1
|
Cevallos-Toledo RB, Bellezza D, González-Béjar M, Pérez-Prieto J. NIR-triggered upconversion and sensitized NIR-emission in Yb-based Eosin Y lake doped latex nanoparticles. Phys Chem Chem Phys 2024; 26:23566-23569. [PMID: 39248046 DOI: 10.1039/d4cp03070b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Here, Yb-based Eosin Y lakes (EOS-Yb) have been encapsulated in organic nanoparticles (NPs) by microemulsion radical polymerization of methacrylate-based copolymers. These photoactive EOS-Yb NPs emit in the visible and near infrared (NIR) upon excitation at 530 nm and can also display NIR-to-visible upconversion emission upon excitation at 980 nm.
Collapse
Affiliation(s)
- Rita B Cevallos-Toledo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain.
| | - Delia Bellezza
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain.
| | - María González-Béjar
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain.
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain.
| |
Collapse
|
2
|
Zhang Z, Yu C, Wu Y, Wang Z, Xu H, Yan Y, Zhan Z, Yin S. Semiconducting polymer dots for multifunctional integrated nanomedicine carriers. Mater Today Bio 2024; 26:101028. [PMID: 38590985 PMCID: PMC11000120 DOI: 10.1016/j.mtbio.2024.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The expansion applications of semiconducting polymer dots (Pdots) among optical nanomaterial field have long posed a challenge for researchers, promoting their intelligent application in multifunctional nano-imaging systems and integrated nanomedicine carriers for diagnosis and treatment. Despite notable progress, several inadequacies still persist in the field of Pdots, including the development of simplified near-infrared (NIR) optical nanoprobes, elucidation of their inherent biological behavior, and integration of information processing and nanotechnology into biomedical applications. This review aims to comprehensively elucidate the current status of Pdots as a classical nanophotonic material by discussing its advantages and limitations in terms of biocompatibility, adaptability to microenvironments in vivo, etc. Multifunctional integration and surface chemistry play crucial roles in realizing the intelligent application of Pdots. Information visualization based on their optical and physicochemical properties is pivotal for achieving detection, sensing, and labeling probes. Therefore, we have refined the underlying mechanisms and constructed multiple comprehensive original mechanism summaries to establish a benchmark. Additionally, we have explored the cross-linking interactions between Pdots and nanomedicine, potential yet complete biological metabolic pathways, future research directions, and innovative solutions for integrating diagnosis and treatment strategies. This review presents the possible expectations and valuable insights for advancing Pdots, specifically from chemical, medical, and photophysical practitioners' standpoints.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Haotian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Yining Yan
- Department of Radiology, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Zhixin Zhan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| |
Collapse
|
3
|
Wang H, Yang S, Chen L, Li Y, He P, Wang G, Dong H, Ma P, Ding G. Tumor diagnosis using carbon-based quantum dots: Detection based on the hallmarks of cancer. Bioact Mater 2024; 33:174-222. [PMID: 38034499 PMCID: PMC10684566 DOI: 10.1016/j.bioactmat.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Carbon-based quantum dots (CQDs) have been shown to have promising application value in tumor diagnosis. Their use, however, is severely hindered by the complicated nature of the nanostructures in the CQDs. Furthermore, it seems impossible to formulate the mechanisms involved using the inadequate theoretical frameworks that are currently available for CQDs. In this review, we re-consider the structure-property relationships of CQDs and summarize the current state of development of CQDs-based tumor diagnosis based on biological theories that are fully developed. The advantages and deficiencies of recent research on CQDs-based tumor diagnosis are thus explained in terms of the manifestation of nine essential changes in cell physiology. This review makes significant progress in addressing related problems encountered with other nanomaterials.
Collapse
Affiliation(s)
- Hang Wang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Liangfeng Chen
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, PR China
| | - Hui Dong
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| |
Collapse
|
4
|
Liu Z, Yang Y, Zhao X, Wang T, He L, Nan X, Vidović D, Bai P. A universal mass tag based on polystyrene nanoparticles for single-cell multiplexing with mass cytometry. J Colloid Interface Sci 2023; 639:434-443. [PMID: 36822043 DOI: 10.1016/j.jcis.2023.02.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Mass cytometry (MC) is an emerging bioanalytical technique for high-dimensional biomarkers interrogation simultaneously on individual cells. However, the sensitivity and multiplexed analysis ability of MC was highly restricted by the current metal chelating polymer (MCP) mass tags. Herein, a new design strategy for MC mass tags by using a commercial available and low cost classical material, polystyrene nanoparticle (PS-NP) to carry metals was reported. Unlike inorganic materials, sub-micron-grade metal-loaded polystyrene can be easily detected by MC, thus it is not essential to pursue extremely small particle size in this mass tag design strategy. An altered cell staining buffer can significantly lower the nonspecific binding (NSB) of non-functionalized PS-NPs, revealing another method to lower NSB beside surface modification. The metal doped PS-NP_Abs mass tags showed high compatibility with MCP mass tags and 5-fold higher sensitivity. By using Hf doped PS-NP_Abs as mass tags, four new MC detection channels (177Hf, 178Hf, 179Hf and 180Hf) were developed. In general, this work provides a new strategy in designing MC mass tags and lowering NSB, opening up possibility of introducing more potential MC mass tag candidates.
Collapse
Affiliation(s)
- Zhizhou Liu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; Jinan Guoke Medical Technology Development Co., Ltd, Shandong 250013, People's Republic of China.
| | - Yu Yang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Xiang Zhao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; College of Mechanics and Materials, Hohai University, 8 Focheng West Road, Nanjing, 210098, China
| | - Tong Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Liang He
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; Jinan Guoke Medical Technology Development Co., Ltd, Shandong 250013, People's Republic of China
| | - Xueyan Nan
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Dragoslav Vidović
- School of Chemistry, Faculty of Sciences, Monash University, 3800 Clayton, Australia
| | - Pengli Bai
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| |
Collapse
|
5
|
Arbuzova SN, Verkhoturova SI, Zinchenko SV, Kolyvanov NA, Chernysheva NA, Bishimbaeva GK, Trofimov BA. Catalyst‐ and Solvent‐Free Hydrophosphorylation of Aldimines with Secondary Phosphine Chalcogenides: Synthesis of Tertiary
α
‐Aminophosphine Oxides, Sulfides and Selenides. ChemistrySelect 2022. [DOI: 10.1002/slct.202202757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Svetlana N. Arbuzova
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch Russian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Svetlana I. Verkhoturova
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch Russian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Sergey V. Zinchenko
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch Russian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Nikita A. Kolyvanov
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch Russian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Nataliya A. Chernysheva
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch Russian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Gaukhar K. Bishimbaeva
- D. V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry 142 ul. Kunaeva 050010 Almaty, Republic of Kazakhstan
| | - Boris A. Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch Russian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| |
Collapse
|
6
|
Cheignon C, Kassir AA, Soro LK, Charbonnière LJ. Dye-sensitized lanthanide containing nanoparticles for luminescence based applications. NANOSCALE 2022; 14:13915-13949. [PMID: 36072997 DOI: 10.1039/d1nr06464a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to their exceptional luminescent properties, lanthanide (Ln) complexes represent a unique palette of probes in the spectroscopic toolkit. Their extremely weak brightness due to forbidden Ln electronic transitions can be overcome by indirect dye-sensitization from the antenna effect brought by organic ligands. Despite the improvement brought by the antenna effect, (bio)analytical applications with discrete Ln complexes as luminescent markers still suffers from low sensitivity as they are limited by the complex brightness. Thus, there is a need to develop nano-objects that cumulate the spectroscopic properties of multiple Ln ions. This review firstly gives a brief introduction of the spectral properties of lanthanides both in complexes and in nanoparticles (NPs). Then, the research progress of the design of Ln-doped inorganic NPs with capping antennas, Ln-complex encapsulated NPs and Ln-complex surface functionalized NPs is presented along with a summary of the various photosensitizing ligands and of the spectroscopic properties (excited-state lifetime, brightness, quantum yield). The review also emphasizes the problems and limitations encountered over the years and the solutions provided to address them. Finally, a comparison of the advantages and drawbacks of the three types of NP is provided as well as a conclusion about the remaining challenges both in the design of brighter NPs and in the luminescence based applications.
