1
|
Tang YJ, Fan Q, Li X, Li Q, Yin B, Wang H. Stereodivergent atom transfer radical addition of α-functionalized alkyl iodides to alkynes: a strategy for selective synthesis of both E- and Z-iodoalkenes. Chem Commun (Camb) 2024; 60:13251-13254. [PMID: 39445648 DOI: 10.1039/d4cc04948a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The geometrical control of atom transfer radical addition (ATRA) reactions to alkynes poses significant challenges. Herein, we present a uniform solution by developing a stereodivergent synthetic method for both isomers of the resulting alkene products, starting from the same materials. The synthesis of the thermodynamically more stable isomer utilizes the strategy of uphill catalysis while the accumulation of the less stable isomer is facilitated by a manganese-catalyzed iodo-abstraction/radical rebound process, taking advantage of its reversibility. Various substituted alkyl iodides can be used to provide easy access to both isomers of iodoalkene products with valuable functional groups such as CF3, CF2H, CN, ester, or amide at the allylic position.
Collapse
Affiliation(s)
- Ya-Jie Tang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| | - Qi Fan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Xiaoya Li
- Department of Nephrology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, Guangdong, China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
2
|
Chen W, Huang Z, Chen H, Liu M. A Novel Approach of Electrocatalytic Deamination From Aromatic Amide to Diarylimide on Ni-PTFE Modified Electrode. Chemistry 2024; 30:e202400276. [PMID: 38757422 DOI: 10.1002/chem.202400276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
A hydrophobic Ni-PTFE modified electrode has been prepared by constant current and cathodic electroplating with a nickel sheet as substrate in a PTFE suspension. Then the Ni-PTFE modified electrode was used for electroreduction from aromatic amide to diarylimide. The electrochemical characterizations such as cyclic voltammogram, EIS, polarization curves, and electrode stability have been carried out by electrochemical workstation. The structure of the electroreduction product diarylimide was characterized by 1H NMR, FT-IR, MS(Mass Spectrum), and EA(Elemental Analyzer). Based on the hydrophobicity of the electrode, an approach suggested that the phenyl ketone radical may be formed by electroreductive deamination at the cathode. With the construction of C-N bond by the radical coupling, the electrocatalytic reduction may be comprised of a one-electron process including an ECC (Electrochemical-Chemical-Chemical) process. The electroreduction of aromatic amide to diarylimide may be controlled by both charge migration and concentration polarization. Electrocatalytic reduction of aromatic amides on Ni-PTFE modified electrodes is all well conversion ratio.
Collapse
Affiliation(s)
- Wenjun Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou Fujian, 350007, China
| | - Ziyang Huang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou Fujian, 350007, China
| | - Hongyan Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou Fujian, 350007, China
| | - Min Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou Fujian, 350007, China
| |
Collapse
|
3
|
Chen S, Wang YN, Xie J, Li W, Ye M, Ma X, Yang K, Li S, Lan Y, Song Q. Chemo-, regio- and stereoselective access to polysubstituted 1,3-dienes via Nickel-catalyzed four-component reactions. Nat Commun 2024; 15:5479. [PMID: 38942777 PMCID: PMC11213876 DOI: 10.1038/s41467-024-49870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
1,2-Difunctionalization of alkynes offers a straightforward approach to access polysubstituted alkenes. However, simultaneous multi-component cascade transformations including difunctionalization of two alkynes with both syn- and anti-selectivity in one catalyst system is undeveloped and proves to be a significant challenge. Herein, we report a Nickel-catalyzed four-component reaction to access polysubstituted 1,3-dienes using two terminal alkynes, aryl boroxines, and perfluoroalkyl iodides, wherein the reaction forms three new C-C bonds in a single vessel and serve as a modular strategy to access polysubstituted 1,3-dienes with excellent chemoselectivity, good regioselectivity and exclusive stereoselectivity. Control experiments reveal the plausible reaction mechanism and DFT calculations explain the cause for the formation of this unusual four-component reaction. Furthermore, we successfully incorporate two biologically active units into 1,2,3,4-tetrasubstituted 1,3-dienes, which greatly increases the diversity of molecular scaffolds and brings more potential values to medicinal chemistry, the synthetic utility of our protocol is further demonstrated by the late-stage transformations.
Collapse
Affiliation(s)
- Shanglin Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, China
| | - Ya-Nan Wang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Jinhui Xie
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, China
| | - Wangyang Li
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, China
| | - Mingxing Ye
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, China
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, China
| | - Shijun Li
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, China
| | - Yu Lan
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China.
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, China.
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
4
|
Hu X, Wang Y, Xu S, Wu J, Wu F. Visible Light-Induced Copper-Catalyzed Regio- and Stereoselective Difluoroalkylthiocyanation of Alkynes. J Org Chem 2024; 89:9118-9124. [PMID: 38842393 DOI: 10.1021/acs.joc.4c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The first regio- and stereoselective difluoroalkylthiocyanation of alkynes with BrCF2R and KSCN has been disclosed under visible light-induced copper catalysis. The copper complex photosensitizer formed in situ not only promotes the generation of CF2-alkyl radicals but also facilitates the construction of C-SCN bonds, allowing the reaction to proceed smoothly without any additional photocatalysts or radical initiators. Moreover, the challenging internal alkynes can also be transformed to deliver CF2-derived tetrasubstituted olefins with potential applications in agricultural and medicinal chemistry.
