1
|
Miao Y, Wang Y, Chen Y, Huang Z, Lu C, Liu Y, Chen F, Wen X, Zhang J, Zhu S, Zhao P, Chen Y, Tian T, Zhang Y, Xie H, Lin J, Ye D. Pretargeted Multimodal Tumor Imaging by Enzymatic Self-Immobilization Labeling and Bioorthogonal Reaction. J Am Chem Soc 2025; 147:2809-2821. [PMID: 39801138 DOI: 10.1021/jacs.4c15896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Covalent modification of cell membranes has shown promise for tumor imaging and therapy. However, existing membrane labeling techniques face challenges such as slow kinetics and poor selectivity for cancer cells, leading to off-target effects and suboptimal in vivo efficacy. Here, we present an enzyme-triggered self-immobilization labeling strategy, termed E-SIM, which enables rapid and selective labeling of tumor cell membranes with bioorthogonal trans-cycloctene (TCO) handles in vivo. E-SIM utilizes P-TCO, an alkaline phosphatase (ALP) responsive quinone methide (QM) precursor with a TCO group, facilitating the rapid conjugation of high-density TCO handles onto tumor cell membranes via proximity labeling. These TCO groups then react efficiently with tetrazine (Tz)-bearing reporters via a fast bioorthogonal reaction, resulting in significant enrichment of reporters of various sizes and imaging modalities on tumor cell membranes. We demonstrate the efficacy of E-SIM labeling and bioorthogonal reaction for pretargeted multimodality imaging of tumors in vivo. Notably, we achieve selective and efficient installation of Tz-modified Renilla luciferase on tumor cells in vivo, thereby offering highly sensitive bioluminescence signals for detecting and guiding the surgical removal of small human HepG2 liver tumor peritoneal metastases. E-SIM represents a robust tool for precise tumor cell labeling in complex in vivo environments, feasible for pretargeted enrichment of various reporters in tumors for multimodal imaging applications.
Collapse
Affiliation(s)
- Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Yefeng Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zheng Huang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Chunmei Lu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Yili Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Fangfang Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Shiliang Zhu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Pengke Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Yunhan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Tian Tian
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| |
Collapse
|
2
|
Wang Y, Bo Y, Liu Y, Zhou J, Nguyen D, Baskaran D, Liu Y, Wang H. Metabolic labeling and targeted modulation of adipocytes. Biomater Sci 2025; 13:434-445. [PMID: 39648977 PMCID: PMC11758917 DOI: 10.1039/d4bm01352b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Adipocytes play a critical role in energy storage and endocrine signaling and are associated with various diseases such as cancer and diabetes. Facile strategies to engineer adipocytes have long been pursued for elucidating adipocyte biology and developing adipocyte-based therapies. Herein, we report metabolic glycan labeling of adipocytes and subsequent targeted modulation of adipocytes via click chemistry. We show that azido tags expressed on the surface of adipocytes can persist for over 4 days. By conjugating dibenzocyclooctyne (DBCO)-cargos onto azido-labeled adipocytes via click chemistry, the cargos can be retained on the adipocyte membrane for over 12 hours. We further show that signaling molecules including adiponectin, calreticulin, mannose-binding lectin 2, and milk fat globule-EGF factor 8 protein can be conjugated to adipocytes to orchestrate their phagocytosis by macrophages. The azido-labeled adipocytes grafted into mice can also mediate targeted conjugation of DBCO-cargos in vivo. This adipocyte labeling and targeting technology will facilitate the development of adipocyte-based therapies and provides a new platform for manipulating the interaction between adipocytes and other types of cells.