Collapse
Affiliation(s)
- Clémence Cheignon
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Ali A Kassir
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Lohona K Soro
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Loïc J Charbonnière
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| |
Collapse
|
7
|
Malysheva SF, Kuimov VA, Belogorlova NA, Beloveghets LA, Albanov AI, Usoltsev YK, Trofimov BA. Synthesis of Diorganylphosphine Oxides Bearing Hetarylalkyl Moieties and Study of Their Antimicrobial Activities. ChemistrySelect 2022. [DOI: 10.1002/slct.202202149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Svetlana F. Malysheva
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. 664033 Irkutsk Russian Federation
| | - Vladimir A. Kuimov
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. 664033 Irkutsk Russian Federation
| | - Natalia A. Belogorlova
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. 664033 Irkutsk Russian Federation
| | - Ludmila A. Beloveghets
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. 664033 Irkutsk Russian Federation
| | - Alexander I. Albanov
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. 664033 Irkutsk Russian Federation
| | - Yurii K. Usoltsev
- Hospital of the Irkutsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences 283b Lermontova St. 664033 Irkutsk Russian Federation
| | - Boris A. Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. 664033 Irkutsk Russian Federation
| |
Collapse
|
8
|
Lv R, Raab M, Wang Y, Tian J, Lin J, Prasad PN. Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Fan M, Pan Z, Wang C, Guo Y, Sun J, Liu M, Peng B, Wu J, Fang Y. Quantitative Visual Detection of Mercury Ions With Ratiometric Fluorescent Test Paper Sensor. Front Chem 2022; 10:859379. [PMID: 35402384 PMCID: PMC8990869 DOI: 10.3389/fchem.2022.859379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
A novel ratiometric fluorescence probe based on nitrogen-doped blue carbon dots (NCDs) and red gold nanoclusters (Au NCs) for mercuric ion (Hg2+) has been prepared and characterized. A user friendly fluorescent test paper based sensor combined with smartphone was fabricated for rapid visual and quantitative detection. Hg2+ can specifically bind to Au+ on the surface of Au NCs, leading to the quench of red fluorescence while the fluorescence intensity of the NCDs with blue fluorescence remained unchanged as a internal standard signal. The implement of paper-based sensor address some common drawback in analytical process such as the detection time, analysis cost. In a further demonstration, a homemade detection device with smartphone was used to qualify the Hg2+. After adding different concentration of Hg2+, red, purple, and blue colors were obtained on the detection zones of the fluorescent test paper. The Android App Color Grab was used to identify the red, green and blue (RGB) values of fluorescent color. The rapid visual and quantitative detection of Hg2+ was accomplished with the detection limit of 2.7 nM for fluorescence, 25 nM for smartphone and 32 nM for paper strip. The developed multi-mode detection platform was successfully applied to the detection of mercury ions in water samples with acceptable recoveries. The NCDs and Au NCs probe facilitate the one-site environmental monitoring for Hg2+ with “naked-eye” and smartphone.
Collapse
Affiliation(s)
- Mimi Fan
- The Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Zhihui Pan
- The Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, China
| | - Chunjuan Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Yang Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Jingran Sun
- The Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, China
| | - Mingzhu Liu
- The Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, China
| | - Bo Peng
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
- *Correspondence: Bo Peng, ; Jin Wu, ; Yanjun Fang,
| | - Jin Wu
- The Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, China
- *Correspondence: Bo Peng, ; Jin Wu, ; Yanjun Fang,
| | - Yanjun Fang
- The Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, China
- *Correspondence: Bo Peng, ; Jin Wu, ; Yanjun Fang,
| |
Collapse
|
10
|
Menezes TM, Garcia YS, Dias de Assis CR, Ventura GT, de Queiroz RM, Dias WB, Todeschini AR, Neves JL. Evaluation of europium-based carbon nanocomposites as bioimaging probes: Preparation, NMR relaxivities, binding effects over plasma proteins and cytotoxic aspects. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Feng Y, Su Y, Liu R, Lv Y. Engineering activatable nanoprobes based on time-resolved luminescence for chemo/biosensing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Thomas H, Fries F, Gmelch M, Bärschneider T, Kroll M, Vavaleskou T, Reineke S. Purely Organic Microparticles Showing Ultralong Room Temperature Phosphorescence. ACS OMEGA 2021; 6:13087-13093. [PMID: 34056458 PMCID: PMC8158833 DOI: 10.1021/acsomega.1c00785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Currently, organic phosphorescent particles are heavily used in sensing and imaging. Up to now, most of these particles contain poisonous and/or expensive metal complexes. Environmentally friendly systems are therefore highly desired. A purely amorphous system consisting of poly(methyl methacrylate) particles with incorporated N,N,N',N'-tetrakis(4-carboxyphenyl)benzidine emitter molecules is presented in this work. Single particles with sizes between 400 and 840 nm show-depending on the environment-bright fluorescence and phosphorescence. The latter is observed when oxygen is not in the proximity of the emitting dye molecules. These particles can scavenge singlet oxygen, which is produced during the photoexcitation process, by incorporating it into the polymer matrix. This renders their use to be unharmful for the surrounding matter with possible application in marking schemes for living bodies.
Collapse
Affiliation(s)
- Heidi Thomas
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Felix Fries
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Max Gmelch
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Toni Bärschneider
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Martin Kroll
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Thaleia Vavaleskou
- Johann
Wolfgang Goethe-Universität Frankfurt am Main, Institut für
Anorganische und Analytische Chemie, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Sebastian Reineke
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| |
Collapse
|
13
|
Wang Y, Yang D, Hu Y, Wang Y, Yang WJ, Wang L. Synthesis of water-soluble europium-containing nanoprobes via polymerization-induced self-assembly and their cellular imaging applications. Talanta 2021; 232:122182. [PMID: 34074380 DOI: 10.1016/j.talanta.2021.122182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 01/18/2023]
Abstract
Lanthanide nanoprobes have attracted extensive attention for applications in cellular imaging and biological sensing. Herein, water-dispersible europium (III)-based (Eu(III)-based) nanoprobes were prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly (PISA) of hydrophobic monomers (Eu(III)-containing monomer and methyl methacrylate (MMA)) using hydrophilic macro-chain transfer agent poly(PEGMA)-CTA. The resulted poly(PMEu) nanoprobes showed spherical in shape in good monodispersity with average diameters of around 210 nm. The poly(PMEu) nanoprobles excellent aqueous dispersity, high aqueous stability and good luminescence properties with quantum yields of 37.21% and fluorescence lifetime of 312.4 μs. Moreover, the poly(PMEu) nanoprobes exhibited good cellular biocompatibility with cell viabilities of 88.2% and high fluorescence intensity for in vitro cellular imaging. The present approach provides a facile strategy for fabrication of luminescent Eu(III)-based nanoprobes with great potential applications for biological imaging.