Collapse
Affiliation(s)
- Xiaoxue Hu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yanzhao Wang
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Shibo Xu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jingjing Wu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
5
|
Wang J, Wu X, Cao Z, Zhang X, Wang X, Li J, Zhu C. E-Selective Radical Difunctionalization of Unactivated Alkynes: Preparation of Functionalized Allyl Alcohols from Aliphatic Alkynes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309022. [PMID: 38348551 DOI: 10.1002/advs.202309022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Indexed: 04/25/2024]
Abstract
Radical difunctionalization of aliphatic alkynes provides direct access to valuable multi-substituted alkenes, but achieving a high level of chemo- and stereo-control remains a formidable challenge. Herein a novel photoredox neutral alkyne di-functionalization is reported through functional group migration followed by a radical-polar crossover and energy transfer-enabled stereoconvergent isomerization of alkenes. In this sequence, a hydroxyalkyl and an aryl group are incorporated concomitantly into an alkyne, leading to diversely functionalized E-allyl alcohols. The scope of alkynes is noteworthy, and the reaction tolerates aliphatic alkynes containing hydrogen donating C─H bonds that are prone to intramolecular hydrogen atom transfer. The protocol features broad functional group compatibility, high product diversity, and exclusive chemo- and stereoselectivity, thus providing a practical strategy for the elusive radical di-functionalization of unactivated alkynes.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Zhu Cao
- Frontiers Science Center for Transformative Molecules and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xu Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Xinxin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Jie Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
- Frontiers Science Center for Transformative Molecules and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
6
|
Shi X, Yu B, Zhou X, Yang Y. Photoinduced selective perfluoroalkylation of terminal alkynes via electron donor-acceptor complexes. Chem Commun (Camb) 2024; 60:2532-2535. [PMID: 38329183 DOI: 10.1039/d4cc00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Herein, we report a photoinduced selective perfluoroalkylation of terminal alkynes driven by the noncovalent interaction between a thymol anion and fluoroalkyl iodides. By precisely tuning the reaction solvent, a wide range of 37 structurally diverse perfluoroalkylated alkynes and alkenes, including ibuprofen, empagliflozin, galactose, isoxepac and indomethacin, were obtained in up to 92% yields. Mechanistic studies reveal the formation of EDA complexes between the thymol anion and fluoroalkyl iodides. This strategy may provide an important complement to traditional approaches to prepare useful perfluoroalkylated alkynes and alkenes.
Collapse
Affiliation(s)
- Xiaolin Shi
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Bo Yu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhou
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Yong Yang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Li M, Nong X, Xiao H, Gu A, Zhai S, Li J, Zhang G, Xue Z, Liu Y, Li C, Lin G, Feng C. Aggregation‐enabled alkene insertion into carbon–halogen bonds. AGGREGATE 2023; 4. [DOI: 10.1002/agt2.346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
AbstractMolecular aggregation affects the electronic interactions between molecules and has emerged as a powerful tool in material science. Aggregate effect finds wide applications in the research of new physical phenomena; however, its value for chemical reaction development has been far less explored. Herein, we report the development of aggregation‐enabled alkene insertion into carbon–halogen bonds. The spontaneous cleavage of C–X (X = Cl, Br, or I) bonds generates an intimate ion pair, which can be quickly captured by alkenes in an aggregated state. Additional catalysts or promoters are not necessary under such circumstances, and solvent quenching experiments indicate that the aggregated state is critical for achieving such sequences. The ionic insertion mode is supported by mechanistic studies, density functional theory calculations, and symmetry‐adapted perturbation theory analysis. Results also show that the non‐aggregated state may quench the transition state and terminate the insertion process.
Collapse
Affiliation(s)
- Meng‐Yao Li
- Shanghai Cancer Institute Department of Biliary‐Pancreatic Surgery Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
- The Research Center of Chiral Drugs Innovation Research Institute of Traditional Chinese Medicine Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology Shanghai University of Traditional Chinese Medicine Shanghai China
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai China
| | - Xiao‐Mei Nong
- Shanghai Cancer Institute Department of Biliary‐Pancreatic Surgery Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Han Xiao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou China
| | - Ao Gu
- Shanghai Cancer Institute Department of Biliary‐Pancreatic Surgery Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Shuyang Zhai
- Shanghai Cancer Institute Department of Biliary‐Pancreatic Surgery Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jiatong Li
- Shanghai Cancer Institute Department of Biliary‐Pancreatic Surgery Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ge Zhang
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai China
| | - Ze‐Jian Xue
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai China
| | - Yingbin Liu
- Shanghai Cancer Institute Department of Biliary‐Pancreatic Surgery Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Chunsen Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou China
| | - Guo‐Qiang Lin
- The Research Center of Chiral Drugs Innovation Research Institute of Traditional Chinese Medicine Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology Shanghai University of Traditional Chinese Medicine Shanghai China
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai China
| | - Chen‐Guo Feng
- The Research Center of Chiral Drugs Innovation Research Institute of Traditional Chinese Medicine Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology Shanghai University of Traditional Chinese Medicine Shanghai China
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai China
| |
Collapse
|
8
|
Copper-Catalyzed Radical Trifluoromethylalkynylation of Unactivated Alkenes with Terminal Alkynes. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Tang L, Lv G, Cheng R, Yang F, Zhou Q. Three-Component Perfluoroalkylvinylation of Alkenes Enabled by Dual DBU/Fe Catalysis. Chemistry 2023; 29:e202203332. [PMID: 36351885 DOI: 10.1002/chem.202203332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Herein, a simple and efficient strategy that involves dual 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)/iron-catalyzed alkene perfluoroalkylvinylation by using perfluoroalkyl iodides and 2-aminonaphthalene-1,4-diones as coupling partners is demonstrated. In terms of the developed catalytic system, various styrenes and aliphatic alkenes are well-tolerated, leading to the accurate preparation of perfluoroalkyl-containing 2-aminonaphthalene-1,4-diones in excellent regioselectivity. Moreover, the protocol can be readily applied in late-stage modifications of natural products and pharmaceuticals. The title reactions are featured by easily accessible and inexpensive catalysts and substrates, broad substrate applicability, and mild reaction conditions. Mechanistic investigations reveal a tandem C-I cleavable alkylation and C-C vinylation enabled by cooperative DBU/iron catalysis.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China.,Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang, 464000, P.R. China
| | - Ge Lv
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Ruimin Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Fang Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| |
Collapse
|
10
|
Zeng X, Cheng Z, Xie Y, Gu Y. Transition-metal-free Synthesis of tetra-substituted Vinyl Iodides by Cascade Sequential Reaction of α-Keto Acids, 1-Iodoalkynes, and Alkyl Halides. Chem Asian J 2023; 18:e202201117. [PMID: 36458644 DOI: 10.1002/asia.202201117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
The cascade sequential reaction of α-keto acids, 1-iodoalkynes, and alkyl halides are reported herein to synthesize tetra-substituted vinyl iodides. It represents an efficient protocol to access a diverse range of tetra-substituted vinyl iodides starting from simple materials in a one-pot fashion, featuring mild reaction conditions, ease of operation, and broad substrate scope.
