1
|
Dupud R, Merugu KK, R R, Ramesh R. Synthesis of benzosultams via Ag(I)-catalyzed alkylative cyclization of vinyl sulfonamides. Org Biomol Chem 2024; 23:103-107. [PMID: 39539236 DOI: 10.1039/d4ob01583e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A convenient method to access benzo-fused-γ-sultams via alkyl radical induced cyclization of vinyl sulfonamides is presented. A wide range of carboxylic acids including sterically hindered adamantanes participated as alkyl donors in this Ag(I)-catalyzed decarboxylative alkylation. The reaction utilizes readily available starting materials and demonstrates a broad substrate scope.
Collapse
Affiliation(s)
- Raju Dupud
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Karthik Kumar Merugu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Remyachand R
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Remya Ramesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
2
|
Ren JW, Zhang QH, Han CS, Zhang HX, Wang YB, Shi HR, Sun JH, Han YF. L-Amino acid ester as a biomimetic reducing agent for the reduction of unsaturated CC bonds. Org Biomol Chem 2024. [PMID: 39600194 DOI: 10.1039/d4ob01640h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The first example of an efficient protocol for the reduction of disubstituted methyleneindolinones, isoindigos and tetrasubstituted olefins for the synthesis of 3-substituted 2-oxindoles, dihydroisoindigos and tetrasubstituted ethane derivatives using an L-amino acid ester as an attractive biomimetic reducing agent has been developed. This new protocol has the advantages of mild reaction conditions without the need for any metal catalysts, a broad substrate scope (31 examples), excellent yields (90-98%) and good functional group tolerance, providing an operationally simple and practically useful methodology for reductive reactions. The L-amino acid derivative, which is cheap, nontoxic and easy to handle, serves as a new biomimetic reducing agent for use in organic chemistry, providing a novel and promising approach for future applications in reductive reactions.
Collapse
Affiliation(s)
- Ji-Wei Ren
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Qing-Hao Zhang
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Cheng-Shuai Han
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Huai-Xin Zhang
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Ya-Bin Wang
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Hai-Rui Shi
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Jing-Hui Sun
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| | - Yin-Feng Han
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, P. R. China.
| |
Collapse
|
3
|
Yan Q, Lv L, Xu L, Stepanova EV, Alvey GR, Shatskiy A, Kärkäs MD, Wang XS. Access to Carbonyl Azides via Iodine(III)-Mediated Cross-Coupling. Org Lett 2024; 26:9215-9220. [PMID: 39418476 PMCID: PMC11536401 DOI: 10.1021/acs.orglett.4c03212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/16/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Herein, we present a prominent metal-free C-N cross-coupling platform that enables access to carbamoyl- and ketoazides from isocyanides or silyl enol ethers and trimethylsilyl azide (TMSN3) with an aid of iodine(III) promoter. This offers a rapid route to a diverse set of synthetically valuable azide decorated fragments with excellent substrate scope and good to excellent yields. The disclosed platform exemplifies the use of TMSN3 for incorporation of the azide fragment without the loss of N2.
Collapse
Affiliation(s)
- Qing Yan
- School
of Chemistry and Materials Science, Jiangsu Key Laboratory of Green
Synthesis for Functional Materials, Jiangsu
Normal University, Xuzhou, Jiangsu 221116, China
| | - Lanlan Lv
- School
of Chemistry and Materials Science, Jiangsu Key Laboratory of Green
Synthesis for Functional Materials, Jiangsu
Normal University, Xuzhou, Jiangsu 221116, China
| | - Li Xu
- School
of Chemistry and Materials Science, Jiangsu Key Laboratory of Green
Synthesis for Functional Materials, Jiangsu
Normal University, Xuzhou, Jiangsu 221116, China
| | - Elena V. Stepanova
- Department
of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Research
School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Gregory R. Alvey
- Department
of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Andrey Shatskiy
- Department
of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Markus D. Kärkäs
- Department
of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Xiang-Shan Wang
- School
of Chemistry and Materials Science, Jiangsu Key Laboratory of Green
Synthesis for Functional Materials, Jiangsu
Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
4
|
Jiang B, Zhang C, Fan TG, Ran YS, Shen YT, Qu Y, Li YM. Cascade Cyclization of N-Cyanamide Alkenes for the Divergent Synthesis of Azido-, Nitro-, and Alkenyl-Containing Pyrroloquinazolinones. Org Lett 2024; 26:8028-8033. [PMID: 39283295 DOI: 10.1021/acs.orglett.4c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Radical cascade cyclizations of N-cyanamide alkenes have been developed for the divergent synthesis of pyrroloquinazolinones bearing azido, alkenyl, and nitro groups by controlling the reaction conditions. The reaction temperature and the loading of the base play important roles in the different reaction pathways. These reactions are characterized by wide functional group compatibility and mild conditions.
