1
|
Hsu HJ, Li YT, Lai XY, Yeh YC, Hu TY, Chang CC. State transitions of coupled G i-protein: Insights into internal water channel dynamics within dopamine receptor D3 from in silico submolecular analyses. Int J Biol Macromol 2024; 281:136283. [PMID: 39378922 DOI: 10.1016/j.ijbiomac.2024.136283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Dopamine is a crucial neurotransmitter in the central nervous system (CNS) that facilitates communication among neurons. Activation of dopamine receptors in the CNS regulates key functions such as movement, cognition, and emotion. Disruption of these receptors can result in severe neurological diseases. Although recent research has elucidated the structure of D3R in complex with Gi-protein, revealing the binding and activation mechanisms, the precise conformational changes induced by G-protein activation and GDP/GTP exchange remain unclear. In this study, atomic-level long-term molecular dynamics (MD) simulations were employed to investigate the dynamics of D3R in complex with different states of Gi-protein and β-arrestin. Our simulations revealed distinct molecular switches within D3R and fluctuations in the distance between Ras and helical domains of G-protein across different G-protein-D3R states. Notably, the D3R-GTP-Gi state exhibited increased activity compared with the D3R-empty-Gi state. Additionally, analyses of potential of mean force (PMF) and free energy landscapes for various systems revealed the formation of a continuous water channel exclusively in the D3R-Gi-GTP state. Furthermore, allosteric communication pathways were proposed for active D3R bound to Gi-protein. This study offers insights into the activation mechanism when Gi-protein interacts with active D3R, potentially aiding in developing selective drugs targeting the dopaminergic system.
Collapse
Affiliation(s)
- Hao-Jen Hsu
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; Department of Biomedical Sciences and Engineering, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Ya-Tzu Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Xing-Yan Lai
- Department of Biomedical Sciences and Engineering, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Yu-Chen Yeh
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Ting-Yu Hu
- Department of Biomedical Sciences and Engineering, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan.
| |
Collapse
|
2
|
Lešnik S, Bren U, Domratcheva T, Bondar AN. Fentanyl and the Fluorinated Fentanyl Derivative NFEPP Elicit Distinct Hydrogen-Bond Dynamics of the Opioid Receptor. J Chem Inf Model 2023; 63:4732-4748. [PMID: 37498626 DOI: 10.1021/acs.jcim.3c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The development of safe therapeutics to manage pain is of central interest for biomedical applications. The fluorinated fentanyl derivative N-(3-fluoro-1-phenethylpiperidin-4-yl)-N-phenylpropionamide (NFEPP) is potentially a safer alternative to fentanyl because unlike fentanyl─which binds to the μ-opioid receptor (MOR) at both physiological and acidic pH─NFEPP might bind to the MOR only at acidic pH typical of inflamed tissue. Knowledge of the protonation-coupled dynamics of the receptor-drug interactions is thus required to understand the molecular mechanism by which receptor activation initiates cell signaling to silence pain. To this end, here we have carried out extensive atomistic simulations of the MOR in different protonation states, in the absence of opioid drugs, and in the presence of fentanyl vs NFEPP. We used graph-based analyses to characterize internal hydrogen-bond networks that could contribute to the activation of the MOR. We find that fentanyl and NFEPP prefer distinct binding poses and that, in their binding poses, fentanyl and NFEPP partake in distinct internal hydrogen-bond networks, leading to the cytoplasmic G-protein-binding region. Moreover, the protonation state of functionally important aspartic and histidine side chains impacts hydrogen-bond networks that extend throughout the receptor, such that the ligand-bound MOR presents at its cytoplasmic G-protein-binding side, a hydrogen-bonding environment where dynamics depend on whether fentanyl or NFEPP is bound, and on the protonation state of specific MOR groups. The exquisite sensitivity of the internal protein-water hydrogen-bond network to the protonation state and to details of the drug binding could enable the MOR to elicit distinct pH- and opioid-dependent responses at its cytoplasmic G-protein-binding site.
Collapse
Affiliation(s)
- Samo Lešnik
- Faculty of Chemistry and Chemical Engineering, Laboratory of Physical Chemistry and Chemical Thermodynamics, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Institute for Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, Laboratory of Physical Chemistry and Chemical Thermodynamics, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Institute for Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, SI-6000 Koper, Slovenia
| | - Tatiana Domratcheva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Biomolecular Mechanisms, Max-Plank-Institute fur Medizinische Forschung, D-69120 Heidelberg, Germany
| | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Atomiştilor 405, 077125 Măgurele, Romania
- Institute of Computational Biomedicine, IAS-5/INM-9, Forschungszentrum Jülich, Wilhelm-Johnen Straße, 5428 Jülich, Germany
| |
Collapse
|
3
|
Li Z, Liu J, Dong F, Chang N, Huang R, Xia M, Patterson TA, Hong H. Three-Dimensional Structural Insights Have Revealed the Distinct Binding Interactions of Agonists, Partial Agonists, and Antagonists with the µ Opioid Receptor. Int J Mol Sci 2023; 24:ijms24087042. [PMID: 37108204 PMCID: PMC10138646 DOI: 10.3390/ijms24087042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The United States is experiencing the most profound and devastating opioid crisis in history, with the number of deaths involving opioids, including prescription and illegal opioids, continuing to climb over the past two decades. This severe public health issue is difficult to combat as opioids remain a crucial treatment for pain, and at the same time, they are also highly addictive. Opioids act on the opioid receptor, which in turn activates its downstream signaling pathway that eventually leads to an analgesic effect. Among the four types of opioid receptors, the µ subtype is primarily responsible for the analgesic cascade. This review describes available 3D structures of the µ opioid receptor in the protein data bank and provides structural insights for the binding of agonists and antagonists to the receptor. Comparative analysis on the atomic details of the binding site in these structures was conducted and distinct binding interactions for agonists, partial agonists, and antagonists were observed. The findings in this article deepen our understanding of the ligand binding activity and shed some light on the development of novel opioid analgesics which may improve the risk benefit balance of existing opioids.
Collapse
Affiliation(s)
- Zoe Li
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jie Liu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Fan Dong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Nancy Chang
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tucker A Patterson
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
4
|
James AD, Unthank KP, Jones I, Sajjaboontawee N, Sizer RE, Chawla S, Evans GJO, Brackenbury WJ. Sodium regulates PLC and IP 3 R-mediated calcium signaling in invasive breast cancer cells. Physiol Rep 2023; 11:e15663. [PMID: 37017052 PMCID: PMC10074044 DOI: 10.14814/phy2.15663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Intracellular Ca2+ signaling and Na+ homeostasis are inextricably linked via ion channels and co-transporters, with alterations in the concentration of one ion having profound effects on the other. Evidence indicates that intracellular Na+ concentration ([Na+ ]i ) is elevated in breast tumors, and that aberrant Ca2+ signaling regulates numerous key cancer hallmark processes. The present study therefore aimed to determine the effects of Na+ depletion on intracellular Ca2+ handling in metastatic breast cancer cell lines. The relationship between Na+ and Ca2+ was probed using fura-2 and SBFI fluorescence imaging and replacement of extracellular Na+ with equimolar N-methyl-D-glucamine (0Na+ /NMDG) or choline chloride (0Na+ /ChoCl). In triple-negative MDA-MB-231 and MDA-MB-468 cells and Her2+ SKBR3 cells, but not ER+ MCF-7 cells, 0Na+ /NMDG and 0Na+ /ChoCl resulted in a slow, sustained depletion in [Na+ ]i that was accompanied by a rapid and sustained increase in intracellular Ca2+ concentration ([Ca2+ ]i ). Application of La3+ in nominal Ca2+ -free conditions had no effect on this response, ruling out reverse-mode NCX activity and Ca2+ entry channels. Moreover, the Na+ -linked [Ca2+ ]i increase was independent of membrane potential hyperpolarization (NS-1619), but was inhibited by pharmacological blockade of IP3 receptors (2-APB), phospholipase C (PLC, U73122) or following depletion of endoplasmic reticulum Ca2+ stores (cyclopiazonic acid). Thus, Na+ is linked to PLC/IP3 -mediated activation of endoplasmic reticulum Ca2+ release in metastatic breast cancer cells and this may have an important role in breast tumors where [Na+ ]i is perturbed.
Collapse
Affiliation(s)
- Andrew D. James
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | | | | | - Nattanan Sajjaboontawee
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | | | - Sangeeta Chawla
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Gareth J. O. Evans
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - William J. Brackenbury
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| |
Collapse
|
5
|
Chen L, Gong W, Han Z, Zhou W, Yang S, Li C. Key Residues in δ Opioid Receptor Allostery Explored by the Elastic Network Model and the Complex Network Model Combined with the Perturbation Method. J Chem Inf Model 2022; 62:6727-6738. [PMID: 36073904 DOI: 10.1021/acs.jcim.2c00513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Opioid receptors, a kind of G protein-coupled receptors (GPCRs), mainly mediate an analgesic response via allosterically transducing the signal of endogenous ligand binding in the extracellular domain to couple to effector proteins in the intracellular domain. The δ opioid receptor (DOP) is associated with emotional control besides pain control, which makes it an attractive therapeutic target. However, its allosteric mechanism and key residues responsible for the structural stability and signal communication are not completely clear. Here we utilize the Gaussian network model (GNM) and amino acid network (AAN) combined with perturbation methods to explore the issues. The constructed fcfGNMMD, where the force constants are optimized with the inverse covariance estimation based on the correlated fluctuations from the available DOP molecular dynamics (MD) ensemble, shows a better performance than traditional GNM in reproducing residue fluctuations and cross-correlations and in capturing functionally low-frequency modes. Additionally, fcfGNMMD can consider implicitly the environmental effects to some extent. The lowest mode can well divide DOP segments and identify the two sodium ion (important allosteric regulator) binding coordination shells, and from the fastest modes, the key residues important for structure stabilization are identified. Using fcfGNMMD combined with a dynamic perturbation-response method, we explore the key residues related to the sodium ion binding. Interestingly, we identify not only the key residues in sodium ion binding shells but also the ones far away from the perturbation sites, which are involved in binding with DOP ligands, suggesting the possible long-range allosteric modulation of sodium binding for the ligand binding to DOP. Furthermore, utilizing the weighted AAN combined with attack perturbations, we identify the key residues for allosteric communication. This work helps strengthen the understanding of the allosteric communication mechanism in δ opioid receptor and can provide valuable information for drug design.
