1
|
Liu Y, Yang C, Zuo L, Liu Q, Zhang X, Hou C, Yin C, Zhou H. Stereoselective Nickel-Catalyzed Iterative 1,2-Reduction of Trisubstituted Enones to Cycloalkanols Bearing Two Contiguous Stereocenters. Org Lett 2025. [PMID: 40227759 DOI: 10.1021/acs.orglett.5c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Herein we first report a nickel-catalyzed asymmetric iterative 1,2-reduction of trisubstituted enones to cycloalkanols with two contiguous stereocenters in high yields with excellent diastereo- and enantioselectivities (36 examples, up to 98.5:1.5 er, >20:1 dr, TON = 500). The combined experimental and computational mechanistic studies suggested energy changes during two consecutive reduction processes and provided a range of unique mechanistic rationales that have not been disclosed in nickel-catalyzed asymmetric hydrogenation-related studies.
Collapse
Affiliation(s)
- Yue Liu
- Research Center of Green Pharmaceutical Technology and Process, Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Chaoxin Yang
- Research Center of Green Pharmaceutical Technology and Process, Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Linhong Zuo
- Research Center of Green Pharmaceutical Technology and Process, Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Qixing Liu
- Research Center of Green Pharmaceutical Technology and Process, Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xumu Zhang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cheng Hou
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Congcong Yin
- Research Center of Green Pharmaceutical Technology and Process, Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Haifeng Zhou
- Research Center of Green Pharmaceutical Technology and Process, Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
2
|
Zheng J, Peters BBC, Mallick RK, Andersson PG. Stereocontrolled Hydrogenation of Conjugated Enones to Alcohols via Dual Iridium-Catalysis. Angew Chem Int Ed Engl 2025; 64:e202415171. [PMID: 39320171 DOI: 10.1002/anie.202415171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 09/26/2024]
Abstract
The concept of dual catalysis is an emerging area holding high potential in terms of preparative efficiency, yet faces severe challenges in compatibility of reaction conditions and interference of catalysts. The transition-metal catalyzed stereoselective hydrogenation of olefins and ketones typically proceeds under different reaction conditions and/or uses a different reductant. As a result, these two types of hydrogenations can normally not be performed in the same pot. Herein, the stereocontrolled hydrogenation of enones to saturated alcohols is described, enabled by orthogonal dual iridium catalysis, using molecular hydrogen for both reductions. In this one-pot procedure, N,P-iridium catalysts (hydrogenation active towards olefins) and NHC,P-iridium catalysts (hydrogenation active towards ketones) operated independently of one another allowing the construction of two contiguous stereogenic centers up to 99 % ee, 99/1 d.r. Ultimately, by simple selection of the chirality of either ligands, the enone could be efficiently reduced to all four stereoisomers of the saturated alcohol in equally high stereopurity. This degree of stereocontrol for the synthesis of different stereoisomers by dual transition-metal catalyzed hydrogenation was previously not attained. The generality in substituted enones (alkyl, aryl, heteroaryl) demonstrate the wide applicability of this concept.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
- The Marine Biomedical Research Institute, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
| | - Bram B C Peters
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Rajendra K Mallick
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, 4000, Durban, South Africa
| |
Collapse
|
3
|
Li X, An YN, Fang BY, Ju D, Chen XY, Chen XM, Xu ZG. Lewis Acid-Driven Multicomponent Reactions Enable 2-Alkyl Chromanones with Anticancer Activities. J Org Chem 2024; 89:11671-11681. [PMID: 39096319 DOI: 10.1021/acs.joc.4c01410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
2-Alkyl chromanone scaffold has become prominent in pharmaceuticals and natural compounds. Consequently, devising robust strategies for synthesizing 2-alkyl chromanones remains crucial. Here, multicomponent reactions were employed to synthesize 2-alkyl chromanones containing an oxazole moiety using 3-formylchromones, amines, and N-propargylamides as reactants. This method utilizes readily available feedstocks with a catalytic amount of Zn(OTf)2 and exhibits an impressive substrate scope compared to existing methods. Importantly, the synthesized compounds demonstrated highly selective anticancer activity against the DU145 cell line.
Collapse
Affiliation(s)
- Xue Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, China
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Ya-Nan An
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Bing-Ying Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Dong Ju
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Xing-Yu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Xiao-Mei Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Engineering, China Pharmaceutical University, 211198 Nanjing, Jiangsu China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
4
|
Xu S, Xu W, Dong S, Liu D, Zhang W. RuPHOX-Ru Catalyzed Asymmetric Cascade Hydrogenation of 3-Substituted Chromones for the Synthesis of Corresponding Chiral Chromanols. Chemistry 2024; 30:e202400978. [PMID: 38695858 DOI: 10.1002/chem.202400978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 06/15/2024]
Abstract
An efficient RuPHOX-Ru catalyzed asymmetric cascade hydrogenation of 3-substituted chromones has been achieved under mild reaction conditions, affording the corresponding chiral 3-substituted chromanols in high yields with excellent enantio- and diastereoselectivities (up to 99 % yield, >99 % ee and >20 : 1 dr). Control reactions and deuterium labelling experiments revealed that a dynamic kinetic resolution process occurs during the subsequent hydrogenation of the C=O double bond, which is responsible for the high performance of the asymmetric cascade hydrogenation. The resulting products allow for several transformations and it was shown that the protocol provides a practical and alternative strategy for the synthesis of chiral 3-substituted chromanols and their derivatives.
Collapse
Affiliation(s)
- Shaofeng Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wenqi Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Siqi Dong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
5
|
Wang K, Niu S, Tang W, Xue D, Xiao J, Li H, Wang C. Ru-catalyzed asymmetric hydrogenation of α,β-unsaturated ketones via a hydrogenation/isomerization cascade. Chem Commun (Camb) 2024; 60:4338-4341. [PMID: 38545855 DOI: 10.1039/d4cc00356j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Ru-catalyzed asymmetric hydrogenation of α-substituted α,β-unsaturated ketones has been developed for the enantioselective synthesis of chiral α-substituted secondary alcohols with high diastereo- and enantioselectivities (up to >99 : 1 dr, 98% ee). Mechanistic experiments suggest that the reaction proceeds via a Ru-catalyzed asymmetric hydrogenation of the CO bond in concert with a base-promoted allylic alcohol isomerization, and the final stereoselectivities were controlled by a DKR process during the asymmetric hydrogenation of the ketone intermediate.