Collapse
Affiliation(s)
- Bo Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Cui Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Tai-Gang Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yu-Song Ran
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yun-Tao Shen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yuan Qu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
5
|
Zhou X, Wang J, Shen Y, Ma D, Zhao Y, Wu J. Cp 2Fe-Mediated Electrochemical Synthesis of Phosphorylated Oxindoles and Indolo[2,1- a]isoquinolin-6(5 H)-ones. J Org Chem 2023. [PMID: 37990818 DOI: 10.1021/acs.joc.3c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
An efficient and environmentally friendly electrochemical synthesis of phosphorylated oxindoles and indolo[2,1-a]isoquinolin-6(5H)-ones mediated by readily available Cp2Fe has been developed, which illustrated a broad substrate scope and diverse functional group compatibility. This protocol featured an external oxidant-free process and was at room temperature, which was proposed to be driven by the anodic oxidation of Cp2Fe.
Collapse
Affiliation(s)
- Xiaocong Zhou
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang 315211, China
| | - Jian Wang
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang 315211, China
| | - Yirui Shen
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, Zhejiang China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Dumei Ma
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Zhejiang 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang 315211, China
| | - Ju Wu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang 315211, China
| |
Collapse
|
6
|
Borrel J, Waser J. Azido-alkynylation of alkenes through radical-polar crossover. Chem Sci 2023; 14:9452-9460. [PMID: 37712015 PMCID: PMC10498506 DOI: 10.1039/d3sc03309k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
We report an azido-alkynylation of alkenes allowing a straightforward access to homopropargylic azides by combining hypervalent iodine reagents and alkynyl-trifluoroborate salts. The design of a photocatalytic redox-neutral radical polar crossover process was key to develop this transformation. A variety of homopropargylic azides possessing electron-rich and -poor aryls, heterocycles or ether substituents could be accessed in 34-84% yield. The products are synthetically useful building blocks that could be easily transformed into pyrroles or bioactive amines.
Collapse
Affiliation(s)
- Julien Borrel
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
7
|
Qu Z, Ji X, Tian L, Mao G, Deng GJ, Huang H. TBHP-mediated photochemical coupling/cyclization of N-arylacrylamides with thiols. Org Biomol Chem 2023; 21:940-944. [PMID: 36602241 DOI: 10.1039/d2ob02187k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effective photoredox-mediated oxidative thiolation and cyclization of N-arylacrylamides with thiols leads to biologically interesting 3-thionated oxindoles through C-S and C-C bond formation. This process represents a straightforward reaction that starts from non-prefunctionalized thiolating reagents. Mechanistic studies demonstrated that the TBHP serves as a key radical initiator with visible-light catalysis.
Collapse
Affiliation(s)
- Zhonghua Qu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Lin Tian
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
8
|
Bera T, Singh B, Gandon V, Saha J. Experimental and Theoretical Investigation of an Azaoxyallyl Cation‐Templated Intramolecular Aryl Amination Leading to Oxindole Derivatives. Chemistry 2022; 28:e202201208. [DOI: 10.1002/chem.202201208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Tishyasoumya Bera
- Department of Biological and Synthetic Chemistry Centre of Biomedical Research (CBMR) SGPGIMS Campus. Raebareli Road Lucknow 226014 Uttar Pradesh India
| | - Bandana Singh
- Department of Biological and Synthetic Chemistry Centre of Biomedical Research (CBMR) SGPGIMS Campus. Raebareli Road Lucknow 226014 Uttar Pradesh India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182, Université Paris-Saclay Bâtiment 420 91405 Orsay cedex France
- Laboratoire de Chimie Moléculaire (LCM) CNRS UMR 9168, Ecole Polytechnique Institut Polytechnique de Paris Route de Saclay 91128 Palaiseau cedex France
| | - Jaideep Saha
- Department of Biological and Synthetic Chemistry Centre of Biomedical Research (CBMR) SGPGIMS Campus. Raebareli Road Lucknow 226014 Uttar Pradesh India
| |
Collapse
|
9
|
Mironova IA, Kirsch SF, Zhdankin V, Yoshimura A, Yusubov MS. Hypervalent Iodine‐Mediated Azidation Reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Irina A. Mironova
- Tomsk Polytechnic University: Nacional'nyj issledovatel'skij Tomskij politehniceskij universitet Chemistry RUSSIAN FEDERATION
| | - Stefan F. Kirsch
- Bergische Universität Wuppertal: Bergische Universitat Wuppertal Fakultät für Mathematik und Naturwissenschaften GERMANY
| | - Viktor Zhdankin
- University of Minnesota Duluth Chemistry 1039 University Dr 55812 Duluth UNITED STATES
| | - Akira Yoshimura
- Aomori University: Aomori Daigaku Department of Pharmacy JAPAN
| | - Mekhman S. Yusubov
- Tomsk Polytechnic University: Nacional'nyj issledovatel'skij Tomskij politehniceskij universitet Chemistry RUSSIAN FEDERATION
| |
Collapse
|
10
|
Kwon Y, Wang Q. Recent Advances in 1,2-Amino(hetero)arylation of Alkenes. Chem Asian J 2022; 17:e202200215. [PMID: 35460596 PMCID: PMC9357224 DOI: 10.1002/asia.202200215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Indexed: 11/06/2022]
Abstract
Alkene amino(hetero)arylation presents a highly efficient and straightforward strategy for direct installation of amino groups and heteroaryl rings across a double bond simultaneously. An extensive array of practical transformations has been developed via alkene difunctionalization approach to access a broad range of medicinally valuable (hetero)arylethylamine motifs. This review presents recent progress in 1,2-amino(hetero)arylation of alkenes organized in three different modes. First, intramolecular transformations employing C, N-tethered alkenes will be introduced. Next, two-component reactions will be discussed with different combination of precursors, N-tethered alkenes and external aryl precursor, C-tethered alkenes and external amine precursor, or C, N-tethered reagents, and alkenes. Last, three-component intermolecular amino(hetero)arylation reactions will be covered.
