for practical clinical applications. Glycans production through this technique is highly efficient and cost-effective, as it does not involve expensive initial materials. Metabolic glycoengineering primarily focuses on utilizing small metabolite molecules to alter biosynthetic pathways, optimization of cellular processes for glycan and glycoconjugate production, characteristic to a specific organism to produce interest tailored glycans in microbes, using preferably cheap and simple substrate. However, metabolic engineering faces one of the unique challenges, such as the need for an enzyme to catalyze desired substrate conversion when natural native substrates are already present. So, in metabolic engineering, such challenges are evaluated, and different strategies have been developed to overcome them. The generation of glycans and glycoconjugates via metabolic intermediate pathways can still be supported by glycol modeling achieved through metabolic engineering. It is evident that modern glycans engineering requires adoption of improved strain engineering strategies for creating competent glycoprotein expression platforms in bacterial hosts, in the future. These strategies include logically designing and introducing orthogonal glycosylation pathways, identifying metabolic engineering targets at the genome level, and strategically improving pathway performance (for example, through genetic modification of pathway enzymes). Here, we highlight current strategies, applications, and recent progress in metabolic engineering for producing high-value tailored glycans and their applications in biotherapeutics and diagnostics.
Collapse
Affiliation(s)
- Balwant S Paliya
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vivek K Sharma
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Maria G Tuohy
- Biochemistry, School of Biological and Chemical Sciences, College of Science & Engineering, University of Galway (Ollscoil na Gaillimhe), University Road, Galway City, Ireland
| | - Harikesh B Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Rachid Benhida
- Institut de Chimie de Nice, UMR7272, Université Côte d'Azur, Nice, France; Mohamed VI Polytechnic University, Lot 660, Hay Moulay Rachid 43150, Benguerir, Morocco
| | | | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.
| |
Collapse
|
5
|
Bednar RM, Karplus PA, Mehl RA. Site-specific dual encoding and labeling of proteins via genetic code expansion. Cell Chem Biol 2023; 30:343-361. [PMID: 36977415 PMCID: PMC10764108 DOI: 10.1016/j.chembiol.2023.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
The ability to selectively modify proteins at two or more defined locations opens new avenues for manipulating, engineering, and studying living systems. As a chemical biology tool for the site-specific encoding of non-canonical amino acids into proteins in vivo, genetic code expansion (GCE) represents a powerful tool to achieve such modifications with minimal disruption to structure and function through a two-step "dual encoding and labeling" (DEAL) process. In this review, we summarize the state of the field of DEAL using GCE. In doing so, we describe the basic principles of GCE-based DEAL, catalog compatible encoding systems and reactions, explore demonstrated and potential applications, highlight emerging paradigms in DEAL methodologies, and propose novel solutions to current limitations.
Collapse
Affiliation(s)
- Riley M Bednar
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, OR 97331-7305, USA; GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR 97331-7305, USA
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, OR 97331-7305, USA; GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR 97331-7305, USA
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, OR 97331-7305, USA; GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR 97331-7305, USA.
| |
Collapse
|
6
|
Colombano A, Dalponte L, Dall'Angelo S, Clemente C, Idress M, Ghazal A, Houssen WE. Chemoenzymatic Late-Stage Modifications Enable Downstream Click-Mediated Fluorescent Tagging of Peptides. Angew Chem Int Ed Engl 2023; 62:e202215979. [PMID: 36815722 PMCID: PMC10946513 DOI: 10.1002/anie.202215979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Aromatic prenyltransferases from cyanobactin biosynthetic pathways catalyse the chemoselective and regioselective intramolecular transfer of prenyl/geranyl groups from isoprene donors to an electron-rich position in these macrocyclic and linear peptides. These enzymes often demonstrate relaxed substrate specificity and are considered useful biocatalysts for structural diversification of peptides. Herein, we assess the isoprene donor specificity of the N1-tryptophan prenyltransferase AcyF from the anacyclamide A8P pathway using a library of 22 synthetic alkyl pyrophosphate analogues, of which many display reactive groups that are amenable to additional functionalization. We further used AcyF to introduce a reactive moiety into a tryptophan-containing cyclic peptide and subsequently used click chemistry to fluorescently label the enzymatically modified peptide. This chemoenzymatic strategy allows late-stage modification of peptides and is useful for many applications.
Collapse
Affiliation(s)
- Alessandro Colombano
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Luca Dalponte
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| | - Sergio Dall'Angelo
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Claudia Clemente
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Mohannad Idress
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
- Abzena, Babraham Research CampusCambridgeUK
| | - Ahmad Ghazal
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| | - Wael E. Houssen
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| |
Collapse
|
7
|
Ganz D, Geng P, Wagenknecht HA. The Efficiency of Metabolic Labeling of DNA by Diels-Alder Reactions with Inverse Electron Demand: Correlation with the Size of Modified 2'-Deoxyuridines. ACS Chem Biol 2023; 18:1054-1059. [PMID: 36921617 DOI: 10.1021/acschembio.3c00079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
A selection of four different 2'-deoxyuridines with three different dienophiles of different sizes was synthesized. Their inverse electron demand Diels-Alder reactivity increases from k2 = 0.15 × 10-2 M-1 s-1 to k2 = 105 × 10-2 M-1 s-1 with increasing ring strain of the dienophiles. With a fluorogenic tetrazine-modified cyanine-styryl dye as reactive counterpart the fluorescence turn-on ratios lie in the range of 21-48 suitable for wash-free cellular imaging. The metabolic DNA labeling was visualized by a dot blot on a semiquantitative level and by confocal fluorescence microscopy on a qualitative level. A clear correlation between the steric demand of the dienophiles and the incorporation efficiency of the modified 2'-deoxyuridines into cellular DNA was observed. Even 2'-deoxyuridines with larger dienophiles, such as norbornene and cyclopropene, were incorporated to a detectable level into the nascent genomic DNA. This was achieved by an optimized way of cell culturing. This expands the toolbox of modified nucleosides for metabolic labeling of nucleic acids in general.
Collapse
Affiliation(s)
- Dorothée Ganz
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Philipp Geng
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
8
|
Michenfelder RT, Delafresnaye L, Truong VX, Barner-Kowollik C, Wagenknecht HA. DNA labelling in live cells via visible light-induced [2+2] photocycloaddition. Chem Commun (Camb) 2023; 59:4012-4015. [PMID: 36920883 DOI: 10.1039/d3cc00817g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
We introduce a visible light-driven (λmax = 451 nm) photo-chemical strategy for labelling of DNA in living HeLa cells via the [2+2] cycloaddition of a styrylquinoxaline moiety, which we incorporate into both the DNA and the fluorescent label. Our methodology offers advanced opportunities for the mild remote labelling of DNA in water while avoiding UV light activation.
Collapse
Affiliation(s)
- Rita T Michenfelder
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, Karlsruhe 76131, Germany.