Collapse
Affiliation(s)
- Xiaobao Zeng
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Zhenfeng Cheng
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yushan Xie
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yunhui Gu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| |
Collapse
|
11
|
Tivari S, Singh PK, Singh PP, Srivastava V. Visible light-induced photoredox catalyzed C-N coupling of amides with alcohols. RSC Adv 2022; 12:35221-35226. [PMID: 36540212 PMCID: PMC9730743 DOI: 10.1039/d2ra07065k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/02/2022] [Indexed: 03/23/2024] Open
Abstract
A visible-light-mediated method for the construction of N-monoalkylated products from easily available benzamides and benzyl alcohol in the presence of eosin Y has been developed. The reaction proceeded smoothly, for a wide range of derivatives of benzamides and benzyl alcohols, to give the desired products in good to excellent yields. Biological studies, such as those on drug-likeness and molecular docking, are carried out on the molecules.
Collapse
Affiliation(s)
- Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj-211002 Uttar Pradesh India
| | - Pravin K Singh
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj-211002 Uttar Pradesh India
| | - Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Naini Prayagraj-211010 Uttar Pradesh India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj-211002 Uttar Pradesh India
| |
Collapse
|
12
|
Shi ZZ, Yu T, Ma H, Chi LX, You S, Deng C. Recent advances in radical cascade cyclization of 1,n-enynes with trifluoromethylating agents. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Shi X, Song T, Li Q, Guo X, Yang Y. Mesoporous Graphitic Carbon Nitride Photocatalyzed Switchable Divergent Perfluoroalkylation of Terminal Alkynes. Org Lett 2022; 24:8724-8728. [DOI: 10.1021/acs.orglett.2c03814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Xiaolin Shi
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, Shandong 266101, People’s Republic of China
| | - Tao Song
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, Shandong 266101, People’s Republic of China
- Shandong Energy Institute, Qingdao, Shandong 266101, People’s Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, People’s Republic of China
| | - Qinglin Li
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, Shandong 266101, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiuling Guo
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, Shandong 266101, People’s Republic of China
| | - Yong Yang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, Shandong 266101, People’s Republic of China
- Shandong Energy Institute, Qingdao, Shandong 266101, People’s Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, People’s Republic of China
| |
Collapse
|
14
|
Zhang Y, Yuan Y, Geng HQ, Xu JX, Wu XF. Visible light-induced perfluoroalkylative carbonylation of unactivated alkenes. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Li Y, Liang X, Niu K, Gu J, Liu F, Xia Q, Wang Q, Zhang W. Visible-Light-Induced Photocatalyst-Free Radical Trifluoromethylation. Org Lett 2022; 24:5918-5923. [PMID: 35929868 DOI: 10.1021/acs.orglett.2c02150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An attractive, versatile, and operationally simple, visible-light-induced, transition-metal-free, photocatalyst-free, and oxidant-free trifluoromethylation has been demonstrated. Triflic anhydride (Tf2O), being inexpensive and readily available, was chosen as the radical trifluoromethyl source. Thianthrene was used as a recyclable Tf2O-activating reagent, and a high-yielding and scalable trifluoromethylation reaction was achieved. Density functional theory and mechanistic studies showed that a free radical homolytic process excited by visible light is involved in this reaction, generating a key trifluoromethyl radical intermediate.
Collapse
Affiliation(s)
- Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Liang
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaikai Niu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Jun Gu
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Liu
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Bian KJ, Nemoto D, Kao SC, He Y, Li Y, Wang XS, West JG. Modular Difunctionalization of Unactivated Alkenes through Bio-Inspired Radical Ligand Transfer Catalysis. J Am Chem Soc 2022; 144:11810-11821. [PMID: 35729791 DOI: 10.1021/jacs.2c04188] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Development of visible light-mediated atom transfer radical addition of haloalkanes onto unsaturated hydrocarbons has seen rapid growth in recent years. However, due to its radical chain propagation mechanism, diverse functionality other than the pre-existing (pseudo-)halide on the alkyl halide source cannot be incorporated into target molecules in a one-step, economic fashion. Inspired by the prominent reactivities shown by cytochrome P450 hydroxylase and non-heme iron-dependent oxygenases, we herein report the first modular, dual catalytic difunctionalization of unactivated alkenes via manganese-catalyzed radical ligand transfer (RLT). This RLT elementary step involves a coordinated nucleophile rebounding to a carbon-centered radical to form a new C-X bond in analogy to the radical rebound step in metalloenzymes. The protocol leverages the synergetic cooperation of both a photocatalyst and earth-abundant manganese complex to deliver two radical species in succession to minimally functionalized alkenes, enabling modular diversification of the radical intermediate by a high-valent manganese species capable of delivering various external nucleophiles. A broad scope (97 examples, including drugs/natural product motifs), mild conditions, and excellent chemoselectivity were shown for a variety of substrates and fluoroalkyl fragments. Mechanistic and kinetics studies provide insights into the radical nature of the dual catalytic transformation and support radical ligand transfer (RLT) as a new strategy to deliver diverse functionality selectively to carbon-centered radicals.