Collapse
Affiliation(s)
- Yicheng Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensor, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Dongliang Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensor, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yaqin Hu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensor, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yuxin Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensor, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Wen Jing Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensor, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensor, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
14
|
Liu K, Zhang S, Ralchenko V, Qiao P, Zhao J, Shu G, Yang L, Han J, Dai B, Zhu J. Tailoring of Typical Color Centers in Diamond for Photonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000891. [PMID: 32815269 DOI: 10.1002/adma.202000891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/16/2020] [Indexed: 06/11/2023]
Abstract
On the demand of single-photon entangled light sources and high-sensitivity probes in the fields of quantum information processing, weak magnetic field detection and biosensing, the nitrogen vacancy (NV) color center is very attractive and has been deeply and intensively studied, due to its convenience of spin initialization, operation, and optical readout combined with long coherence time in the ambient environment. Although the application prospect is promising, there are still some problems to be solved before fully exerting its characteristic performance, including enhancement of emission of NV centers in certain charge state (NV- or NV0 ), obtaining indistinguishable photons, and improving of collecting efficiency for the photons. Herein, the research progress in these issues is reviewed and commented on to help researchers grasp the current trends. In addition, the development of emerging color centers, such as germanium vacancy defects, and rare-earth dopants, with great potential for various applications, are also briefly surveyed.
Collapse
Affiliation(s)
- Kang Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Sen Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Victor Ralchenko
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
- Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pengfei Qiao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Jiwen Zhao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Guoyang Shu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Lei Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Bing Dai
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Jiaqi Zhu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin, 150080, P. R. China
| |
Collapse
|
15
|
Wang Y, Wang Y, Hu Y, Yang WJ, Wang L. Europium( iii)-containing nanohydrogels for cellular imaging and drug delivery applications. Polym Chem 2021. [DOI: 10.1039/d1py00460c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
By employing the excellent luminescence of Eu(iii) complexes and the versatility of nanohydrogels, Eu(iii)-containing nanohydrogels were prepared as a potential theranostic nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Yicheng Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications
- Nanjing
| | - Yuxin Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications
- Nanjing
| | - Yaqin Hu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications
- Nanjing
| | - Wen Jing Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications
- Nanjing
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications
- Nanjing
| |
Collapse
|
16
|
Schiattarella C, Moretta R, Defforge T, Gautier G, Della Ventura B, Terracciano M, Tortiglione C, Fardella F, Maddalena P, De Stefano L, Velotta R, Rea I. Time-gated luminescence imaging of positively charged poly-l-lysine-coated highly microporous silicon nanoparticles in living Hydra polyp. JOURNAL OF BIOPHOTONICS 2020; 13:e202000272. [PMID: 32827195 DOI: 10.1002/jbio.202000272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
The development of non-toxic fluorescent agents alternative to heavy metal-based semiconductor quantum dots represents a relevant topic in biomedical research and in particular in the bioimaging field. Herein, highly luminescent Si─H terminal microporous silicon nanoparticles with μs-lived photoemission are chemically modified with a two step process and successfully used as label-free probes for in vivo time-gated luminescence imaging. In this context, Hydra vulgaris is used as model organism for in vivo study and validity assessment. The application of time gating allows to pursue an effective sorting of the signals, getting rid of the most common sources of noise that are fast-decay tissue autofluorescence and excitation scattering within the tissue. Indeed, an enhancement by a factor ~ 20 in the image signal-to-noise ratio can be estimated.
Collapse
Affiliation(s)
- Chiara Schiattarella
- Department of Physics "E. Pancini", University of Naples "Federico II", Naples, Italy
| | - Rosalba Moretta
- Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy
| | - Thomas Defforge
- Université de Tours, GREMAN UMR 7347, INSA-CVL, CNRS, Tours, France
| | - Gaël Gautier
- Université de Tours, GREMAN UMR 7347, INSA-CVL, CNRS, Tours, France
| | | | - Monica Terracciano
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | | | - Federica Fardella
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Pasqualino Maddalena
- Department of Physics "E. Pancini", University of Naples "Federico II", Naples, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy
| | - Raffaele Velotta
- Department of Physics "E. Pancini", University of Naples "Federico II", Naples, Italy
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy
| |
Collapse
|
17
|
Klenner MA, Pascali G, Massi M, Fraser BH. Fluorine‐18 Radiolabelling and Photophysical Characteristics of Multimodal PET–Fluorescence Molecular Probes. Chemistry 2020; 27:861-876. [DOI: 10.1002/chem.202001402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Mitchell A. Klenner
- Human Health and National Deuteration Facility (NDF) Australian Nuclear Science and Technology Organisation (ANSTO) New Illawarra Road Lucas Heights NSW 2234 Australia
- School of Molecular and Life Sciences Curtin University Kent Street Bentley WA 6102 Australia
| | - Giancarlo Pascali
- Human Health and National Deuteration Facility (NDF) Australian Nuclear Science and Technology Organisation (ANSTO) New Illawarra Road Lucas Heights NSW 2234 Australia
- Prince of Wales Hospital Barker St Randwick NSW 2031 Australia
- University of New South Wales Sydney (UNSW) Kensington NSW 2052 Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences Curtin University Kent Street Bentley WA 6102 Australia
| | - Benjamin H. Fraser
- Human Health and National Deuteration Facility (NDF) Australian Nuclear Science and Technology Organisation (ANSTO) New Illawarra Road Lucas Heights NSW 2234 Australia
| |
Collapse
|
18
|
Zhang M, Zhai X, Sun M, Ma T, Huang Y, Huang B, Du Y, Yan C. When rare earth meets carbon nanodots: mechanisms, applications and outlook. Chem Soc Rev 2020; 49:9220-9248. [PMID: 33165456 DOI: 10.1039/d0cs00462f] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rare earth (RE) elements are widely used in the luminescence and magnetic fields by virtue of their abundant 4f electron configurations. However, the overall performance and aqueous stability of single-component RE materials need to be urgently improved to satisfy the requirements for multifunctional applications. Carbon nanodots (CNDs) are excellent nanocarriers with abundant functional surface groups, excellent hydrophilicity, unique photoluminescence (PL) and tunable features. Accordingly, RE-CND hybrids combine the merits of both RE and CNDs, which dramatically enhance their overall properties such as luminescent and magnetic-optical imaging performances, leading to highly promising practical applications in the future. Nevertheless, a comprehensive review focusing on the introduction and in-depth understanding of RE-CND hybrid materials has not been reported to date. This review endeavors to summarize the recent advances of RE-CNDs, including their interaction mechanisms, general synthetic strategies and applications in fluorescence, biosensing and multi-modal biomedical imaging. Finally, we present the current challenges and the possible application perspectives of newly developed RE-CND materials. We hope this review will inspire new design ideas and valuable references in this promising field in the future.