Collapse
Affiliation(s)
- Yungeun Kwon
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
11
|
Shen H, Du Y, Kan J, Su W. Synthesis of 3-substituted 2-oxindoles from secondary α-bromo-propionanilides via palladium-catalyzed intramolecular cyclization. Org Biomol Chem 2022; 20:3589-3597. [PMID: 35420109 DOI: 10.1039/d2ob00480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In contrast to aromatic halides, coupling reactions involving oxidative addition of alkyl halides, especially secondary or tertiary halides, to transition metals tend to be more challenging. Herein a palladium-catalyzed intramolecular cyclization of α-bromo-propionanilides has been developed, delivering a series of 3-substituted 2-oxindoles in high yields. The method features easy to prepare starting materials, broad substrate scope and excellent functional group tolerance. A detailed mechanistic investigation has been performed.
Collapse
Affiliation(s)
- Hui Shen
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Yu Du
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Jian Kan
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Weiping Su
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| |
Collapse
|
12
|
Visible light-induced PPh2Cy/CsI-promoted cascade radical decarboxylative/cyclization of redox-active esters with acrylamides. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Xu D, Yu Y, Huang F, Zhou S, Zhang W. Photo‐induced sp3 C–H functionalization for the synthesis of 3,3‐disubstituted oxindoles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dongping Xu
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Yingliang Yu
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Fei Huang
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Shuangliu Zhou
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Wu Zhang
- Anhui Normal University College of Chemistry and Materials Science 1 Beijing Eastroad 241000 Wuhu CHINA
| |
Collapse
|
14
|
Shee M, Singh NDP. Chemical versatility of azide radical: journey from a transient species to synthetic accessibility in organic transformations. Chem Soc Rev 2022; 51:2255-2312. [PMID: 35229836 DOI: 10.1039/d1cs00494h] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of azide radical (N3˙) occurs from its precursors primarily via a single electron transfer (SET) process or homolytic cleavage by chemical methods or advanced photoredox/electrochemical methods. This in situ generated transient open-shell species has unique characteristic features that set its reactivity. In the past, the azide radical was widely used for various studies in radiation chemistry as a 1e- oxidant of biologically important molecules, but now it is being exploited for synthetic applications based on its addition and intermolecular hydrogen atom transfer (HAT) abilities. Due to the significant role of nitrogen-containing molecules in synthesis, drug discovery, biological, and material sciences, the direct addition onto unsaturated bonds for the simultaneous construction of C-N bond with other (C-X) bonds are indeed worth highlighting. Moreover, the ability to generate O- or C-centered radicals by N3˙ via electron transfer (ET) and intermolecular HAT processes is also well documented. The purpose of controlling the reactivity of this short-lived intermediate in organic transformations drives us to survey: (i) the history of azide radical and its structural properties (thermodynamic, spectroscopic, etc.), (ii) chemical reactivities and kinetics, (iii) methods to produce N3˙ from various precursors, (iv) several significant azide radical-mediated transformations in the field of functionalization with unsaturated bonds, C-H functionalization via HAT, tandem, and multicomponent reaction with a critical analysis of underlying mechanistic approaches and outcomes, (v) concept of taming the reactivity of azide radicals for potential opportunities, in this review.
Collapse
Affiliation(s)
- Maniklal Shee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
15
|
Du J, Gui QW, Jiang H, Shen H, Li C, Jin Z, Shang Y, Chen Y, Yi M. Synthesis of Seleno Oxindoles via Iodine-Induced Radical Cyclization of N-Arylacrylamides with Diorganyl Diselenides. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1739-5042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractA mild, radical cascade cyclization of N-arylacrylamides with diselenides for the preparation of oxindoles via iodine oxidation is disclosed that provides an environmentally friendly process for the construction of C–Se bonds. Twenty-five examples of N-arylacrylamide substrates were investigated, and excellent yields were achieved. The tandem cyclization of acrylamide with diphenyl disulfide was also applicable under the same conditions.