Collapse
Affiliation(s)
- Yueji Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yang Bo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yusheng Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jiadiao Zhou
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Daniel Nguyen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Dhyanesh Baskaran
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Cancer Center at Illinois (CCIL), Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Wu X, Zhao Z, Yu W, Liu S, Zhou M, Jiang N, Du X, Yang X, Chen J, Guo H, Yang R. Single-Cell Multiomics Identifies Glycan Epitope LacNAc as a Potential Cell-Surface Effector Marker of Peripheral T Cells in Bladder Cancer Patients. ACS Chem Biol 2024; 19:2535-2547. [PMID: 39582226 DOI: 10.1021/acschembio.4c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Cancer is a systemic disease continuously monitored and responded to by the human global immune system. Peripheral blood immune cells, integral to this surveillance, exhibit variable phenotypes during tumor progression. Glycosylation, as one of the most prevalent and significant post-translational modifications of proteins, plays a crucial role in immune system recognition and response. Glycan analysis has become a key method for biomarker discovery. LacNAc, a prominent glycosylation modification, regulates immune cell activity and function. Therefore, we applied our previously developed single-cell glycomic multiomics to analyze peripheral blood in cancer patients. This platform utilizes chemoenzymatic labeling with DNA barcodes for detecting and quantifying LacNAc levels at single-cell resolution without altering the transcriptional status of immune cells. For the first time, we systematically integrated single-cell transcriptome, T cell receptor (TCR) repertoire, and glycan epitope LacNAc analyses in tumor-patient-derived peripheral blood. Our integrated analysis reveals that lower-stage bladder cancer patients showed significantly higher levels of LacNAc in peripheral T cells, and peripheral T cells with high levels of cell-surface LacNAc exhibit higher cytotoxicity and TCR clonal expansion. In summary, we identified LacNAc as a potential cell-surface effector marker for peripheral T cells in bladder cancer patients, which enhances our understanding of peripheral immune cells and offers potential advancements in liquid biopsy.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, Nanjing 210023, China
| | - Wenhao Yu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, Nanjing 210023, China
| | - Siyang Liu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Meng Zhou
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Ning Jiang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xiang Du
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jinbang Chen
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
4
|
Zhou Z, Sun Y, Pang J, Long YQ. Advances in the Delivery, Activation and Therapeutics Applications of Bioorthogonal Prodrugs. Med Res Rev 2024. [PMID: 39692238 DOI: 10.1002/med.22095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Traditional prodrug strategies have been leveraged to overcome many inherent drawbacks of active native drugs in the drug research and development. However, endogenous stimuli such as specific microenvironment or enzymes are relied on to achieve the prodrug activation, resulting in unintended drug release and systemic toxicity. Alternatively, bioorthogonal cleavage reaction-enabled bioorthogonal prodrugs activation via exogenous triggers has emerged as a valuable approach, featuring spatiotemporally controlled drug release. Such bioorthogonal prodrug strategies would ensure targeted drug delivery and/or in situ generation, further circumventing systemic toxicity or premature elimination of active drugs. In recent years, metal-free bioorthogonal cleavage reactions with fast kinetics have boomed in the bioorthogonal prodrug design. Meanwhile, transition-metal-catalyzed and photocatalytic deprotection reactions have also been developed to trigger prodrug activation in biological systems. Besides traditional small molecule prodrugs, gasotransmitters have been successfully delivered to specific organelles or cells via bioorthogonal reactions, and nanosystems have been devised into bioorthogonal triggers as well. Herein, we present an overview of the latest advances in these bioorthogonally-uncaged prodrugs, focused on the delivery, activation and therapeutics applications.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yuanjun Sun
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Jing Pang
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Ya-Qiu Long
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Ghosh P. Deciphering the Cell Surface Sugar-Coating via Biochemical Pathways. Chemistry 2024; 30:e202401983. [PMID: 39215611 DOI: 10.1002/chem.202401983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cell surface components, specifically glycans, play a significant role in several biological functions like cell structure, crosstalk between cells, and eventual target recognition of the cells for therapeutics. The dense layer of glycans, i. e., glycocalyx, could differ in taxon, species, and cell type. Glycans are coupled with lipids and proteins to form glycolipids, glycoproteins, proteoglycans, and glycosylphosphatidylinositol-anchored proteins, making their study challenging. However, understanding glycosylation at the cellular level is vital for fundamental research and advancing glycan-targeted therapy. Among different pathways, metabolic glycan labelling uses the natural metabolic processes of the cell to introduce abiotic functionality into glycan residues. The Bertozzi group pioneered metabolic oligosaccharide engineering using glycan salvage pathways to convert monosaccharides with unnatural modifications. This eventually results in the probe becoming part of the complex cellular glycan structures via click chemistry using copper. On the other hand, the boronic acid-based probe can recognise carbohydrates in a single step without any chemical modification of the surface. This review discusses the significance of glycans as biomarkers for different diseases and the necessity to evaluate them in situ within the physiological environment. The review also discusses the prospect of this field and its potential applications.
Collapse
Affiliation(s)
- Pritam Ghosh
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
6
|
Bo Y, Wang Y, Han J, Bhatta R, Liu Y, Baskaran D, Zhou J, Wang H. Primary adipocytes as targetable drug depot to prevent post-surgical cancer recurrence. Mater Today Bio 2024; 25:101020. [PMID: 38500558 PMCID: PMC10945205 DOI: 10.1016/j.mtbio.2024.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Surgery followed by adjuvant chemotherapy or radiation therapy remains the mainstream treatment for breast cancer in the clinic. However, cancer recurrence post surgery is still common. In view of the clinical practice that autologous fat tissue grafting is often used to facilitate breast reconstruction after lumpectomy, here we develop an in vivo targetable adipocyte-based drug depot for the prevention of post-surgical cancer recurrence. We show that primary adipocytes can be metabolically labeled with clickable chemical tags (e.g., azido groups), for subsequent conjugation of dibenzocyclooctyne (DBCO)-bearing cargo via efficient click chemistry. The conjugated cargo can retain well on the adipocyte membrane. By incorporating a cleavable linker between DBCO and cargo, the conjugated cargo can be gradually released from the surface of adipocytes to effect on neighboring cells. In the context of breast cancer surgery, azido-labeled adipocytes grafted to the surgical site can capture circulating DBCO-drugs for improved prevention of 4T1 triple-negative breast cancer (TNBC) recurrence and metastasis. This targetable and refillable adipocyte-based drug depot holds great promise for drug delivery, transplantation, and other applications.