Collapse
Affiliation(s)
- Kun Wang
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou, 313000, China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Saisai Niu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool, L697ZD, UK
| | - Hongfeng Li
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou, 313000, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
6
|
Huang R, Yang S, Hu Z, Peng B, Zhu Y, Cheng T, Liu G. Bridging the incompatibility gap in dual asymmetric catalysis over a thermoresponsive hydrogel-supported catalyst. Commun Chem 2024; 7:2. [PMID: 38172516 PMCID: PMC10764871 DOI: 10.1038/s42004-023-01085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
The integration of dual asymmetric catalysis is highly beneficial for the synthesis of organic molecules with multiple stereocenters. However, two major issues that need to be addressed are the intrinsic deactivation of dual-species and the extrinsic conflict of reaction conditions. To overcome these concerns, we have utilized the compartmental and thermoresponsive properties of poly(N-isopropylacrylamide) (PNIPAM) to develop a cross-linked PNIPAM-hydrogel-supported bifunctional catalyst. This catalyst is designed with Rh(diene) species situated on the outer surface and Ru(diamine) species positioned within the interior of the hydrogel. The compartmental function of PNIPAM in the middle overcomes intrinsic mutual deactivations between the dual-species. The thermoresponsive nature of PNIPAM allows for precise control of catalytic pathways in resolving external conflicts by controlling the reaction switching between an Rh-catalyzed enantioselective 1,4-addition at 50°C and a Ru-catalyzed asymmetric transfer hydrogenation (ATH) at 25°C. As we envisioned, this sequential 1,4-addition/reduction dual enantioselective cascade reaction achieves a transformation from incompatibility to compatibility, resulting in direct access to γ-substituted cyclic alcohols with dual stereocenters in high yields and enantio/diastereoselectivities. Mechanistic investigation reveals a reversible temperature transition between 50°C and 25°C, ensuring a cascade process comprising a 1,4-addition followed by the ATH process.
Collapse
Affiliation(s)
- Renfu Huang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Shoujin Yang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Zhipeng Hu
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Bangtai Peng
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Yuanli Zhu
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Tanyu Cheng
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Guohua Liu
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China.
| |
Collapse
|
7
|
Xie C, Guo Q, Wu X, Ye W, Hou G. Efficient Rh-Catalyzed Chemo- and Enantioselective Hydrogenation of 2-CF 3-Chromen/Thiochromen-4-ones. J Org Chem 2023; 88:15726-15738. [PMID: 37921031 DOI: 10.1021/acs.joc.3c01723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
A Rh-catalyzed highly chemo- and enantioselective hydrogenation of 2-CF3-chromen/thiochromen-4-ones was successfully established achieving excellent selectivity and high turnover numbers. Under mild conditions, a series of 2-CF3-chromen-4-ones were hydrogenated to provide the corresponding chiral 2-CF3-chroman-4-ones with excellent enantioselectivities (up to 99.9% ee) and achieve high turnover numbers (TON of up to 11,800). Moreover, the obtained hydrogenation products were also successfully transformed into other derivatives including the important intermediate of plasmepsin inhibitors with maintained enantiopurity.
Collapse
Affiliation(s)
- Chaochao Xie
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qianling Guo
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaoxue Wu
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | | | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Yang L, Liang X, Ding Y, Li X, Li X, Zeng Q. Transition Metal-Catalyzed Enantioselective Synthesis of Chiral Five- and Six-Membered Benzo O-heterocycles. CHEM REC 2023; 23:e202300173. [PMID: 37401804 DOI: 10.1002/tcr.202300173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Enantiomerically enriched five- and six-membered benzo oxygen heterocycles are privileged architectures in functional organic molecules. Over the last several years, many effective methods have been established to access these compounds. However, comprehensive documents cover updated methodologies still in highly demand. In this review, recent transition metal catalyzed transformations lead to chiral five- and six-membered benzo oxygen heterocycles are presented. The mechanism and chirality transfer or control processes are also discussed in details.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xiayu Liang
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| | - Yuyang Ding
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xinran Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xuefeng Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| |
Collapse
|
9
|
Zhao X, Fang R, Wang F, Li Y. Integrating Dual-Single-Atom Moieties with N, S Co-Coordination Configurations for Oxidative Cascaded Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304053. [PMID: 37357174 DOI: 10.1002/smll.202304053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Oxidation reaction is of critical importance in chemical industry, in which the primary O2 activation step still calls for high-performance catalysts. Here, a newly developed precise locating carbonization strategy for the fabrication of 21 kinds of dual-metal single-atom catalysts with N, S co-coordinated configurations is reported. As is exemplified by CoN3 S1 /CuN4 @NC, systematical characterizations and in situ observations imply the atomic CoN3 S1 and CuN4 sites immobilized on N-doped carbon, over which the remarkable electron redistribution originating from their unsymmetrical coordination configurations. Impressively, the obtained CoN3 S1 /CuN4 @NC exhibits unprecedented capability in O2 activation and enables a spontaneous process through its dynamic configuration, significantly outperforming the CoN4 /CuN4 @NC and CoN3 S1 @NC counterparts. Hence, the CoN3 S1 /CuN4 @NC shows attractive performance in domino synthesis of natural flavone and 19 kinds of derivatives from benzyl alcohol, 2'-hydroxyacetophenone, and corresponding substituted substrates via aerobic oxidative coupling-dehydrogenation. Detailed reaction mechanisms and molecule behaviors over CoN3 S1 /CuN4 @NC are also investigated through in situ experiments and simulations.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ruiqi Fang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Fengliang Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 519175, China
| |
Collapse
|
10
|
Coordination Versatility of NHC-metal Topologies in Asymmetric Catalysis: Synthetic Insights and Recent Trends. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Zhao X, Fang R, Wang F, Kong X, Li Y. Dual-Metal Single Atoms with Dual Coordination for the Domino Synthesis of Natural Flavones. JACS AU 2023; 3:185-194. [PMID: 36711096 PMCID: PMC9875369 DOI: 10.1021/jacsau.2c00582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
The regulation of coordination configurations of single-atom sites is highly desirable to boost the catalytic performances of SA catalysts. Here, we demonstrate a versatile complexation-deposition strategy for the synthesis of 13 kinds of dual-metal SA site pairs with uniform and exclusive coordination configurations. The preparation is specifically exemplified by the fabrication of Cu and Co single-atom pairs with the co-existence of N and P heteroatoms through etching and pyrolysis of a pre-synthesized metal-organic framework template. Systematic characterizations reveal the uniform and exclusive coordinative configuration of Cu and Co SA sites in CuN4/CoN3P1 and CuN4/CoN2P2, over which the electrons are unsymmetrically distributed. Impressively, the CuN4/CoN2P2 site pairs exhibit significantly enhanced catalytic activity and selectivity in the synthesis of a variety of natural flavonoids in comparison with the CuN4/CoN3P1 and CuN4/CoN4 counterparts. Theoretical calculation results suggest that the unsymmetrical electron distribution over the CuN4/CoN2P2 sites could facilitate the adsorption and disassociation of oxygen molecules via reducing the energy barriers of the generation of the key intermediates and thus kinetically accelerate the oxidative-coupling reaction process.