Collapse
Affiliation(s)
- Juan Du
- College of Chemistry and Materials Science, Hunan Agricultural University
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University
| | - Qing-Wen Gui
- College of Chemistry and Materials Science, Hunan Agricultural University
- Hunan Optical Agriculture Engineering Technology Research Center
| | - Hongmei Jiang
- College of Chemistry and Materials Science, Hunan Agricultural University
| | - Haicheng Shen
- College of Chemistry and Materials Science, Hunan Agricultural University
| | - Cehua Li
- College of Chemistry and Materials Science, Hunan Agricultural University
| | - Zheng Jin
- College of Chemistry and Materials Science, Hunan Agricultural University
| | - Yanxue Shang
- College of Chemistry and Materials Science, Hunan Agricultural University
| | - Yufeng Chen
- College of Chemistry and Materials Science, Hunan Agricultural University
| | - Min Yi
- College of Chemistry and Materials Science, Hunan Agricultural University
| |
Collapse
|
16
|
Noten EA, McAtee RC, Stephenson CRJ. Catalytic Intramolecular Aminoarylation of Unactivated Alkenes with Aryl Sulfonamides. Chem Sci 2022; 13:6942-6949. [PMID: 35774166 PMCID: PMC9200115 DOI: 10.1039/d2sc01228f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Arylethylamines are abundant motifs in myriad natural products and pharmaceuticals, so efficient methods to synthesize them are valuable in drug discovery. In this work, we disclose an intramolecular alkene aminoarylation cascade that exploits the electrophilicity of a nitrogen-centered radical to form a C–N bond, then repurposes the nitrogen atom's sulfonyl activating group as a traceless linker to form a subsequent C–C bond. This photoredox catalysis protocol enables the preparation of densely substituted arylethylamines from commercially abundant aryl sulfonamides and unactivated alkenes under mild conditions. Reaction optimization, scope, mechanism, and synthetic applications are discussed. A photochemical assembly of cyclic arylethylamines occurs by cascade radical annulation and desulfonylative rearrangement in N-acyl sulfonamides. This aminoarylation is made possible through judicious design intended to thwart undesired reactivity.![]()
Collapse
Affiliation(s)
- Efrey A Noten
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| | - Rory C McAtee
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| | - Corey R J Stephenson
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| |
Collapse
|
17
|
Gao Q, Jing Q, Chen Y, Sun J, Zhou M. Decarboxylative Amidation of Acrylamides with Oxamic Acids. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202105025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Hui C, Antonchick AP. Iodonitrene: a direct metal-free electrophilic aminating reagent. Org Chem Front 2022. [DOI: 10.1039/d2qo00739h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iodonitrene is a new type of reactive electrophilic aminating reagent that opens up opportunities for new discoveries.
Collapse
Affiliation(s)
- Chunngai Hui
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Andrey P. Antonchick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
- Nottingham Trent University, School of Science and Technology, Department of Chemistry and Forensics, Clifton Lane, NG11 8NS Nottingham, UK
| |
Collapse
|
19
|
Zhang J, Wu M, Ju H, Yang H, Qian B, Ding K, Wu J, Xie M. K2S2O8-mediated acylarylation of unactivated alkenes via acyl radical addition/C–H annulation cascade of N-allyl-indoles with silver cocatalysis. Org Chem Front 2022. [DOI: 10.1039/d1qo01069g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A silver-catalyzed, K2S2O8-mediated protocol to access the regioselective acylarylation of unactivated alkenes was reported.
Collapse
Affiliation(s)
- Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Manyi Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hu Ju
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Haitao Yang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Baiyang Qian
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Ke Ding
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jiaping Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
20
|
Pandey CB, Mishra BK, Azaz T, Mourya H, Ram B, Tiwari B. A General Method for α-Oxyacylation of Vinyl Ketones Using Koser's Reagent. J Org Chem 2021; 86:17318-17327. [PMID: 34783551 DOI: 10.1021/acs.joc.1c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A direct general method for the preparation of α-oxyacylated vinyl ketones using Koser's hypervalent iodine reagent is reported. A variety of acyloxy groups from long-chain aliphatic, aromatic, α,β-unsaturated carboxylic acids have been installed efficiently for the first time. The oxyacylated adducts were used for the preparation of densely functionalized chiral δ-lactones and cyclopentenes using carbene organocatalysis.
Collapse
Affiliation(s)
- Chandra Bhan Pandey
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| | - Bal Krishna Mishra
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| | - Tazeen Azaz
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| | - Hemlata Mourya
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| | - Bali Ram
- Department of Chemistry Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhoopendra Tiwari
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
21
|
Weng J, Pan L, Yao P, Feng Y, Fu W. Acidic mesoporous Beta zeolite assembled Fe catalyst with good catalytic performance in the carboazidation of
N
‐arylacrylamides. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jushi Weng
- School of Chemical and Environmental Engineering Jiangsu University of Technology Changzhou China
| | - Liuming Pan
- School of Petrochemical Engineering Changzhou University Changzhou China
| | - Pengfei Yao
- School of Chemical and Environmental Engineering Jiangsu University of Technology Changzhou China
| | - Yu Feng
- School of Petrochemical Engineering Changzhou University Changzhou China
| | - Wenqian Fu
- School of Petrochemical Engineering Changzhou University Changzhou China
| |
Collapse
|
22
|
Zhang L, Huang X, Wang J, He W. Hypervalent Iodine‐Mediated and Traceless Fluorine‐Oriented: Synthesis of 5‐Methyl‐1,2,3,4‐tetrahydropyridine from Unactivated Alkenes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lu‐Wen Zhang
- Department of Chemistry School of Pharmacy The Fourth Military Medical University Xi'an 710032 P. R. China
| | - Xie Huang
- State Key Laboratory of Trauma Burns and Combined Injury Institute of Combined Injury Chongqing Engineering Research Center for Nanomedicine Department College of Preventive Medicine Third Military Medical University Chongqing 400038 P. R. China
| | - Jia‐Qi Wang
- Department of Chemistry School of Pharmacy The Fourth Military Medical University Xi'an 710032 P. R. China
| | - Wei He
- Department of Chemistry School of Pharmacy The Fourth Military Medical University Xi'an 710032 P. R. China
| |
Collapse
|
23
|
Kwon Y, Zhang W, Wang Q. Copper-Catalyzed Aminoheteroarylation of Unactivated Alkenes through Distal Heteroaryl Migration. ACS Catal 2021; 11:8807-8817. [PMID: 36381639 PMCID: PMC9648721 DOI: 10.1021/acscatal.1c01001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a copper-catalyzed aminoheteroarylation of unactivated alkenes to access valuable heteroarylethylamine motif. The developed reaction features a copper-catalyzed intermolecular electrophilic amination of the alkenes followed by a migratory heteroarylation. The method applies on alcohol-, amide-, and ether-containing alkenes, overcoming the common requirement of a hydroxyl motif in previous migratory difunctionalization reactions. This reaction is effective for the introduction of diverse aliphatic amines and has good functional group tolerance, which is particularly useful for richly functionalized heteroarenes. This migration-involved reaction was found well suited as a powerful ring expansion approach for the construction of medium-sized rings that are in great demand in medicinal chemistry.