Collapse
Affiliation(s)
- Mengzhen Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mondragón M, Desirena H, Moreno‐Ruiz LA, Bello‐Pérez LA. Luminescent Europium Complex‐Grafted Octenyl Succinylated Starch Nanoparticles. STARCH-STARKE 2020. [DOI: 10.1002/star.201900290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Margarita Mondragón
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR)‐Unidad Oaxaca del Instituto Politécnico Nacional Hornos 1003 Sta. Cruz Xoxocotlán 71230 Santa Cruz Xoxocotlán Oaxaca Mexico
| | - Haggeo Desirena
- Centro de Investigaciones en Óptica (CIO) Lomas del Bosque 115 Lomas del Campestre León Guanajuato 37150 Mexico
| | - Luis Alberto Moreno‐Ruiz
- Centro de Nanociencias y Micro y Nanotecnologías (CNMN) del Instituto Politécnico Nacional Av. Luis Enrique Erro s/n Nueva Industrial Vallejo Cd. De México 07738 Mexico
| | - Luis Arturo Bello‐Pérez
- Centro de Desarrollo de Productos Bióticos (CEPROBI) del Instituto Politécnico Nacional Carr. Yautepec‐Jojutla km. 6 Calle CEPROBI No.8 Col. San Isidro Yautepec Morelos 62731 Mexico
| |
Collapse
|
20
|
Shen FX, Pramanik K, Brandão P, Zhang YQ, Jana NC, Wang XY, Panja A. Macrocycle supported dimetallic lanthanide complexes with slow magnetic relaxation in Dy 2 analogues. Dalton Trans 2020; 49:14169-14179. [PMID: 33026012 DOI: 10.1039/d0dt02778b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Six dimetallic lanthanide complexes, [Ln2(L')(acac)4] (1Dy-3Gd) (Ln = Dy (1Dy), Tb (2Tb) and Gd (3Gd)) and [Ln2(L')(tfac)4] (4Dy-6Gd) (Ln = Dy (4Dy), Tb (5Tb) and Gd (6Gd)) (H2L' = 1,9-dichloro-3,7,11,15-tetraaza-1,9(1,3)-dibenzenacyclohexadecaphane-2,10-diene-1,9-diol), have been synthesized by the reaction of lanthanide nitrates with the HL ligand in the presence of acetylacetonate (acac) (or trifluoroacetylacetonate (tfac) and triethylamine (HL = 4-chloro-2,6-bis(-((3-((3-(dimethylamino)propyl)amino)propyl)imino)methyl)phenol). Ln-Assisted modification of the Schiff base HL occurred and led to the formation of a new macrocyclic ligand (H2L'). X-ray crystallographic analysis revealed that the LnIII ions of complexes 1Dy-6Gd are all eight-coordinated in a square antiprismatic geometry with D4d local symmetry. Magnetic measurements of these complexes revealed that 1Dy and 4Dy show single-molecule magnet behaviour with energy barriers of 66.7 and 79.0 K, respectively, under a zero direct magnetic field. The orientations of the magnetic axes and crystal field parameters were obtained from theoretical calculations and an electrostatic model. The magneto-structural correlations of SMMs 1Dy and 4Dy are further discussed in detail.
Collapse
Affiliation(s)
- Fu-Xing Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Kuheli Pramanik
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India. and Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Narayan Ch Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India.
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India. and Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| |
Collapse
|
21
|
Charpentier C, Cifliku V, Goetz J, Nonat A, Cheignon C, Cardoso Dos Santos M, Francés‐Soriano L, Wong K, Charbonnière LJ, Hildebrandt N. Ultrabright Terbium Nanoparticles for FRET Biosensing and in Situ Imaging of Epidermal Growth Factor Receptors**. Chemistry 2020; 26:14602-14611. [DOI: 10.1002/chem.202002007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/04/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Cyrille Charpentier
- Equipe de synthèse pour l'analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS Université de Strasbourg 67087 Strasbourg Cedex France
| | - Vjona Cifliku
- Institute for Integrative Biology of the Cell (I2BC) Université Paris-Saclay, CNRS, CEA 91405 Orsay Cedex France
- nanoFRET.com Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse) Université de Rouen Normandie, CNRS, INSA 76821 Mont-Saint-Aignan Cedex France
| | - Joan Goetz
- Equipe de synthèse pour l'analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS Université de Strasbourg 67087 Strasbourg Cedex France
- Department of Chemistry Hong Kong Baptist University Hong Kong P. R. China
| | - Aline Nonat
- Equipe de synthèse pour l'analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS Université de Strasbourg 67087 Strasbourg Cedex France
| | - Clémence Cheignon
- Equipe de synthèse pour l'analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS Université de Strasbourg 67087 Strasbourg Cedex France
| | - Marcelina Cardoso Dos Santos
- Institute for Integrative Biology of the Cell (I2BC) Université Paris-Saclay, CNRS, CEA 91405 Orsay Cedex France
| | - Laura Francés‐Soriano
- nanoFRET.com Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse) Université de Rouen Normandie, CNRS, INSA 76821 Mont-Saint-Aignan Cedex France
| | - Ka‐Leung Wong
- Department of Chemistry Hong Kong Baptist University Hong Kong P. R. China
| | - Loïc J. Charbonnière
- Equipe de synthèse pour l'analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS Université de Strasbourg 67087 Strasbourg Cedex France
| | - Niko Hildebrandt
- Institute for Integrative Biology of the Cell (I2BC) Université Paris-Saclay, CNRS, CEA 91405 Orsay Cedex France
- nanoFRET.com Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse) Université de Rouen Normandie, CNRS, INSA 76821 Mont-Saint-Aignan Cedex France
| |
Collapse
|
22
|
Fang F, Zhao D, Zhang Y, Li M, Ye J, Zhang J. Europium-Doped Nanoparticles for Cellular Luminescence Lifetime Imaging via Multiple Manipulations of Aggregation State. ACS APPLIED BIO MATERIALS 2020; 3:5103-5110. [DOI: 10.1021/acsabm.0c00580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Dongxu Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yinfeng Zhang
- International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Min Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jun Ye
- Department of Chemistry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
23
|
Yang F, Wang Y, Jiang X, Lin B, Lv R. Optimized Multimetal Sensitized Phosphor for Enhanced Red Up-Conversion Luminescence by Machine Learning. ACS COMBINATORIAL SCIENCE 2020; 22:285-296. [PMID: 32286788 DOI: 10.1021/acscombsci.0c00035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this research, machine learning including the genetic algorithm (GA) and support vector machine (SVM) algorithm is used to solve the "low up-conversion luminescence (UCL) intensity" problem in order to find the optimal phosphor with enhanced red UCL emission using multielement K/Li/Mn metal modulation. Compared with the first generation of phosphors, the best phosphors' fluorescence intensity occurs in the third generation optimized by the GA, with a stronger brightness (4.91-fold), a higher relative quantum yield (6.40-fold), and an enhanced tissue penetration depth (by 5 mm). The single and multiple dopants effect on the upconversion intensity of K+Li+Mn sensitizers is also studied: the intensity increases first and then decreases with the increase of Yb/Er/K+Li+Mn content, and the optimized K+Li+Mn concentration is 6.03%. In order to confirm the stability of the brightness optimization by the GA, a batch of phosphors was synthesized with the same element proportion, and the similarity of fluorescence intensity of two batches of phosphors was evaluated by the SVM algorithm with the classification accuracy index. Finally, the optimized phosphor was used for bioimaging and phosphor-LED.
Collapse
Affiliation(s)
- Fan Yang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Xue Jiang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| |
Collapse
|
24
|
Qu Z, Shen J, Li Q, Xu F, Wang F, Zhang X, Fan C. Near-IR emissive rare-earth nanoparticles for guided surgery. Theranostics 2020; 10:2631-2644. [PMID: 32194825 PMCID: PMC7052904 DOI: 10.7150/thno.40808] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Intraoperative image-guided surgery (IGS) has attracted extensive research interests in determination of tumor margins from surrounding normal tissues. Introduction of near infrared (NIR) fluorophores into IGS could significantly improve the in vivo imaging quality thus benefit IGS. Among the reported NIR fluorophores, rare-earth nanoparticles exhibit unparalleled advantages in disease theranostics by taking advantages such as large Stokes shift, sharp emission spectra, and high chemical/photochemical stability. The recent advances in elements doping and morphologies controlling endow the rare-earth nanoparticles with intriguing optical properties, including emission span to NIR-II region and long life-time photoluminescence. Particularly, NIR emissive rare earth nanoparticles hold advantages in reduction of light scattering, photon absorption and autofluorescence, largely improve the performance of nanoparticles in biological and pre-clinical applications. In this review, we systematically compared the benefits of RE nanoparticles with other NIR probes, and summarized the recent advances of NIR emissive RE nanoparticles in bioimaging, photodynamic therapy, drug delivery and NIR fluorescent IGS. The future challenges and promises of NIR emissive RE nanoparticles for IGS were also discussed.