Collapse
Affiliation(s)
- Xin Zhao
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Ruiqi Fang
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Fengliang Wang
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Xiangpeng Kong
- The
School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yingwei Li
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510640, China
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
12
|
Zhao X, Fang R, Wang F, Kong X, Li Y. Atomic design of dual-metal hetero-single-atoms for high-efficiency synthesis of natural flavones. Nat Commun 2022; 13:7873. [PMID: 36550133 PMCID: PMC9780242 DOI: 10.1038/s41467-022-35598-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Single-atom (SA) catalysts provide extensive possibilities in pursuing fantastic catalytic performances, while their preparation still suffers from metal aggregation and pore collapsing during pyrolysis. Here we report a versatile medium-induced infiltration deposition strategy for the fabrication of SAs and hetero-SAs (MaN4/MbN4@NC; Ma = Cu, Co, Ni, Mn, Mb = Co, Cu, Fe, NC = N-doped carbon). In-situ and control experiments reveal that the catalyst fabrication relies on the "step-by-step" evolution of Ma-containing metal-organic framework (MOF) template and Mb-based metal precursor, during which molten salt acts as both pore generator in the MOF transformation, and carrier for the oriented infiltration and deposition of the latter to eventually yield metal SAs embedded on hierarchically porous support. The as-prepared hetero-SAs show excellent catalytic performances in the general synthesis of 33 kinds of natural flavones. The highly efficient synthesis is further strengthened by the reliable durability of the catalyst loaded in a flow reactor. Systematic characterizations and mechanism studies suggest that the superior catalytic performances of CuN4/CoN4@NC are attributed to the facilitated O2 activating-splitting process and significantly reduced reaction energy barriers over CoN4 due to the synergetic interactions of the adjacent CuN4.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ruiqi Fang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Fengliang Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiangpeng Kong
- The School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yingwei Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
- South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 519175, China.
| |
Collapse
|
13
|
Politanskaya L, Wang J, Troshkova N, Chuikov I, Bagryanskaya I. One-pot synthesis of fluorinated 2-arylchroman-4-one derivatives from 2-(triisopropylsilyl)ethynylphenols and aromatic aldehydes. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Xu Y, Luo Y, Ye J, Deng Y, Liu D, Zhang W. Rh-Catalyzed Sequential Asymmetric Hydrogenations of 3-Amino-4-Chromones Via an Unusual Dynamic Kinetic Resolution Process. J Am Chem Soc 2022; 144:20078-20089. [PMID: 36255361 DOI: 10.1021/jacs.2c09266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rh-catalyzed sequential asymmetric hydrogenations of 3-amino-4-chromones have been achieved for the first time via an unprecedented dynamic kinetic resolution under neutral conditions, providing (S,R)-3-amino-4-chromanols in high yields (up to 98%) with excellent enantio- and diastereoselectivities (up to 99.9% ee and 20:1 dr). The mechanistic studies based on control experiments and density functional theory (DFT) calculations suggest that the dynamic kinetic resolution process for the intermediate enantiomers generated in the first hydrogenation step proceeded via a stereomutation (or called chiral assimilation) pathway from an undesired enantiomer to the desired enantiomer rather than via traditional racemization of the undesired enantiomer. The protocol can be performed on a gram scale with a relatively low catalyst loading and offers a practical and convenient pathway for synthesizing a series of bioactive chromanols and their derivatives.
Collapse
Affiliation(s)
- Yunnan Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yicong Luo
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianxun Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu Deng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
15
|
C2-Symmetric N-Heterocyclic Carbenes in Asymmetric Transition-Metal Catalysis. Symmetry (Basel) 2022. [DOI: 10.3390/sym14081615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The last decades have witnessed a rapid growth of applications of N-heterocyclic carbenes (NHCs) in different chemistry fields. Due to their unique steric and electronic properties, NHCs have become a powerful tool in coordination chemistry, allowing the preparation of stable metal-ligand frameworks with both main group metals and transition metals. An overview on the use of five membered monodentate C2-symmetric N-heterocyclic carbenes (NHCs) as ligands for transition-metal complexes and their most relevant applications in asymmetric catalysis is offered.
Collapse
|
16
|
Zhao S, Cai X, Lu Y, Hu J, Xiong Z, Jin J, Li Y, Wang H, Wu JQ. Cp*Ir(III) and Cp*Rh(III)-catalyzed annulation of salicylaldehydes with fluorinated vinyl tosylates. Chem Commun (Camb) 2022; 58:8966-8969. [PMID: 35861224 DOI: 10.1039/d2cc02194c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild, selective and redox-neutral Cp*Ir(III)- and Cp*Rh(III)-catalyzed C-H activation/annulation of salicylaldehydes with fluorovinyl tosylates is reported. The use of monofluorovinyl tosylate favors the synthesis of C2- and C3-substitution-free chromones via C-H activation/β-F elimination/annulation, whereas difluorovinyl tosylate leads to the construction of C2-fluoroalkoxy chromones. Mild reaction conditions and good functional-group tolerance were observed. Further functionalization of the resulting chromones via halogenation, alkynylation, alkylation and hydrocyanation was successfully realized.
Collapse
Affiliation(s)
- Shuwen Zhao
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China.
| | - Xiaojia Cai
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China.
| | - Yuying Lu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China.
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China.
| | - Zhuang Xiong
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China.
| | - Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China.
| | - Yin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Honggen Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China.
| |
Collapse
|
17
|
Chen J, Meng W, Feng X, Du H. Asymmetric Hydrogenation by Relay Catalysis with FLPs and CPAs: Stereodivergent Synthesis of 3-Substituted Flavanones. J Org Chem 2022; 87:10544-10549. [PMID: 35799349 DOI: 10.1021/acs.joc.2c01278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To access flavanones bearing two contiguous stereogenic centers, a metal-free asymmetric hydrogenation of racemic 3-alkylidene flavanones has been developed by relay catalysis with achiral FLPs and chiral phosphoric acids, which represents a successful detour for the challenging hydrogenation of 3-substituted flavones. A wide range of trans- and cis-flavanones were obtained in high yields and ≤97% ee.
Collapse
Affiliation(s)
- Jingjing Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Xie QX, Liu LX, Zhu ZH, Yu CB, Zhou YG. Asymmetric Transfer Hydrogenation of 2,3-Disubstituted Flavanones through Dynamic Kinetic Resolution Enabled by Retro-Oxa-Michael Addition: Construction of Three Contiguous Stereogenic Centers. J Org Chem 2022; 87:7521-7530. [PMID: 35605190 DOI: 10.1021/acs.joc.2c00418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A ruthenium-catalyzed asymmetric transfer hydrogenation of 2,3-disubstituted flavanones was developed for the construction of three contiguous stereocenters under basic conditions through a combination of dynamic kinetic resolution and retro-oxa-Michael addition, giving chiral flavanols with excellent enantioselectivities and diastereoselectivities. The reaction proceeded via a base-catalyzed retro-oxa-Michael addition to racemize two stereogenic centers simultaneously in concert with a highly enantioselective ketone transfer hydrogenation step. The asymmetric transfer hydrogenation could be achieved at gram scale without loss of the activity and enantioselectivity.