Collapse
Affiliation(s)
- Yungeun Kwon
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Wei Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
24
|
Tu Y, Dong H, Wang H, Ao Y, Liu Y. Divergent functionalization of α,β-enones: catalyst-free access to β-azido ketones and β-amino α-diazo ketones. Chem Commun (Camb) 2021; 57:4524-4527. [PMID: 33956012 DOI: 10.1039/d1cc00985k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and practical method for the azidation of β-fluoroalkyl α,β-unsaturated ketones to access a wide variety of fluorinated nitrogenous carbonyl compounds is developed. Different from existing precedents, neither a metallic nor an organic catalyst was involved in our strategy. Judicious choice of solvents allows for the modulation of the reaction outcomes, delivering β-azido ketones or β-amino α-diazo ketones. The reaction system features environmental friendliness, mild conditions, simplicity and excellent functional group tolerance.
Collapse
Affiliation(s)
- Youshao Tu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| | - Honglin Dong
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| | - Huamin Wang
- College of Chemistry and Chemical Engineering, University of South China, 28 N Changsheng West Road, Hengyang 421001, P. R. China.
| | - Yuhui Ao
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| | - Yu Liu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| |
Collapse
|
25
|
Maiti D, Mahanty K, De Sarkar S. Manganese-catalyzed Electro-oxidative Azidation-annulation Cascade to Access Oxindoles and Quinolinones. Chem Asian J 2021; 16:748-752. [PMID: 33636034 DOI: 10.1002/asia.202100121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/24/2021] [Indexed: 12/30/2022]
Abstract
An environmentally benign and proficient electro-oxidative tandem azidation-radical cyclization strategy is reported. Manganese-catalyzed electrochemical reaction in an undivided cell at room temperature and the use of NaN3 as the cheapest azide source are the key features of this protocol. Using this approach, a series of oxindole and quinolinone derivatives are synthesized in high yields. The synthesized azide functionality was efficiently converted to various valuable derivatives.
Collapse
Affiliation(s)
- Debabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Kingshuk Mahanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
26
|
Metal-free iodic acid-triggered cascade cyclization of alkenes with N-hydroxyphthalimide: A simple and mild access to aminooxylated 3,3-disubstituted 2-oxindoles. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
28
|
Chen J, Li JH, Zhu YP, Wang QA. Copper-catalyzed enantioselective arylboronation of activated alkenes leading to chiral 3,3′-disubstituted oxindoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00186h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Copper-catalyzed asymmetric arylboronation of activated alkenes for producing highly enantioenriched 3-boroalkyl oxindoles and incorporating pharmacophores is depicted.
Collapse
Affiliation(s)
- Jiangfei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
- School of Pharmacy
| | - Yan-Ping Zhu
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Qiu-An Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
29
|
Zhao X, Xu J, Liu C, Zhang D. DFT study of Ni/NHC-catalyzed C–H alkylation of fluoroarenes with alkenes to synthesize fluorotetralins: mechanism, chemoselectivity of C–H vs. C–F bond activation, and regio- and enantioselectivities of C–H bond activation. Org Chem Front 2021. [DOI: 10.1039/d0qo01594f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DFT calculations clarified the mechanism of Ni/NHC-catalyzed C–H alkylation of alkene tethered fluoroarene and rationalized enantio-, regio- and chemoselectivities.