Collapse
Affiliation(s)
- Lei Chen
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Weikang Gong
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Wenxue Zhou
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Shuang Yang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
6
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
7
|
Poudel H, Leitner DM. Energy Transport in Class B GPCRs: Role of Protein-Water Dynamics and Activation. J Phys Chem B 2022; 126:8362-8373. [PMID: 36256609 DOI: 10.1021/acs.jpcb.2c03960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We compute energy exchange networks (EENs) through glucagon-like peptide-1 receptor (GLP-1R), a class B G-protein-coupled receptor (GPCR), in inactive and two active states, one activated by a peptide ligand and the other by a small molecule agonist, from results of molecular dynamics simulations. The reorganized network upon activation contains contributions from structural as well as from dynamic changes and corresponding entropic contributions to the free energy of activation, which are estimated in terms of the change in rates of energy transfer across non-covalent contacts. The role of water in the EENs and in activation of GLP-1R is also investigated. The dynamics of water in contact with the central polar network of the transmembrane region is found to be significantly slower for both activated states compared to the inactive state. This result is consistent with the contribution of water molecules to activation of GLP-1R previously suggested and resembles water dynamics in parts of the transmembrane region found in earlier studies of rhodopsin-like GPCRs.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada89557, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada89557, United States
| |
Collapse
|
8
|
Díaz O, Renault P, Giraldo J. Evaluating Allosteric Perturbations in Cannabinoid Receptor 1 by In Silico Single-Point Mutation. ACS OMEGA 2022; 7:37873-37884. [PMID: 36312415 PMCID: PMC9608382 DOI: 10.1021/acsomega.2c04980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Cannabinoid receptor 1 (CB1) is a promising drug target involved in many physiological processes. Using atomistic molecular dynamics (MD) simulations, we examined the structural effect of F237L mutation on CB1, a mutation that has qualitatively similar effects to allosteric ligand ORG27569 binding. This mutation showed a global effect on CB1 conformations. Among the observed effects, TM6 outward movement and the conformational change of the NPxxY motif upon receptor activation by CB1 agonist CP55940 were hindered compared to wt CB1. Within the orthosteric binding site, CP55940 interactions with CB1 were altered. Our results revealed that allosteric perturbations introduced by the mutation had a global impact on receptor conformations, suggesting that the mutation site is a key region for allosteric modulation in CB1.
Collapse
Affiliation(s)
- Oscar Díaz
- Laboratory
of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística
and Institut de Neurociències, Universitat
Autònoma de Barcelona, Bellaterra 08193, Spain
- Instituto
de Salud Carlos III, Centro de Investigación
Biomédica en Red de Salud Mental (CIBERSAM), Madrid 28029, Spain
- Unitat
de Neurociència Traslacional, Parc Taulí Hospital Universitari,
Institut d’Investigació i Innovació Parc Taulí
(I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Pedro Renault
- Laboratory
of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística
and Institut de Neurociències, Universitat
Autònoma de Barcelona, Bellaterra 08193, Spain
- Instituto
de Salud Carlos III, Centro de Investigación
Biomédica en Red de Salud Mental (CIBERSAM), Madrid 28029, Spain
- Unitat
de Neurociència Traslacional, Parc Taulí Hospital Universitari,
Institut d’Investigació i Innovació Parc Taulí
(I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Jesús Giraldo
- Laboratory
of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística
and Institut de Neurociències, Universitat
Autònoma de Barcelona, Bellaterra 08193, Spain
- Instituto
de Salud Carlos III, Centro de Investigación
Biomédica en Red de Salud Mental (CIBERSAM), Madrid 28029, Spain
- Unitat
de Neurociència Traslacional, Parc Taulí Hospital Universitari,
Institut d’Investigació i Innovació Parc Taulí
(I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
9
|
Drakopoulos A, Moianos D, Prifti GM, Zoidis G, Decker M. Opioid ligands addressing unconventional binding sites and more than one opioid receptor subtype. ChemMedChem 2022; 17:e202200169. [PMID: 35560796 DOI: 10.1002/cmdc.202200169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Indexed: 11/10/2022]
Abstract
Opioid receptors (ORs) represent one of the most significant groups of G-protein coupled receptor (GPCR) drug targets and also act as prototypical models for GPCR function. In a constant effort to develop drugs with less side effects, and tools to explore the ORs nature and function, various (poly)pharmacological ligand design approaches have been performed. That is, besides classical ligands, a great number of bivalent ligands (i.e. aiming on two distinct OR subtypes), univalent heteromer-selective ligands and bitopic and allosteric ligands have been synthesized for the ORs. The scope of our review is to present the most important of the aforementioned ligands, highlight their properties and exhibit the current state-of-the-art pallet of promising drug candidates or useful molecular tools for the ORs.
Collapse
Affiliation(s)
- Antonios Drakopoulos
- University of Gothenburg: Goteborgs Universitet, Department of Chemistry and Molecular Biology, Kemigåden 4, 431 45, Göteborg, SWEDEN
| | - Dimitrios Moianos
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Georgia-Myrto Prifti
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Grigoris Zoidis
- National and Kapodistrian University of Athens, Department of Pharmaceutical Chemistry, Panepistimioupolis-Zografou, 15771, Athens, GREECE
| | - Michael Decker
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, GERMANY
| |
Collapse
|
10
|
Bueschbell B, Manga P, Schiedel AC. The Many Faces of G Protein-Coupled Receptor 143, an Atypical Intracellular Receptor. Front Mol Biosci 2022; 9:873777. [PMID: 35495622 PMCID: PMC9039016 DOI: 10.3389/fmolb.2022.873777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
GPCRs transform extracellular stimuli into a physiological response by activating an intracellular signaling cascade initiated via binding to G proteins. Orphan G protein-coupled receptors (GPCRs) hold the potential to pave the way for development of new, innovative therapeutic strategies. In this review we will introduce G protein-coupled receptor 143 (GPR143), an enigmatic receptor in terms of classification within the GPCR superfamily and localization. GPR143 has not been assigned to any of the GPCR families due to the lack of common structural motifs. Hence we will describe the most important motifs of classes A and B and compare them to the protein sequence of GPR143. While a precise function for the receptor has yet to be determined, the protein is expressed abundantly in pigment producing cells. Many GPR143 mutations cause X-linked Ocular Albinism Type 1 (OA1, Nettleship-Falls OA), which results in hypopigmentation of the eyes and loss of visual acuity due to disrupted visual system development and function. In pigment cells of the skin, loss of functional GPR143 results in abnormally large melanosomes (organelles in which pigment is produced). Studies have shown that the receptor is localized internally, including at the melanosomal membrane, where it may function to regulate melanosome size and/or facilitate protein trafficking to the melanosome through the endolysosomal system. Numerous additional roles have been proposed for GPR143 in determining cancer predisposition, regulation of blood pressure, development of macular degeneration and signaling in the brain, which we will briefly describe as well as potential ligands that have been identified. Furthermore, GPR143 is a promiscuous receptor that has been shown to interact with multiple other melanosomal proteins and GPCRs, which strongly suggests that this orphan receptor is likely involved in many different physiological actions.
Collapse
Affiliation(s)
- Beatriz Bueschbell
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Prashiela Manga
- Ronald O. Perelman Department of Dermatology, Grossman School of Medicine, New York University, New York City, NY, United States
| | - Anke C. Schiedel
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
- *Correspondence: Anke C. Schiedel,
| |
Collapse
|
11
|
Wu Y, Li X, Hua T, Liu ZJ, Liu H, Zhao S. MD Simulations Revealing Special Activation Mechanism of Cannabinoid Receptor 1. Front Mol Biosci 2022; 9:860035. [PMID: 35425811 PMCID: PMC9004671 DOI: 10.3389/fmolb.2022.860035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Cannabinoid receptor 1 (CB1) is a G protein-coupled receptor (GPCR) that is gaining much interest for its regulating role in the central nervous system and its value as a drug target. Structures of CB1 in inactive and active states have revealed conformational change details that are not common in other GPCRs. Here, we performed molecular dynamics simulations of CB1 in different ligand binding states and with mutations to reveal its activation mechanism. The conformational change of the “twin toggle switch” residues F2003.36 and W3566.48 that correlates with ligand efficacy is identified as a key barrier step in CB1 activation. Similar conformational change of residues 3.36/6.48 is also observed in melanocortin receptor 4, showing this “twin toggle switch” residue pair is crucial for the activation of multiple GPCR members.
Collapse
Affiliation(s)
- Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Xuanxuan Li
- Complex Systems Division, Beijing Computational Science Research Center, Beijing, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Beijing, China
- *Correspondence: Haiguang Liu, ; Suwen Zhao,
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- *Correspondence: Haiguang Liu, ; Suwen Zhao,
| |
Collapse
|
12
|
Ben Boubaker R, Tiss A, Henrion D, Guissouma H, Chabbert M. Evolutionary information helps understand distinctive features of the angiotensin II receptors AT1 and AT2 in amniota. PLoS Comput Biol 2022; 18:e1009732. [PMID: 35202400 PMCID: PMC8870451 DOI: 10.1371/journal.pcbi.1009732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, the octopeptide angiotensin II (AngII) is an important in vivo regulator of the cardiovascular system. It acts mainly through two G protein-coupled receptors, AT1 and AT2. To better understand distinctive features of these receptors, we carried out a phylogenetic analysis that revealed a mirror evolution of AT1 and AT2, each one split into two clades, separating fish from terrestrial receptors. It also revealed that hallmark mutations occurred at, or near, the sodium binding site in both AT1 and AT2. Electrostatics computations and molecular dynamics simulations support maintained sodium binding to human AT1 with slow ingress from the extracellular side and an electrostatic component of the binding free energy around -3kT, to be compared to around -2kT for human AT2 and the δ opioid receptor. Comparison of the sodium binding modes in wild type and mutated AT1 and AT2 from humans and eels indicates that the allosteric control by sodium in both AT1 and AT2 evolved during the transition from fish to amniota. The unusual S7.46N mutation in AT1 is mirrored by a L3.36M mutation in AT2. In the presence of sodium, the N7.46 pattern in amniota AT1 stabilizes the inward orientation of N3.35 in the apo receptor, which should contribute to efficient N3.35 driven biased signaling. The M3.36 pattern in amniota AT2 favours the outward orientation of N3.35 and the receptor promiscuity. Both mutations have physiological consequences for the regulation of the renin-angiotensin system. The analysis of protein sequences from different species can reveal interesting trends in the structural and functional evolution of a protein family. Here, we analyze the evolution of two G protein-coupled receptors, AT1 and AT2, which bind the angiotensin II peptide and are important regulators of the cardiovascular system. We show that these receptors underwent a mirror evolution. Specific mutations at, or near, the sodium binding pocket occurred in both AT1 and AT2 during the transition to terrestrial life. We carried out electrostatics computations and molecular dynamics simulations to decipher the details of the sodium binding mode in eel and human receptors, as prototypes of fish and amniota receptors. Our results indicate that sodium binding is kinetically slow but thermodynamically stable. Comparison of the sodium binding modes in eel and human receptors reveals that an unusual mutation in the sodium binding pocket of AT1 is critical for biased signaling of amniota AT1 whereas a mutation in AT2 promotes promiscuity of amniota AT2. In turn, these data indicate that a few mutations at a strategic position (here the sodium binding pocket) are an efficient way to gain functional evolution.
