1
|
Paul M, Raeside MC, Gutekunst WR. General and Mild Method for the Synthesis of Polythioesters from Lactone Feedstocks. ACS Macro Lett 2024; 13:1411-1417. [PMID: 39378148 PMCID: PMC11580380 DOI: 10.1021/acsmacrolett.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Polythioesters are attracting increasing interest in applications requiring degradability or recyclability. However, few general methods exist for the synthesis of these polymers. This report presents a fast and versatile method for synthesizing polythioesters from readily available lactone feedstocks. The two-step process begins with the thionation of lactones to thionolactones, followed by the ring-opening polymerization of the thionolactones to polythioesters. Unlike previous methods that rely on harsh reagents to accomplish this transformation, we demonstrate that the mild tetrabutylammonium thioacetate is a competent initiator for polymerization. This method exhibits broad applicability, as demonstrated by the successful polymerizations of an unstrained 17-membered macrocycle and an N-substituted cyclic thionocarbamate. Furthermore, the generality of this scheme enables the synthesis of polythioesters with highly tunable properties, as demonstrated here by the synthesis of a set of polymers with glass transition temperatures spanning 180 °C. Finally, the polythioesters are efficiently depolymerized into the corresponding thiolactones.
Collapse
Affiliation(s)
- McKinley
K. Paul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Matthew C. Raeside
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Will R. Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Yang S, Du S, Zhu J, Ma S. Closed-loop recyclable polymers: from monomer and polymer design to the polymerization-depolymerization cycle. Chem Soc Rev 2024; 53:9609-9651. [PMID: 39177226 DOI: 10.1039/d4cs00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The extensive utilization of plastic, as a symbol of modern technological society, has consumed enormous amounts of finite and non-renewable fossil resources and produced huge amounts of plastic wastes in the land or ocean, and thus recycling and reuse of the plastic wastes have great ecological and economic benefits. Closed-loop recyclable polymers with inherent recyclability can be readily depolymerized into monomers with high selectivity and purity and repolymerized into polymers with the same performance. They are deemed to be the next generation of recyclable polymers and have captured great and increasing attention from academia and industry. Herein, we provide an overview of readily closed-loop recyclable polymers based on monomer and polymer design and no-other-reactant-involved reversible ring-opening and addition polymerization reactions. The state-of-the-art of circular polymers is separately summarized and discussed based on different monomers, including lactones, thiolactones, cyclic carbonates, hindered olefins, cycloolefins, thermally labile olefin comonomers, cyclic disulfides, cyclic (dithio) acetals, lactams, Diels-Alder addition monomers, Michael addition monomers, anhydride-secondary amide monomers, and cyclic anhydride-aldehyde monomers, and polymers with activatable end groups. The polymerization and depolymerization mechanisms are clearly disclosed, and the evolution of the monomer structure, the polymerization and depolymerization conditions, the corresponding polymerization yield, molecular weight, performance of the polymers, monomer recovery, and depolymerization equipment are also systematically summarized and discussed. Furthermore, the challenges and future prospects are also highlighted.
Collapse
Affiliation(s)
- Shuaiqi Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Shuai Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Songqi Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| |
Collapse
|
3
|
Desai S, Carberry B, Anseth KS, Schultz KM. Cell-Material Interactions in Covalent Adaptable Thioester Hydrogels. ACS Biomater Sci Eng 2024; 10:5701-5713. [PMID: 39171932 DOI: 10.1021/acsbiomaterials.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Covalent adaptable networks (CANs) are polymeric networks with cross-links that can break and reform in response to external stimuli, including pH, shear, and temperature, making them potential materials for use as injectable cell delivery vehicles. In the native niche, cells rearrange the extracellular matrix (ECM) to undergo basic functions including migration, spreading, and proliferation. Bond rearrangement enables these hydrogels to mimic viscoelastic properties of the native ECM which promote migration and delivery from the material to the native tissue. In this work, we characterize thioester CANs to inform their design as effective cell delivery vehicles. Using bulk rheology, we characterize the rearrangement of these networks when they are subjected to strain, which mimics the strain applied by a syringe, and using multiple particle tracking microrheology (MPT) we measure cell-mediated remodeling of the pericellular region. Thioester networks are formed by photopolymerizing 8-arm poly(ethylene glycol) (PEG)-thiol and PEG-thioester norbornene. Bulk rheology measures scaffold properties during low and high strain and demonstrates that thioester scaffolds can recover rheological properties after high strain is applied. We then 3D encapsulated human mesenchymal stem cells (hMSCs) in thioester scaffolds. Using MPT, we characterize degradation in the pericellular region. Encapsulated hMSCs degrade these scaffolds within ≈4 days post-encapsulation. We hypothesize that this degradation is mainly due to cytoskeletal tension that cells apply to the matrix, causing adaptable thioester bonds to rearrange, leading to degradation. To verify this, we inhibited cytoskeletal tension using blebbistatin, a myosin-II inhibitor. Blebbistatin-treated cells can degrade these networks only by secreting enzymes including esterases. Esterases hydrolyze thioester bonds, which generate free thiols, leading to bond exchange. Around treated cells, we measure a decrease in the extent of pericellular degradation. We also compare cell area, eccentricity, and speed of untreated and treated cells. Inhibiting cytoskeletal tension results in significantly smaller cell area, more rounded cells, and lower cell speeds when compared to untreated cells. Overall, this work shows that cytoskeletal tension plays a major role in hMSC-mediated degradation of thioester networks. Cytoskeletal tension is also important for the spreading and motility of hMSCs in these networks. This work informs the design of thioester scaffolds for tissue regeneration and cell delivery.
Collapse
Affiliation(s)
- Shivani Desai
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Benjamin Carberry
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Kelly M Schultz
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Jaeschke MW, Borelli AN, Skillin NP, White TJ, Anseth KS. Engineering a Hydrazone and Triazole Crosslinked Hydrogel for Extrusion-Based Printing and Cell Delivery. Adv Healthc Mater 2024; 13:e2400062. [PMID: 38805644 PMCID: PMC11305943 DOI: 10.1002/adhm.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/26/2024] [Indexed: 05/30/2024]
Abstract
Covalent adaptable crosslinks, such as the alkyl-hydrazone, endow hydrogels with unique viscoelastic properties applicable to cell delivery and bioink systems. However, the alkyl-hydrazone crosslink lacks stability in biologically relevant environments. Furthermore, when formed with biopolymers such as hyaluronic acid (HA), low molecular weight polymers (<60 kDa), or low polymer content (<2 wt%) hydrogels are typically employed as entanglements reduce injectability. Here, a high molecular weight (>60 kDa) HA alkyl-hydrazone crosslinked hydrogel is modified with benzaldehyde-poly(ethylene glycol)3-azide to incorporate azide functional groups. By reacting azide-modified HA with a multi-arm poly(ethylene glycol) (PEG) functionalized with bicyclononyne, stabilizing triazole bonds are formed through strain-promoted azide-alkyne cycloaddition (SPAAC). Increasing the fraction of triazole bonds within the hydrogel network from 0% to 12% SPAAC substantially increases stability. The slow gelation kinetics of the SPAAC reaction in the 12% SPAAC hydrogel enables transient self-healing properties and a similar extrusion force as the 0% SPAAC hydrogel. Methyl-PEG4-hydrazide is then introduced to further slowdown network evolution, which temporarily lowers the extrusion force, improves printability, and increases post-extrusion mesenchymal stem cell viability and function in the 12% SPAAC hydrogel. This work demonstrates improved stability and temporal injectability of high molecular weight HA-PEG hydrogels for extrusion-based printing and cell delivery.
Collapse
Affiliation(s)
- Matthew W Jaeschke
- Department of Chemical and Biological Engineering, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Alexandra N Borelli
- Department of Chemical and Biological Engineering, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Nathaniel P Skillin
- Department of Chemical and Biological Engineering, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
5
|
Zhang V, Ou C, Kevlishvili I, Hemmingsen CM, Accardo JV, Kulik HJ, Kalow JA. Internal Catalysis in Dynamic Hydrogels with Associative Thioester Cross-Links. ACS Macro Lett 2024; 13:621-626. [PMID: 38700544 PMCID: PMC11328438 DOI: 10.1021/acsmacrolett.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Thioesters are an essential functional group in biosynthetic pathways, which has motivated their development as reactive handles in probes and peptide assembly. Thioester exchange is typically accelerated by catalysts or elevated pH. Here, we report the use of bifunctional aromatic thioesters as dynamic covalent cross-links in hydrogels, demonstrating that at physiologic pH in aqueous conditions, transthioesterification facilitates stress relaxation on the time scale of hundreds of seconds. We show that intramolecular hydrogen bonding is responsible for accelerated exchange, evident in both molecular kinetics and macromolecular stress relaxation. Drawing from concepts in the vitrimer literature, this system exemplifies how dynamic cross-links that exchange through an associative mechanism enable tunable stress relaxation without altering stiffness.