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
| | - Laura Delafresnaye
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
| | - Vinh X Truong
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, Karlsruhe 76131, Germany.
| |
Collapse
|
9
|
Chen X, Varki A. User-friendly bioorthogonal reactions click to explore glycan functions in complex biological systems. J Clin Invest 2023; 133:e169408. [PMID: 36919701 PMCID: PMC10014101 DOI: 10.1172/jci169408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Affiliation(s)
- Xi Chen
- Department of Chemistry, UCD, Davis, California, USA
| | - Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, UCSD, San Diego, California, USA
| |
Collapse
|
10
|
Ma B, Niu W, Guo J. Proximity-enhanced protein crosslinking through an alkene-tetrazine reaction. Bioorg Chem 2023; 132:106359. [PMID: 36642019 PMCID: PMC9957846 DOI: 10.1016/j.bioorg.2023.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 01/13/2023]
Abstract
The inverse electron demand Diels-Alder (iEDDA) reaction between a tetrazine and a strained alkene has been widely explored as useful bioorthogonal chemistry for selective labeling of biomolecules. In this work, we exploit the slow reaction between a non-conjugated terminal alkene and a tetrazine, and apply this reaction to achieving a proximity-enhanced protein crosslinking. In one protein subunit, a terminal alkene-containing amino acid was site-specifically incorporated in response to an amber nonsense codon. In another protein subunit, a tetrazine moiety was introduced through the attachment to a cysteine residue. Fast protein crosslinking was achieved due to a large increase in effective molarity of the two reactants that were brought to close proximity by the two interacting protein subunits. Such a proximity-enhanced protein crosslinking is useful for the study of protein-protein interactions.
Collapse
Affiliation(s)
- Bin Ma
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
11
|
Kufleitner M, Haiber LM, Wittmann V. Metabolic glycoengineering - exploring glycosylation with bioorthogonal chemistry. Chem Soc Rev 2023; 52:510-535. [PMID: 36537135 DOI: 10.1039/d2cs00764a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glycans are involved in numerous biological recognition events. Being secondary gene products, their labeling by genetic methods - comparable to GFP labeling of proteins - is not possible. To overcome this limitation, metabolic glycoengineering (MGE, also known as metabolic oligosaccharide engineering, MOE) has been developed. In this approach, cells or organisms are treated with synthetic carbohydrate derivatives that are modified with a chemical reporter group. In the cytosol, the compounds are metabolized and incorporated into newly synthesized glycoconjugates. Subsequently, the reporter groups can be further derivatized in a bioorthogonal ligation reaction. In this way, glycans can be visualized or isolated. Furthermore, diverse targeting strategies have been developed to direct drugs, nanoparticles, or whole cells to a desired location. This review summarizes research in the field of MGE carried out in recent years. After an introduction to the bioorthogonal ligation reactions that have been used in in connection with MGE, an overview on carbohydrate derivatives for MGE is given. The last part of the review focuses on the many applications of MGE starting from mammalian cells to experiments with animals and other organisms.
Collapse
Affiliation(s)
- Markus Kufleitner
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Lisa Maria Haiber
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
12
|
Ghirardello M, Shyam R, Galan MC. Reengineering of cancer cell surface charges can modulate cell migration. Chem Commun (Camb) 2022; 58:5522-5525. [PMID: 35420600 PMCID: PMC9063860 DOI: 10.1039/d2cc00402j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability to modulate the cell surface structure provides a powerful tool to understand fundamental processes and also to elicit desired cellular responses. Here we report the development of a new class of ‘clickable labels’ to reengineer the cell surface charges of live cells. The method relies on the use of metabolic oligosaccharide engineering (MOE) combined with chemo selective labeling of cell surface azido-containing sialic acids with dibenzocyclooctyne (DBCO) ionic-probes. Using this strategy, we demonstrate that reducing the negative charge induced by the overexpression of cell surface sialic acids in cancer cells leads to a reduction in cell migration without affecting drug supceptibility. Reducing the negative charges induced by the overexpression of cell surface sialic acids using cationic clickable labels leads to a reduction in cancer cell migration without affecting drug supceptibility.![]()
Collapse
Affiliation(s)
- Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS Bristol, UK.
| | - Radhe Shyam
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS Bristol, UK.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS Bristol, UK.
| |
Collapse
|
13
|
|
14
|
Bujalska A, Basran K, Luedtke NW. [4+2] and [2+4] cycloaddition reactions on single- and double-stranded DNA: a dual-reactive nucleoside. RSC Chem Biol 2022; 3:698-701. [PMID: 35755194 PMCID: PMC9175100 DOI: 10.1039/d2cb00062h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Here we report dual reactivity of diene-modified duplex DNA containing 5-(1,3-butadienyl)-2'-deoxyuridine “BDdU”. Regular-electron demand [4+2] cycloaddition proceeded upon addition of a maleimide, whereas inversed-electron demand [2+4] cycloaddition occurred upon addition...
Collapse
Affiliation(s)
- Anna Bujalska
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Kaleena Basran
- Department of Chemistry, McGill University 801 Sherbrooke St. West Montréal Québec H3A 0B8 Canada
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190 8057 Zurich Switzerland
- Department of Chemistry, McGill University 801 Sherbrooke St. West Montréal Québec H3A 0B8 Canada
| |
Collapse
|
15
|
He Z, Ishizuka T, Hishikawa Y, Xu Y. Click chemistry for fluorescence imaging via combination of a BODIPY-based ‘turn-on’ probe and a norbornene glucosamine. Chem Commun (Camb) 2022; 58:12479-12482. [DOI: 10.1039/d2cc05359d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, we synthesized a novel near-infrared turn-on BODIPY probe and a new norbornene-modified glucosamine derivative.
Collapse
Affiliation(s)
- Zhiyong He
- Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyo-take, Miyazaki 889-1692, Japan
| | - Takumi Ishizuka
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yan Xu
- Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyo-take, Miyazaki 889-1692, Japan
| |
Collapse
|
16
|
Zhang X, Xu H, Li J, Su D, Mao W, Shen G, Li L, Wu H. Isonitrile induced bioorthogonal activation of fluorophores and mutually orthogonal cleavage in live cells. Chem Commun (Camb) 2021; 58:573-576. [PMID: 34913446 DOI: 10.1039/d1cc05774j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fluorophores with different emission wavelengths were efficiently quenched by a tert-butyl terminated tetrazylmethyl group and activated by an isonitrile-tetrazine click-to-release reaction. Nucleic acid templated chemistry significantly accelerated this bioorthogonal cleavage. Moreover, two mutually orthogonal fluorogenic cleavage reactions were simultaneously conducted in live cells for the first time.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Xu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jie Li
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dunyan Su
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wuyu Mao
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Guohua Shen
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Li
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
17
|
Saha A, Bello D, Fernández-Tejada A. Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Chem Soc Rev 2021; 50:10451-10485. [PMID: 34338261 PMCID: PMC8451060 DOI: 10.1039/d0cs01275k] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 12/11/2022]
Abstract
The addition of O-linked-β-D-N-acetylglucosamine (O-GlcNAc) onto serine and threonine residues of nuclear and cytoplasmic proteins is an abundant, unique post-translational modification governing important biological processes. O-GlcNAc dysregulation underlies several metabolic disorders leading to human diseases, including cancer, neurodegeneration and diabetes. This review provides an extensive summary of the recent progress in probing O-GlcNAcylation using mainly chemical methods, with a special focus on discussing mechanistic insights and the structural role of O-GlcNAc at the molecular level. We highlight key aspects of the O-GlcNAc enzymes, including development of OGT and OGA small-molecule inhibitors, and describe a variety of chemoenzymatic and chemical biology approaches for the study of O-GlcNAcylation. Special emphasis is placed on the power of chemistry in the form of synthetic glycopeptide and glycoprotein tools for investigating the site-specific functional consequences of the modification. Finally, we discuss in detail the conformational effects of O-GlcNAc glycosylation on protein structure and stability, relevant O-GlcNAc-mediated protein interactions and its molecular recognition features by biological receptors. Future research in this field will provide novel, more effective chemical strategies and probes for the molecular interrogation of O-GlcNAcylation, elucidating new mechanisms and functional roles of O-GlcNAc with potential therapeutic applications in human health.