Collapse
Affiliation(s)
- Rym Ben Boubaker
- CNRS UMR 6015 – INSERM U1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
| | - Asma Tiss
- CNRS UMR 6015 – INSERM U1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
- INSAT de Tunis, Université de Carthage, Carthage, Tunisie
| | - Daniel Henrion
- CNRS UMR 6015 – INSERM U1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
| | | | - Marie Chabbert
- CNRS UMR 6015 – INSERM U1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
- * E-mail:
| |
Collapse
|
13
|
Dutta S, Selvam B, Shukla D. Distinct Binding Mechanisms for Allosteric Sodium Ion in Cannabinoid Receptors. ACS Chem Neurosci 2022; 13:379-389. [PMID: 35019279 DOI: 10.1021/acschemneuro.1c00760] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The therapeutic potential of cannabinoid receptors is not fully explored due to psychoactive side effects and lack of selectivity associated with orthosteric ligands. Allosteric modulators have the potential to become selective therapeutics for cannabinoid receptors. Biochemical experiments have shown the effects of the allosteric Na+ binding on cannabinoid receptor activity. However, the Na+ coordination site and binding pathway are still unknown. Here, we perform molecular dynamic simulations to explore Na+ binding in the cannabinoid receptors, CB1 and CB2. Simulations reveal that Na+ binds to the primary binding site from different extracellular sites for CB1 and CB2. A distinct secondary Na+ coordination site is identified in CB1 that is not present in CB2. Furthermore, simulations also show that intracellular Na+ could bind to the Na+ binding site in CB1. Constructed Markov state models show that the standard free energy of Na+ binding is similar to the previously calculated free energy for other class A GPCRs.
Collapse
Affiliation(s)
- Soumajit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Balaji Selvam
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- National Center for Supercomputing Applications, University of Illinois, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Hernández-Alvarado RB, Madariaga-Mazón A, Cosme-Vela F, Marmolejo-Valencia AF, Nefzi A, Martinez-Mayorga K. Encoding mu-opioid receptor biased agonism with interaction fingerprints. J Comput Aided Mol Des 2021; 35:1081-1093. [PMID: 34713377 DOI: 10.1007/s10822-021-00422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Opioids are potent painkillers, however, their therapeutic use requires close medical monitoring to diminish the risk of severe adverse effects. The G-protein biased agonists of the μ-opioid receptor (MOR) have shown safer therapeutic profiles than non-biased ligands. In this work, we performed extensive all-atom molecular dynamics simulations of two markedly biased ligands and a balanced reference molecule. From those simulations, we identified a protein-ligand interaction fingerprint that characterizes biased ligands. Then, we built and virtually screened a database containing 68,740 ligands with proven or potential GPCR agonistic activity. Exemplary molecules that fulfill the interacting pattern for biased agonism are showcased, illustrating the usefulness of this work for the search of biased MOR ligands and how this contributes to the understanding of MOR biased signaling.
Collapse
Affiliation(s)
| | | | - Fernando Cosme-Vela
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Adel Nefzi
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA.,Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| | | |
Collapse
|
15
|
Mitra A, Sarkar A, Borics A. Universal Properties and Specificities of the β 2-Adrenergic Receptor-G s Protein Complex Activation Mechanism Revealed by All-Atom Molecular Dynamics Simulations. Int J Mol Sci 2021; 22:10423. [PMID: 34638767 PMCID: PMC8508748 DOI: 10.3390/ijms221910423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are transmembrane proteins of high pharmacological relevance. It has been proposed that their activity is linked to structurally distinct, dynamically interconverting functional states and the process of activation relies on an interconnecting network of conformational switches in the transmembrane domain. However, it is yet to be uncovered how ligands with different extents of functional effect exert their actions. According to our recent hypothesis, based on indirect observations and the literature data, the transmission of the external stimulus to the intracellular surface is accompanied by the shift of macroscopic polarization in the transmembrane domain, furnished by concerted movements of highly conserved polar motifs and the rearrangement of polar species. In this follow-up study, we have examined the β2-adrenergic receptor (β2AR) to see if our hypothesis drawn from an extensive study of the μ-opioid receptor (MOP) is fundamental and directly transferable to other class A GPCRs. We have found that there are some general similarities between the two receptors, in agreement with previous studies, and there are some receptor-specific differences that could be associated with different signaling pathways.
Collapse
Affiliation(s)
- Argha Mitra
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, 62. Temesvári krt., H-6726 Szeged, Hungary; (A.M.); (A.S.)
- Theoretical Medicine Doctoral School, Faculty of Medicine, University of Szeged, 97. Tisza L. krt., H-6722 Szeged, Hungary
| | - Arijit Sarkar
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, 62. Temesvári krt., H-6726 Szeged, Hungary; (A.M.); (A.S.)
- Theoretical Medicine Doctoral School, Faculty of Medicine, University of Szeged, 97. Tisza L. krt., H-6722 Szeged, Hungary
| | - Attila Borics
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, 62. Temesvári krt., H-6726 Szeged, Hungary; (A.M.); (A.S.)
| |
Collapse
|
16
|
Marmolejo-Valencia AF, Madariaga-Mazón A, Martinez-Mayorga K. Bias-inducing allosteric binding site in mu-opioid receptor signaling. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Abstract
G-protein-biased agonism of the mu-opioid receptor (μ-OR) is emerging as a promising strategy in analgesia. A deep understanding of how biased agonists modulate and differentiate G-protein-coupled receptors (GPCR) signaling pathways and how this is transferred into the cell are open questions. Here, using extensive all-atom molecular dynamics simulations, we analyzed the binding recognition process and signaling effects of three prototype μ-OR agonists. Our suggested structural mechanism of biased signaling in μ-OR involves an allosteric sodium ion site, water networks, conformational rearrangements in conserved motifs and collective motions of loops and transmembrane helices. These analyses led us to highlight the relevance of a bias-inducing allosteric binding site in the understanding of μ-OR’s G-protein-biased signaling. These results also suggest a competitive equilibrium between the agonists and the allosteric sodium ion, where the bias-inducing allosteric binding site can be modulated by this ion or an agonist such as herkinorin. Notably, herkinorin arises as the archetype modulator of μ-OR and its interactive pattern could be used for screening efforts via protein–ligand interaction fingerprint (PLIF) studies.
Article highlights
Agonists and a sodium ion compete for the bias-inducing allosteric binding site that modulates signaling in mu-opioid receptors.
Molecular dynamics simulations of the prototype μ-OR agonist suggest a competitive equilibrium involving the agonist and an allosteric sodium ion.
Analysis of experimental data from the literature and molecular models provides the structural bases of biased agonism on μ-OR.
Collapse
|
17
|
Correlated Motions of Conserved Polar Motifs Lay out a Plausible Mechanism of G Protein-Coupled Receptor Activation. Biomolecules 2021; 11:biom11050670. [PMID: 33946214 PMCID: PMC8146931 DOI: 10.3390/biom11050670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/17/2021] [Accepted: 04/28/2021] [Indexed: 02/01/2023] Open
Abstract
Recent advancements in the field of experimental structural biology have provided high-resolution structures of active and inactive state G protein-coupled receptors (GPCRs), a highly important pharmaceutical target family, but the process of transition between these states is poorly understood. According to the current theory, GPCRs exist in structurally distinct, dynamically interconverting functional states of which populations are shifted upon binding of ligands and intracellular signaling proteins. However, explanation of the activation mechanism, on an entirely structural basis, gets complicated when multiple activation pathways and active receptor states are considered. Our unbiased, atomistic molecular dynamics simulations of the μ opioid receptor (MOP) revealed that transmission of external stimulus to the intracellular surface of the receptor is accompanied by subtle, concerted movements of highly conserved polar amino acid side chains along the 7th transmembrane helix. This may entail the rearrangement of polar species and the shift of macroscopic polarization in the transmembrane domain, triggered by agonist binding. Based on our observations and numerous independent indications, we suggest amending the widely accepted theory that the initiation event of GPCR activation is the shift of macroscopic polarization between the ortho- and allosteric binding pockets and the intracellular G protein-binding interface.
Collapse
|
18
|
Vo QN, Mahinthichaichan P, Shen J, Ellis CR. How μ-opioid receptor recognizes fentanyl. Nat Commun 2021; 12:984. [PMID: 33579956 PMCID: PMC7881245 DOI: 10.1038/s41467-021-21262-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/08/2021] [Indexed: 01/26/2023] Open
Abstract
Roughly half of the drug overdose-related deaths in the United States are related to synthetic opioids represented by fentanyl which is a potent agonist of mu-opioid receptor (mOR). In recent years, X-ray crystal structures of mOR in complex with morphine derivatives have been determined; however, structural basis of mOR activation by fentanyl-like opioids remains lacking. Exploiting the X-ray structure of BU72-bound mOR and several molecular simulation techniques, we elucidated the detailed binding mechanism of fentanyl. Surprisingly, in addition to the salt-bridge binding mode common to morphinan opiates, fentanyl can move deeper and form a stable hydrogen bond with the conserved His2976.52, which has been suggested to modulate mOR's ligand affinity and pH dependence by previous mutagenesis experiments. Intriguingly, this secondary binding mode is only accessible when His2976.52 adopts a neutral HID tautomer. Alternative binding modes may represent a general mechanism in G protein-coupled receptor-ligand recognition.