Collapse
Affiliation(s)
- Vivian Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States of America
| | - Carrie Ou
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States of America
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States of America
| | - Christina M Hemmingsen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States of America
| | - Joseph V Accardo
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States of America
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States of America
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States of America
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States of America
| |
Collapse
|
6
|
Ren H, Zhang Z, Chen X, He C. Stimuli-Responsive Hydrogel Adhesives for Wound Closure and Tissue Regeneration. Macromol Biosci 2024; 24:e2300379. [PMID: 37827713 DOI: 10.1002/mabi.202300379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Sutures and staplers, as gold standards for clinical wound closure, usually cause secondary tissue injury and require professional technicians and equipment. The noninvasive hydrogel adhesives are used in various biomedical applications, such as wound closure, tissue sealing, and tissue regeneration, due to their remarkable properties. Recently-developed hydrogel adhesives, especially stimuli-responsive hydrogels, have shown great potential owing to their advantages in regulating their performance and functions according to the wound situations or external conditions, thus allowing the wounds to heal gradually. However, comprehensive summary on stimuli-responsive hydrogels as tissue adhesives is rarely reported to date. This review focuses on the advances in the design of various stimuli-responsive hydrogel adhesives over the past decade, including the systems responsive to pH, temperature, photo, and enzymes. Their potential biomedical applications, such as skin closure, cardiovascular and liver hemostasis, and gastrointestinal sealing, are emphasized. Meanwhile, the challenges and future development of stimuli-responsive hydrogel adhesives are discussed. This review aims to provide meaningful insights for the further design of next-generation of hydrogel adhesives for wound closure and tissue regeneration.
Collapse
Affiliation(s)
- Hui Ren
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
7
|
Zhu Y, Tao Y. Stereoselective Ring-opening Polymerization of S-Carboxyanhydrides Using Salen Aluminum Catalysts: A Route to High-Isotactic Functionalized Polythioesters. Angew Chem Int Ed Engl 2024; 63:e202317305. [PMID: 38179725 DOI: 10.1002/anie.202317305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Polythioesters are important sustainable polymers with broad applications. The ring-opening polymerization (ROP) of S-Carboxyanhydrides (SCAs) can afford polythioesters with functional groups that are typically difficult to prepare by ROP of thiolactones. Typical methods involving organocatalysts, like dimethylaminopyridine (DMAP) and triethylamine (Et3 N), have been plagued by uncontrolled polymerization, including epimerization for most SCAs resulting in the loss of isotacticity. Here, we report the use of salen aluminum catalysts for the selective ROP of various SCAs without epimerization, affording functionalized polythioester with high molecular weight up to 37.6 kDa and the highest Pm value up to 0.99. Notably, the ROP of TlaSCA (SCA prepared from thiolactic acid) generates the first example of a isotactic crystalline poly(thiolactic acid), which exhibited a distinct Tm value of 152.6 °C. Effective ligand tailoring governs the binding affinity between the sulfide chain-end and the metal center, thereby maintaining the activity of organometallic catalysts and reducing the occurrence of epimerization reactions.
Collapse
Affiliation(s)
- Yinuo Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
8
|
Baravkar SB, Lu Y, Masoud AR, Zhao Q, He J, Hong S. Development of a Novel Covalently Bonded Conjugate of Caprylic Acid Tripeptide (Isoleucine-Leucine-Aspartic Acid) for Wound-Compatible and Injectable Hydrogel to Accelerate Healing. Biomolecules 2024; 14:94. [PMID: 38254694 PMCID: PMC10813153 DOI: 10.3390/biom14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Third-degree burn injuries pose a significant health threat. Safer, easier-to-use, and more effective techniques are urgently needed for their treatment. We hypothesized that covalently bonded conjugates of fatty acids and tripeptides can form wound-compatible hydrogels that can accelerate healing. We first designed conjugated structures as fatty acid-aminoacid1-amonoacid2-aspartate amphiphiles (Cn acid-AA1-AA2-D), which were potentially capable of self-assembling into hydrogels according to the structure and properties of each moiety. We then generated 14 novel conjugates based on this design by using two Fmoc/tBu solid-phase peptide synthesis techniques; we verified their structures and purities through liquid chromatography with tandem mass spectrometry and nuclear magnetic resonance spectroscopy. Of them, 13 conjugates formed hydrogels at low concentrations (≥0.25% w/v), but C8 acid-ILD-NH2 showed the best hydrogelation and was investigated further. Scanning electron microscopy revealed that C8 acid-ILD-NH2 formed fibrous network structures and rapidly formed hydrogels that were stable in phosphate-buffered saline (pH 2-8, 37 °C), a typical pathophysiological condition. Injection and rheological studies revealed that the hydrogels manifested important wound treatment properties, including injectability, shear thinning, rapid re-gelation, and wound-compatible mechanics (e.g., moduli G″ and G', ~0.5-15 kPa). The C8 acid-ILD-NH2(2) hydrogel markedly accelerated the healing of third-degree burn wounds on C57BL/6J mice. Taken together, our findings demonstrated the potential of the Cn fatty acid-AA1-AA2-D molecular template to form hydrogels capable of promoting the wound healing of third-degree burns.
Collapse
Affiliation(s)
- Sachin B. Baravkar
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| | - Yan Lu
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| | - Abdul-Razak Masoud
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| | - Qi Zhao
- NMR Laboratory, Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Jibao He
- Microscopy Laboratory, Tulane University, New Orleans, LA 70118, USA
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Chen B, Zhu D, Zhu R, Wang C, Cui J, Zheng Z, Wang X. Universal adhesion using mussel foot protein inspired hydrogel with dynamic interpenetration for topological entanglement. Int J Biol Macromol 2024; 256:127868. [PMID: 37939758 DOI: 10.1016/j.ijbiomac.2023.127868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Achieving adhesion of hydrogels to universal materials with desirable strength remains a challenge despite emerging application of hydrogels. Herein we present a mussel foot protein (Mfp) inspired polyelectrolyte hydrogel of poly(ethylenimine)/poly(acrylic acid)-dopamine (PEI/PAADA) developed for universal tough adhesion. The highly-concentrated electrostatic and hydrogen-bonding interactions in PEI/PAADA hydrogel resulted in a tensile strength, strain at break, and toughness of 0.297 MPa, 2784 % and 5.440 MJ m-3, respectively. Moreover, the hydrogel can heal itself from physical damages, even can be recycled after totally dried via rehydration because of the high flexibility and reversibility of its dynamic bonds. Combining the strategies of topological stitching and direct bonding, Mfp-derived catechol and PEI/PAA backbone in PEI/PAADA corporately facilitated robust adhesion of universal materials with shear strength of up to 4.4 MPa and peeling strength of 870 J m-2, which is over 10 times greater than that of commercial fibrin gel. The adhesive also exhibited self-healing capability for at least 5 cycles, good stability in 1 M NaCl solution and characteristic debonding catalyzed by calcium. Moreover, in vitro cell behavior and in vivo wound healing assays suggested the potential of PEI/PAADA as wound dressing.
Collapse
Affiliation(s)
- Buyun Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dandan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruixin Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenhao Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Zheng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinling Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
10
|
Chen H, Zheng C, Zhang F, Zhang Z, Zhang L. One-step synthesis of Janus hydrogel via heterogeneous distribution of sodium α-linoleate driven by surfactant self-aggregation. SCIENCE ADVANCES 2023; 9:eadj3186. [PMID: 37939195 PMCID: PMC10631740 DOI: 10.1126/sciadv.adj3186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023]
Abstract
Janus adhesive hydrogels have one-sided adhesive properties and hold promising applications in the health care field. However, a simple method for synthesizing Janus hydrogels is still lacking. In this study, we introduce an innovative method to prepare Janus hydrogels by harnessing a fundamental phenomenon: the self-aggregation of surfactants at high concentrations at the water-air interface. By combining a small amount [0.8 to 3.2 weight %, relative to mass of acrylamide (AM)] of sodium α-linoleate (LAS) with AM through free radical polymerization, we have synthesized Janus adhesive hydrogels. The Janus hydrogels exhibit remarkable adhesive strength and adhesive differences, with the top side (84 J m-2) being 21 times stronger than the bottom side, also an excellent elongation rate. Through comprehensive experiments, including chemical composition, surface morphology, and molecular dynamics (MD) simulations, we thoroughly investigate the mechanisms of the hydrogel's heterogeneous adhesion. This study presents an easy, efficient, and innovative method for preparing one-sided adhesive hydrogels.