Collapse
Affiliation(s)
- Qing-Xian Xie
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li-Xia Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Zhou-Hao Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Chang-Bin Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| |
Collapse
|
19
|
Peters BBC, Zheng J, Krajangsri S, Andersson PG. Stereoselective Iridium-N,P-Catalyzed Double Hydrogenation of Conjugated Enones to Saturated Alcohols. J Am Chem Soc 2022; 144:8734-8740. [PMID: 35511116 PMCID: PMC9121388 DOI: 10.1021/jacs.2c02422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Asymmetric hydrogenation
of prochiral substrates such as ketones
and olefins constitutes an important instrument for the construction
of stereogenic centers, and a multitude of catalytic systems have
been developed for this purpose. However, due to the different nature
of the π-system, the hydrogenation of olefins and ketones is
normally catalyzed by different metal complexes. Herein, a study on
the effect of additives on the Ir-N,P-catalyzed hydrogenation of enones
is described. The combination of benzamide and the development of
a reactive catalyst unlocked a novel reactivity mode of Crabtree-type
complexes toward C=O bond hydrogenation. The role of benzamide
is suggested to extend the lifetime of the dihydridic iridium intermediate,
which is prone to undergo irreversible trimerization, deactivating
the catalyst. This unique reactivity is then coupled with C=C
bond hydrogenation for the facile installation of two contiguous stereogenic
centers in high yield and stereoselectivity (up to 99% ee, 99/1 d.r.) resulting in a highly stereoselective reduction of enones.
Collapse
Affiliation(s)
- Bram B C Peters
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691Stockholm, Sweden
| | - Jia Zheng
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691Stockholm, Sweden
| | - Suppachai Krajangsri
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691Stockholm, Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691Stockholm, Sweden.,School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, 4000Durban, South Africa
| |
Collapse
|
20
|
Yang J, Lai J, Kong W, Li S. Asymmetric Synthesis of Sakuranetin-Relevant Flavanones for the Identification of New Chiral Antifungal Leads. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3409-3419. [PMID: 35266384 DOI: 10.1021/acs.jafc.1c07557] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Discovery and efficient synthesis of new promising leads have a central role in agrochemical science. Reported herein is the sakuranetin-directed synergistic exploration of an asymmetric synthesis and an antifungal evaluation of chiral flavanones. A new palladium catalytic system with CarOx-type ligands was successfully identified for the highly enantioselective addition of arylboronic acids to chromones. This enabled the facile and programmable construction of a constellation of chiral flavanones (up to 98% yield and 97% ee), in which (R)-pinostrobin was efficiently constructed without laborious protecting/deprotecting operations. Its good performance in asymmetric induction and functional tolerance expanded the chemical space of pharmaceutically important flavanones. The chiral differentiation of flavanones based on antifungal activity and a concise structure-activity relationship model was disclosed and summarized. This synergistic project culminated with acquisition of the naturally unprecedented flavanones with better antifungal potentials than sakuranetin, in which the R-enantiomer of flavanone 54 (EC50 = 0.8 μM) demonstrated better performance than boscalid against Rhizoctonia solani. The novel scaffold and predicted new target compared with the commercial fungicides in the FRAC reinforce the value of further exploration.
Collapse
Affiliation(s)
- Juan Yang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jixing Lai
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wenlong Kong
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shengkun Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
21
|
Hamza A, Moock D, Schlepphorst C, Schneidewind J, Baumann W, Glorius F. Unveiling a key catalytic pocket for the ruthenium NHC-catalysed asymmetric heteroarene hydrogenation. Chem Sci 2022; 13:985-995. [PMID: 35211263 PMCID: PMC8790799 DOI: 10.1039/d1sc06409f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
The chiral ruthenium(ii)bis-SINpEt complex is a versatile and powerful catalyst for the hydrogenation of a broad range of heteroarenes. This study aims to provide understanding of the active form of this privileged catalyst as well as the reaction mechanism, and to identify the factors which control enantioselectivity. To this end we used computational methods and in situ NMR spectroscopy to study the hydrogenation of 2-methylbenzofuran promoted by this system. The high flexibility and conformational freedom of the carbene ligands in this complex lead to the formation of a chiral pocket interacting with the substrate in a "lock-and-key" fashion. The non-covalent stabilization of the substrate in this particular pocket is an exclusive feature of the major enantiomeric pathway and is preserved throughout the mechanism. Substrate coordination leading to the minor enantiomer inside this pocket is inhibited by steric repulsion. Rather, the catalyst exhibits a "flat" interaction surface with the substrate in the minor enantiomer pathway. We probe this concept by computing transition states of the rate determining step of this reaction for a series of different substrates. Our findings open up a new approach for the rational design of chiral catalysts.
Collapse
Affiliation(s)
- Andrea Hamza
- Institute of Organic Chemistry, Research Centre for Natural Sciences Magyar Tudósok Körútja 2 H-1117 Budapest Hungary
| | - Daniel Moock
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Christoph Schlepphorst
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Jacob Schneidewind
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Wolfgang Baumann
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
22
|
Wang L, Gong X, Lei T, Jiang S. Research Progress on Asymmetric Synthesis of Flavanones. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Caleffi GS, Demidoff FC, Nájera C, Costa PRR. Asymmetric hydrogenation and transfer hydrogenation in the enantioselective synthesis of flavonoids. Org Chem Front 2022. [DOI: 10.1039/d1qo01503f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we explore the applications of Asymmetric Hydrogenation (AH) and Asymmetric Transfer Hydrogenation (ATH) in the total synthesis of natural flavonoids and their analogues, highlighting the limitations and opportunities in the field.
Collapse
Affiliation(s)
- Guilherme S. Caleffi
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco H, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil
| | - Felipe C. Demidoff
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco H, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Paulo R. R. Costa
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco H, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Nie Z, Liu S, Wang T, Shen Z, Nie H, Xi J, Zhang D, Zheng XH, Zhang S, Yao L. Facile access to chiral chromanone-2-carboxylic acids enabled by Rhodium-catalyzed chemo- and enantioselective hydrogenation. Chem Commun (Camb) 2022; 58:5837-5840. [DOI: 10.1039/d2cc00589a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh-catalyzed highly chemo- and enantioselective hydrogenation of chromone-2-carboxylic acids was first successfully established, providing a wide range of enantiopure chromanone-2-carboxylic acids with excellent results (up to 97% yield and 99%...