Collapse
Affiliation(s)
- Quynh N Vo
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, MD, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Paween Mahinthichaichan
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, MD, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA.
| | - Christopher R Ellis
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
19
|
Orgován Z, Ferenczy GG, Keserű GM. Allosteric Molecular Switches in Metabotropic Glutamate Receptors. ChemMedChem 2021; 16:81-93. [PMID: 32686363 PMCID: PMC7818470 DOI: 10.1002/cmdc.202000444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptors (mGlu) are class C G protein-coupled receptors of eight subtypes that are omnipresently expressed in the central nervous system. mGlus have relevance in several psychiatric and neurological disorders, therefore they raise considerable interest as drug targets. Allosteric modulators of mGlus offer advantages over orthosteric ligands owing to their increased potential to achieve subtype selectivity, and this has prompted discovery programs that have produced a large number of reported allosteric mGlu ligands. However, the optimization of allosteric ligands into drug candidates has proved to be challenging owing to induced-fit effects, flat or steep structure-activity relationships and unexpected changes in theirpharmacology. Subtle structural changes identified as molecular switches might modulate the functional activity of allosteric ligands. Here we review these switches discovered in the metabotropic glutamate receptor family..
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György M. Keserű
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| |
Collapse
|
20
|
Sena DM, Cong X, Giorgetti A. Ligand based conformational space studies of the μ-opioid receptor. Biochim Biophys Acta Gen Subj 2020; 1865:129838. [PMID: 33373630 DOI: 10.1016/j.bbagen.2020.129838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND G protein-coupled receptors (GPCRs) comprise a family of membrane proteins that can be activated by a variety of external factors. The μ-opioid receptor (MOR), a class A GPCR, is the main target of morphine. Recently, enhanced sampling molecular dynamics simulations of a constitutively active mutant of MOR in its apo form allowed us to capture the novel intermediate states of activation, as well as the active state. This prompted us to apply the same techniques to wild type MOR in complex with ligands, in order to explore their contributions to the receptor conformational changes in the activation process. METHODS MOR was modeled in complex with agonists (morphine, BU72), a partial agonist (naloxone benzoylhydrazone) and an antagonist (naloxone). Replica exchange with solute tempering (REST2) molecular dynamics simulations were carried out for all systems. Trajectory frames were clustered, and the activation state of each cluster was assessed by two different methods. RESULTS Cluster sizes and activation indices show that while agonists stabilized structures in a higher activation state, the antagonist behaved oppositely. Morphine tends to drive the receptor towards increasing R165-T279 distances, while naloxone tends to increase the NPxxYA motif conformational change. CONCLUSIONS Despite not observing a full transition between inactive and active states, an important conformational change of transmembrane helix 5 was observed and associated with a ligand-driven step of the process. GENERAL SIGNIFICANCE The activation process of GPCRs is widely studied but still not fully understood. Here we carried out a step forward in the direction of gaining more details of this process.
Collapse
Affiliation(s)
- Diniz M Sena
- Universidade Regional do Cariri - URCA, Biological Chemistry Dept., Crato, CE 63105-000, Brazil.
| | - Xiaojing Cong
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice 06108, France
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany; Department of Biotechnology, University of Verona, Verona, Italy.
| |
Collapse
|
21
|
Kozlova MI, Bushmakin IM, Belyaeva JD, Shalaeva DN, Dibrova DV, Cherepanov DA, Mulkidjanian AY. Expansion of the "Sodium World" through Evolutionary Time and Taxonomic Space. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:1518-1542. [PMID: 33705291 DOI: 10.1134/s0006297920120056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 1986, Vladimir Skulachev and his colleagues coined the term "Sodium World" for the group of diverse organisms with sodium (Na)-based bioenergetics. Albeit only few such organisms had been discovered by that time, the authors insightfully noted that "the great taxonomic variety of organisms employing the Na-cycle points to the ubiquitous distribution of this novel type of membrane-linked energy transductions". Here we used tools of bioinformatics to follow expansion of the Sodium World through the evolutionary time and taxonomic space. We searched for those membrane protein families in prokaryotic genomes that correlate with the use of the Na-potential for ATP synthesis by different organisms. In addition to the known Na-translocators, we found a plethora of uncharacterized protein families; most of them show no homology with studied proteins. In addition, we traced the presence of Na-based energetics in many novel archaeal and bacterial clades, which were recently identified by metagenomic techniques. The data obtained support the view that the Na-based energetics preceded the proton-dependent energetics in evolution and prevailed during the first two billion years of the Earth history before the oxygenation of atmosphere. Hence, the full capacity of Na-based energetics in prokaryotes remains largely unexplored. The Sodium World expanded owing to the acquisition of new functions by Na-translocating systems. Specifically, most classes of G-protein-coupled receptors (GPCRs), which are targeted by almost half of the known drugs, appear to evolve from the Na-translocating microbial rhodopsins. Thereby the GPCRs of class A, with 700 representatives in human genome, retained the Na-binding site in the center of the transmembrane heptahelical bundle together with the capacity of Na-translocation. Mathematical modeling showed that the class A GPCRs could use the energy of transmembrane Na-potential for increasing both their sensitivity and selectivity. Thus, GPCRs, the largest protein family coded by human genome, stem from the Sodium World, which encourages exploration of other Na-dependent enzymes of eukaryotes.
Collapse
Affiliation(s)
- M I Kozlova
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - I M Bushmakin
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - J D Belyaeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - D N Shalaeva
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany.
| | - D V Dibrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - D A Cherepanov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - A Y Mulkidjanian
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
22
|
Vo QN, Mahinthichaichan P, Shen J, Ellis CR. How μ-Opioid Receptor Recognizes Fentanyl. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.16.253013. [PMID: 32839778 PMCID: PMC7444290 DOI: 10.1101/2020.08.16.253013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 2019, drug overdose has claimed over 70,000 lives in the United States. More than half of the deaths are related to synthetic opioids represented by fentanyl which is a potent agonist of mu-opioid receptor (mOR). In recent years, the crystal structures of mOR in complex with morphine derivatives have been determined; however, structural basis of mOR activation by fentanyl-like synthetic opioids remains lacking. Exploiting the X-ray structure of mOR bound to a morphinan ligand and several state-of-the-art simulation techniques, including weighted ensemble and continuous constant pH molecular dynamics, we elucidated the detailed binding mechanism of fentanyl with mOR. Surprisingly, in addition to forming a salt-bridge with Asp1473.32 in the orthosteric site common to morphinan opiates, fentanyl can move deeper and bind mOR through hydrogen bonding with a conserved histidine His2976.52, which has been shown to modulate mOR's ligand affinity and pH dependence in mutagenesis experiments, but its precise role remains unclear. Intriguingly, the secondary binding mode is only accessible when His297 adopts a neutral HID tautomer. Alternative binding modes and involvement of tautomer states may represent general mechanisms in G protein-coupled receptor (GPCR)-ligand recognition. Our work provides a starting point for understanding the molecular basis of mOR activation by fentanyl which has many analogs emerging at a rapid pace. The knowledge may also inform the design of safer analgesics to combat the opioid crisis. Current protein simulation studies employ standard protonation and tautomer states; our work demonstrates the need to move beyond the practice to advance our understanding of protein-ligand recognition.
Collapse
Affiliation(s)
- Quynh N Vo
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, Maryland 20993
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Paween Mahinthichaichan
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, Maryland 20993
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Christopher R Ellis
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, Maryland 20993
| |
Collapse
|
23
|
Deciphering collaborative sidechain motions in proteins during molecular dynamics simulations. Sci Rep 2020; 10:15901. [PMID: 32985550 PMCID: PMC7522237 DOI: 10.1038/s41598-020-72766-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
The dynamic structure of proteins is essential for their functions and may include large conformational transitions which can be studied by molecular dynamics (MD) simulations. However, details of these transitions are difficult to automatically track. To facilitate their analysis, we developed two scores of correlation between sidechain dihedral angles. The CIRCULAR and OMES scores are computed from, respectively, dihedral angle values and rotamer distributions. As a case study, we applied our methods to an activation-like transition of the chemokine receptor CXCR4, observed during accelerated MD simulations. The principal component analysis of the correlation matrices was consistent with the networking structure of the top ranking pairs. Both scores identify a set of residues whose “collaborative” sidechain rotamerization immediately preceded or accompanied the conformational transition of CXCR4. Detailed analysis of the sequential order of these rotamerizations suggests that an allosteric mechanism, involving the outward motion of an asparagine residue in transmembrane helix 3, might be a prerequisite to the large scale conformational transition of CXCR4. This case study provides the proof-of-concept that the correlation methods developed here are valuable exploratory techniques to help decipher complex reactional pathways.
Collapse
|
24
|
Vo QN, Mahinthichaichan P, Shen J, Ellis CR. How mu-Opioid Receptor Recognizes Fentanyl. RESEARCH SQUARE 2020:rs.3.rs-67888. [PMID: 32935088 PMCID: PMC7491576 DOI: 10.21203/rs.3.rs-67888/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The opioid crisis has escalated during the COVID-19 pandemic. More than half of the overdose-related deaths are related to synthetic opioids represented by fentanyl which is a potent agonist of mu-opioid receptor (mOR). In recent years, crystal structures of mOR complexed with morphine derivatives have been determined; however, structural basis of mOR activation by fentanyl-like synthetic opioids remains lacking. Exploiting the X-ray structure of mOR bound to a morphinan ligand and several state-of-the-art simulation techniques, including weighted ensemble and continuous constant pH molecular dynamics, we elucidated the detailed binding mechanism of fentanyl with mOR. Surprisingly, in addition to the orthosteric site common to morphinan opiates, fentanyl can move deeper and bind mOR through hydrogen bonding with a conserved histidine H297, which has been shown to modulate mOR's ligand affinity and pH dependence in mutagenesis experiments, but its precise role remains unclear. Intriguingly, the secondary binding mode is only accessible when H297 adopts a neutral HID tautomer. Alternative binding modes and involvement of tautomer states may represent general mechanisms in G protein-coupled receptor (GPCR)-ligand recognition. Our work provides a starting point for understanding mOR activation by fentanyl analogs that are emerging at a rapid pace and assisting the design of safer analgesics to combat the opioid crisis. Current protein simulation studies employ standard protonation and tautomer states; our work demonstrates the need to move beyond the practice to advance our understanding of protein-ligand recognition.