Collapse
Affiliation(s)
- Huowen Chen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chuchu Zheng
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fusheng Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhuqin Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | | |
Collapse
|
11
|
Princen K, Marien N, Guedens W, Graulus GJ, Adriaensens P. Hydrogels with Reversible Crosslinks for Improved Localised Stem Cell Retention: A Review. Chembiochem 2023; 24:e202300149. [PMID: 37220343 DOI: 10.1002/cbic.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Successful stem cell applications could have a significant impact on the medical field, where many lives are at stake. However, the translation of stem cells to the clinic could be improved by overcoming challenges in stem cell transplantation and in vivo retention at the site of tissue damage. This review aims to showcase the most recent insights into developing hydrogels that can deliver, retain, and accommodate stem cells for tissue repair. Hydrogels can be used for tissue engineering, as their flexibility and water content makes them excellent substitutes for the native extracellular matrix. Moreover, the mechanical properties of hydrogels are highly tuneable, and recognition moieties to control cell behaviour and fate can quickly be introduced. This review covers the parameters necessary for the physicochemical design of adaptable hydrogels, the variety of (bio)materials that can be used in such hydrogels, their application in stem cell delivery and some recently developed chemistries for reversible crosslinking. Implementing physical and dynamic covalent chemistry has resulted in adaptable hydrogels that can mimic the dynamic nature of the extracellular matrix.
Collapse
Affiliation(s)
- Ken Princen
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Neeve Marien
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Geert-Jan Graulus
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
12
|
Desai S, Carberry BJ, Anseth KS, Schultz KM. Characterizing rheological properties and microstructure of thioester networks during degradation. SOFT MATTER 2023; 19:7429-7442. [PMID: 37743747 PMCID: PMC10714141 DOI: 10.1039/d3sm00864a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Covalent adaptable networks are designed for applications including cell and drug delivery and tissue regeneration. These applications require network degradation at physiological conditions and on a physiological timescale with microstructures that can: (1) support, protect and deliver encapsulated cells or molecules and (2) provide structure to surrounding tissue. Due to this, the evolving microstructure and rheological properties during scaffold degradation must be characterized. In this work, we characterize degradation of covalent adaptable poly(ethylene glycol) (PEG)-thioester networks with different amounts of excess thiol. Networks are formed between PEG-thiol and PEG-thioester norbornene using photopolymerization. These networks are adaptable because of a thioester exchange reaction that takes place in the presence of excess thiol. We measure degradation of PEG-thioester networks with L-cysteine using multiple particle tracking microrheology (MPT). MPT measures the Brownian motion of fluorescent probe particles embedded in a material and relates this motion to rheological properties. Using time-cure superposition (TCS), we characterize the microstructure of these networks at the gel-sol phase transition by calculating the critical relaxation exponent, n, for each network with different amounts of excess thiol. Based on the measured n values, networks formed with 0% and 50% excess thiol are tightly cross-linked and elastic in nature. While networks formed with 100% excess are similar to ideal, percolated networks, which have equal viscous and elastic components. MPT measurements during degradation of these networks also measure a non-monotonic increase in probe motility. We hypothesize that this is network rearrangement near the phase transition. We then measure macroscopic material properties including the equilibrium modulus and stress relaxation. We measure a trend in bulk network properties that agrees with the values of n. Elastic modulus and stress relaxation measurements show that networks with 50% excess thiol are more elastic compared to the other two networks. As the amount of excess thiol is increased from 0% to 50%, the networks become more elastic. Further increasing excess thiol to 100% reduces the elastically effective cross-links. We hypothesize that these properties are due to network non-idealities, resulting in networks with 50% excess thiol that are more elastic. This work characterizes dynamic rheological properties during degradation, which mimics processes that could occur during implantation. This work provides information that can be used in the future design of implantable materials enabling both the rheological properties and timescale of degradation to be specified.
Collapse
Affiliation(s)
- Shivani Desai
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E Morton St, Bethlehem, PA, 18015, USA.
| | - Benjamin J Carberry
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E Morton St, Bethlehem, PA, 18015, USA.
| |
Collapse
|
13
|
Zhang Y, Wang Z, Sun Q, Li Q, Li S, Li X. Dynamic Hydrogels with Viscoelasticity and Tunable Stiffness for the Regulation of Cell Behavior and Fate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5161. [PMID: 37512435 PMCID: PMC10386333 DOI: 10.3390/ma16145161] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
The extracellular matrix (ECM) of natural cells typically exhibits dynamic mechanical properties (viscoelasticity and dynamic stiffness). The viscoelasticity and dynamic stiffness of the ECM play a crucial role in biological processes, such as tissue growth, development, physiology, and disease. Hydrogels with viscoelasticity and dynamic stiffness have recently been used to investigate the regulation of cell behavior and fate. This article first emphasizes the importance of tissue viscoelasticity and dynamic stiffness and provides an overview of characterization techniques at both macro- and microscale. Then, the viscoelastic hydrogels (crosslinked via ion bonding, hydrogen bonding, hydrophobic interactions, and supramolecular interactions) and dynamic stiffness hydrogels (softening, stiffening, and reversible stiffness) with different crosslinking strategies are summarized, along with the significant impact of viscoelasticity and dynamic stiffness on cell spreading, proliferation, migration, and differentiation in two-dimensional (2D) and three-dimensional (3D) cell cultures. Finally, the emerging trends in the development of dynamic mechanical hydrogels are discussed.
Collapse
Affiliation(s)
- Yuhang Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zhuofan Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shaohui Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
14
|
Gokaltun AA, Fan L, Mazzaferro L, Byrne D, Yarmush ML, Dai T, Asatekin A, Usta OB. Supramolecular hybrid hydrogels as rapidly on-demand dissoluble, self-healing, and biocompatible burn dressings. Bioact Mater 2023; 25:415-429. [PMID: 37056249 PMCID: PMC10087110 DOI: 10.1016/j.bioactmat.2022.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022] Open
Abstract
Despite decades of efforts, state-of-the-art synthetic burn dressings to treat partial-thickness burns are still far from ideal. Current dressings adhere to the wound and necessitate debridement. This work describes the first "supramolecular hybrid hydrogel (SHH)" burn dressing that is biocompatible, self-healable, and on-demand dissoluble for easy and trauma-free removal, prepared by a simple, fast, and scalable method. These SHHs leverage the interactions of a custom-designed cationic copolymer via host-guest chemistry with cucurbit[7]uril and electrostatic interactions with clay nanosheets coated with an anionic polymer to achieve enhanced mechanical properties and fast on-demand dissolution. The SHHs show high mechanical strength (>50 kPa), self-heal rapidly in ∼1 min, and dissolve quickly (4-6 min) using an amantadine hydrochloride (AH) solution that breaks the supramolecular interactions in the SHHs. Neither the SHHs nor the AH solution has any adverse effects on human dermal fibroblasts or epidermal keratinocytes in vitro. The SHHs also do not elicit any significant cytokine response in vitro. Furthermore, in vivo murine experiments show no immune or inflammatory cell infiltration in the subcutaneous tissue and no change in circulatory cytokines compared to sham controls. Thus, these SHHs present excellent burn dressing candidates to reduce the time of pain and time associated with dressing changes.
Collapse
Affiliation(s)
- A. Aslihan Gokaltun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Medford, MA, 02474, USA
- Department of Chemical Engineering, Hacettepe University, 06532, Beytepe, Ankara, Turkey
| | - Letao Fan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
| | - Luca Mazzaferro
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Medford, MA, 02474, USA
| | - Delaney Byrne
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ, 08854, USA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Medford, MA, 02474, USA
| | - O. Berk Usta
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
| |
Collapse
|
15
|
Liang H, Wei Y, Ji Y. Magnetic-responsive Covalent Adaptable Networks. Chem Asian J 2023; 18:e202201177. [PMID: 36645376 DOI: 10.1002/asia.202201177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
Covalent adaptable networks (CANs) are reprocessable polymers whose structural arrangement is based on the recombination of dynamic covalent bonds. Composite materials prepared by incorporating magnetic particles into CANs attract much attention due to their remote and precise control, fast response speed, high biological safety and strong penetration of magnetic stimuli. These properties often involve magnetothermal effect and direct magnetic-field guidance. Besides, some of them can also respond to light, electricity or pH values. Thus, they are favorable for soft actuators since various functions are achieved such as magnetic-assisted self-healing (heating or at ambient temperature), welding (on land or under water), shape-morphing, and so on. Although magnetic CANs just start to be studied in recent two years, their advances are promised to expand the practical applications in both cutting-edge academic and engineering fields. This review aims to summarize recent progress in magnetic-responsive CANs, including their design, synthesis and application.
Collapse
Affiliation(s)
- Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University Chung-Li, 32023, Taiwan, P. R. China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
16
|
Arkas M, Vardavoulias M, Kythreoti G, Giannakoudakis DA. Dendritic Polymers in Tissue Engineering: Contributions of PAMAM, PPI PEG and PEI to Injury Restoration and Bioactive Scaffold Evolution. Pharmaceutics 2023; 15:524. [PMID: 36839847 PMCID: PMC9966633 DOI: 10.3390/pharmaceutics15020524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The capability of radially polymerized bio-dendrimers and hyperbranched polymers for medical applications is well established. Perhaps the most important implementations are those that involve interactions with the regenerative mechanisms of cells. In general, they are non-toxic or exhibit very low toxicity. Thus, they allow unhindered and, in many cases, faster cell proliferation, a property that renders them ideal materials for tissue engineering scaffolds. Their resemblance to proteins permits the synthesis of derivatives that mimic collagen and elastin or are capable of biomimetic hydroxy apatite production. Due to their distinctive architecture (core, internal branches, terminal groups), dendritic polymers may play many roles. The internal cavities may host cell differentiation genes and antimicrobial protection drugs. Suitable terminal groups may modify the surface chemistry of cells and modulate the external membrane charge promoting cell adhesion and tissue assembly. They may also induce polymer cross-linking for healing implementation in the eyes, skin, and internal organ wounds. The review highlights all the different categories of hard and soft tissues that may be remediated with their contribution. The reader will also be exposed to the incorporation of methods for establishment of biomaterials, functionalization strategies, and the synthetic paths for organizing assemblies from biocompatible building blocks and natural metabolites.