Collapse
Affiliation(s)
- Abhijit Saha
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
| | - Davide Bello
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
18
|
Nellinger S, Rapp MA, Southan A, Wittmann V, Kluger PJ. An Advanced 'clickECM' That Can be Modified by the Inverse-Electron-Demand Diels-Alder Reaction. Chembiochem 2021; 23:e202100266. [PMID: 34343379 PMCID: PMC9291553 DOI: 10.1002/cbic.202100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/02/2021] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) represents the natural environment of cells in tissue and therefore is a promising biomaterial in a variety of applications. Depending on the purpose, it is necessary to equip the ECM with specific addressable functional groups for further modification with bioactive molecules, for controllable cross-linking and/or covalent binding to surfaces. Metabolic glycoengineering (MGE) enables the specific modification of the ECM with such functional groups without affecting the native structure of the ECM. In a previous approach (S. M. Ruff, S. Keller, D. E. Wieland, V. Wittmann, G. E. M. Tovar, M. Bach, P. J. Kluger, Acta Biomater. 2017, 52, 159-170), we demonstrated the modification of an ECM with azido groups, which can be addressed by bioorthogonal copper-catalyzed azide-alkyne cycloaddition (CuAAC). Here, we demonstrate the modification of an ECM with dienophiles (terminal alkenes, cyclopropene), which can be addressed by an inverse-electron-demand Diels-Alder (IEDDA) reaction. This reaction is cell friendly as there are no cytotoxic catalysts needed. We show the equipment of the ECM with a bioactive molecule (enzyme) and prove that the functional groups do not influence cellular behavior. Thus, this new material has great potential for use as a biomaterial, which can be individually modified in a wide range of applications.
Collapse
Affiliation(s)
- Svenja Nellinger
- Reutlingen Research Institute, Reutlingen University, School of Applied Chemistry, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Mareike A Rapp
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Petra J Kluger
- Reutlingen Research Institute, Reutlingen University, School of Applied Chemistry, Alteburgstr. 150, 72762, Reutlingen, Germany
| |
Collapse
|
19
|
Zawada Z, Guo Z, Oliveira BL, Navo CD, Li H, Cal PMSD, Corzana F, Jiménez-Osés G, Bernardes GJL. Arylethynyltrifluoroborate Dienophiles for on Demand Activation of IEDDA Reactions. Bioconjug Chem 2021; 32:1812-1822. [PMID: 34264651 PMCID: PMC8806140 DOI: 10.1021/acs.bioconjchem.1c00276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Strained
alkenes and alkynes are the predominant dienophiles used
in inverse electron demand Diels–Alder (IEDDA) reactions. However,
their instability, cross-reactivity, and accessibility are problematic.
Unstrained dienophiles, although physiologically stable and synthetically
accessible, react with tetrazines significantly slower relative to
strained variants. Here we report the development of potassium arylethynyltrifluoroborates
as unstrained dienophiles for fast, chemically triggered IEDDA reactions.
By varying the substituents on the tetrazine (e.g., pyridyl- to benzyl-substituents),
cycloaddition kinetics can vary from fast (k2 = 21 M–1 s–1) to no reaction
with an alkyne-BF3 dienophile. The reported system was
applied to protein labeling both in the test tube and fixed cells
and even enabled mutually orthogonal labeling of two distinct proteins.
Collapse
Affiliation(s)
- Zbigniew Zawada
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Zijian Guo
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Bruno L Oliveira
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technological Park, Building 801A, 48160 Derio-Bizkaia, Spain
| | - He Li
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Pedro M S D Cal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technological Park, Building 801A, 48160 Derio-Bizkaia, Spain.,lkerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
20
|
Govindarajan A, Gnanasambandam V. Toward Intracellular Bioconjugation Using Transition-Metal-Free Techniques. Bioconjug Chem 2021; 32:1431-1454. [PMID: 34197073 DOI: 10.1021/acs.bioconjchem.1c00173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bioconjugation is the chemical strategy of covalent modification of biomolecules, using either an external reagent or other biomolecules. Since its inception in the twentieth century, the technique has grown by leaps and bounds, and has a variety of applications in chemical biology. However, it is yet to reach its full potential in the study of biochemical processes in live cells, mainly because the bioconjugation strategies conflict with cellular processes. This has mostly been overcome by using transition metal catalysts, but the presence of metal centers limit them to in vitro use, or to the cell surface. These hurdles can potentially be circumvented by using metal-free strategies. However, the very modifications that are necessary to make such metal-free reactions proceed effectively may impact their biocompatibility. This is because biological processes are easily perturbed and greatly depend on the prevailing inter- and intracellular environment. With this taken into consideration, this review analyzes the applicability of the transition-metal-free strategies reported in this decade to the study of biochemical processes in vivo.
Collapse
Affiliation(s)
- Aaditya Govindarajan
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry - 605014, India
| | - Vasuki Gnanasambandam
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry - 605014, India
| |
Collapse
|
21
|
Pigga JE, Rosenberger JE, Jemas A, Boyd SJ, Dmitrenko O, Xie Y, Fox JM. General, Divergent Platform for Diastereoselective Synthesis of
trans
‐Cyclooctenes with High Reactivity and Favorable Physiochemical Properties**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jessica E. Pigga
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Julia E. Rosenberger
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Andrew Jemas
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Samantha J. Boyd
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Olga Dmitrenko
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Yixin Xie
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| |
Collapse
|
22
|
Pigga JE, Rosenberger JE, Jemas A, Boyd SJ, Dmitrenko O, Xie Y, Fox JM. General, Divergent Platform for Diastereoselective Synthesis of trans-Cyclooctenes with High Reactivity and Favorable Physiochemical Properties*. Angew Chem Int Ed Engl 2021; 60:14975-14980. [PMID: 33742526 DOI: 10.1002/anie.202101483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/04/2021] [Indexed: 12/24/2022]
Abstract
trans-Cyclooctenes (TCOs) are essential partners in the fastest known bioorthogonal reactions, but current synthetic methods are limited by poor diastereoselectivity. Especially hard to access are hydrophilic TCOs with favorable physicochemical properties for live cell or in vivo experiments. Described is a new class of TCOs, "a-TCOs", prepared in high yield by stereocontrolled 1,2-additions of nucleophiles to trans-cyclooct-4-enone, which itself was prepared on a large scale in two steps from 1,5-cyclooctadiene. Computational transition-state models rationalize the diastereoselectivity of 1,2-additions to deliver a-TCO products, which were also shown to be more reactive than standard TCOs and less hydrophobic than even a trans-oxocene analogue. Illustrating the favorable physicochemical properties of a-TCOs, a fluorescent TAMRA derivative in live HeLa cells was shown to be cell-permeable through intracellular Diels-Alder chemistry and to wash out more rapidly than other TCOs.