Collapse
|
25
|
Jian K, Li B, Zhu S, Xuan Q, Song Q. Chemoselective reduction of α,β-unsaturated ketones to allylic alcohols under catalyst-free conditions. Org Chem Front 2022. [DOI: 10.1039/d1qo01754c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strategy of chemoselective reduction of α, β-unsaturated ketones was developed in our group. H3N·BH3 would prefer to coordinate with CO bond, forming six-membered ring, and ketones were hydrogenated via concerted double-hydrogen-transfer process.
Collapse
Affiliation(s)
- Kaixia Jian
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Bingnan Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Shuxian Zhu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Qingqing Xuan
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organo-fluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007
| |
Collapse
|
26
|
Li W, Yang T, Song N, Li R, Long J, He L, Zhang X, Lv H. Ir/f-Ampha complex catalyzed asymmetric sequential hydrogenation of enones: a general access to chiral alcohols with two contiguous chiral centers. Chem Sci 2022; 13:1808-1814. [PMID: 35282638 PMCID: PMC8826950 DOI: 10.1039/d1sc05963g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
A general and highly efficient method for asymmetric sequential hydrogenation of α,β-unsaturated ketones has been developed by using an iridium/f-Ampha complex as the catalyst, furnishing corresponding chiral alcohols with two contiguous stereocenters in high yields with excellent diastereo- and enantioselectivities (up to 99% yield, >20 : 1 dr and >99% ee). Control experiments indicated that the C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C and CO bonds of the enones were hydrogenated sequentially, and the final stereoselectivities were determined by the dynamic kinetic resolution of ketones. Moreover, DFT calculations revealed that an outer sphere pathway was involved in both reduction of CC and CO bonds of enones. The synthetic utility of this method was demonstrated by a gram-scale reaction with very low catalyst loading (S/C = 20 000) and a concise synthetic route to key chiral intermediates of the antiasthmatic drug CP-199,330. A general and efficient method for asymmetric sequential hydrogenation of α,β-unsaturated ketones has been developed. A dynamic kinetic resolution and an outer sphere pathway were involved in this transformation.![]()
Collapse
Affiliation(s)
- Wendian Li
- Sauvage Center for Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, Hubei 430072, China
- China Tobacco Sichuan Industrial Company, Ltd., Chengdu, Sichuan, 610065, China
| | - Tilong Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Nan Song
- Sauvage Center for Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, Hubei 430072, China
| | - Ruihao Li
- Sauvage Center for Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, Hubei 430072, China
| | - Jiao Long
- Sauvage Center for Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, Hubei 430072, China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China
| | - Xumu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Hui Lv
- Sauvage Center for Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
27
|
Foster D, Borhanuddin SM, Dorta R. Designing successful monodentate N-heterocyclic carbene ligands for asymmetric metal catalysis. Dalton Trans 2021; 50:17467-17477. [PMID: 34787620 DOI: 10.1039/d1dt02951g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chiral ligands are of particular importance in asymmetric transition-metal catalysis. Although the development of effective chiral monodentate N-heterocyclic carbenes (NHCs) has been slow, a growing amount of papers have been published in recent years showing their unique efficiency as chiral ancillary ligands. Herein we provide an overview of NHC structures that accomplish high levels of enantioselectivity (≥90% ee) and give guidelines to their use and thoughts on the future of this field.
Collapse
Affiliation(s)
- Daven Foster
- Department of Chemistry, School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, 6009 Crawley, Western Australia, Australia.
| | - S M Borhanuddin
- Department of Chemistry, School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, 6009 Crawley, Western Australia, Australia.
| | - Reto Dorta
- Department of Chemistry, School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, 6009 Crawley, Western Australia, Australia.
| |
Collapse
|
28
|
Gao Y, Fu Z, Wu D, Yin H, Chen F. Organocatalyzed Asymmetric Tandem Intramolecular oxa‐Michael Addition/Electrophilic Thiocyanation: Synthesis of Chiral
α‐
Thiocyanato Flavanones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yong Gao
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| | - Zhenda Fu
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| | - Di Wu
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| | - Fu‐Xue Chen
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| |
Collapse
|
29
|
Chemoenzymatic Stereoselective Synthesis of trans-Flavan-4-ols via Lipase-Catalyzed Kinetic Resolutions. Catalysts 2021. [DOI: 10.3390/catal11111296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Flavan-4-ols are a subclass of flavonoids that are present in complex molecules with application in the industrial sector as pigments, antioxidants, or antimitotics, among many others. The most traditional way to achieve their synthesis is from naturally abundant flavanones, asymmetric transfer hydrogenation reactions or bioreduction being well known strategies, while their preparation from racemic flavan-4-ols has been less explored. In this article, we have focused on the synthesis of a series of trans-flavan-4-ols bearing different substitution patterns in the aromatic ring to explore later the potential of lipases as biocatalysts for stereoselective acylation reactions. Therefore, a series of flavanones have been chemically prepared, starting from the corresponding benzaldehydes by aldol condensation with 2′-hydroxyacetophenone in a strongly basic medium, and later transformed into the corresponding racemic trans-flavan-4-ols following a carbonyl reduction, Mitsunobu reaction, and ester deprotection sequence. A screening of lipases and optimization of the reaction conditions for the stereoselective acylation of racemic 2-phenylchroman-4-ol were performed before expanding the best reaction conditions to the kinetic resolution of other 2-arylchroman-4-ols. Interestingly, the combination of AK lipase from Pseudomonas fluorescens as enzyme and vinyl acetate as both acyl donor and solvent allowed the performance of highly asymmetric transformations (E > 200, 50–99% eeS and >99% eeP) under mild reaction conditions (30 °C and 250 rpm).
Collapse
|
30
|
Hu T, Lückemeier L, Daniliuc C, Glorius F. Ru-NHC-Catalyzed Asymmetric Hydrogenation of 2-Quinolones to Chiral 3,4-Dihydro-2-Quinolones. Angew Chem Int Ed Engl 2021; 60:23193-23196. [PMID: 34460127 PMCID: PMC8596914 DOI: 10.1002/anie.202108503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/20/2021] [Indexed: 11/10/2022]
Abstract
Direct enantioselective hydrogenation of unsaturated compounds to generate chiral three-dimensional motifs is one of the most straightforward and important approaches in synthetic chemistry. We realized the Ru(II)-NHC-catalyzed asymmetric hydrogenation of 2-quinolones under mild reaction conditions. Alkyl-, aryl- and halogen-substituted optically active dihydro-2-quinolones were obtained in high yields with moderate to excellent enantioselectivities. The reaction provides an efficient and atom-economic pathway to construct simple chiral 3,4-dihydro-2-quinolones. The desired products could be further reduced to tetrahydroquinolines and octahydroquinolones.