Collapse
Affiliation(s)
- Zhibei Qu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Xu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Fei Wang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueli Zhang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
25
|
Wang Y, Lü WD, Lin B, Yang F, Feng M, Lv R. An optimized lanthanide-chlorophyll nanocomposite for dual-modal imaging-guided surgery navigation and anti-cancer theranostics. Biomater Sci 2020; 8:1270-1278. [DOI: 10.1039/c9bm02057h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A lanthanide-chlorophyll nanocomposite with enhanced red emission under a near-infrared laser was designed for dual-modal imaging-guided surgery navigation and anti-cancer theranostics.
Collapse
Affiliation(s)
- Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging
- Ministry of Education
- School of Life Science and Technology
- Xidian University
- Xi'an
| | - Wei-Dong Lü
- Department of Thoracic Surgery
- Tumor Hospital of Shaanxi Province
- Affiliated to the Medical College of Xi'an Jiaotong University
- Xi'an
- China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging
- Ministry of Education
- School of Life Science and Technology
- Xidian University
- Xi'an
| | - Fan Yang
- Engineering Research Center of Molecular and Neuro Imaging
- Ministry of Education
- School of Life Science and Technology
- Xidian University
- Xi'an
| | - Miao Feng
- Engineering Research Center of Molecular and Neuro Imaging
- Ministry of Education
- School of Life Science and Technology
- Xidian University
- Xi'an
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging
- Ministry of Education
- School of Life Science and Technology
- Xidian University
- Xi'an
| |
Collapse
|
26
|
Li Y, Wang M, Tao Y, Zhang R, Zhou M, Tao P, Feng P, Huang W, Huang H, Miao W. Highly stable and biocompatible nanocontrast agent encapsulating a novel organic fluorescent dye for enhanced cellular imaging. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Ma Q, Wang J, Li Z, Lv X, Liang L, Yuan Q. Recent Progress in Time-Resolved Biosensing and Bioimaging Based on Lanthanide-Doped Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804969. [PMID: 30761729 DOI: 10.1002/smll.201804969] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/29/2018] [Indexed: 05/19/2023]
Abstract
Luminescent nanomaterials have attracted great attention in luminescence-based bioanalysis due to their abundant optical and tunable surface physicochemical properties. However, luminescent nanomaterials often suffer from serious autofluorescence and light scattering interference when applied to complex biological samples. Time-resolved luminescence methodology can efficiently eliminate autofluorescence and light scattering interference by collecting the luminescence signal of a long-lived probe after the background signals decays completely. Lanthanides have a unique [Xe]4fN electronic configuration and ladder-like energy states, which endow lanthanide-doped nanoparticles with many desirable optical properties, such as long luminescence lifetimes, large Stokes/anti-Stokes shifts, and sharp emission bands. Due to their long luminescence lifetimes, lanthanide-doped nanoparticles are widely used for high-sensitive biosensing and high-contrast bioimaging via time-resolved luminescence methodology. In this review, recent progress in the development of lanthanide-doped nanoparticles and their application in time-resolved biosensing and bioimaging are summarized. At the end of this review, the current challenges and perspectives of lanthanide-doped nanoparticles for time-resolved bioapplications are discussed.
Collapse
Affiliation(s)
- Qinqin Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiheng Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaobo Lv
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ling Liang
- Molecular Science and Biomedicine Laboratory, Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
28
|
Li XH, Chen WL, Li YG, He P, Di Y, Wei M, Wang EB. Multi-functional rare earth-containing polyoxometalates achieving high-efficiency tumor therapy and visual fluorescence monitoring. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.03.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Lv R, Xiao L, Wang Y, Yang F, Tian J, Lin J. Searching for the Optimized Luminescent Lanthanide Phosphor Using Heuristic Algorithms. Inorg Chem 2019; 58:6458-6466. [PMID: 31016972 DOI: 10.1021/acs.inorgchem.9b00667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this research, four heuristic algorithms (HAs), including simulated annealing (SA), improved annealing with a harmony search algorithm (HSA), particle swarm optimization (PSO), and genetic algorithm (GA), were used to optimize the luminescent intensity of phosphor. Among the four HAs, the improved algorithm HSA got better phosphors than SA (without using the known coded concentration). The PSO algorithm got gradually better results with increased generation, and the GA could find the best local phosphors with shorter time. After further analysis of the 340 phosphors, we found that the final brightness has an optimized activator concentration (Tb: 0.21-0.26), and the results were further proved by another uniform host of NaGdF4:Ce,Tb nanoparticles. The HA was proper to find the optimal concentration of the activator of Tb. Furthermore, the optimal phosphor could be used as a bioimaging agent and improved QR code.
Collapse
Affiliation(s)
- Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710071 , China
| | - Liyang Xiao
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710071 , China
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710071 , China
| | - Fan Yang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710071 , China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710071 , China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
| |
Collapse
|
30
|
Ge Y, Huang Y, Montenegro JLB, Cui Y, Liu W, Li Y, Wang BL. Synthesis, Structures, and Single-Molecule Magnetic Properties of Three Dy 2 Complexes. Chem Asian J 2019; 14:986-994. [PMID: 30628179 DOI: 10.1002/asia.201801643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/08/2019] [Indexed: 02/05/2023]
Abstract
To explore the influences of the subtle structural variations in the ligand backbones on the single-molecule magnetic properties of dinuclear dysprosium(III) complexes, three ligands-H2 L1 (H2 L1 =N1 ,N3 -bis(salicylaldehyde)diethylenetriamine), H2 L2 (H2 L2 =N1 ,N3 -bis(3-methoxysalicylidene)diethylenetriamine), and H2 L3 (H2 L3 =N1 ,N3 -bis(5-chlorosalicyladehyde)diethylenetriamine)-were synthesized and employed to prepare the expected dinuclear dysprosium(III) complexes. The three ligands differ in terms of the substituents at the benzene rings of the salicylaldehyde moieties. The reactions of Dy(NO3 )3 ⋅6 H2 O, pivalic acid, and the ligands H2 L1 , H2 L2 , and H2 L3 generated complexes with the formulae [Dy2 (L1 )2 (piv)2 ] (1), [Dy2 (L2 )2 (piv)2 ] (2), and [Dy2 (L3 )2 (piv)2 ]⋅ 2 MeCN (3), respectively. The purposeful attachment of the functional groups with varied sizes at the benzene rings of the salicylaldehyde backbones resulted in slight differences in the Dy-O-Dy bond angles and the Dy⋅⋅⋅Dy bond lengths in 1-3; consequently, the three complexes exhibited distinct magnetic properties. They all showed slow magnetization relaxation with energy barriers of 40.32 (1), 31.67 (2), and 33.53 K (3). Complete active space self-consistent field (CASSCF) calculations were performed on complexes 1-3 to rationalize the slight discrepancy observed in the magnetic behavior. The calculated results satisfactorily explained the experimental outcomes.