Collapse
Affiliation(s)
- Michael Arkas
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece
| | | | - Georgia Kythreoti
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece
| | | |
Collapse
|
17
|
Liu Y, Su G, Zhang R, Dai R, Li Z. Nanomaterials-Functionalized Hydrogels for the Treatment of Cutaneous Wounds. Int J Mol Sci 2022; 24:336. [PMID: 36613778 PMCID: PMC9820076 DOI: 10.3390/ijms24010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrogels have been utilized extensively in the field of cutaneous wound treatment. The introduction of nanomaterials (NMs), which are a big category of materials with diverse functionalities, can endow the hydrogels with additional and multiple functions to meet the demand for a comprehensive performance in wound dressings. Therefore, NMs-functionalized hydrogels (NMFHs) as wound dressings have drawn intensive attention recently. Herein, an overview of reports about NMFHs for the treatment of cutaneous wounds in the past five years is provided. Firstly, fabrication strategies, which are mainly divided into physical embedding and chemical synthesis of the NMFHs, are summarized and illustrated. Then, functions of the NMFHs brought by the NMs are reviewed, including hemostasis, antimicrobial activity, conductivity, regulation of reactive oxygen species (ROS) level, and stimulus responsiveness (pH responsiveness, photo-responsiveness, and magnetic responsiveness). Finally, current challenges and future perspectives in this field are discussed with the hope of inspiring additional ideas.
Collapse
Affiliation(s)
- Yangkun Liu
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Gongmeiyue Su
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Ruoyao Zhang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Zhao Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
18
|
Das P, Ganguly S, Saravanan A, Margel S, Gedanken A, Srinivasan S, Rajabzadeh AR. Naturally Derived Carbon Dots In Situ Confined Self-Healing and Breathable Hydrogel Monolith for Anomalous Diffusion-Driven Phytomedicine Release. ACS APPLIED BIO MATERIALS 2022; 5:5617-5633. [PMID: 36480591 DOI: 10.1021/acsabm.2c00664] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescent nanocarbons are well-proficient nanomaterials because of their optical properties and surface engineering. Herein, Apium graveolens-derived carbon dots (ACDs) have been synthesized by a one-step hydrothermal process without using any surplus vigorous chemicals or ligands. ACDs were captured via an in situ gelation reaction to form a semi-interpenetrating polymer network system showing mechanical robustness, fluorescent behavior, and natural adhesivity. ACDs-reinforced hydrogels were tested against robust uniaxial stress, repeated mechanical stretching, thixotropy, low creep, and fast strain recovery, confirming their elastomeric sustainability. Moreover, the room-temperature self-healing behavior was observed for the ACDs-reinforced hydrogels, with a healing efficacy of more than 45%. Water imbibition through hydrogel surfaces was digitally monitored via "breathing" and "accelerated breathing" behaviors. The phytomedicine release from the hydrogels was tuned by the ACDs' microstructure regulatory activity, resulting in better control of the diffusion rate compared to conventional chemical hydrogels. Finally, the phytomedicine-loaded hydrogels were found to be excellent bactericidal materials eradicating more than 85% of Gram-positive and -negative bacteria. The delayed network rupturing, superstretchability, fluorescent self-healing, controlled release, and antibacterial behavior could make this material an excellent alternative to soft biomaterials and soft robotics.
Collapse
Affiliation(s)
- Poushali Das
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, OntarioL8S 4L8, Canada
| | - Sayan Ganguly
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Arumugam Saravanan
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Shlomo Margel
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Seshasai Srinivasan
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, OntarioL8S 4L8, Canada.,W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, OntarioL8S 4L7, Canada
| | - Amin Reza Rajabzadeh
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, OntarioL8S 4L8, Canada.,W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, OntarioL8S 4L7, Canada
| |
Collapse
|
19
|
Zhu H, Liu R, Shang Y, Sun L. Polylysine complexes and their biomedical applications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Han Y, Cao Y, Lei H. Dynamic Covalent Hydrogels: Strong yet Dynamic. Gels 2022; 8:577. [PMID: 36135289 PMCID: PMC9498565 DOI: 10.3390/gels8090577] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrogels are crosslinked polymer networks with time-dependent mechanical response. The overall mechanical properties are correlated with the dynamics of the crosslinks. Generally, hydrogels crosslinked by permanent chemical crosslinks are strong but static, while hydrogels crosslinked by physical interactions are weak but dynamic. It is highly desirable to create synthetic hydrogels that possess strong mechanical stability yet remain dynamic for various applications, such as drug delivery cargos, tissue engineering scaffolds, and shape-memory materials. Recently, with the introduction of dynamic covalent chemistry, the seemingly conflicting mechanical properties, i.e., stability and dynamics, have been successfully combined in the same hydrogels. Dynamic covalent bonds are mechanically stable yet still capable of exchanging, dissociating, or switching in response to external stimuli, empowering the hydrogels with self-healing properties, injectability and suitability for postprocessing and additive manufacturing. Here in this review, we first summarize the common dynamic covalent bonds used in hydrogel networks based on various chemical reaction mechanisms and the mechanical strength of these bonds at the single molecule level. Next, we discuss how dynamic covalent chemistry makes hydrogel materials more dynamic from the materials perspective. Furthermore, we highlight the challenges and future perspectives of dynamic covalent hydrogels.
Collapse
Affiliation(s)
- Yueying Han
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Li H, Guillaume SM, Carpentier J. Polythioesters Prepared by Ring-Opening Polymerization of Cyclic Thioesters and Related Monomers. Chem Asian J 2022; 17:e202200641. [PMID: 35816010 PMCID: PMC9543045 DOI: 10.1002/asia.202200641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Indexed: 11/11/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyesters with a wide range of applications; in particular, they currently stand as promising alternatives to conventional polyolefin-based "plastics". The introduction of sulfur atoms within the PHAs backbone can endow the resulting polythioesters (PTEs) with differentiated, sometimes enhanced thermal, optical and mechanical properties, thereby widening their versatility and use. Hence, PTEs have been gaining increasing attention over the past half-decade. This review highlights recent advances towards the synthesis of well-defined PTEs by ring-opening polymerization (ROP) of cyclic thioesters - namely thiolactones - as well as of S-carboxyanhydrides and thionolactones; it also covers the ring-opening copolymerization (ROCOP) of cyclic thioanhydrides or thiolactones with epoxides or episulfides. Most of the ROP reactions described are of anionic type, mediated by inorganic, organic or organometallic initiators/catalysts, along with a few enzymatic reactions as well. Emphasis is placed on the reactivity of the thio monomers, in relation to their ring-size ranging from 4- to 5-, 6- and 7-membered cycles, the nature of the catalyst/initiating systems implemented and their efficiency in terms of activity and control over the PTE molar mass, dispersity, topology, and microstructure.
Collapse
Affiliation(s)
- Hui Li
- Univ RennesCNRSISCR-UMR 622635000RennesFrance
| | | | | |
Collapse
|
22
|
Dissolvable zinc oxide nanoparticle-loaded wound dressing with preferential exudate absorption and hemostatic features. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Li C, Duan W, Zhu Y, Li G, Gao M, Weng Z, Zhu Y, Bu Y. Cohesion Design-Led Tough Sealants with Controllably Dissolvable Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34415-34426. [PMID: 35857427 DOI: 10.1021/acsami.2c08328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Leakage is a common complication of surgeries and injuries, causing pain and increasing the economic burden on patients. Although there are commercially available sealants for leakage prevention, few of them are entirely satisfactory due to disease transmission, high cost, and poor biocompatibility. In addition, none of them can be controllably removed for further healthcare. In this paper, by using cohesion design, a sealant based on amino-modified gelatin (AG) and bi-polyethylene glycol N-hydroxysuccinimide active ester (Bi-PEG-SS) was fabricated. To increase the bursting pressure, the cohesion strength was enhanced by increasing the cross-linking density of the sealant. To endow the sealant with controllably dissolvable properties, the smart succinic ester units were introduced into the cohesion network. Both the in vitro and in vivo experiments showed that this sealant processed high bursting pressure with efficient hemorrhage control. Moreover, no side effects were observed after 7 days of in vivo sealing, including little inflammation and fibrogenesis. These results, together with the easy availability of the raw materials, revealed that this sealant might be a promising alternative for leakage sealing.