Collapse
Affiliation(s)
- Kang-Jie Bian
- Department of Chemistry, Rice University, 6500 Main St, Houston, Texas 77030, United States
| | - David Nemoto
- Department of Chemistry, Rice University, 6500 Main St, Houston, Texas 77030, United States
| | - Shih-Chieh Kao
- Department of Chemistry, Rice University, 6500 Main St, Houston, Texas 77030, United States
| | - Yan He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Julian G West
- Department of Chemistry, Rice University, 6500 Main St, Houston, Texas 77030, United States
| |
Collapse
|
17
|
Pan C, Meng Y, Deng Y, Zhou B, Chen J, He Z, Sun W, Khan R, Fan B. Metal‐Free Visible‐Light‐Induced Atom‐Transfer
Radical Addition Reaction of Alkenes/Alkynes with
ICH
2
CN
. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chunxiang Pan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| | - Yunyan Meng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| | - Yao Deng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| | - Bingjie Zhou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| | - Zhenxiu He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| | - Weiqing Sun
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| | - Ruhima Khan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
- Key Laboratory of Advanced Synthetic Chemistry, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| |
Collapse
|
18
|
Zou S, Luo X, Chen C, Xi C. Photoredox-catalyzed fluorodifluoroacetylation of alkenes with FSO 2CF 2CO 2Me and Et 3N·3HF. Org Biomol Chem 2022; 20:3726-3730. [PMID: 35466989 DOI: 10.1039/d2ob00488g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoredox-catalyzed three-component fluorodifluoroacetylation of aromatic alkenes is reported, which features a wide substrate scope and functional group tolerance. An advantage of the reaction is the use of a nucleophilic fluoride source and a general difluoroacetylation reagent for the fluorodifluoroacetylation of alkenes.
Collapse
Affiliation(s)
- Song Zou
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Xuewei Luo
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Chao Chen
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China. .,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
19
|
Duan A, Yu Y, Wang F, Wang X, Wang D. Mechanism and Origin of Stereoselectivity of Ni-Catalyzed Cyclization/Carboxylation of Bromoalkynes with CO 2. J Org Chem 2022; 87:8342-8350. [PMID: 35500133 DOI: 10.1021/acs.joc.2c00161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bromoalkynes play important roles in coupling reactions because they can show obvious stereoselectivity to form E- and Z-isomers when substituents are different. However, the origin of the stereoselectivity in the bromoalkynes reaction is still unclear. Density functional theory (DFT) calculations were performed to provide an in-depth study of the reaction mechanism, clarifying the mechanistic details of the main reaction and the origin of the stereoselectivity. By comparing the syn-insertion mechanism of alkynes and the radical pathway, it is indicated that the electrostatic effect caused by the different charge distributions of the reactants is the main reason that Ni(I) species are more prone to syn-insertion of alkynes than Ni(II) species. In addition, the lower reaction energy barrier in the radical pathway suggests that it is more advantageous in terms of kinetics. The bond between Ni(I) species and alkenylation products has two directions to generate products of different configurations, which are the direct stereoselectivity-determining stages. The distortion/interaction analysis shows that the distortion energy mainly affects the product configuration, and the steric hindrance is the main factor controlling the stereoselectivity.
Collapse
Affiliation(s)
- Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yali Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Fengqin Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Xueqiang Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
20
|
Yamamoto Y, Suzuki H, Kuroyanagi E, Yamada K, Yasui T. Co-Catalyzed atom transfer radical addition of bromodifluoroacetamides, expanding the scope of radical difluoroalkylation. Org Biomol Chem 2022; 20:2867-2872. [PMID: 35302578 DOI: 10.1039/d2ob00437b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The atom transfer radical addition (ATRA) of bromodifluoroacetamides to arylalkynes and terminal alkenes was conducted using von Wangelin's Co catalyst system (CoBr2/1,2-bis(diphenylphosphino)benzene/Zn) in acetone/H2O at 30 °C to afford the corresponding functionalized difluoroacetamides in 33-89% yields. Moreover, the Co catalyst was successfully applied to the tandem addition/cyclization of 1,6-diene and -enyne substrates and intramolecular ATRA of N-allyl and N-propargyl bromodifluoroacetamides, significantly expanding the scope of radical difluoroalkylation.
Collapse
Affiliation(s)
- Yoshihiko Yamamoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | - Harufumi Suzuki
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | - Eisuke Kuroyanagi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | - Keiji Yamada
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | - Takeshi Yasui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
21
|
Cao J, Li G, Wang G, Gao L, Li S. Iodoperfluoroalkylation of unactivated alkenes via pyridine-boryl radical initiated atom-transfer radical addition. Org Biomol Chem 2022; 20:2857-2862. [PMID: 35297935 DOI: 10.1039/d2ob00453d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The pyridine/bis(pinacolate)diboron combination has been found to be able to initiate the iodoperfluoroalkylation of unactivated alkenes with perfluoroalkyl iodides. Theoretical calculations and control experiments indicate that the atom transfer radical addition mechanism is responsible for the formation of iodoperfluoroalkylation products. This metal-free and photo-free strategy is applicable to a wide range of perfluoroalkyl iodides and unactivated alkenes with good functional group tolerance. Further applications in iodoperfluoroalkylation of organic semiconductor-relevant or bioactive molecules demonstrate the synthetic potential of this method.