Collapse
Affiliation(s)
- Jessica E Pigga
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Julia E Rosenberger
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Andrew Jemas
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Samantha J Boyd
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Olga Dmitrenko
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Yixin Xie
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| |
Collapse
|
23
|
Huxley KE, Willems LI. Chemical reporters to study mammalian O-glycosylation. Biochem Soc Trans 2021; 49:903-913. [PMID: 33860782 PMCID: PMC8106504 DOI: 10.1042/bst20200839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Glycans play essential roles in a range of cellular processes and have been shown to contribute to various pathologies. The diversity and dynamic nature of glycan structures and the complexities of glycan biosynthetic pathways make it challenging to study the roles of specific glycans in normal cellular function and disease. Chemical reporters have emerged as powerful tools to characterise glycan structures and monitor dynamic changes in glycan levels in a native context. A variety of tags can be introduced onto specific monosaccharides via the chemical modification of endogenous glycan structures or by metabolic or enzymatic incorporation of unnatural monosaccharides into cellular glycans. These chemical reporter strategies offer unique opportunities to study and manipulate glycan functions in living cells or whole organisms. In this review, we discuss recent advances in metabolic oligosaccharide engineering and chemoenzymatic glycan labelling, focusing on their application to the study of mammalian O-linked glycans. We describe current barriers to achieving glycan labelling specificity and highlight innovations that have started to pave the way to overcome these challenges.
Collapse
Affiliation(s)
- Kathryn E. Huxley
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, U.K
| | - Lianne I. Willems
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, U.K
| |
Collapse
|
24
|
Scinto SL, Bilodeau DA, Hincapie R, Lee W, Nguyen SS, Xu M, am Ende CW, Finn MG, Lang K, Lin Q, Pezacki JP, Prescher JA, Robillard MS, Fox JM. Bioorthogonal chemistry. NATURE REVIEWS. METHODS PRIMERS 2021; 1:30. [PMID: 34585143 PMCID: PMC8469592 DOI: 10.1038/s43586-021-00028-z] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 12/11/2022]
Abstract
Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsically selective transformations not commonly found in biology. Key reactions include native chemical ligation and the Staudinger ligation, copper-catalysed azide-alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible bioorthogonal reactions. Bioorthogonal chemistry has significant overlap with the broader field of 'click chemistry' - high-yielding reactions that are wide in scope and simple to perform, as recently exemplified by sulfuryl fluoride exchange chemistry. The underlying mechanisms of these transformations and their optimal conditions are described in this Primer, followed by discussion of how bioorthogonal chemistry has become essential to the fields of biomedical imaging, medicinal chemistry, protein synthesis, polymer science, materials science and surface science. The applications of bioorthogonal chemistry are diverse and include genetic code expansion and metabolic engineering, drug target identification, antibody-drug conjugation and drug delivery. This Primer describes standards for reproducibility and data deposition, outlines how current limitations are driving new research directions and discusses new opportunities for applying bioorthogonal chemistry to emerging problems in biology and biomedicine.
Collapse
Affiliation(s)
- Samuel L. Scinto
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Didier A. Bilodeau
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Robert Hincapie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Wankyu Lee
- Pfizer Worldwide Research and Development, Cambridge, MA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Sean S. Nguyen
- Department of Chemistry, University of California, Irvine, CA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Minghao Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | | | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kathrin Lang
- Department of Chemistry, Technical University of Munich, Garching, Germany
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Jennifer A. Prescher
- Department of Chemistry, University of California, Irvine, CA, USA
- Molecular Biology & Biochemistry, University of California, Irvine, CA, USA
| | | | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| |
Collapse
|
25
|
Haiber LM, Kufleitner M, Wittmann V. Application of the Inverse-Electron-Demand Diels-Alder Reaction for Metabolic Glycoengineering. Front Chem 2021; 9:654932. [PMID: 33928067 PMCID: PMC8076787 DOI: 10.3389/fchem.2021.654932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
The inverse electron-demand Diels-Alder (IEDDA or DAinv) reaction is an emerging bioorthogonal ligation reaction that finds application in all areas of chemistry and chemical biology. In this review we highlight its application in metabolic glycoengineering (MGE). MGE is a versatile tool to introduce unnatural sugar derivatives that are modified with a chemical reporter group into cellular glycans. The IEDDA reaction can then be used to modify the chemical reporter group allowing, for instance, the visualization or isolation of glycoconjugates. During the last years, many different sugar derivatives as well as reporter groups have been published. These probes are summarized, and their chemical and biological properties are discussed. Furthermore, we discuss examples of MGE and subsequent IEDDA reaction that highlight its suitability for application within living systems.
Collapse
Affiliation(s)
| | | | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| |
Collapse
|
26
|
Abstract
Systematically dissecting the molecular basis of the cell surface as well as its related biological activities is considered as one of the most cutting-edge fields in fundamental sciences. The advent of various advanced cell imaging techniques allows us to gain a glimpse of how the cell surface is structured and coordinated with other cellular components to respond to intracellular signals and environmental stimuli. Nowadays, cell surface-related studies have entered a new era featured by a redirected aim of not just understanding but artificially manipulating/remodeling the cell surface properties. To meet this goal, biologists and chemists are intensely engaged in developing more maneuverable cell surface labeling strategies by exploiting the cell's intrinsic biosynthetic machinery or direct chemical/physical binding methods for imaging, sensing, and biomedical applications. In this review, we summarize the recent advances that focus on the visualization of various cell surface structures/dynamics and accurate monitoring of the microenvironment of the cell surface. Future challenges and opportunities in these fields are discussed, and the importance of cell surface-based studies is highlighted.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|
27
|
Pedowitz NJ, Pratt MR. Design and Synthesis of Metabolic Chemical Reporters for the Visualization and Identification of Glycoproteins. RSC Chem Biol 2021; 2:306-321. [PMID: 34337414 PMCID: PMC8323544 DOI: 10.1039/d1cb00010a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glycosylation events play an invaluable role in regulating cellular processes including enzymatic activity, immune recognition, protein stability, and cell-cell interactions. However, researchers have yet to realize the full range of glycan mediated biological functions due to a lack of appropriate chemical tools. Fortunately, the past 25 years has seen the emergence of modified sugar analogs, termed metabolic chemical reporters (MCRs), which are metabolized by endogenous enzymes to label complex glycan structures. Here, we review the major reporters for each class of glycosylation and highlight recent applications that have made a tremendous impact on the field of glycobiology.
Collapse
Affiliation(s)
- Nichole J Pedowitz
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
28
|
Glycoengineering: scratching the surface. Biochem J 2021; 478:703-719. [DOI: 10.1042/bcj20200612] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
At the surface of many cells is a compendium of glycoconjugates that form an interface between the cell and its surroundings; the glycocalyx. The glycocalyx serves several functions that have captivated the interest of many groups. Given its privileged residence, this meshwork of sugar-rich biomolecules is poised to transmit signals across the cellular membrane, facilitating communication with the extracellular matrix and mediating important signalling cascades. As a product of the glycan biosynthetic machinery, the glycocalyx can serve as a partial mirror that reports on the cell's glycosylation status. The glycocalyx can also serve as an information-rich barrier, withholding the entry of pathogens into the underlying plasma membrane through glycan-rich molecular messages. In this review, we provide an overview of the different approaches devised to engineer glycans at the cell surface, highlighting considerations of each, as well as illuminating the grand challenges that face the next era of ‘glyco-engineers’. While we have learned much from these techniques, it is evident that much is left to be unearthed.