Collapse
Affiliation(s)
- Chaowei Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wanglin Duan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ye Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Guanying Li
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710061, China
| | - Min Gao
- Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuan Zhu
- Department of Gynecology, The Affiliated Maternal and Child Healthcare Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
| | - Yazhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710061, China
| |
Collapse
|
24
|
Li X, Chen H, Peng X, Li D, Wang W, Chen M, Hu D, Long S, Huang Y. One‐Pot Synthesis of Polyelectrolyte‐triazine Gels Using Cation‐
π
Interactions and Multiple Hydrogen Bonds for Adjustable Interfacial Adhesion. Macromol Rapid Commun 2022; 43:e2200464. [DOI: 10.1002/marc.202200464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Xuefeng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Hanyu Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Xueyin Peng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Dapeng Li
- College of Engineering University of Massachusetts Dartmouth MA 02747 United States
| | - Wei Wang
- School and Hospital of Stomatology China Medical University Shenyang 110002 China
| | - Mengfan Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Dezheng Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Shijun Long
- Hubei Province Innovation Center for Talent Introduction of New Materials and Green Manufacturing Hubei University of Technology Wuhan 430068 China
| | - Yiwan Huang
- Hubei Province Innovation Center for Talent Introduction of New Materials and Green Manufacturing Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
25
|
Bu Y, Pandit A. Cohesion mechanisms for bioadhesives. Bioact Mater 2022; 13:105-118. [PMID: 35224295 PMCID: PMC8843969 DOI: 10.1016/j.bioactmat.2021.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Due to the nature of non-invasive wound closure, the ability to close different forms of leaks, and the potential to immobilize various devices, bioadhesives are altering clinical practices. As one of the vital factors, bioadhesives' strength is determined by adhesion and cohesion mechanisms. As well as being essential for adhesion strength, the cohesion mechanism also influences their bulk functions and the way the adhesives can be applied. Although there are many published reports on various adhesion mechanisms, cohesion mechanisms have rarely been addressed. In this review, we have summarized the most used cohesion mechanisms. Furthermore, the relationship of cohesion strategies and adhesion strategies has been discussed, including employing the same functional groups harnessed for adhesion, using combinational approaches, and exploiting different strategies for cohesion mechanism. By providing a comprehensive insight into cohesion strategies, the paper has been integrated to offer a roadmap to facilitate the commercialization of bioadhesives.
Collapse
Affiliation(s)
- Yazhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland, Galway, Ireland
| |
Collapse
|
26
|
Altinbasak I, Kocak S, Sanyal R, Sanyal A. Fast-Forming Dissolvable Redox-Responsive Hydrogels: Exploiting the Orthogonality of Thiol-Maleimide and Thiol-Disulfide Exchange Chemistry. Biomacromolecules 2022; 23:3525-3534. [PMID: 35696518 PMCID: PMC9472223 DOI: 10.1021/acs.biomac.2c00209] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Fast-forming yet
easily dissolvable hydrogels (HGs) have potential
applications in wound healing, burn incidences, and delivery of therapeutic
agents. Herein, a combination of a thiol–maleimide conjugation
and thiol–disulfide exchange reaction is employed to fabricate
fast-forming HGs which rapidly dissolve upon exposure to dithiothreitol
(DTT), a nontoxic thiol-containing hydrophilic molecule. In particular,
maleimide disulfide-terminated telechelic linear poly(ethylene glycol)
(PEG) polymer and PEG-based tetrathiol macromonomers are employed
as gel precursors, which upon mixing yield HGs within a minute. The
selectivity of the thiol–maleimide conjugation in the presence
of a disulfide linkage was established through 1H NMR spectroscopy
and Ellman’s test. Rapid degradation of HGs in the presence
of thiol-containing solution was evident from the reduction in storage
modulus. HGs encapsulated with fluorescent dye-labeled dextran polymers
and bovine serum albumin were fabricated, and their cargo release
was investigated under passive and active conditions upon exposure
to DTT. One can envision that the rapid gelation and fast on-demand
dissolution under relatively benign conditions would make these polymeric
materials attractive for a range of biomedical applications.
Collapse
Affiliation(s)
- Ismail Altinbasak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Salli Kocak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.,Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.,Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| |
Collapse
|
27
|
Shi J, Wang D, Wang H, Yang X, Gu S, Wang Y, Chen Z, Chen Y, Gao J, Yu L, Ding J. An injectable hemostatic PEG-based hydrogel with on-demand dissolution features for emergency care. Acta Biomater 2022; 145:106-121. [PMID: 35436591 DOI: 10.1016/j.actbio.2022.04.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
Uncontrolled bleeding from internal noncompressible wounds is a major cause of prehospital death in military personnel and civilian populations. An ideal hemostatic sealant for emergency care should quickly control blood loss and be removed without debridement for the follow-up treatment in the operating room, yet the lack of suitable materials to meet both requirements is the bottleneck. Herein, we suggest an injectable and dissolvable hydrogel sealant for hemorrhage management of noncompressible wounds. To this end, a 4-arm poly(ethylene glycol) (PEG) crosslinker modified with thioester linkages and terminated with aldehyde groups is designed and synthesized, and to modulate the gel properties and make it suitable as a hemostatic sealant, a mixed amino component composed of poly(ethylene imine) and adipic dihydrazide is employed to react with the PEG crosslinker to form the adhesive and elastic sealant for the first time. The aldehyde groups provide the adhesion to the tissues, and the amino component affords the procoagulant ability. More importantly, the thioester moieties allow the on-demand dissolution of sealant via a thiol-thioester exchange reaction upon exposure to an exogenous thiolate solution. In the rat femoral artery puncture and liver injury models, the administration of the hydrogel sealant dramatically reduces blood loss, and its subsequent removal does not induce rebleeding. Consequently, this hydrogel sealant with the unique feature of on-demand dissolution can not only efficiently control bleeding in emergent scenarios, but also allow non-traumatic re-exposure of wounds during subsequent surgical care. STATEMENT OF SIGNIFICANCE: Sealants, adhesives or hemostatic dressings currently used in emergency situations not only require manual pressure to control bleeding, but also face removal by cutting and mechanical debridement to enable eventual surgical treatment. In this study, we design and develop an injectable and adhesive hydrogel sealant with good procoagulant capacity and on-demand dissolution feature. The application of the hydrogel sealant substantially reduces bleeding from internal noncompressible wounds without the need for direct pressure, and demonstrates for the first time that its controlled removal without debridement does not cause rebleeding. Considering that there are currently no commercial wound sealant systems with the feature of on-demand dissolution, the hydrogel sealant developed by us is expected to address an unmet clinical need.
Collapse
Affiliation(s)
- Jiayue Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 200438, China
| | - Danni Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 200438, China
| | - Hancheng Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 200438, China
| | - Xiaowei Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 200438, China
| | - Siyi Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 200438, China
| | - Yaoben Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 200438, China
| | - Zhiyong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 200438, China
| | - Yu Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 200438, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 200438, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 200438, China.
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 200438, China
| |
Collapse
|
28
|
Li H, Ollivier J, Guillaume SM, Carpentier JF. Tacticity Control of Cyclic Poly(3-Thiobutyrate) Prepared by Ring-Opening Polymerization of Racemic β-Thiobutyrolactone. Angew Chem Int Ed Engl 2022; 61:e202202386. [PMID: 35286752 DOI: 10.1002/anie.202202386] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 12/19/2022]
Abstract
We report here on the ring-opening polymerization (ROP) of racemic β-thiobutyrolactone (rac-TBL), as the first chemical synthesis of poly(3-thiobutyrolactone) (P3TB), the thioester analogue of the ubiquitous poly(3-hydroxybutyrate) (P3HB). The ROP reactions proceed very fast (TOF >12 000 h-1 at r.t.) in the presence of various metal-based catalysts. Remarkably, catalyst systems based on non-chiral yttrium complexes stabilized by tetradentate amino alkoxy- or diamino-bis(phenolate) ligands {ONXOR1,R2 }2- (X=O, N) provide access to cyclic P3TB with either high isoselectivity (Pm up to 0.90) or high syndiotactic bias (Pr up to 0.70). The stereoselectivity can be controlled by manipulation of the substituents on the ligand platform and adequate choice of the reaction solvent and temperature as well. The cyclic polymer topology is evidenced by MALDI-ToF MS, NMR and TGA. Highly isotactic cyclic P3TB is a semi-crystalline material as revealed by DSC.