Collapse
Affiliation(s)
- Yu Ge
- College of Chemistry, Chemical Engineering and Materials, Science Soochow University, Suzhou, 215123, China
| | - Yuan Huang
- College of Chemistry, Chemical Engineering and Materials, Science Soochow University, Suzhou, 215123, China
| | | | - Yanfeng Cui
- College of Chemistry, Chemical Engineering and Materials, Science Soochow University, Suzhou, 215123, China
| | - Wei Liu
- College of Chemistry, Chemical Engineering and Materials, Science Soochow University, Suzhou, 215123, China
| | - Yahong Li
- College of Chemistry, Chemical Engineering and Materials, Science Soochow University, Suzhou, 215123, China
| | - Bao-Lin Wang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
31
|
Tian X, Hussain S, de Pace C, Ruiz-Pérez L, Battaglia G. Zn II Complexes for Bioimaging and Correlated Applications. Chem Asian J 2019; 14:509-526. [PMID: 30716209 DOI: 10.1002/asia.201801437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/31/2018] [Indexed: 11/09/2022]
Abstract
Zinc is a biocompatible element that exists as the second most abundant transition metal ion and an indispensable trace element in the human body. Compared to traditional metal-organic complexes systems, d10 metal ZnII complexes not only exhibit a large Stokes shift and good photon stability but also possess strong emission and low cytotoxicity with a relatively small molecular weight. The use of ZnII complexes has emerged in the last decade as a versatile and convenient tool for numerous biological applications, including bioimaging, molecular and protein recognition, as well as photodynamic therapy. Herein, we review recent developments involving ZnII metal complexes applied as specific subcellular compartment imaging probes and their correlated utilizations.
Collapse
Affiliation(s)
- Xiaohe Tian
- School of life science, Anhui University, Hefei, 230039, P.R. China
| | - Sajid Hussain
- School of life science, Anhui University, Hefei, 230039, P.R. China.,School of Applied Sciences and Humanities (NUSASH), National University of Technology, Sector I-12, Islamabad, Pakistan
| | - Cesare de Pace
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Giuseppe Battaglia
- School of life science, Anhui University, Hefei, 230039, P.R. China.,Department of Chemistry, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
32
|
Suárez PL, García-Cortés M, Fernández-Argüelles MT, Encinar JR, Valledor M, Ferrero FJ, Campo JC, Costa-Fernández JM. Functionalized phosphorescent nanoparticles in (bio)chemical sensing and imaging – A review. Anal Chim Acta 2019; 1046:16-31. [DOI: 10.1016/j.aca.2018.08.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/03/2018] [Accepted: 08/06/2018] [Indexed: 01/19/2023]
|
33
|
Lv R, Xiao L, Jiang X, Feng M, Yang F, Tian J. Optimization of Red Luminescent Intensity in Eu 3+-Doped Lanthanide Phosphors Using Genetic Algorithm. ACS Biomater Sci Eng 2018; 4:4378-4384. [PMID: 33418830 DOI: 10.1021/acsbiomaterials.8b00513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this research, four steps including synthesis experiment, brightness evaluation, optimized calculation using brightness as fitness reference, and new calculated composition for the next preparation have been proceeded to find the brightest Eu3+ doped phosphors combined with chemical experiments and genetic algorithm (GA) calculation. The evolutionary operations, such as elitism, selection, crossover, and mutation, are applied to the compound combination. Feasible optimized combination would be obtained until the phosphor is found to be satisfactory. Through GA calculation and thd experimental process, the final luminescence enhancement factor of the optimal phosphor is up to 141% compared with the best one in the first generation. Thus, the GA calculation could be well applied to combinatorial chemistry to find the better phosphor. Additionally, the optimized phosphor is potentially applied as the fingerprint detection nanoparticle and dual-modal imaging agent of the CT/luminescent agent with high penetration and resolution.
Collapse
Affiliation(s)
- Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Liyang Xiao
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Xue Jiang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Miao Feng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Fan Yang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.,Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 100190 China
| |
Collapse
|
34
|
Xu D, Liu M, Huang Q, Chen J, Huang H, Deng F, Wen Y, Tian J, Zhang X, Wei Y. One-step synthesis of europium complexes containing polyamino acids through ring-opening polymerization and their potential for biological imaging applications. Talanta 2018; 188:1-6. [DOI: 10.1016/j.talanta.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
|
35
|
Wu X, DeGottardi Q, Wu IC, Wu L, Yu J, Kwok WW, Chiu DT. Ratiometric Barcoding for Mass Cytometry. Anal Chem 2018; 90:10688-10694. [PMID: 30139253 DOI: 10.1021/acs.analchem.8b03201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Barcoding is of importance for high-throughput cellular and molecular analysis. A ratiometric barcoding strategy using lanthanide-coordinated polymer dots (Ln-Pdots) was developed for mass cytometric analysis. By using 3 metal isotopes and 4 ratio intensity levels, 16 barcodes were generated to code, and later decode, cell samples in mass cytometry. The ratiometric Ln-Pdot barcodes not only provided high-mass-signal intensities but also eliminated the bias caused by different concentrations of the labeling reagents/barcodes and run-to-run differences in cell labeling efficiency. The ability to distinguish clearly the 16 sets of labeled MCF-7 cells with mass cytometry demonstrated the excellent resolving power of the ratiometric Ln-Pdot barcodes. Furthermore, the results from barcoding PBMC samples via CD45-specific cellular targeting indicated that the ratiometric Ln-Pdot barcodes could facilitate mass cytometry in high-throughput and multiplexed analysis, especially with precious human samples.
Collapse
Affiliation(s)
- Xu Wu
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital , Central South University , Changsha , Hunan 410078 , China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute , Central South University , Changsha , Hunan 410078 , China
| | - Quinn DeGottardi
- Benaroya Research Institute at Virginia Mason , Seattle , Washington 98101 , United States
| | - I-Che Wu
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Li Wu
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Jiangbo Yu
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason , Seattle , Washington 98101 , United States
| | - Daniel T Chiu
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
36
|
Andronico LA, Chen L, Mirasoli M, Guardigli M, Quintavalla A, Lombardo M, Trombini C, Chiu DT, Roda A. Thermochemiluminescent semiconducting polymer dots as sensitive nanoprobes for reagentless immunoassay. NANOSCALE 2018; 10:14012-14021. [PMID: 29995031 PMCID: PMC6065506 DOI: 10.1039/c8nr03092h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Thermochemiluminescence (TCL) is a potentially simple and sensitive detection principle, as the light emission is simply elicited by thermally-triggered decomposition of a molecule to produce a singlet excited-state product. Here we report about TCL semiconductive polymer dots (TCL-Pdots) obtained by doping fluorescent cyano-polyphenylene vinylene (CN-PPV) Pdots with an acridine 1,2-dioxetane derivative. The TCL-Pdots showed remarkable stability over time and minimum leaching of the thermo-responsive species. Furthermore, detectability of TCL-Pdots was improved by taking advantage of both the high number of 1,2-dioxetanes entrapped in each nanoparticle (about 20 molecules per Pdot) and the 5-fold enhancement of TCL emission due to energy transfer from 1,2-dioxetane to the polymer matrix, which itself acted as an energy acceptor. Indeed, upon heating the TCL-Pdots to 110 °C, 1,2-dioxetane decomposes generating an acridanone product in its electronically excited state. The latter transfers its energy to the surrounding CN-PPV chains via the Förster mechanism (φFRET about 80%), resulting in intense yellow light emission (550 nm wavelength). We next conjugated streptavidin onto the surface of these TCL-Pdots and demonstrated their suitability for use in biological studies. In particular, we used TCL-Pdots as labels in a model non-competitive immunoassay for IgG detection, which showed a LOD of 13 nM IgG and a dynamic range extending up to 230 nM. By combining the biocompatibility, brightness and tunability of Pdot fluorescence emission with the thermally-triggered reagentless light generation from TCL 1,2-dioxetanes, a broad panel of ultrabright TCL nanosystems could be designed for a variety of bioscience applications, even in multiplexed formats.