Collapse
Affiliation(s)
- Xia Zhao
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- Institute of Theoretical Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
| | - Jihong Xu
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- Institute of Theoretical Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
| | - Chengbu Liu
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- Institute of Theoretical Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- Institute of Theoretical Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
| |
Collapse
|
30
|
Ge L, Chiou MF, Li Y, Bao H. Radical azidation as a means of constructing C(sp3)-N3 bonds. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
31
|
Chen DM, Sun YY, Han QQ, Wang ZL. Hypervalent iodine mediated radical cyclization of o-(allyloxy)arylaldehydes and N-hydroxyphthalimide (NHPI) under metal-free conditions. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Kumar P, Dutta S, Kumar S, Bahadur V, Van der Eycken EV, Vimaleswaran KS, Parmar VS, Singh BK. Aldehydes: magnificent acyl equivalents for direct acylation. Org Biomol Chem 2020; 18:7987-8033. [PMID: 33000845 DOI: 10.1039/d0ob01458c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
From the viewpoint of meeting the current green chemistry challenges in chemical synthesis, there is a need to disseminate how the cocktail of acylation and activation can play a pivotal role in affording bioactive acylated products comprising substituted ketone motifs in fewer reaction steps, with higher atom-economy and improved selectivity. In recent years, a significant number of articles employing the title compounds "aldehydes" as magnificent acylation surrogates which are less toxic and widely applicable have been published. This review sheds light on the compounds use for selective acylation of arene, heteroarene and alkyl (sp3, sp2 and sp) C-H bonds by proficient utilization of the C-H activation strategy. Critical insights into selective acylation of diverse moieties for the synthesis of bioactive compounds are presented in this review that will enable academic and industrial researchers to understand the mechanistic aspects involved and fruitfully employ these strategies in designing novel molecules.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Chemistry, SRM University Delhi-NCR, Sonepat, Haryana 131029, India. and Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Sriparna Dutta
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Sandeep Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Vijay Bahadur
- Department of Chemistry, SRM University Delhi-NCR, Sonepat, Haryana 131029, India. and Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium and Peoples' Friendship University of Russia, (RUDN University) Miklukho-Maklaya, street 6, Moscow, 117198, Russia
| | | | - Virinder S Parmar
- Department of Chemistry and Environmental Science, Medgar Evers College, The City University of New York, 1638 Bedford Avenue, Brooklyn, NY 11225, USA
| | | |
Collapse
|
33
|
Xiu H, Li T, Song C, Ma Y. Azidative Aromatization of Quinone Methides Under Transition Metal and Solvent Free Conditions. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Haiping Xiu
- School of Pharmaceutical Science Shandong University Wenhua Road No. 44 250012 Jinan P. R. China
| | - Tingting Li
- Department of Chemistry Shandong University Shanda South Road No. 27 250100 Jinan P. R. China
| | - Chun Song
- School of Pharmaceutical Science Shandong University Wenhua Road No. 44 250012 Jinan P. R. China
- State Key Laboratory of Microbial Technology Binhai Road No. 72 266237 Qingdao P. R. China
| | - Yudao Ma
- Department of Chemistry Shandong University Shanda South Road No. 27 250100 Jinan P. R. China
| |
Collapse
|
34
|
Iron- or copper-catalyzed cascade chloromethylation of activated alkenes: Efficient access to chlorinated oxindoles. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Yang Y, Xu CH, Xiong ZQ, Li JH. Visible light photoredox alkylazidation of alkenes with sodium azide and heteroarenium salts: entry to azido-containing 1,4-dihydropyridines. Chem Commun (Camb) 2020; 56:9549-9552. [PMID: 32691800 DOI: 10.1039/d0cc03235b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A three-component alkene alkylazidation using sodium azide as the azido resource and heteroarenium salts as functionalized alkyl reagents for producing highly valuable 2-azido-1-(1,4-dihydropyridin-4-yl)-ethanes is described. This reaction allows the incorporation of both an azido group and a 1,4-dihydropyridin-4-yl group across C[double bond, length as m-dash]C bonds to construct two new bonds in a single reaction step, and represents a practical and mechanistically distinct alternative that harnesses an electrophilic heteroarenium ion to accomplish the alkene difunctionalization reaction.
Collapse
Affiliation(s)
- Yuan Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, China
| | - Chong-Hui Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, China and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
36
|
Tan Y, Wang J, Zhang HY, Zhang Y, Zhao J. The C3-H Bond Functionalization of Quinoxalin-2(1 H)-Ones With Hypervalent Iodine(III) Reagents. Front Chem 2020; 8:582. [PMID: 32850624 PMCID: PMC7432307 DOI: 10.3389/fchem.2020.00582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
The modification of quinoxalin-2(1H)-ones via direct C-H bond functionalization has begun to receive widespread attention, due to quinoxalin-2(1H)-one derivatives' various biological activities and pharmaceutical properties. This mini review concentrates on the accomplishments of arylation, trifluoromethylation, alkylation, and alkoxylation of quinoxalin-2(1H)-ones with hypervalent iodine(III) reagents as reaction partners or oxidants. The reaction conditions and mechanisms are compared and discussed in detail.