Collapse
Affiliation(s)
- Jia Cao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China. .,School of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Guoao Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Liuzhou Gao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
22
|
Yu W, Jiao X, Fan Y, Zhu S, Chu L. Metallaphotoredox‐Enabled Intermolecular Carbobromination of Alkynes with Alkenyl Bromides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Xiaorui Jiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Yanmin Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| |
Collapse
|
23
|
Li W, Liang C, Luo B, Wang Z, Li H, Li X, Yang H, Li H. Perfluoroalkylation of Terminal Alkynes with Perfluoroalkyl Iodides Catalyzed by an Iron Salt. J Org Chem 2022; 87:1554-1558. [PMID: 34981920 DOI: 10.1021/acs.joc.1c02522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The one-step, direct perfluoroalkylation of terminal alkynes with perfluoroalkyl iodides has been developed in which a simple ligandless iron salt is employed as the catalyst. Various perfluoroalkylated alkynes could be afforded in good to excellent yields with good functional group compatibility. Preliminary mechanistic studies suggest the involvement of the perfluoroalkyl radical in the catalytic cycle and the perfluoroalkylated alkenyl iodides as intermediates. The method provides straight, streamlined, and sustainable access to perfluoroalkylated acetylenes.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Changfa Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Baogui Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhenhui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hengyuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaofeng Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huanjian Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huaifeng Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
24
|
Sun Q, Sun Z, Yu Z, Wang G. Nickel-Catalyzed Stereoselective Aryl-Difluoroalkylation of Alkynes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Liu S, Zhang Y, Gong K, Zeng X, Xie F, Xu B, Han J. Widely applicable (radio)dihalogenation of alkynes and alkenes using two different nucleophilic alkali metal halides. Org Chem Front 2022. [DOI: 10.1039/d2qo01276f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A hydrogen bond donor solvent-assisted highly regio- and stereoselective difunctionalization of alkynes and alkenes using two nucleophilic alkali metal salts as halogenation reagents.
Collapse
Affiliation(s)
- Shiwen Liu
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai, China
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, China
| | - Yueying Zhang
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai, China
| | - Kehao Gong
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai, China
| | - Xiaojun Zeng
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Junbin Han
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai, China
| |
Collapse
|
26
|
Ilic A, Schwarz J, Johnson C, de Groot LHM, Kaufhold S, Lomoth R, Wärnmark K. Photoredox Catalysis via Consecutive 2LMCT- and 3MLCT-Excitation of an Fe(III/II)- N-Heterocyclic Carbene Complex. Chem Sci 2022; 13:9165-9175. [PMID: 36093023 PMCID: PMC9383194 DOI: 10.1039/d2sc02122f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022] Open
Abstract
Fe-N-heterocyclic carbene (NHC) complexes attract increasing attention as photosensitisers and photoredox catalysts. Such applications generally rely on sufficiently long excited state lifetimes and efficient bimolecular quenching, which leads to there...
Collapse
Affiliation(s)
- Aleksandra Ilic
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University SE-22100 Lund Sweden
| | - Jesper Schwarz
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University SE-22100 Lund Sweden
| | - Catherine Johnson
- Department of Chemistry-Ångström Laboratory, Uppsala University SE-75120 Uppsala Sweden
| | - Lisa H M de Groot
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University SE-22100 Lund Sweden
| | - Simon Kaufhold
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University SE-22100 Lund Sweden
| | - Reiner Lomoth
- Department of Chemistry-Ångström Laboratory, Uppsala University SE-75120 Uppsala Sweden
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University SE-22100 Lund Sweden
| |
Collapse
|
27
|
Qiu J, Le S, Su J, Liu Y, Zhou Y, Zheng H, Bai Y, Zhu G. A diastereoselective synthesis of cyclopentanones via photocatalytic reductive alkyltrifluoromethylation of ynones. Org Chem Front 2022. [DOI: 10.1039/d2qo01101h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photocatalytic reductive alkyltrifluoromethylation of ynones with the Langlois reagent is developed, providing a regio- and diastereoselective access to trifluoromethylated cyclopentanones under mild conditions.
Collapse
Affiliation(s)
- Jiayan Qiu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Siya Le
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Jingwen Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Yi Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Yulu Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Yihui Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
28
|
Pounder A, Tam W. Iron-catalyzed domino coupling reactions of π-systems. Beilstein J Org Chem 2021; 17:2848-2893. [PMID: 34956407 PMCID: PMC8685557 DOI: 10.3762/bjoc.17.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022] Open
Abstract
The development of environmentally benign, inexpensive, and earth-abundant metal catalysts is desirable from both an ecological and economic standpoint. Certainly, in the past couple decades, iron has become a key player in the development of sustainable coupling chemistry and has become an indispensable tool in organic synthesis. Over the last ten years, organic chemistry has witnessed substantial improvements in efficient synthesis because of domino reactions. These protocols are more atom-economic, produce less waste, and demand less time compared to a classical stepwise reaction. Although iron-catalyzed domino reactions require a mindset that differs from the more routine noble-metal, homogenous iron catalysis they bear the chance to enable coupling reactions that rival that of noble-metal-catalysis. This review provides an overview of iron-catalyzed domino coupling reactions of π-systems. The classifications and reactivity paradigms examined should assist readers and provide guidance for the design of novel domino reactions.