Collapse
Affiliation(s)
- Tianjiao Hu
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstrasse 3648149MünsterGermany
| | - Lukas Lückemeier
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstrasse 3648149MünsterGermany
| | - Constantin Daniliuc
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstrasse 3648149MünsterGermany
| | - Frank Glorius
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstrasse 3648149MünsterGermany
| |
Collapse
|
31
|
Hu T, Lückemeier L, Daniliuc C, Glorius F. Ru‐NHC‐katalysierte asymmetrische Hydrierung von 2‐Chinolonen zu chiralen 3,4‐Dihydro‐2‐chinolonen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tianjiao Hu
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Deutschland
| | - Lukas Lückemeier
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Deutschland
| | - Constantin Daniliuc
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Deutschland
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Deutschland
| |
Collapse
|
32
|
de Matos IL, Birolli WG, Santos DDA, Nitschke M, Porto ALM. Stereoselective reduction of flavanones by marine-derived fungi. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Moock D, Wagener T, Hu T, Gallagher T, Glorius F. Enantio- and Diastereoselective, Complete Hydrogenation of Benzofurans by Cascade Catalysis. Angew Chem Int Ed Engl 2021; 60:13677-13681. [PMID: 33844391 PMCID: PMC8251578 DOI: 10.1002/anie.202103910] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 12/13/2022]
Abstract
We report an enantio- and diastereoselective, complete hydrogenation of multiply substituted benzofurans in a one-pot cascade catalysis. The developed protocol facilitates the controlled installation of up to six new defined stereocenters and produces architecturally complex octahydrobenzofurans, prevalent in many bioactive molecules. A unique match of a chiral homogeneous ruthenium-N-heterocyclic carbene complex and an in situ activated rhodium catalyst from a complex precursor act in sequence to enable the presented process.
Collapse
Affiliation(s)
- Daniel Moock
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Tobias Wagener
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Tianjiao Hu
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Timothy Gallagher
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
34
|
Soto M, Gotor‐Fernández V, Rodríguez‐Solla H, Baratta W. Transfer Hydrogenation of Flavanones and
ortho
‐Hydroxychalcones to 1,3‐Diarylpropanols Catalyzed by CNN Pincer Ruthenium Complexes. ChemCatChem 2021. [DOI: 10.1002/cctc.202002025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Martín Soto
- Departamento de Química Orgánica e Inorgánica University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Vicente Gotor‐Fernández
- Departamento de Química Orgánica e Inorgánica University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Humberto Rodríguez‐Solla
- Departamento de Química Orgánica e Inorgánica University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Walter Baratta
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali Università di Udine Via Cotonoficio 108 33100 Udine Italy
| |
Collapse
|
35
|
Moock D, Wagener T, Hu T, Gallagher T, Glorius F. Enantio‐ und diastereoselektive, vollständige Hydrierung von Benzofuranen mittels Kaskadenkatalyse. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Daniel Moock
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Tobias Wagener
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Tianjiao Hu
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Timothy Gallagher
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
36
|
Lu M, Wang X, Xiong Z, Duan J, Ren W, Yao W, Xia Y, Wang Z. Enantioselective Synthesis of Chromanones through Organocatalytic Tandem Reactions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mengxue Lu
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research Chongqing University Chongqing 401331 People's Republic of China
| | - Xin Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research Chongqing University Chongqing 401331 People's Republic of China
| | - Zongli Xiong
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research Chongqing University Chongqing 401331 People's Republic of China
| | - Jingxiang Duan
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research Chongqing University Chongqing 401331 People's Republic of China
| | - Wen Ren
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research Chongqing University Chongqing 401331 People's Republic of China
| | - Weijun Yao
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Yi Xia
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research Chongqing University Chongqing 401331 People's Republic of China
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research Chongqing University Chongqing 401331 People's Republic of China
| |
Collapse
|
37
|
He X, Xie M, Li R, Choy PY, Tang Q, Shang Y, Kwong FY. Organocatalytic Approach for Assembling Flavanones via a Cascade 1,4-Conjugate Addition/oxa-Michael Addition between Propargylamines with Water. Org Lett 2020; 22:4306-4310. [DOI: 10.1021/acs.orglett.0c01357] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Pui Ying Choy
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Fuk Yee Kwong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| |
Collapse
|
38
|
Baek D, Ryu H, Ryu JY, Lee J, Stoltz BM, Hong S. Catalytic enantioselective synthesis of tetrasubstituted chromanones via palladium-catalyzed asymmetric conjugate arylation using chiral pyridine-dihydroisoquinoline ligands. Chem Sci 2020; 11:4602-4607. [PMID: 33133484 PMCID: PMC7574023 DOI: 10.1039/d0sc00412j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022] Open
Abstract
Highly enantioselective conjugate addition reactions of arylboronic acids to 2-substituted chromones catalyzed by palladium complexes with new chiral Pyridine-Dihydroisoquinoline (PyDHIQ) ligands have been developed. These reactions provide highly enantioselective access to chromanones containing tetrasubstituted stereocenters. Various arylboronic acids and 2-substituted chromones can be used in the catalytic reaction to afford the chiral tetrasubstituted chromanones in good yields and excellent enantioselectivities (25 examples, up to 98% yields, up to 99% ee).
Collapse
Affiliation(s)
- Doohyun Baek
- Department of Chemistry , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro, Buk-gu , Gwangju 61005 , Republic of Korea .
| | - Huijeong Ryu
- Department of Chemistry , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro, Buk-gu , Gwangju 61005 , Republic of Korea .
| | - Ji Yeon Ryu
- Department of Chemistry , Chonnam National University , 77 Yongbong-ro, Buk-gu , Gwangju 61186 , Republic of Korea
| | - Junseong Lee
- Department of Chemistry , Chonnam National University , 77 Yongbong-ro, Buk-gu , Gwangju 61186 , Republic of Korea
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| | - Sukwon Hong
- Department of Chemistry , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro, Buk-gu , Gwangju 61005 , Republic of Korea .
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro, Buk-gu , Gwangju 61005 , Republic of Korea
| |
Collapse
|
39
|
Bellinger TJ, Harvin T, Pickens-Flynn T, Austin N, Whitaker SH, Tang Yuk Tutein MLC, Hukins DT, Deese N, Guo F. Conjugate Addition of Grignard Reagents to Thiochromones Catalyzed by Copper Salts: A Unified Approach to Both 2-Alkylthiochroman-4-One and Thioflavanone. Molecules 2020; 25:E2128. [PMID: 32370080 PMCID: PMC7248974 DOI: 10.3390/molecules25092128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022] Open
Abstract
Grignard reagents undergo conjugate addition to thiochromones catalyzed by copper salts to afford 2-substituted-thiochroman-4-ones, both 2-alkylthiochroman-4-ones and thioflavanones (2-arylthiochroman-4-ones), in good yields with trimethylsilyl chloride (TMSCl) as an additive. The best yields of 1,4-adducts can be attained with CuCN∙2LiCl as the copper source. Excellent yields of 2-alkyl-substituted thiochroman-4-ones and thioflavanones (2-aryl substituted) are attained with a broad range of Grignard reagents. This approach works well with both alkyl and aromatic Grignard reagents, thus providing a unified synthetic approach to privileged 2-substituted thiochroman-4-ones and a potential valuable precursor for further synthetic applications towards many pharmaceutically active molecules. The use of commercially available and/or readily prepared Grignard reagents will expedite the synthesis of a large library of both 2-alkyl substituted thiochroman-4-ones and thioflavanones for additional synthetic applications.