Collapse
Affiliation(s)
- Yushi Tan
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Jiabo Wang
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Hong-Yu Zhang
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Yuecheng Zhang
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Jiquan Zhao
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| |
Collapse
|
37
|
Jeyakannu P, Chandru Senadi G, Chiang C, Kumar Dhandabani G, Chang Y, Wang J. An Efficient Approach to Functionalized Indoles from λ
3
‐Iodanes via Acyloxylation and Acyl Transfer. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Palaniraja Jeyakannu
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and TechnologySRM Institute of Science and Technology, Kattankulathur Chennai 603203 India
| | - Chun‐Hsien Chiang
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| | - Ganesh Kumar Dhandabani
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| | - Yu‐Ching Chang
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| | - Jeh‐Jeng Wang
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Hospital No. 100, Tzyou 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| |
Collapse
|
38
|
Ratushnyy M, Kvasovs N, Sarkar S, Gevorgyan V. Visible‐Light‐Induced Palladium‐Catalyzed Generation of Aryl Radicals from Aryl Triflates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Maxim Ratushnyy
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Nikita Kvasovs
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Sumon Sarkar
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Vladimir Gevorgyan
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| |
Collapse
|
39
|
Ratushnyy M, Kvasovs N, Sarkar S, Gevorgyan V. Visible-Light-Induced Palladium-Catalyzed Generation of Aryl Radicals from Aryl Triflates. Angew Chem Int Ed Engl 2020; 59:10316-10320. [PMID: 32155303 PMCID: PMC7446712 DOI: 10.1002/anie.201915962] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 12/31/2022]
Abstract
A mild visible-light-induced Pd-catalyzed intramolecular C-H arylation of amides is reported. The method operates by cleavage of a C(sp2 )-O bond, leading to hybrid aryl Pd-radical intermediates. The following 1,5-hydrogen atom translocation, intramolecular cyclization, and rearomatization steps lead to valuable oxindole and isoindoline-1-one motifs. Notably, this method provides access to products with readily enolizable functional groups that are incompatible with traditional Pd-catalyzed conditions.
Collapse
Affiliation(s)
- Maxim Ratushnyy
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Nikita Kvasovs
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Sumon Sarkar
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Vladimir Gevorgyan
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| |
Collapse
|
40
|
Zhao X, Ma X, Zhu R, Zhang D. Mechanism and Origin of MAD-Induced Ni/N-Heterocyclic Carbene-Catalyzed Regio- and Enantioselective C-H Cyclization of Pyridines with Alkenes. Chemistry 2020; 26:5459-5468. [PMID: 32142180 DOI: 10.1002/chem.202000079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/25/2020] [Indexed: 11/10/2022]
Abstract
This work presents a DFT-based computational study on the regio- and enantioselective C-H functionalization of pyridines with alkenes at the relatively unreactive C4-position, which was successfully achieved by Shi et al. [J. Am. Chem. Soc. 2019, 141, 5628-5634] using Ni0 /N-heterocyclic carbene (NHC) catalysis under the assistance of an aluminum-based Lewis acid additive (2,6-tBu2 -4-Me-C6 H2 O)2 AlMe (MAD). The calculations indicate that the selective functionalization involves a three-step mechanism in which a unique H-migration assisted oxidation metalation (HMAOM) step is identified as the rate- and enantioselectivity-determining step. The newly proposed mechanism can well rationalize the experimental observation that the preferred product is the endo-type (vs. exo-type), R-configuration (vs. S-configuration) product at the C4 (vs. C2) position, and also unveil the reasons that the NHC ligand and the MAD additive can facilitate the reaction.
Collapse
Affiliation(s)
- Xia Zhao
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Xuexiang Ma
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Rongxiu Zhu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
41
|
Li X, Liu T, Zhang B, Zhang D, Shi H, Yu Z, Tao S, Du Y. Formation of Carbon-Carbon Bonds Mediated by Hypervalent Iodine Reagents Under Metal-free Conditions. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200211093103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the past several decades, hypervalent iodine reagents have been widely
used in various organic transformations. Specifically, these exclusive classes of reagents
have been extensively used for the construction of carbon-carbon bonds. This review aims
to cover all the reactions involving the construction of carbon-carbon bonds mediated by
hypervalent iodine reagents, providing references and highlights for synthetic chemists
who are interested in hypervalent iodine chemistry.
Collapse
Affiliation(s)
- Xiaoxian Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Tongxing Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Dongke Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Haofeng Shi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenyang Yu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shanqing Tao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
42
|
Wei R, Xiong H, Ye C, Li Y, Bao H. Iron-Catalyzed Alkylazidation of 1,1-Disubstituted Alkenes with Diacylperoxides and TMSN 3. Org Lett 2020; 22:3195-3199. [PMID: 32227900 DOI: 10.1021/acs.orglett.0c00969] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An iron-catalyzed radical alkylazidation of electron-deficient alkenes is reported. Alkyl diacyl peroxides work as the alkyl source, and trimethylsilyl azide acts as the azido reservoir. This method features mild reaction conditions, wide substrate scope, and good functional group tolerance, providing a range of α-azido esters, an α-azido ketone, and an α-azido cyanide in high yields. These azides can be easily transferred into many kinds of amino acid derivatives.
Collapse
Affiliation(s)
- Rongbiao Wei
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China.,College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, Fujian 350108, P. R. of China
| | - Haigen Xiong
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Changqing Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| |
Collapse
|
43
|
Patra T, Bellotti P, Strieth‐Kalthoff F, Glorius F. Photosensitized Intermolecular Carboimination of Alkenes through the Persistent Radical Effect. Angew Chem Int Ed Engl 2020; 59:3172-3177. [PMID: 31794633 PMCID: PMC7028066 DOI: 10.1002/anie.201912907] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/19/2019] [Indexed: 11/10/2022]
Abstract
An intermolecular, two-component vicinal carboimination of alkenes has been accomplished by energy transfer catalysis. Oxime esters of alkyl carboxylic acids were used as bifunctional reagents to generate both alkyl and iminyl radicals. Subsequently, addition of the alkyl radical to an alkene generates a transient radical for selective radical-radical cross-coupling with the persistent iminyl radical. Furthermore, this process provides direct access to aliphatic primary amines and α-amino acids by simple hydrolysis.