Collapse
Affiliation(s)
- Hui Li
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000, Rennes, France
| | | | | | | |
Collapse
|
29
|
Marks HL, Cook K, Roussakis E, Cascales JP, Korunes‐Miller JT, Grinstaff MW, Evans CL. Quantitative Luminescence Photography of a Swellable Hydrogel Dressing with a Traffic-Light Response to Oxygen. Adv Healthc Mater 2022; 11:e2101605. [PMID: 35120400 DOI: 10.1002/adhm.202101605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/24/2021] [Indexed: 12/19/2022]
Abstract
Sensor-integrated wound dressings are emerging tools applicable to a wide variety of medical applications from emergency triage to at-home monitoring. Uncomfortable, unnecessary wound dressing changes may be avoided by providing quantitative insight into tissue characteristics related to wound healing such as tissue oxygenation, pH, and exudate/transudate volume. Here, a simple cost-effective methodology for quantifying oxygen and pH in a swellable hydrogel dressing using a single photograph is presented. The red and green luminescence of a novel dendritic polyamine Pt-porphyrin and fluorescein conjugate quantitatively responds to oxygen and pH, respectively, and enables robust sensing. The porphyrin conjugate, when combined with a four-arm star polyethylene glycol (PEG) amine polymer, rapidly crosslinks at room temperature with an N-hydroxysuccinimide (NHS)-PEG crosslinker to form a color-changing hydrogel dressing with tunable swelling capabilities applicable to a variety of wound environments. An inexpensive digital single-lens reflex (DSLR) camera modified with bandpass filters captures the hydrogel luminescence using simple macroscopic photography, and conversion to HSB colorspace allows for intensity-independent image analysis of the hydrogels' dual modality response. The hydrogel formulation exhibits a robust and validated visible red-orange-green "traffic light" spectrum in response to oxygen changes, regardless of swelling state, pH, or autofluorescence from skin, thereby enabling the clinician friendly naked-eye feedback.
Collapse
Affiliation(s)
- Haley L. Marks
- Wellman Center for Photomedicine Massachusetts General Hospital Harvard Medical School Boston MA 02129 USA
| | - Katherine Cook
- Department of Chemistry Boston University Boston MA 02215 USA
| | - Emmanuel Roussakis
- Wellman Center for Photomedicine Massachusetts General Hospital Harvard Medical School Boston MA 02129 USA
| | - Juan Pedro Cascales
- Wellman Center for Photomedicine Massachusetts General Hospital Harvard Medical School Boston MA 02129 USA
| | | | - Mark W. Grinstaff
- Department of Chemistry Boston University Boston MA 02215 USA
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
| | - Conor L. Evans
- Wellman Center for Photomedicine Massachusetts General Hospital Harvard Medical School Boston MA 02129 USA
| |
Collapse
|
30
|
Li H, Ollivier J, Guillaume SM, Carpentier J. Tacticity Control of Cyclic Poly(3‐Thiobutyrate) Prepared by Ring‐Opening Polymerization of Racemic β‐Thiobutyrolactone. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hui Li
- Univ Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
| | | | | | | |
Collapse
|
31
|
Carberry BJ, Hernandez JJ, Dobson A, Bowman CN, Anseth KS. Kinetic Analysis of Degradation in Thioester Cross-linked Hydrogels as a Function of Thiol Concentration, p Ka, and Presentation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin J. Carberry
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Juan J. Hernandez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Adam Dobson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
32
|
Li W, Jiang L, Wu S, Yang S, Ren L, Cheng B, Xia J. A Shape-Programmable Hierarchical Fibrous Membrane Composite System to Promote Wound Healing in Diabetic Patients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107544. [PMID: 35038225 DOI: 10.1002/smll.202107544] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 05/24/2023]
Abstract
Chronic wound infection is one of the critical complications of diabetes and is difficult to cure. Although great efforts have been made, the development of special dressings that serve as therapeutic strategies to effectively promote wound healing in diabetic individuals remains a major challenge. In this study, a shape-programmable hierarchical fibrous membrane composite system is developed for synergistic modulation of the inflammatory microenvironment to treat chronically infected wounds. The system comprises a functional layer and a shape-programmable backing layer. A temperature-responsive shape-memory mechanism achieves biaxial mechanically active contractions of diabetic wounds in a programmable manner. To summarize, the membrane system combines antimicrobial activity, controlled drug release according to the need of wound healing, mechanical modulation with shape-programmable, robust adhesion, and on-demand debonding to biological tissue to rationally guide chronic wound management. A synergistic combination of antibacterial fiber network and released drugs shows broad-spectrum antibacterial activity. In vitro and in vivo evaluations indicate the dressing efficiency in promoting and supporting wound healing. The insights from this study demonstrate the effectiveness of a hierarchical composite membrane system with shape-programmability as a potential treatment in the care of diabetic wounds.
Collapse
Affiliation(s)
- Weichang Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, P. R. China
| | - Laibo Jiang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, P. R. China
| | - Shujie Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, P. R. China
| | - Shiwen Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, P. R. China
| | - Lin Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, P. R. China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, P. R. China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, P. R. China
| |
Collapse
|
33
|
Bai Q, Teng L, Zhang X, Dong C. Multifunctional Single-Component Polypeptide Hydrogels: The Gelation Mechanism, Superior Biocompatibility, High Performance Hemostasis, and Scarless Wound Healing. Adv Healthc Mater 2022; 11:e2101809. [PMID: 34865324 DOI: 10.1002/adhm.202101809] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Polymeric hydrogels have been increasingly studied for wound sealants, adhesives, hemostats, and dressings, however, multi-component gelation, adhesion-causing tissue damage, inefficient hemostasis, and skin scarring in wound healing hamper their advances. So it is urgent to develop multifunctional single-component polymeric hydrogels with benign tissue detachment, high performance hemostasis, and scarless wound healing attributes. Herein, a dopamine-modified poly(l-glutamate) hydrogel at an ultralow concentration of 0.1 wt% is serendipitously constructed by physical treatments, in which a gelation mechanism is disclosed via oxidative catechol-crosslinking and sequential dicatechol-carboxyl hydrogen-bonding interactions. The covalent/H-bonding co-crosslinked and highly negative-charged networks enable the polypeptide hydrogels thermo-, salt-, urea-resistant, self-healing, injectable, and adhesive yet detachable. In vitro and in vivo assays demonstrate they have superior biocompatibility with ≈0.5% hemolysis and negligible inflammation. The polypeptide/graphene oxide hybrid hydrogel performs fast and efficient hemostasis of 12 s and 1.4% blood loss, surpassing some hydrogels and commercial counterparts. Remarkably, the polypeptide hydrogels achieve scarless and full wound healing and regenerate thick dermis with some embedded hair follicles within 14 days, presenting superior full-thickness wound healing and skin scar-preventing capabilities. This work provides a simple and practicable method to construct multifunctional polypeptide hemostatic and healing hydrogels that overcome some above-mentioned hurdles.
Collapse
Affiliation(s)
- Qian Bai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lin Teng
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xueliang Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chang‐Ming Dong
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
34
|
Li Z, Zhou Y, Li T, Zhang J, Tian H. Stimuli‐responsive hydrogels: Fabrication and biomedical applications. VIEW 2022. [DOI: 10.1002/viw.20200112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ziyuan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Yanzi Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Tianyue Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| |
Collapse
|
35
|
Zeng Q, Qi X, Shi G, Zhang M, Haick H. Wound Dressing: From Nanomaterials to Diagnostic Dressings and Healing Evaluations. ACS NANO 2022; 16:1708-1733. [PMID: 35050565 DOI: 10.1021/acsnano.1c08411] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wound dressings based on nanomaterials play a crucial role in wound treatment and are widely used in a whole range of medical settings, from minor to life-threatening tissue injuries. This article presents an educational review on the accumulating knowledge in this multidisciplinary area to lay out the challenges and opportunities that lie ahead and ignite the further and faster development of clinically valuable technologies. The review analyzes the functional advantages of nanomaterial-based gauzes and hydrogels as well as hybrid structures thereof. On this basis, the review presents state-of-the-art advances to transfer the (semi)blind approaches to the evaluation of a wound state to smart wound dressings that enable real-time monitoring and diagnostic functions that could help in wound evaluation during healing. This review explores the translation of nanomaterial-based wound dressings and related medical aspects into real-world use. The ongoing challenges and future opportunities associated with nanomaterial-based wound dressings and related clinical decisions are presented and reviewed.
Collapse
Affiliation(s)
- Qiankun Zeng
- School of Chemistry and Molecular Engineering, East China Normal University, 200241 Shanghai, China
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 200241 Shanghai, China
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 200241 Shanghai, China
- Engineering Research Centre for Nanophotonics and Advanced Instrument (Ministry of Education), East China Normal University, 200241 Shanghai, China
| | - Xiaoliang Qi
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 325027 Wenzhou, China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, East China Normal University, 200241 Shanghai, China
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 200241 Shanghai, China
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 200241 Shanghai, China
- Engineering Research Centre for Nanophotonics and Advanced Instrument (Ministry of Education), East China Normal University, 200241 Shanghai, China
| | - Min Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 200241 Shanghai, China
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 200241 Shanghai, China
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 200241 Shanghai, China
- Engineering Research Centre for Nanophotonics and Advanced Instrument (Ministry of Education), East China Normal University, 200241 Shanghai, China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, 320003 Haifa, Israel
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, 710126 Xi'an, China
| |
Collapse
|
36
|
Hernandez JJ, Dobson AL, Carberry BJ, Kuenstler AS, Shah PK, Anseth KS, White TJ, Bowman CN. Controlled Degradation of Cast and 3-D Printed Photocurable Thioester Networks via Thiol–Thioester Exchange. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02459] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juan J. Hernandez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Adam L. Dobson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Benjamin J. Carberry
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- The Bio Frontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Alexa S. Kuenstler
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Parag K. Shah
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- The Bio Frontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Timothy J. White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
37
|
Hu B, Bao G, Xu X, Yang K. The Topical Hemostatic Materials for Coagulopathy. J Mater Chem B 2022; 10:1946-1959. [DOI: 10.1039/d1tb02523f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Medical sciences have witnessed significant progresses in hemostatic materials which have saved lives by supporting natural hemostatic ability. However, for the treatment of coagulopathy, where natural hemostatic ability is dysfunctional,...