Collapse
Affiliation(s)
- Luca A Andronico
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2, 40126 Bologna, Italy.
| | - Lei Chen
- Department of Chemistry, University of Washington, Seattle, Washington, 98195 USA.
| | - Mara Mirasoli
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2, 40126 Bologna, Italy.
| | - Massimo Guardigli
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2, 40126 Bologna, Italy.
| | - Arianna Quintavalla
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2, 40126 Bologna, Italy.
| | - Marco Lombardo
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2, 40126 Bologna, Italy.
| | - Claudio Trombini
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2, 40126 Bologna, Italy.
| | - Daniel T Chiu
- Department of Chemistry, University of Washington, Seattle, Washington, 98195 USA.
| | - Aldo Roda
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
37
|
Chen F, Wang L, Xing Y, Zhang J. Stable photoluminescence of lanthanide complexes in aqueous media through Metal-Organic Frameworks Nanoparticles with plugged surface. J Colloid Interface Sci 2018; 527:68-77. [PMID: 29777974 DOI: 10.1016/j.jcis.2018.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 01/14/2023]
Abstract
The photoluminescence stability of lanthanide complex in aqueous media is a prerequisite for diagnostics probes. The combination of building blocks working in concert to facilitate host-guest structures is now considered state of the art in surpassing this roadblock, yet there still remains a tremendous challenge. Here, a stable, highly-luminescent system was developed through trapping anionic complexes sensitized by tridentate pyridine-tetrazolate (pytz) ligands within the rigid framework of ZIF-8 (zeolitic imidazolate framework-8) particles (∼60 nm in size). The key to maintaining the stable luminescence of lanthanide complexes inside ZIF-8 frameworks is a stopcock design, i.e. stopper molecules (an imidazolium based ionic liquid) selectively plugged on the pore entrances located at the exterior surface of the ZIF-8 host, which protect both the host and the guests from deteriorations by surrounding ions/water molecules. Remarkably, the obtained Ln complex encapsulated ZIF-8 particles (Ln = terbium, europium) particles possessed high quantum yields (23.2% and 8.5%), large absorption cross-section (∼10-12 cm2), and long luminescence lifetimes (1.9 and 3.0 ms) in PBS buffer. In addition, the system can realize single/multi-color encoding by altering the loading amounts and the weight ratios of complexes emitting at different wavelengths.
Collapse
Affiliation(s)
- Feng Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Liucan Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| |
Collapse
|
38
|
Cardoso Dos Santos M, Goetz J, Bartenlian H, Wong KL, Charbonnière LJ, Hildebrandt N. Autofluorescence-Free Live-Cell Imaging Using Terbium Nanoparticles. Bioconjug Chem 2018; 29:1327-1334. [DOI: 10.1021/acs.bioconjchem.8b00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Cardoso Dos Santos
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Univeristé Paris-Sud, CNRS, CEA, 91405 Orsay Cedex, France
| | - J. Goetz
- Laboratoire d’Ingénierie Moléculaire Appliquée à l’Analyse (LIMAA), Institut Pluridisciplinaire Hubert Curien (IPHC), CNRS, Université de Strasbourg, 67087 Strasbourg Cedex, France
| | - H. Bartenlian
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Univeristé Paris-Sud, CNRS, CEA, 91405 Orsay Cedex, France
| | - K.-L. Wong
- Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, Hong Kong
| | - L. J. Charbonnière
- Laboratoire d’Ingénierie Moléculaire Appliquée à l’Analyse (LIMAA), Institut Pluridisciplinaire Hubert Curien (IPHC), CNRS, Université de Strasbourg, 67087 Strasbourg Cedex, France
| | - N. Hildebrandt
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Univeristé Paris-Sud, CNRS, CEA, 91405 Orsay Cedex, France
| |
Collapse
|
39
|
Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chem Rev 2018; 118:1770-1839. [DOI: 10.1021/acs.chemrev.7b00425] [Citation(s) in RCA: 479] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qi Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Huanjie Wei
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, P. R. China
- Key
Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211800, P. R. China
| |
Collapse
|
40
|
Kemal E, Peters R, Bourke S, Fairclough S, Bergstrom-Mann P, Owen DM, Sandiford L, Dailey LA, Green M. Magnetic conjugated polymer nanoparticles doped with a europium complex for biomedical imaging. Photochem Photobiol Sci 2018; 17:718-721. [DOI: 10.1039/c7pp00402h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Self-assembling conjugated polymer nanoparticles containing PVK and PLGA-PEG as a matrix polymer were doped with both a luminescent rare-earth complex and magnetic nanoparticles (SPIONs), giving rise to materials that are both luminescent and magnetic.
Collapse
Affiliation(s)
- E. Kemal
- Department of Physics
- King's College London
- Strand
- London
- UK
| | - R. Peters
- Department of Physics
- King's College London
- Strand
- London
- UK
| | - S. Bourke
- Department of Physics
- King's College London
- Strand
- London
- UK
| | - S. Fairclough
- Department of Physics
- King's College London
- Strand
- London
- UK
| | | | - D. M. Owen
- Department of Physics
- King's College London
- Strand
- London
- UK
| | - L. Sandiford
- Department of Physics
- King's College London
- Strand
- London
- UK
| | - L. A. Dailey
- Department of Pharmacy
- Martin-Luther-Universität Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - M. Green
- Department of Physics
- King's College London
- Strand
- London
- UK
| |
Collapse
|
41
|
Chen H, Zhang J, Chang K, Men X, Fang X, Zhou L, Li D, Gao D, Yin S, Zhang X, Yuan Z, Wu C. Highly absorbing multispectral near-infrared polymer nanoparticles from one conjugated backbone for photoacoustic imaging and photothermal therapy. Biomaterials 2017; 144:42-52. [DOI: 10.1016/j.biomaterials.2017.08.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 12/22/2022]
|
42
|
Wu X, DeGottardi Q, Wu IC, Yu J, Wu L, Ye F, Kuo CT, Kwok WW, Chiu DT. Lanthanide-Coordinated Semiconducting Polymer Dots Used for Flow Cytometry and Mass Cytometry. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xu Wu
- Department of Chemistry; University of Washington; Seattle WA 98195 USA
| | - Quinn DeGottardi
- Benaroya Research Institute at Virginia Mason; Seattle WA 98101 USA
- Department of Medicine; University of Washington; Seattle WA 98195 USA
| | - I-Che Wu
- Department of Chemistry; University of Washington; Seattle WA 98195 USA
| | | | - Li Wu
- Department of Chemistry; University of Washington; Seattle WA 98195 USA
| | - Fangmao Ye
- Department of Chemistry; University of Washington; Seattle WA 98195 USA
| | - Chun-Ting Kuo
- Department of Chemistry; University of Washington; Seattle WA 98195 USA
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason; Seattle WA 98101 USA
- Department of Medicine; University of Washington; Seattle WA 98195 USA
| | - Daniel T. Chiu
- Department of Chemistry; University of Washington; Seattle WA 98195 USA
| |
Collapse
|
43
|
Wu X, DeGottardi Q, Wu IC, Yu J, Wu L, Ye F, Kuo CT, Kwok WW, Chiu DT. Lanthanide-Coordinated Semiconducting Polymer Dots Used for Flow Cytometry and Mass Cytometry. Angew Chem Int Ed Engl 2017; 56:14908-14912. [PMID: 28941061 DOI: 10.1002/anie.201708463] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/06/2017] [Indexed: 11/09/2022]
Abstract
Simultaneous monitoring of biomarkers as well as single-cell analyses based on flow cytometry and mass cytometry are important for investigations of disease mechanisms, drug discovery, and signaling-network studies. Flow cytometry and mass cytometry are complementary to each other; however, probes that can satisfy all the requirements for these two advanced technologies are limited. In this study, we report a probe of lanthanide-coordinated semiconducting polymer dots (Pdots), which possess fluorescence and mass signals. We demonstrated the usage of this dual-functionality probe for both flow cytometry and mass cytometry in a mimetic cell mixture and human peripheral blood mononuclear cells as model systems. The probes not only offer high fluorescence signal for use in flow cytometry, but also show better performance in mass cytometry than the commercially available counterparts.