Collapse
|
29
|
Dold JEGA, Wittmann V. Metabolic Glycoengineering with Azide- and Alkene-Modified Hexosamines: Quantification of Sialic Acid Levels. Chembiochem 2020; 22:1243-1251. [PMID: 33180370 PMCID: PMC8048827 DOI: 10.1002/cbic.202000715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Metabolic glycoengineering (MGE) is an established method to incorporate chemical reporter groups into cellular glycans for subsequent bioorthogonal labeling. The method has found broad application for the visualization and isolation of glycans allowing their biological roles to be probed. Furthermore, targeting of drugs to cancer cells that present high concentrations of sialic acids on their surface is an attractive approach. We report the application of a labeling reaction using 1,2‐diamino‐4,5‐methylenedioxybenzene for the quantification of sialic acid derivates after MGE with various azide‐ and alkene‐modified ManNAc, GlcNAc, and GalNAc derivatives. We followed the time course of sialic acid production and were able to detect sialic acids modified with the chemical reporter group – not only after addition of ManNAc derivatives to the cell culture. A cyclopropane‐modified ManNAc derivative, being a model for the corresponding cyclopropene analog, which undergoes fast inverse‐electron‐demand Diels‐Alder reactions with 1,2,4,5‐tetrazines, resulted in the highest incorporation efficiency. Furthermore, we investigated whether feeding the cells with natural and unnatural ManNAc derivative results in increased levels of sialic acids and found that this is strongly dependent on the investigated cell type and cell fraction. For HEK 293T cells, a strong increase in free sialic acids in the cell interior was found, whereas cell‐surface sialic acid levels are only moderately increased.
Collapse
Affiliation(s)
- Jeremias E. G. A. Dold
- University of KonstanzDepartment of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB)78457KonstanzGermany
| | - Valentin Wittmann
- University of KonstanzDepartment of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB)78457KonstanzGermany
| |
Collapse
|
30
|
Metabolic glycan labelling for cancer-targeted therapy. Nat Chem 2020; 12:1102-1114. [PMID: 33219365 DOI: 10.1038/s41557-020-00587-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 10/19/2020] [Indexed: 12/19/2022]
Abstract
Metabolic glycoengineering with unnatural sugars provides a powerful tool to label cell membranes with chemical tags for subsequent targeted conjugation of molecular cargos via efficient chemistries. This technology has been widely explored for cancer labelling and targeting. However, as this metabolic labelling process can occur in both cancerous and normal cells, cancer-selective labelling needs to be achieved to develop cancer-targeted therapies. Unnatural sugars can be either rationally designed to enable preferential labelling of cancer cells, or specifically delivered to cancerous tissues. In this Review Article, we will discuss the progress to date in design and delivery of unnatural sugars for metabolic labelling of tumour cells and subsequent development of tumour-targeted therapy. Metabolic cell labelling for cancer immunotherapy will also be discussed. Finally, we will provide a perspective on future directions of metabolic labelling of cancer and immune cells for the development of potent, clinically translatable cancer therapies.
Collapse
|
31
|
Qiao M, Li B, Ji Y, Lin L, Linhardt R, Zhang X. Synthesis of selected unnatural sugar nucleotides for biotechnological applications. Crit Rev Biotechnol 2020; 41:47-62. [PMID: 33153306 DOI: 10.1080/07388551.2020.1844623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Sugar nucleotides are the principal building blocks for the synthesis of most complex carbohydrates and are crucial intermediates in carbohydrate metabolism. Uridine diphosphate (UDP) monosaccharides are among the most common sugar nucleotide donors and are transferred to glycosyl acceptors by glycosyltransferases or synthases in glycan biosynthetic pathways. These natural nucleotide donors have great biological importance, however, the synthesis and application of unnatural sugar nucleotides that are not available from in vivo biosynthesis are not well explored. In this review, we summarize the progress in the preparation of unnatural sugar nucleotides, in particular, the widely studied UDP-GlcNAc/GalNAc analogs. We focus on the "two-block" synthetic pathway that is initiated from monosaccharides, in which the first block is the synthesis of sugar-1-phosphate and the second block is the diphosphate bond formation. The biotechnological applications of these unnatural sugar nucleotides showing their physiological and pharmacological potential are discussed.
Collapse
Affiliation(s)
- Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Lei Lin
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Robert Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
32
|
Roy S, Cha JN, Goodwin AP. Nongenetic Bioconjugation Strategies for Modifying Cell Membranes and Membrane Proteins: A Review. Bioconjug Chem 2020; 31:2465-2475. [PMID: 33146010 DOI: 10.1021/acs.bioconjchem.0c00529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell membrane possesses an extensive library of proteins, carbohydrates, and lipids that control a significant portion of inter- and intracellular functions, including signaling, proliferation, migration, and adhesion, among others. Augmenting the cell surface composition would open possibilities for advances in therapy, tissue engineering, and probing fundamental cell processes. While genetic engineering has proven effective for many in vitro applications, these techniques result in irreversible changes to cells and are difficult to apply in vivo. Another approach is to instead attach exogenous functional groups to the cell membrane without changing the genetic nature of the cell. This review focuses on more recent approaches of nongenetic methods of cell surface modification through metabolic pathways, anchorage by hydrophobic interactions, and chemical conjugation. Benefits and drawbacks of each approach are considered, followed by a discussion of potential applications for nongenetic cell surface modification and an outlook on the future of the field.
Collapse
|
33
|
Zhu Y, Willems LI, Salas D, Cecioni S, Wu WB, Foster LJ, Vocadlo DJ. Tandem Bioorthogonal Labeling Uncovers Endogenous Cotranslationally O-GlcNAc Modified Nascent Proteins. J Am Chem Soc 2020; 142:15729-15739. [PMID: 32870666 DOI: 10.1021/jacs.0c04121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hundreds of nuclear, cytoplasmic, and mitochondrial proteins within multicellular eukaryotes have hydroxyl groups of specific serine and threonine residues modified by the monosaccharide N-acetylglucosamine (GlcNAc). This modification, known as O-GlcNAc, has emerged as a central regulator of both cell physiology and human health. A key emerging function of O-GlcNAc appears to be to regulate cellular protein homeostasis. We previously showed, using overexpressed model proteins, that O-GlcNAc modification can occur cotranslationally and that this process prevents premature degradation of such nascent polypeptide chains. Here, we use tandem metabolic engineering strategies to label endogenously occurring nascent polypeptide chains within cells using O-propargyl-puromycin (OPP) and target the specific subset of nascent chains that are cotranslationally glycosylated with O-GlcNAc by metabolic saccharide engineering using tetra-O-acetyl-2-N-azidoacetyl-2-deoxy-d-galactopyranose (Ac4GalNAz). Using various combinations of sequential chemoselective ligation strategies, we go on to tag these analytes with a series of labels, allowing us to define conditions that enable their robust labeling. Two-step enrichment of these glycosylated nascent chains, combined with shotgun proteomics, allows us to identify a set of endogenous cotranslationally O-GlcNAc modified proteins. Using alternative targeted methods, we examine three of these identified proteins and further validate their cotranslational O-GlcNAcylation. These findings detail strategies to enable isolation and identification of extremely low abundance endogenous analytes present within complex protein mixtures. Moreover, this work opens the way to studies directed at understanding the roles of O-GlcNAc and other cotranslational protein modifications and should stimulate an improved understanding of the role of O-GlcNAc in cytoplasmic protein quality control and proteostasis.