Collapse
Affiliation(s)
- Quynh N Vo
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, Maryland 20993
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Paween Mahinthichaichan
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, Maryland 20993
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Christopher R Ellis
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, Maryland 20993
| |
Collapse
|
25
|
Torrens-Fontanals M, Stepniewski TM, Aranda-García D, Morales-Pastor A, Medel-Lacruz B, Selent J. How Do Molecular Dynamics Data Complement Static Structural Data of GPCRs. Int J Mol Sci 2020; 21:E5933. [PMID: 32824756 PMCID: PMC7460635 DOI: 10.3390/ijms21165933] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are implicated in nearly every physiological process in the human body and therefore represent an important drug targeting class. Advances in X-ray crystallography and cryo-electron microscopy (cryo-EM) have provided multiple static structures of GPCRs in complex with various signaling partners. However, GPCR functionality is largely determined by their flexibility and ability to transition between distinct structural conformations. Due to this dynamic nature, a static snapshot does not fully explain the complexity of GPCR signal transduction. Molecular dynamics (MD) simulations offer the opportunity to simulate the structural motions of biological processes at atomic resolution. Thus, this technique can incorporate the missing information on protein flexibility into experimentally solved structures. Here, we review the contribution of MD simulations to complement static structural data and to improve our understanding of GPCR physiology and pharmacology, as well as the challenges that still need to be overcome to reach the full potential of this technique.
Collapse
Affiliation(s)
- Mariona Torrens-Fontanals
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
- InterAx Biotech AG, PARK innovAARE, 5234 Villigen, Switzerland
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - David Aranda-García
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Adrián Morales-Pastor
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Brian Medel-Lacruz
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| |
Collapse
|
26
|
Setny P. Conserved internal hydration motifs in protein kinases. Proteins 2020; 88:1578-1591. [DOI: 10.1002/prot.25977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/18/2020] [Accepted: 07/05/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Piotr Setny
- Centre of New Technologies University of Warsaw Warsaw Poland
| |
Collapse
|
27
|
Mayol E, García-Recio A, Tiemann JKS, Hildebrand PW, Guixà-González R, Olivella M, Cordomí A. HomolWat: a web server tool to incorporate 'homologous' water molecules into GPCR structures. Nucleic Acids Res 2020; 48:W54-W59. [PMID: 32484557 PMCID: PMC7319549 DOI: 10.1093/nar/gkaa440] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
Internal water molecules play an essential role in the structure and function of membrane proteins including G protein-coupled receptors (GPCRs). However, technical limitations severely influence the number and certainty of observed water molecules in 3D structures. This may compromise the accuracy of further structural studies such as docking calculations or molecular dynamics simulations. Here we present HomolWat, a web application for incorporating water molecules into GPCR structures by using template-based modelling of homologous water molecules obtained from high-resolution structures. While there are various tools available to predict the positions of internal waters using energy-based methods, the approach of borrowing lacking water molecules from homologous GPCR structures makes HomolWat unique. The tool can incorporate water molecules into a protein structure in about a minute with around 85% of water recovery. The web server is freely available at http://lmc.uab.es/homolwat.
Collapse
Affiliation(s)
- Eduardo Mayol
- Unitat de Bioestadistica, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Adrián García-Recio
- Unitat de Bioestadistica, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Johanna K S Tiemann
- Institute of Medical Physics and Biophysics, Medical University Leipzig, Leipzig, Sachsen 04107, Germany
- Institute of Medical Physics and Biophysics, Charité Universitätsmedizin Berlin, Berlin 101179, Germany
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Medical University Leipzig, Leipzig, Sachsen 04107, Germany
- Institute of Medical Physics and Biophysics, Charité Universitätsmedizin Berlin, Berlin 101179, Germany
- Berlin Insitute of Health (BIH), 10178 Berlin, Germany
| | - Ramon Guixà-González
- Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland
- Condensed Matter Theory Group, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland
| | - Mireia Olivella
- Bioinformatics and Medical Statistics Group, University of Vic-Central University of Catalonia, Barcelona 08500, Spain
| | - Arnau Cordomí
- Unitat de Bioestadistica, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
28
|
Leitner DM, Hyeon C, Reid KM. Water-mediated biomolecular dynamics and allostery. J Chem Phys 2020; 152:240901. [DOI: 10.1063/5.0011392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
29
|
Sutkeviciute I, Vilardaga JP. Structural insights into emergent signaling modes of G protein-coupled receptors. J Biol Chem 2020; 295:11626-11642. [PMID: 32571882 DOI: 10.1074/jbc.rev120.009348] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/21/2020] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of cell membrane proteins, with >800 GPCRs in humans alone, and recognize highly diverse ligands, ranging from photons to large protein molecules. Very important to human medicine, GPCRs are targeted by about 35% of prescription drugs. GPCRs are characterized by a seven-transmembrane α-helical structure, transmitting extracellular signals into cells to regulate major physiological processes via heterotrimeric G proteins and β-arrestins. Initially viewed as receptors whose signaling via G proteins is delimited to the plasma membrane, it is now recognized that GPCRs signal also at various intracellular locations, and the mechanisms and (patho)physiological relevance of such signaling modes are actively investigated. The propensity of GPCRs to adopt different signaling modes is largely encoded in the structural plasticity of the receptors themselves and of their signaling complexes. Here, we review emerging modes of GPCR signaling via endosomal membranes and the physiological implications of such signaling modes. We further summarize recent structural insights into mechanisms of GPCR activation and signaling. We particularly emphasize the structural mechanisms governing the continued GPCR signaling from endosomes and the structural aspects of the GPCR resensitization mechanism and discuss the recently uncovered and important roles of lipids in these processes.
Collapse
Affiliation(s)
- Ieva Sutkeviciute
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Bartuzi D, Wróbel TM, Kaczor AA, Matosiuk D. Tuning Down the Pain - An Overview of Allosteric Modulation of Opioid Receptors: Mechanisms of Modulation, Allosteric Sites, Modulator Syntheses. Curr Top Med Chem 2020; 20:2852-2865. [PMID: 32479245 DOI: 10.2174/1568026620666200601155451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/09/2023]
Abstract
Opioid signaling plays a central role in pain perception. As such, it remains the main target in the development of antinociceptive agents, despite serious side effects involved. In recent years, hopes for improved opioid painkillers are rising, together with our understanding of allosterism and biased signaling mechanisms. In this review, we focus on recently discovered allosteric modulators of opioid receptors, insights into phenomena underlying their action, as well as on how they extend our understanding of mechanisms of previously known compounds. A brief overlook of their synthesis is also presented.
Collapse
Affiliation(s)
- Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| | - Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
31
|
Chan HC, Xu Y, Tan L, Vogel H, Cheng J, Wu D, Yuan S. Enhancing the Signaling of GPCRs via Orthosteric Ions. ACS CENTRAL SCIENCE 2020; 6:274-282. [PMID: 32123746 PMCID: PMC7047428 DOI: 10.1021/acscentsci.9b01247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 05/02/2023]
Abstract
G protein-coupled receptors play essential roles in cellular processes such as neuronal signaling, vision, olfaction, tasting, and metabolism. As GPCRs are the most important drug targets, understanding their interactions with ligands is of utmost importance for discovering related new medicines. In many GPCRs, an allosteric sodium ion next to the highly conserved residue D2.50 has been proposed to stabilize the inactive receptor state by mediating interactions between transmembrane helices. Here, we probed the existence of internal and functionally important sodium ions in the dopamine D2 receptor, using molecular dynamics simulations. Besides a new sodium ion at the allosteric ligand binding site, we discovered an additional sodium ion, located close to the orthosteric ligand binding site. Through cell-based activation assays, the signaling of D2 receptor with site-specific mutations was tested against a series of chemically modified agonists. We concluded an important structural role of this newly discovered orthosteric sodium ion in modulating the receptor signaling: It enables the coordination of a polar residue in the ligand binding site with an appropriately designed agonist molecule. An identical interaction was also observed in a recently released high-resolution crystal structure of mu-opioid receptor, which was reresolved in this work. Probably because of similar interactions, various metal ions have been found to increase the signaling of many other GPCRs. This unique principle and strategy could be used to optimize the drug activity of GPCR. Our findings open a new mechanistic opportunity of GPCR signaling and help design the next generation of drugs targeting GPCRs.
Collapse
Affiliation(s)
- H. C.
Stephen Chan
- Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yueming Xu
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Liang Tan
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Horst Vogel
- Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute
of Chemical Sciences and Engineering, Ecole
Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jianjun Cheng
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- E-mail:
| | - Dong Wu
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- E-mail:
| | - Shuguang Yuan
- Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- E-mail:
| |
Collapse
|
32
|
Zhou Q, Yang D, Wu M, Guo Y, Guo W, Zhong L, Cai X, Dai A, Jang W, Shakhnovich EI, Liu ZJ, Stevens RC, Lambert NA, Babu MM, Wang MW, Zhao S. Common activation mechanism of class A GPCRs. eLife 2019; 8:e50279. [PMID: 31855179 PMCID: PMC6954041 DOI: 10.7554/elife.50279] [Citation(s) in RCA: 329] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022] Open
Abstract
Class A G-protein-coupled receptors (GPCRs) influence virtually every aspect of human physiology. Understanding receptor activation mechanism is critical for discovering novel therapeutics since about one-third of all marketed drugs target members of this family. GPCR activation is an allosteric process that couples agonist binding to G-protein recruitment, with the hallmark outward movement of transmembrane helix 6 (TM6). However, what leads to TM6 movement and the key residue level changes of this movement remain less well understood. Here, we report a framework to quantify conformational changes. By analyzing the conformational changes in 234 structures from 45 class A GPCRs, we discovered a common GPCR activation pathway comprising of 34 residue pairs and 35 residues. The pathway unifies previous findings into a common activation mechanism and strings together the scattered key motifs such as CWxP, DRY, Na+ pocket, NPxxY and PIF, thereby directly linking the bottom of ligand-binding pocket with G-protein coupling region. Site-directed mutagenesis experiments support this proposition and reveal that rational mutations of residues in this pathway can be used to obtain receptors that are constitutively active or inactive. The common activation pathway provides the mechanistic interpretation of constitutively activating, inactivating and disease mutations. As a module responsible for activation, the common pathway allows for decoupling of the evolution of the ligand binding site and G-protein-binding region. Such an architecture might have facilitated GPCRs to emerge as a highly successful family of proteins for signal transduction in nature.