Collapse
Affiliation(s)
- Austin Pounder
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - William Tam
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
29
|
Zhang P, Li W, Qu W, Shu Z, Tao Y, Lin J, Gao X. Copper and Photocatalytic Radical Relay Enabling Fluoroalkylphosphorothiolation of Alkenes: Modular Synthesis of Fluorine-Containing S-Alkyl Phosphorothioates and Phosphorodithioates. Org Lett 2021; 23:9267-9272. [PMID: 34779202 DOI: 10.1021/acs.orglett.1c03608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A photoredox and copper-catalyzed fluoroalkylphosphorothiolation of activated and unactivated alkenes via a radical relay mechanism is reported. By employing fluoroalkyl halides as radical precursors and P(O)SH or P(S)SH compounds as coupling partners, a wide range of β-monofluoroalkyl-, -difluoroalkyl-, -trifluoromethyl-, or -perfluoroalkyl-substituted S-alkyl phosphorothioates and phosphorodithioates can be easily constructed under mild conditions with good functional group tolerance. Furthermore, this modular reaction system can be successfully applied to late-stage functionalization of bioactive molecules.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenwu Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Weilong Qu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhigang Shu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Yingjun Tao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Jinming Lin
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Xia Gao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
30
|
Cheng J, Zhang H, Lv J, Zheng J. Palladium‐Catalyzed Intermolecular Dicarbofunctionalization of Unactivated Alkenes: Synthesis of Fluoroalkylated Heterocycles with All‐Carbon Quaternary Centers. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jiajia Cheng
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou 350116 People's Republic of China
| | - Huali Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou 350116 People's Republic of China
| | - Jinliang Lv
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou 350116 People's Republic of China
| | - Jinhua Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou 350116 People's Republic of China
| |
Collapse
|
31
|
Recent Advances on the Halo- and Cyano-Trifluoromethylation of Alkenes and Alkynes. Molecules 2021; 26:molecules26237221. [PMID: 34885802 PMCID: PMC8659293 DOI: 10.3390/molecules26237221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Incorporation of fluorine into organic molecules is a well-established strategy in the design of advanced materials, agrochemicals, and pharmaceuticals. Among numerous modern synthetic approaches, functionalization of unsaturated bonds with simultaneous addition of trifluoromethyl group along with other substituents is currently one of the most attractive methods undergoing wide-ranging development. In this review article, we discuss the most significant contributions made in this area during the last decade (2012−2021). The reactions reviewed in this work include chloro-, bromo-, iodo-, fluoro- and cyano-trifluoromethylation of alkenes and alkynes.
Collapse
|
32
|
Zhang Y, Geng H, Wu X. Palladium‐Catalyzed Perfluoroalkylative Carbonylation of Unactivated Alkenes: Access to β‐Perfluoroalkyl Esters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Youcan Zhang
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
| | - Hui‐Qing Geng
- Leibniz-Institut für Katalyse e.V. 18059 Rostock Germany
| | - Xiao‐Feng Wu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
- Leibniz-Institut für Katalyse e.V. 18059 Rostock Germany
| |
Collapse
|
33
|
Zhang Y, Geng HQ, Wu XF. Palladium-Catalyzed Perfluoroalkylative Carbonylation of Unactivated Alkenes: Access to β-Perfluoroalkyl Esters. Angew Chem Int Ed Engl 2021; 60:24292-24298. [PMID: 34506080 DOI: 10.1002/anie.202111206] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 12/15/2022]
Abstract
Transition-metal-catalyzed multi-component carbonylation represents an efficient strategy for the preparation of various functionalized carbonyl-containing compounds. Herein, we report a general palladium-catalyzed perfluoroalkylative carbonylation of unactivated alkenes using inexpensive and readily available carbon monoxide as the C1 source and perfluoroalkyl halides as the coupling partner. A wide range of phenols and alcohols were transformed into the corresponding β-perfluoroalkyl esters in high yields with broad functional group tolerance and good chemoselectivity. Additionally, alkyl halides can be utilized as alkoxy source as well to give the desired esters. Moreover, several pharmaceutical and bio-active molecules were also suitable substrates for this one-pot multi-component carbonylation process to give the targeted products in good yields.
Collapse
Affiliation(s)
- Youcan Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| | - Hui-Qing Geng
- Leibniz-Institut für Katalyse e.V., 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China.,Leibniz-Institut für Katalyse e.V., 18059, Rostock, Germany
| |
Collapse
|
34
|
Maiti S, Rhlee JH. Reductive Ni-catalysis for stereoselective carboarylation of terminal aryl alkynes. Chem Commun (Camb) 2021; 57:11346-11349. [PMID: 34643192 DOI: 10.1039/d1cc04586e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stereoselective dicarbofunctionalization of terminal aryl alkynes has been achieved through reductive Ni-catalysis. The exclusive regioselective and anti-addition selective alkylarylation of terminal alkynes is accomplished using alkyl iodide and aryl iodide as electrophilic coupling partners in the presence of NiBr2 as the catalyst and Mn as an inexpensive reductant.
Collapse
Affiliation(s)
- Saikat Maiti
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea. .,Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Joon Ho Rhlee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
35
|
Zhang Y, Geng HQ, Wu XF. Palladium-Catalyzed Carbonylative Four-Component Synthesis of β-Perfluoroalkyl Amides. Chemistry 2021; 27:17682-17687. [PMID: 34617652 DOI: 10.1002/chem.202103391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 11/06/2022]
Abstract
Transition-metal-catalyzed multicomponent carbonylation is one of the most efficient strategies to construct carbonyl-containing compounds. Herein, a palladium-catalyzed four-component perfluoroalkylation/aminocarbonylation of unactivated alkenes with perfluoroalkyl halides, and amines was developed. A wide range of substrates, including anilines, alkylamines, sulfonamides, and hydrazines are all suitable reaction partners for this catalyst system, resulting in various β-perfluoroalkyl amides with good functional-group tolerance and excellent chemoselectivity. Furthermore, not only alkyl olefins, but also aliphatic alkynes, and even alkyl allenes can all be employed. Notably, several medical and bioactive related molecules are compatible here as well.