Collapse
Affiliation(s)
- Tuhin Patra
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Peter Bellotti
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Felix Strieth‐Kalthoff
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| |
Collapse
|
44
|
Patra T, Bellotti P, Strieth‐Kalthoff F, Glorius F. Energietransfervermittelte intermolekulare Carboiminylierung von Alkenen durch den “Persistent Radical Effect”. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912907] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tuhin Patra
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Peter Bellotti
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Felix Strieth‐Kalthoff
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
45
|
Bhattacherjee D, Shaifali, Kumar A, Sharma A, Purohit R, Das P. Iodine(iii) promoted ring-rearrangement reaction of 1-arylamino-2-oxocyclopentane-1-carbonitriles to synthesize N-aryl-δ-valerolactams. Org Biomol Chem 2020; 18:745-749. [DOI: 10.1039/c9ob02598g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Environmentally benign hypervalent iodine(iii) has been utilised selectively for carbocyclic to heterocyclic ring transformation under various electronic conditions with detailed structural and mechanistic investigation.
Collapse
Affiliation(s)
- Dhananjay Bhattacherjee
- Natural Product Chemistry and Process Development Division
- CSIR-Institute of Himalayan Bioresource Technology
- Palampur-176061
- India
- Ural Federal University
| | - Shaifali
- Natural Product Chemistry and Process Development Division
- CSIR-Institute of Himalayan Bioresource Technology
- Palampur-176061
- India
- Academy of Scientific and Innovative Research
| | - Ajay Kumar
- Natural Product Chemistry and Process Development Division
- CSIR-Institute of Himalayan Bioresource Technology
- Palampur-176061
- India
- Academy of Scientific and Innovative Research
| | - Ajay Sharma
- Natural Product Chemistry and Process Development Division
- CSIR-Institute of Himalayan Bioresource Technology
- Palampur-176061
- India
| | - Rituraj Purohit
- Academy of Scientific and Innovative Research
- New Delhi
- India
- Structural Bioinformatics Lab
- CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT)
| | - Pralay Das
- Natural Product Chemistry and Process Development Division
- CSIR-Institute of Himalayan Bioresource Technology
- Palampur-176061
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
46
|
Shen J, Xu J, Huang L, Zhu Q, Zhang P. Hypervalent Iodine(III)‐Promoted Rapid Cascade Reaction of Quinoxalinones with Unactivated Alkenes and TMSN
3. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901314] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiabin Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 China
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Jun Xu
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Lin Huang
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Qing Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| |
Collapse
|
47
|
Iodine(III) reagent (ABX—N3)-induced intermolecular anti-Markovnikov hydroazidation of unactivated alkenes. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9628-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Lu M, Zhang T, Tan D, Chen C, Zhang Y, Huang M, Cai S. Visible‐Light‐Promoted Oxidative Alkylarylation of
N
‐Aryl/Benzoyl Acrylamides Through Direct C−H Bond Functionalization. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900712] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Maojian Lu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering and EnvironmentMinnan Normal University Zhangzhou 363000 People's Republic of China
| | - Tao Zhang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering and EnvironmentMinnan Normal University Zhangzhou 363000 People's Republic of China
| | - Dabao Tan
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering and EnvironmentMinnan Normal University Zhangzhou 363000 People's Republic of China
| | - Chengzhu Chen
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering and EnvironmentMinnan Normal University Zhangzhou 363000 People's Republic of China
| | - Ying Zhang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering and EnvironmentMinnan Normal University Zhangzhou 363000 People's Republic of China
| | - Mingqiang Huang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering and EnvironmentMinnan Normal University Zhangzhou 363000 People's Republic of China
| | - Shunyou Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering and EnvironmentMinnan Normal University Zhangzhou 363000 People's Republic of China
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate SchoolPeking University Shenzhen 518055 People's Republic of China
| |
Collapse
|
49
|
Yoshimitsu T. Strategic Use of Nitrogen Free Radicals in Natural Product Synthesis: Total Synthesis of Agelastatin A. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takehiko Yoshimitsu
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
50
|
Lear JM, Buquoi JQ, Gu X, Pan K, Mustafa DN, Nagib DA. Multi-component heteroarene couplings via polarity-reversed radical cascades. Chem Commun (Camb) 2019; 55:8820-8823. [PMID: 31134975 DOI: 10.1039/c9cc03498f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A multi-component radical addition strategy enables difunctionalization of alkenes with heteroarenes and a variety of radical precursors, including N3, P(O)R2, and CF3. This unified approach for coupling diverse classes of electrophilic radicals and heteroarenes to vinyl ethers allows for direct, vicinal C-C as well as C-N, C-P, and C-Rf bond formation.
Collapse
Affiliation(s)
- Jeremy M Lear
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|