Collapse
Affiliation(s)
- Qingtong Zhou
- iHuman InstituteShanghaiTech UniversityShanghaiChina
| | - Dehua Yang
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Meng Wu
- iHuman InstituteShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Yu Guo
- iHuman InstituteShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Wanjing Guo
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Li Zhong
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Xiaoqing Cai
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Antao Dai
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Wonjo Jang
- Department of Pharmacology and Toxicology, Medical College of GeorgiaAugusta UniversityAugustaUnited States
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Zhi-Jie Liu
- iHuman InstituteShanghaiTech UniversityShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Raymond C Stevens
- iHuman InstituteShanghaiTech UniversityShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of GeorgiaAugusta UniversityAugustaUnited States
| | - M Madan Babu
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Ming-Wei Wang
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- School of PharmacyFudan UniversityShanghaiChina
| | - Suwen Zhao
- iHuman InstituteShanghaiTech UniversityShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| |
Collapse
|
33
|
Shen L, Yuan Y, Guo Y, Li M, Li C, Pu X. Probing the Druggablility on the Interface of the Protein-Protein Interaction and Its Allosteric Regulation Mechanism on the Drug Screening for the CXCR4 Homodimer. Front Pharmacol 2019; 10:1310. [PMID: 31787895 PMCID: PMC6855241 DOI: 10.3389/fphar.2019.01310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
Modulating protein–protein interactions (PPIs) with small drug-like molecules targeting it exhibits great promise in modern drug discovery. G protein-coupled receptors (GPCRs) are the largest family of targeted proteins and could form dimers in living biological cells through PPIs. However, compared to drug development of the orthosteric site, there has been lack of investigations on the druggability of the PPI interface for GPCRs and its functional implication on experiments. Thus, in order to address these issues, we constructed a novel computational strategy, which involved in molecular dynamics simulation, virtual screening and protein structure network (PSN), to study one representative GPCR homodimer (CXCR4). One druggable pocket was identified in the PPI interface and one small molecule targeting it was screened, which could strengthen PPI mainly through hydrophobic interaction between the benzene rings of the PPI molecule and TM4 of the receptor. The PSN results further reveals that the PPI molecule could increase the number of the allosteric regulation pathways between the druggable pocket of the dimer interface to the orthostatic site for the subunit A but only play minor role for the other subunit B, leading to the asymmetric change in the volume of the binding pockets for the two subunits (increase for the subunit A and minor change for the subunit B). Consequently, the screening performance of the subunit A to the antagonists is enhanced while the subunit B is unchanged nearly, implying that the PPI molecule may be beneficial to enhance the drug efficacies of the antagonists. In addition, one main regulation pathway with the highest frequency was identified for the subunit A, which consists of Trp1955.34–Tyr190ECL2–Val1965.35–Gln2005.39–Asp2626.58–Cys28N-term, revealing their importance in the allosteric regulation from the PPI molecule. The observations from the work could provide valuable information for the development of the PPI drug-like molecule for GPCRs.
Collapse
Affiliation(s)
- Liting Shen
- College of Chemistry, Sichuan University, Chengdu, China
| | - Yuan Yuan
- College of Management, Southwest University for Nationalities, Chengdu, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Chuan Li
- College of Computer Science, Sichuan University, Chengdu, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Zarzycka B, Zaidi SA, Roth BL, Katritch V. Harnessing Ion-Binding Sites for GPCR Pharmacology. Pharmacol Rev 2019; 71:571-595. [PMID: 31551350 PMCID: PMC6782022 DOI: 10.1124/pr.119.017863] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Endogenous ions play important roles in the function and pharmacology of G-protein coupled receptors (GPCRs). Historically the evidence for ionic modulation of GPCR function dates to 1973 with studies of opioid receptors, where it was demonstrated that physiologic concentrations of sodium allosterically attenuated agonist binding. This Na+-selective effect was distinct from effects of other monovalent and divalent cations, with the latter usually counteracting sodium's negative allosteric modulation of binding. Since then, numerous studies documenting the effects of mono- and divalent ions on GPCR function have been published. While ions can act selectively and nonselectively at many sites in different receptors, the discovery of the conserved sodium ion site in class A GPCR structures in 2012 revealed the unique nature of Na+ site, which has emerged as a near-universal site for allosteric modulation of class A GPCR structure and function. In this review, we synthesize and highlight recent advances in the functional, biophysical, and structural characterization of ions bound to GPCRs. Taken together, these findings provide a molecular understanding of the unique roles of Na+ and other ions as GPCR allosteric modulators. We will also discuss how this knowledge can be applied to the redesign of receptors and ligand probes for desired functional and pharmacological profiles. SIGNIFICANCE STATEMENT: The function and pharmacology of GPCRs strongly depend on the presence of mono and divalent ions in experimental assays and in living organisms. Recent insights into the molecular mechanism of this ion-dependent allosterism from structural, biophysical, biochemical, and computational studies provide quantitative understandings of the pharmacological effects of drugs in vitro and in vivo and open new avenues for the rational design of chemical probes and drug candidates with improved properties.
Collapse
Affiliation(s)
- Barbara Zarzycka
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Saheem A Zaidi
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bryan L Roth
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Vsevolod Katritch
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
35
|
The Universal 3D QSAR Model for Dopamine D 2 Receptor Antagonists. Int J Mol Sci 2019; 20:ijms20184555. [PMID: 31540025 PMCID: PMC6770028 DOI: 10.3390/ijms20184555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
In order to search for novel antipsychotics acting through the D2 receptor, it is necessary to know the structure–activity relationships for dopamine D2 receptor antagonists. In this context, we constructed the universal three-dimensional quantitative structure–activity relationship (3D- QSAR) model for competitive dopamine D2 receptor antagonists. We took 176 compounds from chemically different groups characterized by the half maximal inhibitory concentration (IC50)from the CHEMBL database and docked them to the X-ray structure of the human D2 receptor in the inactive state. Selected docking poses were applied for Comparative Molecular Field Analysis (CoMFA) alignment. The obtained CoMFA model is characterized by a cross-validated coefficient Q2 of 0.76 with an optimal component of 5, R2 of 0.92, and an F value of 338.9. The steric and electrostatic field contributions are 67.4% and 32.6%, respectively. The statistics obtained prove that the CoMFA model is significant. Next, the IC50 of the 16 compounds from the test set was predicted with R2 of 0.95. Finally, a progressive scrambling test was carried out for additional validation. The CoMFA fields were mapped onto the dopamine D2 receptor binding site, which enabled a discussion of the structure–activity relationship based on ligand–receptor interactions. In particular, it was found that one of the desired steric interactions covers the area of a putative common allosteric pocket suggested for some other G protein-coupled receptors (GPCRs), which would suggest that some of the known dopamine receptor antagonists are bitopic in their essence. The CoMFA model can be applied to predict the potential activity of novel dopamine D2 receptor antagonists.
Collapse
|
36
|
Shalaeva DN, Cherepanov DA, Galperin MY, Vriend G, Mulkidjanian AY. G protein-coupled receptors of class A harness the energy of membrane potential to increase their sensitivity and selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183051. [PMID: 31449800 DOI: 10.1016/j.bbamem.2019.183051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/28/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022]
Abstract
The human genome contains about 700 genes of G protein-coupled receptors (GPCRs) of class A; these seven-helical membrane proteins are the targets of almost half of all known drugs. In the middle of the helix bundle, crystal structures reveal a highly conserved sodium-binding site, which is connected with the extracellular side by a water-filled tunnel. This binding site contains a sodium ion in those GPCRs that are crystallized in their inactive conformations but does not in those GPCRs that are trapped in agonist-bound active conformations. The escape route of the sodium ion upon the inactive-to-active transition and its very direction have until now remained obscure. Here, by modeling the available experimental data, we show that the sodium gradient over the cell membrane increases the sensitivity of GPCRs if their activation is thermodynamically coupled to the sodium ion translocation into the cytoplasm but decreases it if the sodium ion retreats into the extracellular space upon receptor activation. The model quantitatively describes the available data on both activation and suppression of distinct GPCRs by membrane voltage. The model also predicts selective amplification of the signal from (endogenous) agonists if only they, but not their (partial) analogs, induce sodium translocation. Comparative structure and sequence analyses of sodium-binding GPCRs indicate a key role for the conserved leucine residue in the second transmembrane helix (Leu2.46) in coupling sodium translocation to receptor activation. Hence, class A GPCRs appear to harness the energy of the transmembrane sodium potential to increase their sensitivity and selectivity.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of Physics, Osnabrueck University, 49069 Osnabrück, Germany; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Dmitry A Cherepanov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russia.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Gert Vriend
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6525 HP Nijmegen, the Netherlands.
| | - Armen Y Mulkidjanian
- School of Physics, Osnabrueck University, 49069 Osnabrück, Germany; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
37
|
Keasling AW, Pandey P, Doerksen RJ, Pedrino GR, Costa EA, da Cunha LC, Zjawiony JK, Fajemiroye JO. Salvindolin elicits opioid system-mediated antinociceptive and antidepressant-like activities. J Psychopharmacol 2019; 33:865-881. [PMID: 31192780 DOI: 10.1177/0269881119849821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Salvinorin A is known as a highly selective kappa opioid receptor agonist with antinociceptive but mostly pro-depressive effects. AIMS In this article, we present its new semisynthetic analog with preferential mu opioid affinity, and promising antinociceptive, as well as antidepressant-like activities. METHODS Competitive binding studies were performed for salvindolin with kappa opioid and mu opioid. The mouse model of nociception (acetic-acid-induced writhing, formalin, and hot plate tests), depression (forced swim and tail suspension tests), and the open field test, were used to evaluate antinociceptive, antidepressant-like, and locomotion effects, respectively, of salvindolin. We built a 3-D molecular model of the kappa opioid receptor, using a mu opioid X-ray crystal structure as a template, and docked salvindolin into the two proteins. RESULTS/OUTCOMES Salvindolin showed affinity towards kappa opioid and mu opioid receptors but with 100-fold mu opioid preference. Tests of salvindolin in mice revealed good oral bioavailability, antinociceptive, and antidepressive-like effects, without locomotor incoordination. Docking of salvindolin showed strong interactions with the mu opioid receptor which matched well with experimental binding data. Salvindolin-induced behavioral changes in the hot plate and forced swim tests were attenuated by naloxone (nonselective opioid receptor antagonist) and/or naloxonazine (selective mu opioid receptor antagonist) but not by nor-binaltorphimine (selective kappa opioid receptor antagonist). In addition, WAY100635 (a selective serotonin 1A receptor antagonist) blocked the antidepressant-like effect of salvindolin. CONCLUSIONS/INTERPRETATION By simple chemical modification, we were able to modulate the pharmacological profile of salvinorin A, a highly selective kappa opioid receptor agonist, to salvindolin, a ligand with preferential mu opioid receptor affinity and activity on the serotonin 1A receptor. With its significant antinociceptive and antidepressive-like activities, salvindolin has the potential to be an analgesic and/or antidepressant drug candidate.