Collapse
Affiliation(s)
- Youcan Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, P. R. China
| | - Hui-Qing Geng
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, P. R. China.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| |
Collapse
|
36
|
|
37
|
Wang D, XU T. A Pivotal Role of Chloride Ion on Nickel-Catalyzed Enantioselective Reductive Cross-Coupling to Perfluoroalkylated Boronate Esters. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dong Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Tao XU
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| |
Collapse
|
38
|
Wang L, Shi F, Qi C, Xu W, Xiong W, Kang B, Jiang H. Stereodivergent synthesis of β-iodoenol carbamates with CO 2 via photocatalysis. Chem Sci 2021; 12:11821-11830. [PMID: 34659721 PMCID: PMC8442729 DOI: 10.1039/d1sc03366b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 01/24/2023] Open
Abstract
Photocatalytic conversion of carbon dioxide (CO2) into value-added chemicals is of great significance from the viewpoint of green chemistry and sustainable development. Here, we report a stereodivergent synthesis of β-iodoenol carbamates through a photocatalytic three-component coupling of ethynylbenziodoxolones, CO2 and amines. By choosing appropriate photocatalysts, both Z- and E-isomers of β-iodoenol carbamates, which are difficult to prepare using existing methods, can be obtained stereoselectively. This transformation featured mild conditions, excellent functional group compatibility and broad substrate scope. The potential synthetic utility of this protocol was demonstrated by late-stage modification of bioactive molecules and pharmaceuticals as well as by elaborating the products to access a wide range of valuable compounds. More importantly, this strategy could provide a general and practical method for stereodivergent construction of trisubstituted alkenes such as triarylalkenes, which represents a fascinating challenge in the field of organic chemistry research. A series of mechanism investigations revealed that the transformation might proceed through a charge-transfer complex which might be formed through a halogen bond.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Wenjie Xu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Wenfang Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Bangxiong Kang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
39
|
Ghosh S, Chakrabortty R, Ganesh V. Dual Functionalization of Alkynes Utilizing the Redox Characteristics of Transition Metal Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202100838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sudipta Ghosh
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 West Bengal India
| | - Rajesh Chakrabortty
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 West Bengal India
| | - Venkataraman Ganesh
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 West Bengal India
| |
Collapse
|
40
|
Sahoo AK, Dahiya A, Das B, Behera A, Patel BK. Visible-Light-Mediated Difunctionalization of Alkynes: Synthesis of β-Substituted Vinylsulfones Using O- and S-Centered Nucleophiles. J Org Chem 2021; 86:11968-11986. [PMID: 34346693 DOI: 10.1021/acs.joc.1c01350] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An inimitable illustration of a green-light-induced, regioselective difunctionalization of terminal alkynes has been disclosed using sodium arylsulfinates and carboxylic acids in the presence of eosin Y as the photocatalyst. The present methodology is further demonstrated by employing NH4SCN as an S-centered nucleophile instead of carboxylic acid. The mechanistic investigation reveals a radical-induced iodosulfonylation followed by a base-mediated nucleophilic substitution. The mechanism is supported by various studies, viz., radical-trapping experiment, fluorescence quenching, and CV studies. In this protocol, (Z)-β-substituted vinylsulfones are obtained, exclusively covering a broad range of alkynes and nucleophiles, which are often unaddressed. The present strategy can tolerate structurally discrete substrates with steric bulk and different electronic properties, which provides a straightforward and practical pathway for the synthesis of highly functionalized (Z)-β-substituted vinylsulfones. Herein, C-O and C-S bonds are assembled simultaneously with the concomitant introduction of important functional groups, viz., ester, thiocyanate, and sulfone.
Collapse
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ahalya Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
41
|
Zhu S, Cheng Q, Yang H, Chen X, Han Y, Yan C, Shi Y, Hou H. Three-Component Radical Iodonitrosylative Cyclization of 1,6-Enynes under Metal-Free Conditions. Org Lett 2021; 23:5044-5048. [PMID: 34110172 DOI: 10.1021/acs.orglett.1c01576] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A three-component, metal-free radical cascade iodonitrosylative cyclization reaction was described. The nitroso radical was generated from tert-butyl nitrite and triggered the radical addition/cyclization/iodination/oxidation sequences. A variety of 1,6-enynes were tested and proved to be compatible, delivering various highly functionalized hetero- and all-carbon cycles and nitro and vinyl C-I bonds containing pyrrolidines, tetrahydrofuran, and cyclopentane in moderate to excellent isolated yields.
Collapse
Affiliation(s)
- Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Qi Cheng
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Haibo Yang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
42
|
Varga B, Tóth BL, Béke F, Csenki JT, Kotschy A, Novák Z. Synthesis and Photochemical Application of Hydrofluoroolefin (HFO) Based Fluoroalkyl Building Block. Org Lett 2021; 23:4925-4929. [PMID: 34097412 DOI: 10.1021/acs.orglett.1c01709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel fluoroalkyl iodide was synthesized on multigram scale from refrigerant gas HFO-1234yf as cheap industrial starting material in a simple, solvent-free, and easily scalable process. We demonstrated its applicability in a metal-free photocatalytic ATRA reaction to synthesize valuable fluoroalkylated vinyl iodides and proved the straightforward transformability of the products in cross-coupling chemistry to obtain conjugated systems.
Collapse
Affiliation(s)
- Bálint Varga
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Faculty of ́ Science, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Balázs L Tóth
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Faculty of ́ Science, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Ferenc Béke
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Faculty of ́ Science, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - János T Csenki
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Faculty of ́ Science, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - András Kotschy
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7.H-1031 Budapest, Hungary
| | - Zoltán Novák
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Faculty of ́ Science, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
43
|
Sletten EM, Jaye JA. Simple Synthesis of Fluorinated Ene-Ynes via In Situ Generation of Allenes. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0037-1610774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractFluorination of small molecules is a key route toward modulating reactivity and bioactivity. The 1,3 ene-yne functionality is an important synthon towards complex products, as well as a common functionality in biologically active molecules. Here, we present a new synthetic route towards fluorinated ene-ynes from simple starting materials. We employ gas chromatography-mass spectrometry analysis to probe the sequential eliminations necessary for this transformation and observe an allene intermediate. The ene-yne products are sufficiently fluorous to enable purification via fluorous extraction. This methodology will allow facile access to functional, fluorous ene-ynes.