Collapse
Affiliation(s)
- Tania J. Bellinger
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
| | - Teavian Harvin
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
| | - Ti’Bran Pickens-Flynn
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
| | - Nataleigh Austin
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
| | - Samuel H. Whitaker
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
| | - Mai Ling C. Tang Yuk Tutein
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
| | - Dabria T. Hukins
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
| | - Nichele Deese
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
| | - Fenghai Guo
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
- Biomedical Research Infrastructure Center, Winston Salem State University, Winston Salem, NC 27110, USA
| |
Collapse
|
40
|
Santoso KT, Brett MW, Cheung C, Cook GM, Stocker BL, Timmer MSM. Synthesis of Functionalised Chromonyl‐pyrimidines and Their Potential as Antimycobacterial Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.202000799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kristiana T. Santoso
- School of Chemical and Physical SciencesVictoria University of Wellington PO Box 600 6140 Wellington New Zealand
- Centre for BiodiscoveryVictoria University of Wellington PO Box 600 6140 Wellington New Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of Auckland Auckland New Zealand
| | - Matthew W. Brett
- School of Chemical and Physical SciencesVictoria University of Wellington PO Box 600 6140 Wellington New Zealand
- Centre for BiodiscoveryVictoria University of Wellington PO Box 600 6140 Wellington New Zealand
| | - Chen‐Yi Cheung
- Department of Microbiology and ImmunologySchool of Biomedical SciencesUniversity of Otago Dunedin New Zealand
| | - Gregory M. Cook
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of Auckland Auckland New Zealand
- Department of Microbiology and ImmunologySchool of Biomedical SciencesUniversity of Otago Dunedin New Zealand
| | - Bridget L. Stocker
- School of Chemical and Physical SciencesVictoria University of Wellington PO Box 600 6140 Wellington New Zealand
- Centre for BiodiscoveryVictoria University of Wellington PO Box 600 6140 Wellington New Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of Auckland Auckland New Zealand
| | - Mattie S. M. Timmer
- School of Chemical and Physical SciencesVictoria University of Wellington PO Box 600 6140 Wellington New Zealand
- Centre for BiodiscoveryVictoria University of Wellington PO Box 600 6140 Wellington New Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of Auckland Auckland New Zealand
| |
Collapse
|
41
|
Li W, Wagener T, Hellmann L, Daniliuc CG, Mück-Lichtenfeld C, Neugebauer J, Glorius F. Design of Ru(II)-NHC-Diamine Precatalysts Directed by Ligand Cooperation: Applications and Mechanistic Investigations for Asymmetric Hydrogenation. J Am Chem Soc 2020; 142:7100-7107. [PMID: 32195584 PMCID: PMC7168601 DOI: 10.1021/jacs.0c00985] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A modular synthesis of Ru(II)-NHC-diamine complexes from readily available chiral N-heterocyclic carbenes (NHCs) and chiral diamines is disclosed for the first time. The well-defined Ru(II)-NHC-diamine complexes show unique structure and coordination chemistry including an unusual tridentate coordination effect of 1,2-diphenylethylenediamine. The isolated air- and moisture-stable Ru(II)-NHC-diamine complexes act as versatile precatalysts for the asymmetric hydrogenation of isocoumarines, benzothiophene 1,1-dioxides, and ketones. Moreover, on the basis of the identification of reaction intermediates by stoichiometric reactions and NMR experiments, together with the DFT calculations, a possible catalytic cycle was proposed.
Collapse
Affiliation(s)
- Wei Li
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Tobias Wagener
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Lars Hellmann
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | | | - Johannes Neugebauer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
42
|
Szappanos Á, Mándi A, Gulácsi K, Lisztes E, Tóth BI, Bíró T, Antus S, Kurtán T. Synthesis and antiproliferative activity of 6-naphthylpterocarpans. Org Biomol Chem 2020; 18:2148-2162. [PMID: 32134098 DOI: 10.1039/d0ob00110d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Heck-oxyarylation of racemic 2-(1-naphthyl)- and 2-(2-naphthyl)-2H-chromene derivatives were carried out resulting diastereoselectively in (6S*,6aR*,11aR*)-6-(1-naphthyl)- and 6-(2-naphthyl)-pterocarpans as major products and bridged (6R*,12R*)-6,12-methanodibenzo[d,g][1,3]dioxocine derivatives as minor products. Antiproliferative activity of two 6-naphthylpterocarpans was identified by MTT assay against A2780 and WM35 human cancer cell lines with low micromolar IC50 values. The measured 0.80 and 3.51 μM IC50 values of the (6S*,6aR*,11aR*)-6-(1-naphthyl)pterocarpan derivative with 8,9-methylenedioxy substitution represent the best activities in the pterocarpan family. Enantiomers of the pterocarpan and dioxocine derivatives and their chiral 2-naphthylchroman-4-one and 2-naphthyl-2H-chromene precursors were separated by HPLC using chiral stationary phase. HPLC-ECD spectra were recorded and absolute configuration and low-energy solution conformations were determined by TDDFT-ECD calculations. Characteristic ECD transitions of the separated enantiomers were correlated with their absolute configuration.
Collapse
Affiliation(s)
- Ádám Szappanos
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gao B, Feng X, Meng W, Du H. Asymmetric Hydrogenation of Ketones and Enones with Chiral Lewis Base Derived Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2020; 59:4498-4504. [PMID: 31863715 DOI: 10.1002/anie.201914568] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 01/13/2023]
Abstract
The concept of frustrated Lewis pairs (FLPs) has been widely applied in various research areas, and metal-free hydrogenation undoubtedly belongs to the most significant and successful ones. In the past decade, great efforts have been devoted to the synthesis of chiral boron Lewis acids. In a sharp contrast, chiral Lewis base derived FLPs have rarely been disclosed for the asymmetric hydrogenation. In this work, a novel type of chiral FLP was developed by simple combination of chiral oxazoline Lewis bases with achiral boron Lewis acids, thus providing a promising new direction for the development of chiral FLPs in the future. These chiral FLPs proved to be highly effective for the asymmetric hydrogenation of ketones, enones, and chromones, giving the corresponding products in high yields with up to 95 % ee. Mechanistic studies suggest that the hydrogen transfer to simple ketones likely proceeds in a concerted manner.