Collapse
|
38
|
Du D, Chen X, Shi C, Zhang Z, Shi D, Kaneko D, Kaneko T, Hua Z. Mussel-Inspired Epoxy Bioadhesive with Enhanced Interfacial Interactions for Wound Repair. Acta Biomater 2021; 136:223-232. [PMID: 34610475 DOI: 10.1016/j.actbio.2021.09.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
The balance between high mechanical properties and strong adhesion strength is crucial in designing and preparing a bio-based hydrogel adhesive for wound closure. Although the adhesion performance of bioadhesives has been remarkably improved by modification with catechol groups, their mechanical properties are yet to meet the biomedical requirements. In this study, mussel-inspired epoxy bioadhesives (CSD-PEG) were synthesized based on catechol-modified chitosan oligosaccharide (CSD) and polyethylene glycol diglycidyl ether (PEGDGE) through nucleophilic substitution. Notably, the CSD-PEG adhesive showed high mechanical and adhesion strengths, which were up to 50.7 kPa and 136.7 kPa, respectively. It was confirmed that a certain amount of the epoxy and catechol groups provided multiple interfacial interactions among the adhesives, substrates, and polymer chains for enhancing the performance of adhesives. The adhesives showed good binding and repairing effects for wound closure and favorable biocompatibility in vivo. The prepared CSD-PEG adhesives are expected to be a promising candidate for surgical tissue repair, wound closure, and tissue engineering fields. STATEMENT OF SIGNIFICANCE: Current reported adhesives composed of biopolymers generally suffer from poor mechanical properties or weak tissue adhesiveness. Therefore, to achieve simultaneously high mechanical and adhesion properties in a bio-based adhesive for wound closure is a big challenge. In this study, mussel-inspired adhesive hydrogels (CSD-PEG) were prepared based on catechol-modified chitosan oligosaccharide (CSD) and polyethylene glycol diglycidyl ether (PEGDGE). The tensile strength and adhesive strength of CSD-PEG on porcine skin reached 50.7 kPa and 136.7 kPa, respectively, which were higher than those for most reported biopolymeric adhesives, mainly due to the multiple interfacial interactions between the catechol and epoxy groups. The CSD-PEG bioadhesives also showed good binding and repairing effects for wound closure and tissue regeneration in vivo.
Collapse
|
39
|
Cook KA, Naguib N, Kirsch J, Hohl K, Colby AH, Sheridan R, Rodriguez EK, Nazarian A, Grinstaff MW. In situ gelling and dissolvable hydrogels for use as on-demand wound dressings for burns. Biomater Sci 2021; 9:6842-6850. [PMID: 34486599 PMCID: PMC8511343 DOI: 10.1039/d1bm00711d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Currently, no dressings utilized in burn clinics provide adhesion, hydration or mechanical strength on the same order as human skin as well as the ability to be atraumatically removed. We report the synthesis, characterization, and in vivo evaluation of in situ polymerized and subsequent dissolvable hydrogels as burn wound dressings. Hydrogel dressings, from a small library of synthesized materials form in situ, exhibit storage moduli between 100-40 000 Pa, dissolve on-demand within 10 minutes to 90 minutes, swell up to 350%, and adhere to both burned and healthy human skin at 0.2-0.3 N cm-2. Further, results from an in vivo porcine second degree burn model demonstrate functional performance with healing equivalent to conventional treatments with the added benefit of facile, in situ application and subsequent removal via dissolution.
Collapse
Affiliation(s)
- Katherine A Cook
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA 02215, USA.
| | - Nada Naguib
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA 02215, USA.
| | - Jack Kirsch
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA 02215, USA.
| | - Katherine Hohl
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA 02215, USA.
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Aaron H Colby
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA 02215, USA.
| | - Robert Sheridan
- Shriners Hospitals for Children and Burns Service, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02214, USA
| | - Edward K Rodriguez
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ara Nazarian
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Mark W Grinstaff
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
40
|
Bongiardina NJ, Long KF, Podgórski M, Bowman CN. Substituted Thiols in Dynamic Thiol–Thioester Reactions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicholas J. Bongiardina
- Material Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
| | - Katelyn F. Long
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej Podgórski
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 5, Lublin 20-031, Poland
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Christopher N. Bowman
- Material Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
41
|
Carberry BJ, Hergert JE, Yavitt FM, Hernandez JJ, Speckl KF, Bowman CN, McLeod RR, Anseth KS. 3D printing of sacrificial thioester elastomers using digital light processing for templating 3D organoid structures in soft biomatrices. Biofabrication 2021; 13:10.1088/1758-5090/ac1c98. [PMID: 34380115 PMCID: PMC8860055 DOI: 10.1088/1758-5090/ac1c98] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023]
Abstract
Biofabrication allows for the templating of structural features in materials on cellularly-relevant size scales, enabling the generation of tissue-like structures with controlled form and function. This is particularly relevant for growing organoids, where the application of biochemical and biomechanical stimuli can be used to guide the assembly and differentiation of stem cells and form architectures similar to the parent tissue or organ. Recently, ablative laser-scanning techniques was used to create 3D overhang features in collagen hydrogels at size scales of 10-100µm and supported the crypt-villus architecture in intestinal organoids. As a complementary method, providing advantages for high-throughput patterning, we printed thioester functionalized poly(ethylene glycol) (PEG) elastomers using digital light processing (DLP) and created sacrificial, 3D shapes that could be molded into soft (G' < 1000 Pa) hydrogel substrates. Specifically, three-arm 1.3 kDa PEG thiol and three-arm 1.6 kDa PEG norbornene, containing internal thioester groups, were photopolymerized to yield degradable elastomers. When incubated in a solution of 300 mM 2-mercaptoethanol (pH 9.0), 1 mm thick 10 mm diameter elastomer discs degraded in <2 h. Using DLP, arrays of features with critical dimensions of 37 ± 4µm, resolutions of 22 ± 5µm, and overhang structures as small as 50µm, were printed on the order of minutes. These sacrificial thioester molds with physiologically relevant features were cast-molded into Matrigel and subsequently degraded to create patterned void spaces with high fidelity. Intestinal stem cells (ISCs) cultured on the patterned Matrigel matrices formed confluent monolayers that conformed to the underlying pattern. DLP printed sacrificial thioester elastomer constructs provide a robust and rapid method to fabricate arrays of 3D organoid-sized features in soft tissue culture substrates and should enable investigations into the effect of epithelial geometry and spacing on the growth and differentiation of ISCs.
Collapse
Affiliation(s)
- Benjamin J Carberry
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States of America
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States of America
| | - John E Hergert
- Materials Science and Engineering, University of Colorado, Boulder, CO 80309, United States of America
| | - F Max Yavitt
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States of America
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States of America
| | - Juan J Hernandez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States of America
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States of America
| | - Kelly F Speckl
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States of America
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States of America
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States of America
- Materials Science and Engineering, University of Colorado, Boulder, CO 80309, United States of America
| | - Robert R McLeod
- Materials Science and Engineering, University of Colorado, Boulder, CO 80309, United States of America
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO 80309, United States of America
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States of America
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States of America
| |
Collapse
|
42
|
Abstract
Hydrogels, due to their excellent biochemical and mechnical property, have shown attractive advantages in the field of wound dressings. However, a comprehensive review of the functional hydrogel as a wound dressing is still lacking. This work first summarizes the skin wound healing process and relates evaluation parameters and then reviews the advanced functions of hydrogel dressings such as antimicrobial property, adhesion and hemostasis, anti-inflammatory and anti-oxidation, substance delivery, self-healing, stimulus response, conductivity, and the recently emerged wound monitoring feature, and the strategies adopted to achieve these functions are all classified and discussed. Furthermore, applications of hydrogel wound dressing for the treatment of different types of wounds such as incisional wound and the excisional wound are summarized. Chronic wounds are also mentioned, and the focus of attention on infected wounds, burn wounds, and diabetic wounds is discussed. Finally, the future directions of hydrogel wound dressings for wound healing are further proposed.