Collapse
Affiliation(s)
- Yanping Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lianne I Willems
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Daniela Salas
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia Canada
| | - Samy Cecioni
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Weifeng B Wu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Leonard J Foster
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
34
|
Ganz D, Harijan D, Wagenknecht HA. Labelling of DNA and RNA in the cellular environment by means of bioorthogonal cycloaddition chemistry. RSC Chem Biol 2020; 1:86-97. [PMID: 34458750 PMCID: PMC8341813 DOI: 10.1039/d0cb00047g] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Labelling of nucleic acids as biologically important cellular components is a crucial prerequisite for the visualization and understanding of biological processes. Efficient bioorthogonal chemistry and in particular cycloadditions fullfill the requirements for cellular applications. The broadly applied Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC), however, is limited to labellings in vitro and in fixed cells due to the cytotoxicity of copper salts. Currently, there are three types of copper-free cycloadditions used for nucleic acid labelling in the cellular environment: (i) the ring-strain promoted azide-alkyne cycloaddition (SPAAC), (ii) the "photoclick" 1,3-dipolar cycloadditions, and (iii) the Diels-Alder reactions with inverse electron demand (iEDDA). We review only those building blocks for chemical synthesis on solid phase of DNA and RNA and for enzymatic DNA and RNA preparation, which were applied for labelling of DNA and RNA in situ or in vivo, i.e. in the cellular environment, in fixed or in living cells, by the use of bioorthogonal cycloaddition chemistry. Additionally, we review the current status of orthogonal dual and triple labelling of DNA and RNA in vitro to demonstrate their potential for future applications in situ or in vivo.
Collapse
Affiliation(s)
- Dorothée Ganz
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Dennis Harijan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| |
Collapse
|
35
|
Baalmann M, Neises L, Bitsch S, Schneider H, Deweid L, Werther P, Ilkenhans N, Wolfring M, Ziegler MJ, Wilhelm J, Kolmar H, Wombacher R. A Bioorthogonal Click Chemistry Toolbox for Targeted Synthesis of Branched and Well-Defined Protein-Protein Conjugates. Angew Chem Int Ed Engl 2020; 59:12885-12893. [PMID: 32342666 PMCID: PMC7496671 DOI: 10.1002/anie.201915079] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/23/2020] [Indexed: 01/19/2023]
Abstract
Bioorthogonal chemistry holds great potential to generate difficult-to-access protein-protein conjugate architectures. Current applications are hampered by challenging protein expression systems, slow conjugation chemistry, use of undesirable catalysts, or often do not result in quantitative product formation. Here we present a highly efficient technology for protein functionalization with commonly used bioorthogonal motifs for Diels-Alder cycloaddition with inverse electron demand (DAinv ). With the aim of precisely generating branched protein chimeras, we systematically assessed the reactivity, stability and side product formation of various bioorthogonal chemistries directly at the protein level. We demonstrate the efficiency and versatility of our conjugation platform using different functional proteins and the therapeutic antibody trastuzumab. This technology enables fast and routine access to tailored and hitherto inaccessible protein chimeras useful for a variety of scientific disciplines. We expect our work to substantially enhance antibody applications such as immunodetection and protein toxin-based targeted cancer therapies.
Collapse
Affiliation(s)
- Mathis Baalmann
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Laura Neises
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Sebastian Bitsch
- Institute for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Hendrik Schneider
- Institute for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Lukas Deweid
- Institute for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Philipp Werther
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Nadja Ilkenhans
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Martin Wolfring
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Michael J. Ziegler
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Jonas Wilhelm
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Harald Kolmar
- Institute for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Richard Wombacher
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| |
Collapse
|
36
|
Nguyen SS, Prescher JA. Developing bioorthogonal probes to span a spectrum of reactivities. Nat Rev Chem 2020; 4:476-489. [PMID: 34291176 DOI: 10.1038/s41570-020-0205-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bioorthogonal chemistries enable researchers to interrogate biomolecules in living systems. These reactions are highly selective and biocompatible and can be performed in many complex environments. However, like any organic transformation, there is no perfect bioorthogonal reaction. Choosing the "best fit" for a desired application is critical. Correspondingly, there must be a variety of chemistries-spanning a spectrum of rates and other features-to choose from. Over the past few years, significant strides have been made towards not only expanding the number of bioorthogonal chemistries, but also fine-tuning existing reactions for particular applications. In this Review, we highlight recent advances in bioorthogonal reaction development, focusing on how physical organic chemistry principles have guided probe design. The continued expansion of this toolset will provide more precisely tuned reagents for manipulating bonds in distinct environments.
Collapse
Affiliation(s)
- Sean S Nguyen
- Departments of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer A Prescher
- Departments of Chemistry, University of California, Irvine, California 92697, United States.,Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States.,Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
37
|
Baalmann M, Neises L, Bitsch S, Schneider H, Deweid L, Werther P, Ilkenhans N, Wolfring M, Ziegler MJ, Wilhelm J, Kolmar H, Wombacher R. A Bioorthogonal Click Chemistry Toolbox for Targeted Synthesis of Branched and Well‐Defined Protein–Protein Conjugates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mathis Baalmann
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Laura Neises
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Sebastian Bitsch
- Institute for Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Hendrik Schneider
- Institute for Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Lukas Deweid
- Institute for Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Philipp Werther
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Nadja Ilkenhans
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Martin Wolfring
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Michael J. Ziegler
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Jonas Wilhelm
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Richard Wombacher
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| |
Collapse
|
38
|
Wu Y, Zheng J, Xing D, Zhang T. Near-infrared light controlled fluorogenic labeling of glycoengineered sialic acids in vivo with upconverting photoclick nanoprobe. NANOSCALE 2020; 12:10361-10368. [PMID: 32369049 DOI: 10.1039/c9nr10286h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sialic acid serves as an important determinant for profiling cell activities in diverse biological and pathological processes. The precise control of sialic acid labeling to visualize its biological pathways under endogenous conditions is significant but still challenging due to the lack of reliable methods. Herein, we developed an effective strategy to spatiotemporally label thesialic acids with a near-infrared (NIR) light activated upconverting nanoprobe (Tz-UCNP). With this photoclickable nanoprobe and a stable N-alkene-d-mannosamine (Ac4ManNIPFA), metabolically synthesized alkene sialic acids on the cell surface were labeled and imaged in real time through fluorogenic cycloaddition. More importantly, we achieved spatially selective visualization of sialic acids in specific tumor tissues of the mice under NIR light activation in a spatially controlled manner. This in situ controllable labeling strategy thus enables the metabolic labeling of specific sialic acids in complex biological systems.
Collapse
Affiliation(s)
- Yunxia Wu
- MOE key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P.R. China.
| | | | | | | |
Collapse
|
39
|
Synthetic Sphingolipids with 1,2-Pyridazine Appendages Improve Antiproliferative Activity in Human Cancer Cell Lines. ACS Med Chem Lett 2020; 11:686-690. [PMID: 32435371 PMCID: PMC7236038 DOI: 10.1021/acsmedchemlett.9b00553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
A synthetic sphingolipid related to a ring-constrained hydroxymethyl pyrrolidine analog of FTY720 that was known to starve cancer cells to death was chemically modified to include a series of alkoxy-tethered 3,6-substituted 1,2-pyridazines. These derivatives exhibited excellent antiproliferative activity against eight human cancer cell lines from four different cancer types. A 2.5- to 9-fold reduction in IC50 in these cell lines was observed relative to the lead compound, which lacked the appended heterocycle.