Collapse
Affiliation(s)
- Bochao Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
44
|
Gao B, Feng X, Meng W, Du H. Asymmetric Hydrogenation of Ketones and Enones with Chiral Lewis Base Derived Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Bochao Gao
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Meng
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Haifeng Du
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
45
|
Yu H, Song R, Kong Y, Cao T, Chen Y. Synthesis, crystal structure and spectral properties of a copper(II) complex with flavonoxylacetate ligand. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1755035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Hui Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Rong Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Yangyang Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Ting Cao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Yun Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| |
Collapse
|
46
|
Abstract
In this paper, an easy-operational, high-yielding method for the gram-scale synthesis of 3-sulfonyl flavanones is described by a one-pot straightforward POCl3 mediated intermolecular (5 + 1) annulation of the β-ketosulfones with an o-hydroxyaryl group (dual nucleophile) and arylaldehydes (dual electrophile) in refluxing toluene for 3 h. A plausible mechanism is proposed and discussed. This protocol provides a highly effective annulation via one carbon-oxygen (C-O) and one carbon-carbon (C-C) bond formations.
Collapse
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 807 , Taiwan.,Department of Medical Research , Kaohsiung Medical University Hospital , Kaohsiung 807 , Taiwan
| | - Yu-Lin Tsai
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 807 , Taiwan
| | - Yu-Lun Chang
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 807 , Taiwan
| |
Collapse
|
47
|
|
48
|
van Putten R, Benschop J, de Munck VJ, Weber M, Müller C, Filonenko GA, Pidko EA. Efficient and Practical Transfer Hydrogenation of Ketones Catalyzed by a Simple Bidentate Mn-NHC Complex. ChemCatChem 2019; 11:5232-5235. [PMID: 31894188 PMCID: PMC6919935 DOI: 10.1002/cctc.201900882] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/11/2019] [Indexed: 12/18/2022]
Abstract
Catalytic reductions of carbonyl-containing compounds are highly important for the safe, sustainable, and economical production of alcohols. Herein, we report on the efficient transfer hydrogenation of ketones catalyzed by a highly potent Mn(I)-NHC complex. Mn-NHC 1 is practical at metal concentrations as low as 75 ppm, thus approaching loadings more conventionally reserved for noble metal based systems. With these low Mn concentrations, catalyst deactivation is found to be highly temperature dependent and becomes especially prominent at increased reaction temperature. Ultimately, understanding of deactivation pathways could help close the activity/stability-gap with Ru and Ir catalysts towards the practical implementation of sustainable earth-abundant Mn-complexes.
Collapse
Affiliation(s)
- Robbert van Putten
- Inorganic Systems Engineering group, Department of Chemical Engineering Faculty of Applied SciencesDelft University of TechnologyVan der Maasweg 9Delft2629 HZ (TheNetherlands
| | - Joeri Benschop
- Inorganic Systems Engineering group, Department of Chemical Engineering Faculty of Applied SciencesDelft University of TechnologyVan der Maasweg 9Delft2629 HZ (TheNetherlands
| | - Vincent J. de Munck
- Inorganic Systems Engineering group, Department of Chemical Engineering Faculty of Applied SciencesDelft University of TechnologyVan der Maasweg 9Delft2629 HZ (TheNetherlands
| | - Manuela Weber
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstraße 34/36BerlinD-14195Germany
| | - Christian Müller
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstraße 34/36BerlinD-14195Germany
| | - Georgy A. Filonenko
- Inorganic Systems Engineering group, Department of Chemical Engineering Faculty of Applied SciencesDelft University of TechnologyVan der Maasweg 9Delft2629 HZ (TheNetherlands
| | - Evgeny A. Pidko
- Inorganic Systems Engineering group, Department of Chemical Engineering Faculty of Applied SciencesDelft University of TechnologyVan der Maasweg 9Delft2629 HZ (TheNetherlands
| |
Collapse
|
49
|
Bunse P, Schlepphorst C, Glorius F, Kitamura M, Wünsch B. Short and Atom-Economic Enantioselective Synthesis of the σ 1-Receptor Ligands ( S)- and ( R)-Fluspidine-Important Tools for Positron Emission Tomography Studies. J Org Chem 2019; 84:13744-13754. [PMID: 31523971 DOI: 10.1021/acs.joc.9b01882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aryl bromides 2a and 2b bearing an alkynyl substituent in the o-position reacted with n-butyllithium and 1-benzylpiperidin-4-one in a one-pot Domino reaction to form ester 3 and aldehyde 5, respectively. Enantiomeric alcohols (R)-8 and (S)-8 were obtained by conjugate NaBH4 reduction of α,β-unsaturated ester 3 in the presence of chiral cocomplexes (R,R)-10 and (S,S)-10. Starting from orthoester 2a, the precursors (R)-8 and (S)-8 for the synthesis of fluspidine enantiomers (R)-1/[18F](R)-1 and (S)-1/[18F](S)-1 were obtained in only two reaction steps without additional steps for N-protection in an atom-economic manner in 95.6% ee and 97.2% ee, respectively.
Collapse
Affiliation(s)
- Paul Bunse
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Christoph Schlepphorst
- Organisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster , Corrensstraße 40 , D-48149 Münster , Germany
| | - Frank Glorius
- Organisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster , Corrensstraße 40 , D-48149 Münster , Germany
| | - Masato Kitamura
- Graduate School of Pharmaceutical Sciences and Research Center for Materials Science , Nagoya University , Chikusa, Nagoya 464-8601 , Japan
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM) , Westfälische Wilhelms-Universität Münster , D-48149 Münster , Germany
| |
Collapse
|
50
|
Soto M, Soengas RG, Silva AMS, Gotor-Fernández V, Rodríguez-Solla H. Temperature-Controlled Stereodivergent Synthesis of 2,2'-Biflavanones Promoted by Samarium Diiodide. Chemistry 2019; 25:13104-13108. [PMID: 31361369 DOI: 10.1002/chem.201902927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Indexed: 12/11/2022]
Abstract
In this work, the first example of a radical stereodivergent reaction directed towards the stereoselective synthesis of both (R*,R*)- and (R*,S*)-2,2'-biflavanones promoted by samarium diiodide is reported. Control experiments showed that the selectivity of this reaction was exclusively controlled by the temperature. It was possible to generate a variety of 2,2'-biflavanones bearing different substitution patterns at the aromatic ring in good-to-quantitative yields, being both stereoisomers of the desired compounds obtained with total or high control of selectivity. A mechanism that explains both the generation of the corresponding 2,2'-biflavanones and the selectivity is also discussed. The structure and stereochemistry determination of each isomer was unequivocally elucidated by single-crystal X-ray diffraction experiments.
Collapse
Affiliation(s)
- Martín Soto
- Department of Organic and Inorganic Chemistry, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Raquel G Soengas
- Research Centre CIAIMBITAL, University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Artur M S Silva
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vicente Gotor-Fernández
- Department of Organic and Inorganic Chemistry, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Humberto Rodríguez-Solla
- Department of Organic and Inorganic Chemistry, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|