Collapse
Affiliation(s)
- Adam W Keasling
- 1 Department of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, MS, USA.,2 Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
| | - Pankaj Pandey
- 3 Department of BioMolecular Sciences, Division of Medicinal Chemistry, University of Mississippi, University, MS, USA
| | - Robert J Doerksen
- 2 Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA.,3 Department of BioMolecular Sciences, Division of Medicinal Chemistry, University of Mississippi, University, MS, USA
| | - Gustavo R Pedrino
- 4 Department of Physiology, Federal University of Goiás, Goiânia, Brazil
| | - Elson A Costa
- 5 Department of Pharmacology, Federal University of Goiás, Goiânia, Brazil
| | - Luiz C da Cunha
- 6 Center for Studies and Toxicological-Pharmacological Research, Federal University of Goiás, Goiânia, Brazil
| | - Jordan K Zjawiony
- 1 Department of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, MS, USA.,2 Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
| | - James O Fajemiroye
- 5 Department of Pharmacology, Federal University of Goiás, Goiânia, Brazil.,6 Center for Studies and Toxicological-Pharmacological Research, Federal University of Goiás, Goiânia, Brazil.,7 Department of Pharmaceutical Science, University Center of Anápolis - Unievangélica, Anápolis, Brazil
| |
Collapse
|
38
|
Molecular dynamics of fentanyl bound to μ-opioid receptor. J Mol Model 2019; 25:144. [DOI: 10.1007/s00894-019-3999-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/21/2019] [Indexed: 12/17/2022]
|
39
|
Thirumalai D, Hyeon C, Zhuravlev PI, Lorimer GH. Symmetry, Rigidity, and Allosteric Signaling: From Monomeric Proteins to Molecular Machines. Chem Rev 2019; 119:6788-6821. [DOI: 10.1021/acs.chemrev.8b00760] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Thirumalai
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Pavel I. Zhuravlev
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - George H. Lorimer
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
40
|
Structural basis for ligand modulation of the CCR2 conformational landscape. Proc Natl Acad Sci U S A 2019; 116:8131-8136. [PMID: 30975755 DOI: 10.1073/pnas.1814131116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CC chemokine receptor 2 (CCR2) is a part of the chemokine receptor family, an important class of therapeutic targets. These class A G-protein coupled receptors (GPCRs) are involved in mammalian signaling pathways and control cell migration toward endogenous CC chemokine ligands, named for the adjacent cysteine motif on their N terminus. Chemokine receptors and their associated ligands are involved in a wide range of diseases and thus have become important drug targets. CCR2, in particular, promotes the metastasis of cancer cells and is also implicated in autoimmunity-driven type-1 diabetes, diabetic nephropathy, multiple sclerosis, asthma, atherosclerosis, neuropathic pain, and rheumatoid arthritis. Although promising, CCR2 antagonists have been largely unsuccessful to date. Here, we investigate the effect of an orthosteric and an allosteric antagonist on CCR2 dynamics by coupling long-timescale molecular dynamics simulations with Markov-state model theory. We find that the antagonists shift CCR2 into several stable inactive conformations that are distinct from the crystal structure conformation and disrupt a continuous internal water and sodium ion pathway, preventing transitions to an active-like state. Several metastable conformations present a cryptic drug-binding pocket near the allosteric site that may be amenable to targeting with small molecules. Without antagonists, the apo dynamics reveal intermediate conformations along the activation pathway that provide insight into the basal dynamics of CCR2 and may also be useful for future drug design.
Collapse
|
41
|
Peeking at G-protein-coupled receptors through the molecular dynamics keyhole. Future Med Chem 2019; 11:599-615. [DOI: 10.4155/fmc-2018-0393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Molecular dynamics is a state of the art computational tool for the investigation of biophysics phenomenon at a molecular scale, as it enables the modeling of dynamic processes, such as conformational motions, molecular solvation and ligand binding. The recent advances in structural biology have led to a bloom in published G-protein-coupled receptor structures, representing a solid and valuable resource for molecular dynamics studies. During the last decade, indeed, a plethora of physiological and pharmacological facets of this membrane protein superfamily have been addressed by means of molecular dynamics simulations, including the activation mechanism, allosterism and, very recently, biased signaling. Here, we try to recapitulate some of the main contributions that molecular dynamics has recently produced in the field.
Collapse
|
42
|
Lipiński PFJ, Kosson P, Matalińska J, Roszkowski P, Czarnocki Z, Jarończyk M, Misicka A, Dobrowolski JC, Sadlej J. Fentanyl Family at the Mu-Opioid Receptor: Uniform Assessment of Binding and Computational Analysis. Molecules 2019; 24:E740. [PMID: 30791394 PMCID: PMC6412969 DOI: 10.3390/molecules24040740] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/17/2022] Open
Abstract
Interactions of 21 fentanyl derivatives with μ-opioid receptor (μOR) were studied using experimental and theoretical methods. Their binding to μOR was assessed with radioligand competitive binding assay. A uniform set of binding affinity data contains values for two novel and one previously uncharacterized derivative. The data confirms trends known so far and thanks to their uniformity, they facilitate further comparisons. In order to provide structural hypotheses explaining the experimental affinities, the complexes of the studied derivatives with μOR were modeled and subject to molecular dynamics simulations. Five common General Features (GFs) of fentanyls' binding modes stemmed from these simulations. They include: GF1) the ionic interaction between D147 and the ligands' piperidine NH⁺ moiety; GF2) the N-chain orientation towards the μOR interior; GF3) the other pole of ligands is directed towards the receptor outlet; GF4) the aromatic anilide ring penetrates the subpocket formed by TM3, TM4, ECL1 and ECL2; GF5) the 4-axial substituent (if present) is directed towards W318. Except for the ionic interaction with D147, the majority of fentanyl-μOR contacts is hydrophobic. Interestingly, it was possible to find nonlinear relationships between the binding affinity and the volume of the N-chain and/or anilide's aromatic ring. This kind of relationships is consistent with the apolar character of interactions involved in ligand⁻receptor binding. The affinity reaches the optimum for medium size while it decreases for both large and small substituents. Additionally, a linear correlation between the volumes and the average dihedral angles of W293 and W133 was revealed by the molecular dynamics study. This seems particularly important, as the W293 residue is involved in the activation processes. Further, the Y326 (OH) and D147 (Cγ) distance found in the simulations also depends on the ligands' size. In contrast, neither RMSF measures nor D114/Y336 hydrations show significant structure-based correlations. They also do not differentiate studied fentanyl derivatives. Eventually, none of 14 popular scoring functions yielded a significant correlation between the predicted and observed affinity data (R < 0.30, n = 28).
Collapse
Affiliation(s)
- Piotr F J Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Piotr Kosson
- Toxicology Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Joanna Matalińska
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Piotr Roszkowski
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland.
| | | | | | - Aleksandra Misicka
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland.
| | | | - Joanna Sadlej
- National Medicines Institute, 00-725 Warsaw, Poland.
- Faculty of Mathematics and Natural Sciences, University of Cardinal Stefan Wyszyński, 1/3 Wóycickiego-Str., 01-938 Warsaw, Poland.
| |
Collapse
|
43
|
Zhang F, Yuan Y, Xiang M, Guo Y, Li M, Liu Y, Pu X. Molecular Mechanism Regarding Allosteric Modulation of Ligand Binding and the Impact of Mutations on Dimerization for CCR5 Homodimer. J Chem Inf Model 2019; 59:1965-1976. [DOI: 10.1021/acs.jcim.8b00850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Fuhui Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yuan Yuan
- College of Management, Southwest University for Nationalities, Chengdu 610041, People’s Republic of China
| | - Minghui Xiang
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yijing Liu
- College of Computer Science, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| |
Collapse
|
44
|
New Binding Sites, New Opportunities for GPCR Drug Discovery. Trends Biochem Sci 2019; 44:312-330. [PMID: 30612897 DOI: 10.1016/j.tibs.2018.11.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/11/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022]
Abstract
Many central biological events rely on protein-ligand interactions. The identification and characterization of protein-binding sites for ligands are crucial for the understanding of functions of both endogenous ligands and synthetic drug molecules. G protein-coupled receptors (GPCRs) typically detect extracellular signal molecules on the cell surface and transfer these chemical signals across the membrane, inducing downstream cellular responses via G proteins or β-arrestin. GPCRs mediate many central physiological processes, making them important targets for modern drug discovery. Here, we focus on the most recent breakthroughs in finding new binding sites and binding modes of GPCRs and their potentials for the development of new medicines.