Collapse
Affiliation(s)
- Yongping Liang
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiahui He
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
43
|
Guo Y, Wang Y, Zhao X, Li X, Wang Q, Zhong W, Mequanint K, Zhan R, Xing M, Luo G. Snake extract-laden hemostatic bioadhesive gel cross-linked by visible light. SCIENCE ADVANCES 2021; 7:eabf9635. [PMID: 34261653 PMCID: PMC8279511 DOI: 10.1126/sciadv.abf9635] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/01/2021] [Indexed: 05/04/2023]
Abstract
Bioadhesives reduce operation time and surgical complications. However, in the presence of blood, adhesion strength is often compromised. Inspired by the blood clotting activity of snake venom, we report a visible light-induced blood-resistant hemostatic adhesive (HAD) containing gelatin methacryloyl and reptilase, which is a hemocoagulase (HC) extracted from Bothrops atrox HAD leads to the activation and aggregation of platelets and efficiently transforms fibrinogen into fibrin to achieve rapid hemostasis and seal the tissue. Blood clotting time with HAD was about 45 s compared with 5 to 6 min without HAD. HAD instantaneously achieved hemostasis on liver incision (~45 s) and cut rat tail (~34 s) and reduced blood loss by 79 and 78%, respectively. HAD is also efficient in sealing severely injured liver and abdominal aorta. HAD has great potential to bridge injured tissues by combing hemostasis with adhesives.
Collapse
Affiliation(s)
- Yicheng Guo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Mechanical Engineering, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Ying Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaohong Zhao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xue Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Quan Wang
- Department of Civil Engineering, Shantou University, Shantou 515063, China
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering and School of Biomedical Engineering, The University of Western Ontario, London N6A 5B9, Canada
| | - Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg R3T 2N2, Canada.
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
44
|
Ishikawa S, Kamata H, Chung UI, Sakai T. On-demand retrieval of cells three-dimensionally seeded in injectable thioester-based hydrogels. RSC Adv 2021; 11:23637-23643. [PMID: 35479827 PMCID: PMC9036596 DOI: 10.1039/d1ra01934a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/26/2021] [Indexed: 12/26/2022] Open
Abstract
Scaffold systems that can easily encapsulate cells and safely retrieve them at the desired time are important for the advancement of cell-based medicine. In this study, we designed and fabricated thioester-based poly(ethylene glycol) (PEG) hydrogels with injectability and on-demand degradability as new scaffold materials for cells. Hydrogels can be formed in situ within minutes via thioester cross-linking between PEG molecules and can be degraded under mild conditions in response to l-cysteine molecules through thiol exchange occurring at the thioester linkage. Various cell experiments, especially with sucrose, which enables the adjustment of the osmotic pressure around the cells, showed that the damage to the cells during encapsulation and degradation was minimal, indicating the capability of on-demand retrieval of intact cells. This hydrogel system is a versatile tool in the field of cell-based research and applications such as tissue regeneration and regenerative medicine. Human mesenchymal stem/stromal cells can be three-dimensionally encapsulated in hydrogels cross-linked with thioester linkages. Degrading the cell-embedded hydrogels by l-cysteine molecules enables safe on-demand retrieval of the cells.![]()
Collapse
Affiliation(s)
- Shohei Ishikawa
- Department of Bioengineering, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo Japan
| | - Hiroyuki Kamata
- Department of Bioengineering, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo Japan
| | - Ung-Il Chung
- Department of Bioengineering, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo Japan .,Center for Disease Biology and Integrative Medicine, School of Medicine, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo Japan.,Department of Materials Engineering, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo Japan
| | - Takamasa Sakai
- Department of Bioengineering, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo Japan .,Department of Materials Engineering, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo Japan
| |
Collapse
|
45
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
46
|
Wang YQ, Dou XY, Wang HF, Wang X, Wu DC. Dendrimer-based Hydrogels with Controlled Drug Delivery Property for Tissue Adhesion. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2584-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Jiang Z, Li Y, Shen Y, Yang J, Zhang Z, You Y, Lv Z, Yao L. Robust Hydrogel Adhesive with Dual Hydrogen Bond Networks. Molecules 2021; 26:molecules26092688. [PMID: 34064401 PMCID: PMC8124778 DOI: 10.3390/molecules26092688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Hydrogel adhesives are attractive for applications in intelligent soft materials and tissue engineering, but conventional hydrogels usually have poor adhesion. In this study, we designed a strategy to synthesize a novel adhesive with a thin hydrogel adhesive layer integrated on a tough substrate hydrogel. The adhesive layer with positive charges of ammonium groups on the polymer backbones strongly bonds to a wide range of nonporous materials’ surfaces. The substrate layer with a dual hydrogen bond system consists of (i) weak hydrogen bonds between N,N-dimethyl acrylamide (DMAA) and acrylic acid (AAc) units and (ii) strong multiple hydrogen bonds between 2-ureido-4[1H]-pyrimidinone (UPy) units. The dual hydrogen-bond network endowed the hydrogel adhesives with unique mechanical properties, e.g., toughness, highly stretchability, and insensitivity to notches. The hydrogel adhesion to four types of materials like glass, 316L stainless steel, aluminum, Al2O3 ceramic, and two biological tissues including pig skin and pig kidney was investigated. The hydrogel bonds strongly to dry solid surfaces and wet tissue, which is promising for biomedical applications.
Collapse
|
48
|
Huang X, Nakagawa S, Houjou H, Yoshie N. Insights into the Role of Hydrogen Bonds on the Mechanical Properties of Polymer Networks. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xin Huang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hirohiko Houjou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
49
|
Sharifi S, Islam MM, Sharifi H, Islam R, Koza D, Reyes-Ortega F, Alba-Molina D, Nilsson PH, Dohlman CH, Mollnes TE, Chodosh J, Gonzalez-Andrades M. Tuning gelatin-based hydrogel towards bioadhesive ocular tissue engineering applications. Bioact Mater 2021; 6:3947-3961. [PMID: 33937594 PMCID: PMC8080056 DOI: 10.1016/j.bioactmat.2021.03.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/27/2022] Open
Abstract
Gelatin based adhesives have been used in the last decades in different biomedical applications due to the excellent biocompatibility, easy processability, transparency, non-toxicity, and reasonable mechanical properties to mimic the extracellular matrix (ECM). Gelatin adhesives can be easily tuned to gain different viscoelastic and mechanical properties that facilitate its ocular application. We herein grafted glycidyl methacrylate on the gelatin backbone with a simple chemical modification of the precursor, utilizing epoxide ring-opening reactions and visible light-crosslinking. This chemical modification allows the obtaining of an elastic protein-based hydrogel (GELGYM) with excellent biomimetic properties, approaching those of the native tissue. GELGYM can be modulated to be stretched up to 4 times its initial length and withstand high tensile stresses up to 1.95 MPa with compressive strains as high as 80% compared to Gelatin-methacryloyl (GeIMA), the most studied derivative of gelatin used as a bioadhesive. GELGYM is also highly biocompatible and supports cellular adhesion, proliferation, and migration in both 2 and 3-dimensional cell-cultures. These characteristics along with its super adhesion to biological tissues such as cornea, aorta, heart, muscle, kidney, liver, and spleen suggest widespread applications of this hydrogel in many biomedical areas such as transplantation, tissue adhesive, wound dressing, bioprinting, and drug and cell delivery.
Collapse
Affiliation(s)
- Sina Sharifi
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Mohammad Mirazul Islam
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Hannah Sharifi
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rakibul Islam
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Darrell Koza
- Department of Physical Sciences, Eastern Connecticut State University, Willimantic, CT, USA
| | - Felisa Reyes-Ortega
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| | - David Alba-Molina
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway.,Linnaeus Center for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Claes H Dohlman
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Norway
| | - James Chodosh
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Miguel Gonzalez-Andrades
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| |
Collapse
|
50
|
Bovone G, Dudaryeva OY, Marco-Dufort B, Tibbitt MW. Engineering Hydrogel Adhesion for Biomedical Applications via Chemical Design of the Junction. ACS Biomater Sci Eng 2021; 7:4048-4076. [PMID: 33792286 DOI: 10.1021/acsbiomaterials.0c01677] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogel adhesion inherently relies on engineering the contact surface at soft and hydrated interfaces. Upon contact, adhesion normally occurs through the formation of chemical or physical interactions between the disparate surfaces. The ability to form these adhesion junctions is challenging for hydrogels as the interfaces are wet and deformable and often contain low densities of functional groups. In this Review, we link the design of the binding chemistries or adhesion junctions, whether covalent, dynamic covalent, supramolecular, or physical, to the emergent adhesive properties of soft and hydrated interfaces. Wet adhesion is useful for bonding to or between tissues and implants for a range of biomedical applications. We highlight several recent and emerging adhesive hydrogels for use in biomedicine in the context of efficient junction design. The main focus is on engineering hydrogel adhesion through molecular design of the junctions to tailor the adhesion strength, reversibility, stability, and response to environmental stimuli.
Collapse
Affiliation(s)
- Giovanni Bovone
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Oksana Y Dudaryeva
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Bruno Marco-Dufort
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|