Collapse
Affiliation(s)
- Xu Wu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Quinn DeGottardi
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA.,Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - I-Che Wu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | | | - Li Wu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Fangmao Ye
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Chun-Ting Kuo
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA.,Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Daniel T Chiu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
44
|
Wu L, Wu IC, DuFort CC, Carlson MA, Wu X, Chen L, Kuo CT, Qin Y, Yu J, Hingorani SR, Chiu DT. Photostable Ratiometric Pdot Probe for in Vitro and in Vivo Imaging of Hypochlorous Acid. J Am Chem Soc 2017; 139:6911-6918. [PMID: 28459559 PMCID: PMC5695557 DOI: 10.1021/jacs.7b01545] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Developing probes for the detection of reactive oxygen species (ROS), a hallmark of many pathophysiological process, is imperative to both understanding the precise roles of ROS in many life-threatening diseases and optimizing therapeutic interventions. We herein report an all-in-one fluorescent semiconducting polymer based far-red to near-infrared (NIR) Pdot nanoprobe for the ratiometric detection of hypochlorous acid (HOCl). The fabrication takes the advantage of flexible polymer design by incorporating target-sensitive and target-inert fluorophores into a single conjugated polymer to avoid leakage or differential photobleaching problems existed in other nanoprobes. The obtained nanoprobe has improved performance in HOCl sensing, such as high brightness, ideal far-red to NIR optical window, excellent photostability, self-referenced ratiometric response, fast response, and high selectivity. The dual-emission property allows the sensitive imaging of HOCl fluctuations produced in living macrophage cells and peritonitis of living mice with high contrast. This study not only provides a powerful and promising nanoprobe to be potentially used in the investigations of in situ HOCl status of diseases in living systems but also puts forward the design strategy of a new category of ratiometric fluorescent probes facilitating precise and reliable measurement in biological systems.
Collapse
Affiliation(s)
- Li Wu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - I-Che Wu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Christopher C. DuFort
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Markus A. Carlson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Xu Wu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lei Chen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Ting Kuo
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yuling Qin
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jiangbo Yu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sunil R. Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Daniel T. Chiu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
45
|
Yu J, Rong Y, Kuo CT, Zhou XH, Chiu DT. Recent Advances in the Development of Highly Luminescent Semiconducting Polymer Dots and Nanoparticles for Biological Imaging and Medicine. Anal Chem 2017; 89:42-56. [PMID: 28105818 PMCID: PMC5682631 DOI: 10.1021/acs.analchem.6b04672] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiangbo Yu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yu Rong
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Ting Kuo
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xing-Hua Zhou
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Daniel T. Chiu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
46
|
Wang H, Zhang P, Hong Y, Zhao B, Yi P, Chen J. Ratiometric imaging of lysosomal hypochlorous acid enabled by FRET-based polymer dots. Polym Chem 2017. [DOI: 10.1039/c7py01289f] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
FRET-based fluorescent polymer dots (FPD) with good membrane permeability have been developed for ratiometric imaging of lysosomal HClO in living cells.
Collapse
Affiliation(s)
- Hong Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Peisheng Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Yongxiang Hong
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Bin Zhao
- College of Chemistry and Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province
- Xiangtan University
- Xiangtan 411105
- PR China
| | - Pinggui Yi
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Jian Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| |
Collapse
|
47
|
Tian X, Zhu Y, Zhang Q, Zhang R, Wu J, Tian Y. Halides tuning the subcellular-targeting in two-photon emissive complexes via different uptake mechanisms. Chem Commun (Camb) 2017; 53:7941-7944. [DOI: 10.1039/c7cc03640j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A simple and universal strategy by tuning halides (Cl, Br and I) in terpyridine–Zn(ii) complexes to achieve different subcellular organelle targeting via different cellular uptake mechanisms was reported.
Collapse
Affiliation(s)
- Xiaohe Tian
- School of Life Science
- Anhui University
- Hefei 230039
- P. R. China
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province
| | - Yingzhong Zhu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province
- Anhui University
- Hefei 230039
- P. R. China
| | - Qiong Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province
- Anhui University
- Hefei 230039
- P. R. China
| | - Ruilong Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province
- Anhui University
- Hefei 230039
- P. R. China
| | - Jieying Wu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province
- Anhui University
- Hefei 230039
- P. R. China
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province
- Anhui University
- Hefei 230039
- P. R. China
- State Key Laboratory of Coordination Chemistry
| |
Collapse
|
48
|
Singh A, Bezuidenhout M, Walsh N, Beirne J, Felletti R, Wang S, Fitzgerald KT, Gallagher WM, Kiely P, Redmond G. Functionalization of emissive conjugated polymer nanoparticles by coprecipitation: consequences for particle photophysics and colloidal properties. NANOTECHNOLOGY 2016; 27:305603. [PMID: 27306338 DOI: 10.1088/0957-4484/27/30/305603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The functionalization of polyfluorene (PFO) nanoparticles by coprecipitation of the conjugated polymer with an amphiphilic comb polymer, consisting of a hydrophobic polystyrene backbone with hydrophilic, carboxylic acid-terminated polyethylene oxide side-chains (PS-PEG-COOH), is investigated. The comb polymer affects the properties of the formed hybrid nanoparticles. Non-functionalized particles are typically larger (28 nm) than functionalized ones (20 nm); peak molar extinction coefficients are found to differ in a similar trend. Zeta potentials are negative, consistent with negative surface charge on PFO particles due to chemical defect formation, with additional charge on functionalized particles due to the pendant carboxylic acid groups. Emission quantum yields of functionalized particles are typically larger, consistent with lower efficiency of energy transfer to quenchers in smaller particles and weaker PFO interchain interactions due to chain dilution. The trend in per-particle fluorescence brightness values, as confirmed by single particle fluorescence imaging, reflects the nanoparticle extinction coefficients. Photostability studies on aqueous dispersions of hybrid particles indicate mild photobrightening under continuous illumination while PFO particles exhibit slow exponential emission decay. Functionalized particles are also resistant to aggregation during exposure to adenocarcinoma cells. Generally, the hybrid particles exhibit more favorable time-, pH- and medium-dependent stabilities, likely due to steric and electrostatic stabilization by PEG-carboxylic acid functionalities. Overall, the functionalized particles exhibit attractive properties: Reasonably small size, tight size distribution, high absorption cross section, radiative rate and emission quantum yield, excellent brightness and photostability, and good colloidal stability.
Collapse
Affiliation(s)
- Amita Singh
- School of Chemistry, University College Dublin, Dublin, Ireland. The University of Texas at Austin, McKetta Department of Chemical Engineering, 200 E Dean Keeton St. Stop, C0400, Austin, TX 78712-1589, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Grigoras AG. A review on medical applications of poly(N-vinylcarbazole) and its derivatives. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1180613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Poly[(9,9-dioctyl-fluorenyl-2,7-diyl)-co-fluorenone]-based orange fluorescence probe for cellular imaging. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|