Collapse
|
44
|
Shou JY, Xu XH, Qing FL. Chemoselective Hydro(Chloro)pentafluorosulfanylation of Diazo Compounds with Pentafluorosulfanyl Chloride. Angew Chem Int Ed Engl 2021; 60:15271-15275. [PMID: 33928731 DOI: 10.1002/anie.202103606] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/26/2021] [Indexed: 11/09/2022]
Abstract
Pentafluorosulfanyl chloride (SF5 Cl) is the most prevalent reagent for the incorporation of SF5 group into organic compounds. However, the preparation of SF5 Cl often relies on hazardous reagents and specialized apparatus. Herein, we described a safe and practical synthesis of a bench-stable and easy-to-handle solution of SF5 Cl in n-hexane under gas-reagent-free conditions. The synthetic application of SF5 Cl was demonstrated through the unprecedented reaction with diazo compounds. The chemoselective hydro- and chloropentafluorosulfanylations of α-diazo carbonyl compounds were developed in the presence of K3 PO4 or copper catalyst, respectively. These reactions provide a direct and efficient access to various α-pentafluorosulfanyl carbonyl compounds of high value for potential applications.
Collapse
Affiliation(s)
- Jia-Yi Shou
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
45
|
Shou J, Xu X, Qing F. Chemoselective Hydro(Chloro)pentafluorosulfanylation of Diazo Compounds with Pentafluorosulfanyl Chloride. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103606] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jia‐Yi Shou
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Feng‐Ling Qing
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
46
|
Zhang Z, Li X, Shi D. Visible‐Light‐Promoted Oxy‐difluoroalkylation of Aryl Alkynes for the Synthesis of
β
‐Fluoroenones and
α
‐Difluoroalkyl Ketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhong Zhang
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
- Laboratory for Marine Biology and Biotechnology Pilot National Laboratory for Marine Science and Technology 168 Wenhai Road Qingdao 266237 Shandong People's Republic of China
| |
Collapse
|
47
|
Kostromitin VS, Zemtsov AA, Kokorekin VA, Levin VV, Dilman AD. Atom-transfer radical addition of fluoroalkyl bromides to alkenes via a photoredox/copper catalytic system. Chem Commun (Camb) 2021; 57:5219-5222. [PMID: 33908970 DOI: 10.1039/d1cc01609a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the addition of fluorinated alkyl bromides to alkenes is described. The reaction proceeds under visible light irradiation in the presence of two catalysts: Ir(ppy)3 and N-heterocyclic carbene ligated copper bromide (IMesCuBr). The role of the iridium photocatalyst is to generate the fluoralkyl radical, while the copper promotes formation of the carbon-bromine bond.
Collapse
Affiliation(s)
- Vladislav S Kostromitin
- N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Leninsky prosp. 47, Russian Federation and Lomonosov Moscow State University, Department of Chemistry, Moscow 119991, Leninskie Gory 1-3, Russian Federation
| | - Artem A Zemtsov
- N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Leninsky prosp. 47, Russian Federation
| | - Vladimir A Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Leninsky prosp. 47, Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Leninsky prosp. 47, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
48
|
Gatlik B, Chaładaj W. Pd-Catalyzed Perfluoroalkylative Aryloxycarbonylation of Alkynes with Formates as CO Surrogates. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00671] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Beata Gatlik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
49
|
Kareem RT, Azizi B, Asnaashariisfahani M, Ebadi A, Vessally E. Vicinal halo-trifluoromethylation of alkenes. RSC Adv 2021; 11:14941-14955. [PMID: 35424045 PMCID: PMC8698610 DOI: 10.1039/d0ra06872a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Both trifluoromethyl and halide groups are widely found in medicinally and pharmaceutically important compounds and, moreover, organohalides are commonly used as versatile intermediates in synthetic organic chemistry. Due to their prevalence and easy accessibility, alkene halo-trifluoromethylation provides a convenient way to install these valuable functionalities in complex targets. In this review, we summarize recent advances and achievements in this fast-growing research field. For clarity, the reactions were classified according to the type of halogen atom.
Collapse
Affiliation(s)
- Rzgar Tawfeeq Kareem
- Department of Chemistry, College of Science, University of Bu Ali Sina Hamadan Iran
| | - Bayan Azizi
- College of Health Sciences, University of Human Development Sulaimaniyah Kurdistan region of Iraq
| | | | - Abdolghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University Jouybar Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P.O. Box 19395-3697 Tehran Iran
| |
Collapse
|
50
|
Suliman AMY, Ahmed EAMA, Gong TJ, Fu Y. Cu/Pd-Catalyzed cis-Borylfluoroallylation of Alkynes for the Synthesis of Boryl-Substituted Monofluoroalkenes. Org Lett 2021; 23:3259-3263. [PMID: 33872017 DOI: 10.1021/acs.orglett.1c00668] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monofluoroalkenes normally act as metabolically stable bioisosteres for amide groups (-NH-CO-) and have widespread applications in drug discovery. Additionally, they are widely used as building blocks in organic synthesis. In this study, the Cu/Pd-catalyzed cis-borylfluoroallylation of alkynes was achieved, providing a modular and general tactic for the preparation of monofluorinated alkene scaffolds with high regioselectivity and stereoselectivity. Moreover, an array of synthetic building blocks can be generated by downstream transformations.
Collapse
Affiliation(s)
- Ayman M Y Suliman
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Ebrahim-Alkhalil M A Ahmed
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, China
| | - Tian-Jun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| |
Collapse
|