Collapse
|
40
|
Clavé G, Dursun E, Vasseur JJ, Smietana M. An Entry of the Chemoselective Sulfo-Click Reaction into the Sphere of Nucleic Acids. Org Lett 2020; 22:1914-1918. [DOI: 10.1021/acs.orglett.0c00265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guillaume Clavé
- Institut des Biomolécules Max Mousseron, Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Enes Dursun
- Institut des Biomolécules Max Mousseron, Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, Univ. Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| |
Collapse
|
41
|
Parker CG, Pratt MR. Click Chemistry in Proteomic Investigations. Cell 2020; 180:605-632. [PMID: 32059777 PMCID: PMC7087397 DOI: 10.1016/j.cell.2020.01.025] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/20/2023]
Abstract
Despite advances in genetic and proteomic techniques, a complete portrait of the proteome and its complement of dynamic interactions and modifications remains a lofty, and as of yet, unrealized, objective. Specifically, traditional biological and analytical approaches have not been able to address key questions relating to the interactions of proteins with small molecules, including drugs, drug candidates, metabolites, or protein post-translational modifications (PTMs). Fortunately, chemists have bridged this experimental gap through the creation of bioorthogonal reactions. These reactions allow for the incorporation of chemical groups with highly selective reactivity into small molecules or protein modifications without perturbing their biological function, enabling the selective installation of an analysis tag for downstream investigations. The introduction of chemical strategies to parse and enrich subsets of the "functional" proteome has empowered mass spectrometry (MS)-based methods to delve more deeply and precisely into the biochemical state of cells and its perturbations by small molecules. In this Primer, we discuss how one of the most versatile bioorthogonal reactions, "click chemistry", has been exploited to overcome limitations of biological approaches to enable the selective marking and functional investigation of critical protein-small-molecule interactions and PTMs in native biological environments.
Collapse
Affiliation(s)
- Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Matthew R Pratt
- Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
42
|
Moons SJ, Adema GJ, Derks MT, Boltje TJ, Büll C. Sialic acid glycoengineering using N-acetylmannosamine and sialic acid analogs. Glycobiology 2020; 29:433-445. [PMID: 30913290 DOI: 10.1093/glycob/cwz026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Sialic acids cap the glycans of cell surface glycoproteins and glycolipids. They are involved in a multitude of biological processes and aberrant sialic acid expression is associated with several pathologies. Sialic acids modulate the characteristics and functions of glycoproteins and regulate cell-cell as well as cell-extracellular matrix interactions. Pathogens such as influenza virus use sialic acids to infect host cells and cancer cells exploit sialic acids to escape from the host's immune system. The introduction of unnatural sialic acids with different functionalities into surface glycans enables the study of the broad biological functions of these sugars and presents a therapeutic option to intervene with pathological processes involving sialic acids. Multiple chemically modified sialic acid analogs can be directly utilized by cells for sialoglycan synthesis. Alternatively, analogs of the natural sialic acid precursor sugar N-Acetylmannosamine (ManNAc) can be introduced into the sialic acid biosynthesis pathway resulting in the intracellular conversion into the corresponding sialic acid analog. Both, ManNAc and sialic acid analogs, have been employed successfully for a large variety of glycoengineering applications such as glycan imaging, targeting toxins to tumor cells, inhibiting pathogen binding, or altering immune cell activity. However, there are significant differences between ManNAc and sialic acid analogs with respect to their chemical modification potential and cellular metabolism that should be considered in sialic acid glycoengineering experiments.
Collapse
Affiliation(s)
- Sam J Moons
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Max Tgm Derks
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Christian Büll
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| |
Collapse
|
43
|
Werther P, Yserentant K, Braun F, Kaltwasser N, Popp C, Baalmann M, Herten D, Wombacher R. Live-Cell Localization Microscopy with a Fluorogenic and Self-Blinking Tetrazine Probe. Angew Chem Int Ed Engl 2020; 59:804-810. [PMID: 31638314 PMCID: PMC6972563 DOI: 10.1002/anie.201906806] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/11/2019] [Indexed: 11/15/2022]
Abstract
Recent developments in fluorescence microscopy call for novel small-molecule-based labels with multiple functionalities to satisfy different experimental requirements. A current limitation in the advancement of live-cell single-molecule localization microscopy is the high excitation power required to induce blinking. This is in marked contrast to the minimal phototoxicity required in live-cell experiments. At the same time, quality of super-resolution imaging depends on high label specificity, making removal of excess dye essential. Approaching both hurdles, we present the design and synthesis of a small-molecule label comprising both fluorogenic and self-blinking features. Bioorthogonal click chemistry ensures fast and highly selective attachment onto a variety of biomolecular targets. Along with spectroscopic characterization, we demonstrate that the probe improves quality and conditions for regular and single-molecule localization microscopy on live-cell samples.
Collapse
Affiliation(s)
- Philipp Werther
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Klaus Yserentant
- Physikalisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22969120HeidelbergGermany
- CellNetworks, Single-Molecule SpectroscopyRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 26769120HeidelbergGermany
- Fakultät für BiowissenschaftenRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 23469120HeidelbergGermany
| | - Felix Braun
- Physikalisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22969120HeidelbergGermany
- CellNetworks, Single-Molecule SpectroscopyRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 26769120HeidelbergGermany
| | - Nicolai Kaltwasser
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Christoph Popp
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Mathis Baalmann
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Dirk‐Peter Herten
- Physikalisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22969120HeidelbergGermany
- CellNetworks, Single-Molecule SpectroscopyRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 26769120HeidelbergGermany
- Institute of Cardiovascular Sciences & School of ChemistryCollege of Medical and Dental SciencesMedical SchoolUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamMidlandsUK
| | - Richard Wombacher
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 36469120HeidelbergGermany
| |
Collapse
|
44
|
Zhang R, Zheng J, Zhang T. In vivo selective imaging of metabolic glycosylation with a tetrazine-modified upconversion nanoprobe. RSC Adv 2020; 10:15990-15996. [PMID: 35493688 PMCID: PMC9052955 DOI: 10.1039/d0ra01832e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/03/2020] [Indexed: 01/20/2023] Open
Abstract
A novel nanoprobe (UCNP-T) for the specific labeling and real-time imaging of glycans on the cell membrane via ratiometric UCL imaging was developed.
Collapse
Affiliation(s)
- Ruijing Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou
- China
| | - Judun Zheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou
- China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou
- China
| |
Collapse
|
45
|
Zheng J, Zhan Q, Jiang L, Xing D, Zhang T, Wong KL. A bioorthogonal time-resolved luminogenic probe for metabolic labelling and imaging of glycans. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00728e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A terbium complex Tb-1 was demonstrated to undergo bioorthogonal ligation with engineered cell-surface glycans, which results in a much less efficient LRET and a 5-fold increase in long-lived terbium emission with low toxicity.