Collapse
|
45
|
Cong X, Golebiowski J. Allosteric Na +-binding site modulates CXCR4 activation. Phys Chem Chem Phys 2018; 20:24915-24920. [PMID: 30238101 DOI: 10.1039/c8cp04134b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) control most cellular communications with the environment and are the largest protein family of drug targets. As strictly regulated molecular machines, profound comprehension of their activation mechanism is expected to significantly facilitate structure-based drug design. This study provides atomistic-level description of the activation dynamics of the C-X-C chemokine receptor type 4 (CXCR4), a class A GPCR and important drug target. Using molecular dynamics and enhanced sampling, we demonstrate how mutations and protonation of conserved residues trigger activation through microswitches at the receptor core, while sodium ion - a known allosteric modulator - inhibits it. The findings point to a conserved mechanism of activation and the allosteric modulation by sodium in the chemokine receptor family. From the technical aspect, the enhanced sampling protocol effectively samples receptor conformational changes toward activation, and differentiates three variants of the receptor by their basal activity. This work provides structural basis and a powerful in silico tool for CXCR4 agonist design.
Collapse
Affiliation(s)
- Xiaojing Cong
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France.
| | | |
Collapse
|
46
|
Miszta P, Jakowiecki J, Rutkowska E, Turant M, Latek D, Filipek S. Approaches for Differentiation and Interconverting GPCR Agonists and Antagonists. Methods Mol Biol 2018; 1705:265-296. [PMID: 29188567 DOI: 10.1007/978-1-4939-7465-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Predicting the functional preferences of the ligands was always a highly demanding task, much harder that predicting whether a ligand can bind to the receptor. This is because of significant similarities of agonists, antagonists and inverse agonists which are binding usually in the same binding site of the receptor and only small structural changes can push receptor toward a particular activation state. For G protein-coupled receptors, due to a large progress in crystallization techniques and also in receptor thermal stabilization, it was possible to obtain a large number of high-quality structures of complexes of these receptors with agonists and non-agonists. Additionally, the long-time-scale molecular dynamics simulations revealed how the activation processes of GPCRs can take place. Using both theoretical and experimental knowledge it was possible to employ many clever and sophisticated methods which can help to differentiate agonists and non-agonists, so one can interconvert them in search of the optimal drug.
Collapse
Affiliation(s)
- Przemysław Miszta
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland
| | - Jakub Jakowiecki
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland
| | - Ewelina Rutkowska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland
| | - Maria Turant
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland
| | - Dorota Latek
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland
| | - Sławomir Filipek
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland.
| |
Collapse
|
47
|
Taddese B, Deniaud M, Garnier A, Tiss A, Guissouma H, Abdi H, Henrion D, Chabbert M. Evolution of chemokine receptors is driven by mutations in the sodium binding site. PLoS Comput Biol 2018; 14:e1006209. [PMID: 29912865 PMCID: PMC6037435 DOI: 10.1371/journal.pcbi.1006209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/09/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Chemokines and their receptors (members of the GPCR super-family) are involved in a wide variety of physiological processes and diseases; thus, understanding the specificity of the chemokine receptor family could help develop new receptor specific drugs. Here, we explore the evolutionary mechanisms that led to the emergence of the chemokine receptors. Based on GPCR hierarchical classification, we analyzed nested GPCR sets with an eigen decomposition approach of the sequence covariation matrix and determined three key residues whose mutation was crucial for the emergence of the chemokine receptors and their subsequent divergence into homeostatic and inflammatory receptors. These residues are part of the allosteric sodium binding site. Their structural and functional roles were investigated by molecular dynamics simulations of CXCR4 and CCR5 as prototypes of homeostatic and inflammatory chemokine receptors, respectively. This study indicates that the three mutations crucial for the evolution of the chemokine receptors dramatically altered the sodium binding mode. In CXCR4, the sodium ion is tightly bound by four protein atoms and one water molecule. In CCR5, the sodium ion is mobile within the binding pocket and moves between different sites involving from one to three protein atoms and two to five water molecules. Analysis of chemokine receptor evolution reveals that a highly constrained sodium binding site characterized most ancient receptors, and that the constraints were subsequently loosened during the divergence of this receptor family. We discuss the implications of these findings for the evolution of the chemokine receptor functions and mechanisms of action.
Collapse
Affiliation(s)
- Bruck Taddese
- Laboratoire MITOVASC, UMR CNRS 6015 – INSERM 1083, Université d’Angers, Angers, France
| | - Madeline Deniaud
- Laboratoire MITOVASC, UMR CNRS 6015 – INSERM 1083, Université d’Angers, Angers, France
| | - Antoine Garnier
- Laboratoire MITOVASC, UMR CNRS 6015 – INSERM 1083, Université d’Angers, Angers, France
| | - Asma Tiss
- Laboratoire MITOVASC, UMR CNRS 6015 – INSERM 1083, Université d’Angers, Angers, France
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Hajer Guissouma
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Hervé Abdi
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Dallas, Texas, United States of America
| | - Daniel Henrion
- Laboratoire MITOVASC, UMR CNRS 6015 – INSERM 1083, Université d’Angers, Angers, France
| | - Marie Chabbert
- Laboratoire MITOVASC, UMR CNRS 6015 – INSERM 1083, Université d’Angers, Angers, France
| |
Collapse
|
48
|
Dadam F, Zádor F, Caeiro X, Szűcs E, Erdei AI, Samavati R, Gáspár R, Borsodi A, Vivas L. The effect of increased NaCl intake on rat brain endogenous μ-opioid receptor signalling. J Neuroendocrinol 2018; 30:e12585. [PMID: 29486102 DOI: 10.1111/jne.12585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 01/20/2023]
Abstract
Numerous studies demonstrate the significant role of central β-endorphin and its receptor, the μ-opioid receptor (MOR), in sodium intake regulation. The present study aimed to investigate the possible relationship between chronic high-NaCl intake and brain endogenous MOR functioning. We examined whether short-term (4 days) obligatory salt intake (2% NaCl solution) in rats induces changes in MOR mRNA expression, G-protein activity and MOR binding capacity in brain regions involved in salt intake regulation. Plasma osmolality and electrolyte concentrations after sodium overload and the initial and final body weight of the animals were also examined. After 4 days of obligatory hypertonic sodium chloride intake, there was clearly no difference in MOR mRNA expression and G-protein activity in the median preoptic nucleus (MnPO). In the brainstem, MOR binding capacity also remained unaltered, although the maximal efficacy of MOR G-protein significantly increased. Finally, no significant alterations were observed in plasma osmolality and electrolyte concentrations. Interestingly, animals that received sodium gained significantly less weight than control animals. In conclusion, we found no significant alterations in the MnPO and brainstem in the number of available cell surface MORs or de novo syntheses of MOR after hypertonic sodium intake. The increased MOR G-protein activity following acute sodium overconsumption may participate in the maintenance of normal blood pressure levels and/or in enhancing sodium taste aversion and sodium overload-induced anorexia.
Collapse
Affiliation(s)
- F Dadam
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - F Zádor
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - X Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - E Szűcs
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - A I Erdei
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - R Samavati
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - R Gáspár
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - A Borsodi
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - L Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
49
|
Shankar V, Goddard WA, Kim SK, Abrol R, Liu F. The 3D Structure of Human DP Prostaglandin G-Protein-Coupled Receptor Bound to Cyclopentanoindole Antagonist, Predicted Using the DuplexBiHelix Modification of the GEnSeMBLE Method. J Chem Theory Comput 2018; 14:1624-1642. [PMID: 29268008 DOI: 10.1021/acs.jctc.7b00842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prostaglandins play a critical physiological role in both cardiovascular and immune systems, acting through their interactions with 9 prostanoid G protein-coupled receptors (GPCRs). These receptors are important therapeutic targets for a variety of diseases including arthritis, allergies, type 2 diabetes, and cancer. The DP prostaglandin receptor is of interest because it has unique structural and physiological properties. Most notably, DP does not have the 3-6 ionic lock common to Class A GPCRs. However, the lack of X-ray structures for any of the 9 prostaglandin GPCRs hampers the application of structure-based drug design methods to develop more selective and active medications to specific receptors. We predict here 3D structures for the DP prostaglandin GPCR, based on the GEnSeMBLE complete sampling with hierarchical scoring (CS-HS) methodology. This involves evaluating the energy of 13 trillion packings to finally select the best 20 that are stable enough to be relevant for binding to antagonists, agonists, and modulators. To validate the predicted structures, we predict the binding site for the Merck cyclopentanoindole (CPI) selective antagonist docked to DP. We find that the CPI binds vertically in the 1-2-7 binding pocket, interacting favorably with residues R3107.40 and K762.54 with additional interactions with S3137.43, S3167.46, S191.35, etc. This binding site differs significantly from that of antagonists to known Class A GPCRs where the ligand binds in the 3-4-5-6 region. We find that the predicted binding site leads to reasonable agreement with experimental Structure-Activity Relationship (SAR). We suggest additional mutation experiments including K762.54, E1293.49, L1233.43, M2706.40, F2746.44 to further validate the structure, function, and activation mechanism of receptors in the prostaglandin family. Our structures and binding sites are largely consistent and improve upon the predictions by Li et al. ( J. Am. Chem. Soc. 2007 , 129 ( 35 ), 10720 ) that used our earlier MembStruk prediction methodology.
Collapse
Affiliation(s)
- Vishnu Shankar
- Materials and Process Simulation Center (139-74) , California Institute of Technology , 1200 E. California Blvd. , Pasadena , California 91125 , United States
| | - William A Goddard
- Materials and Process Simulation Center (139-74) , California Institute of Technology , 1200 E. California Blvd. , Pasadena , California 91125 , United States
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (139-74) , California Institute of Technology , 1200 E. California Blvd. , Pasadena , California 91125 , United States
| | - Ravinder Abrol
- Materials and Process Simulation Center (139-74) , California Institute of Technology , 1200 E. California Blvd. , Pasadena , California 91125 , United States
| | - Fan Liu
- Materials and Process Simulation Center (139-74) , California Institute of Technology , 1200 E. California Blvd. , Pasadena , California 91125 , United States
| |
Collapse
|
50
|
Selvam B, Shamsi Z, Shukla D. Universality of the Sodium Ion Binding Mechanism in Class A G-Protein-Coupled Receptors. Angew Chem Int Ed Engl 2018; 57:3048-3053. [DOI: 10.1002/anie.201708889] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/20/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Balaji Selvam
- Department of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Zahra Shamsi
- Department of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
- Department of Plant Biology, Center for Biophysics & Quantitative Biology, National Center for Supercomputing Applications; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| |
Collapse
|