Collapse
Affiliation(s)
- Judun Zheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- Guangdong Provincial Key Laboratory of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research
- South China Academy of Advanced Optoelectronics
- South China Normal University
- Guangzhou
- P.R. China
| | - Lijun Jiang
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- Guangdong Provincial Key Laboratory of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- Guangdong Provincial Key Laboratory of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
| | - Ka-Leung Wong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- P. R. China
| |
Collapse
|
46
|
Kranaster P, Karreman C, Dold JEGA, Krebs A, Funke M, Holzer AK, Klima S, Nyffeler J, Helfrich S, Wittmann V, Leist M. Time and space-resolved quantification of plasma membrane sialylation for measurements of cell function and neurotoxicity. Arch Toxicol 2019; 94:449-467. [PMID: 31828357 DOI: 10.1007/s00204-019-02642-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022]
Abstract
While there are many methods to quantify the synthesis, localization, and pool sizes of proteins and DNA during physiological responses and toxicological stress, only few approaches allow following the fate of carbohydrates. One of them is metabolic glycoengineering (MGE), which makes use of chemically modified sugars (CMS) that enter the cellular biosynthesis pathways leading to glycoproteins and glycolipids. The CMS can subsequently be coupled (via bio-orthogonal chemical reactions) to tags that are quantifiable by microscopic imaging. We asked here, whether MGE can be used in a quantitative and time-resolved way to study neuronal glycoprotein synthesis and its impairment. We focused on the detection of sialic acid (Sia), by feeding human neurons the biosynthetic precursor N-acetyl-mannosamine, modified by an azide tag. Using this system, we identified non-toxic conditions that allowed live cell labeling with high spatial and temporal resolution, as well as the quantification of cell surface Sia. Using combinations of immunostaining, chromatography, and western blotting, we quantified the percentage of cellular label incorporation and effects on glycoproteins such as polysialylated neural cell adhesion molecule. A specific imaging algorithm was used to quantify Sia incorporation into neuronal projections, as potential measure of complex cell function in toxicological studies. When various toxicants were studied, we identified a subgroup (mitochondrial respiration inhibitors) that affected neurite glycan levels several hours before any other viability parameter was affected. The MGE-based neurotoxicity assay, thus allowed the identification of subtle impairments of neurochemical function with very high sensitivity.
Collapse
Affiliation(s)
- Petra Kranaster
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany
| | - Christiaan Karreman
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Jeremias E G A Dold
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany.,Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Alice Krebs
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany
| | - Melina Funke
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Anna-Katharina Holzer
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Stefanie Klima
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.,Kooperatives Promotionskolleg (KPK) InViTe, University of Konstanz, 78457, Konstanz, Germany
| | - Johanna Nyffeler
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.,Environmental Protection Agency, Durham, NC, USA
| | - Stefan Helfrich
- The Bioimaging Center, University of Konstanz, 78457, Konstanz, Germany.,KNIME GmbH, 78467, Konstanz, Germany
| | - Valentin Wittmann
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany.,Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany. .,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
47
|
Werther P, Yserentant K, Braun F, Kaltwasser N, Popp C, Baalmann M, Herten D, Wombacher R. Live‐Cell Localization Microscopy with a Fluorogenic and Self‐Blinking Tetrazine Probe. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Philipp Werther
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Klaus Yserentant
- Physikalisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
- CellNetworks, Single-Molecule SpectroscopyRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 267 69120 Heidelberg Germany
- Fakultät für BiowissenschaftenRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 234 69120 Heidelberg Germany
| | - Felix Braun
- Physikalisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
- CellNetworks, Single-Molecule SpectroscopyRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Nicolai Kaltwasser
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Christoph Popp
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Mathis Baalmann
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Dirk‐Peter Herten
- Physikalisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
- CellNetworks, Single-Molecule SpectroscopyRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 267 69120 Heidelberg Germany
- Institute of Cardiovascular Sciences & School of ChemistryCollege of Medical and Dental SciencesMedical SchoolUniversity of Birmingham Edgbaston Birmingham B15 2TT UK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and Nottingham Midlands UK
| | - Richard Wombacher
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Germany
| |
Collapse
|
48
|
Zhang Q, Li Z, Chernova T, Saikam V, Cummings R, Song X, Ju T, Smith DF, Wang PG. Synthesis and Characterization of Versatile O-Glycan Precursors for Cellular O-Glycomics. ACS Synth Biol 2019; 8:2507-2513. [PMID: 31638776 DOI: 10.1021/acssynbio.9b00168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein O-glycosylation is a universal post-translational modification and plays essential roles in many biological processes. Recently we reported a technology termed cellular O-glycome reporter/amplification (CORA) to amplify and profile mucin-type O-glycans of living cells growing in the presence of peracetylated Benzyl-α-GalNAc (Ac3GalNAc-α-Bn). However, the application and development of the CORA method are limited by the properties of the precursor benzyl aglycone, which is relatively inert to further chemical modifications. Here we described a rapid parallel microwave-assisted synthesis of Ac3GalNAc-α-Bn derivatives to identify versatile precursors for cellular O-glycomics. In total, 26 derivatives, including fluorescent and bioorthogonal reactive ones, were successfully synthesized. The precursors were evaluated for their activity as acceptors for T-synthase and for their ability to function as CORA precursors. Several of the precursors possessing useful functional groups were more efficient than Ac3GalNAc-α-Bn as T-synthase acceptors and cellular O-glycome reporters. These precursors will advance the CORA technology for studies of functional O-glycomics.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30302, United States
| | - Zhonghua Li
- Emory Comprehensive Glycomics Core, Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Tatiana Chernova
- Emory Comprehensive Glycomics Core, Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Varma Saikam
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30302, United States
| | - Richard Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xuezheng Song
- Emory Comprehensive Glycomics Core, Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - David F. Smith
- Emory Comprehensive Glycomics Core, Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Peng G. Wang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
49
|
Schäfer RJB, Monaco MR, Li M, Tirla A, Rivera-Fuentes P, Wennemers H. The Bioorthogonal Isonitrile–Chlorooxime Ligation. J Am Chem Soc 2019; 141:18644-18648. [DOI: 10.1021/jacs.9b07632] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rebecca J. B. Schäfer
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Mattia R. Monaco
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Mao Li
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Alina Tirla
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Pablo Rivera-Fuentes
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| |
Collapse
|
50
|
Kugele A, Silkenath B, Langer J, Wittmann V, Drescher M. Protein Spin Labeling with a Photocaged Nitroxide Using Diels-Alder Chemistry. Chembiochem 2019; 20:2479-2484. [PMID: 31090999 PMCID: PMC6790680 DOI: 10.1002/cbic.201900318] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 12/31/2022]
Abstract
EPR spectroscopy of diamagnetic bio-macromolecules is based on site-directed spin labeling (SDSL). Herein, a novel labeling strategy for proteins is presented. A nitroxide-based spin label has been developed and synthesized that can be ligated to proteins by an inverse-electron-demand Diels-Alder (DAinv ) cycloaddition to genetically encoded noncanonical amino acids. The nitroxide moiety is shielded by a photoremovable protecting group with an attached tetra(ethylene glycol) unit to achieve water solubility. SDSL is demonstrated on two model proteins with the photoactivatable nitroxide for DAinv reaction (PaNDA) label. The strategy features high reaction rates, combined with high selectivity, and the possibility to deprotect the nitroxide in Escherichia coli lysate.
Collapse
Affiliation(s)
- Anandi Kugele
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Bjarne Silkenath
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Jakob Langer
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Valentin Wittmann
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Malte Drescher
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|