Collapse
Affiliation(s)
- Yang Bo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yueji Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joonsu Han
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rimsha Bhatta
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yusheng Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Dhyanesh Baskaran
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jiadiao Zhou
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois (CCIL), Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
7
|
Huang W, Laughlin ST. Cell-selective bioorthogonal labeling. Cell Chem Biol 2024; 31:409-427. [PMID: 37837964 DOI: 10.1016/j.chembiol.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
In classic bioorthogonal labeling experiments, the cell's biosynthetic machinery incorporates bioorthogonal tags, creating tagged biomolecules that are subsequently reacted with a corresponding bioorthogonal partner. This two-step approach labels biomolecules throughout the organism indiscriminate of cell type, which can produce background in applications focused on specific cell populations. In this review, we cover advances in bioorthogonal chemistry that enable targeting of bioorthogonal labeling to a desired cell type. Such cell-selective bioorthogonal labeling is achieved in one of three ways. The first approach restricts labeling to specific cells by cell-selective expression of engineered enzymes that enable the bioorthogonal tag's incorporation. The second approach preferentially localizes the bioorthogonal reagents to the desired cell types to restrict their uptake to the desired cells. Finally, the third approach cages the reactivity of the bioorthogonal reagents, allowing activation of the reaction in specific cells by uncaging the reagents selectively in those cell populations.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott T Laughlin
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
8
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|
9
|
Chen D, Lin Y, Fan Y, Li L, Tan C, Wang J, Lin H, Gao J. Glycan Metabolic Fluorine Labeling for In Vivo Visualization of Tumor Cells and In Situ Assessment of Glycosylation Variations. Angew Chem Int Ed Engl 2023; 62:e202313753. [PMID: 37899303 DOI: 10.1002/anie.202313753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 10/31/2023]
Abstract
The abnormality in the glycosylation of surface proteins is critical for the growth and metastasis of tumors and their capacity for immunosuppression and drug resistance. This anomaly offers an entry point for real-time analysis on glycosylation fluctuations. In this study, we report a strategy, glycan metabolic fluorine labeling (MEFLA), for selectively tagging glycans of tumor cells. As a proof of concept, we synthesized two fluorinated unnatural monosaccharides with distinctive 19 F chemical shifts (Ac4 ManNTfe and Ac4 GalNTfa). These two probes could undergo selective uptake by tumor cells and subsequent incorporation into surface glycans. This approach enables efficient and specific 19 F labeling of tumor cells, which permits in vivo tracking of tumor cells and in situ assessment of glycosylation changes by 19 F MRI. The efficiency and specificity of our probes for labeling tumor cells were verified in vitro with A549 cells. The feasibility of our method was further validated with in vivo experiments on A549 tumor-bearing mice. Moreover, the capacity of our approach for assessing glycosylation changes of tumor cells was illustrated both in vitro and in vivo. Our studies provide a promising means for visualizing tumor cells in vivo and assessing their glycosylation variations in situ through targeted multiplexed 19 F MRI.
Collapse
Affiliation(s)
- Dongxia Chen
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yaying Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yifan Fan
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lingxuan Li
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chenlei Tan
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Junjie Wang
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hongyu Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| | - Jinhao Gao
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| |
Collapse
|
10
|
Wu Q, Wang W, Zhang C, You Z, Zeng Y, Lu Y, Zhang S, Li X, Yang C, Song Y. Capturing nascent extracellular vesicles by metabolic glycan labeling-assisted microfluidics. Nat Commun 2023; 14:6541. [PMID: 37848408 PMCID: PMC10582105 DOI: 10.1038/s41467-023-42248-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
Extracellular vesicle (EV) secretion is a dynamic process crucial to cellular communication. Temporally sorting EVs, i.e., separating the newly-produced ones from the pre-existing, can allow not only deep understanding of EV dynamics, but also the discovery of potential EV biomarkers that are related to disease progression or responsible to drug intervention. However, the high similarity between the nascent and pre-existing EVs makes temporal separation extremely challenging. Here, by co-translational introduction of azido groups to act as a timestamp for click chemistry labelling, we develop a microfluidic-based strategy to enable selective isolation of nascent EVs stimulated by an external cue. In two mouse models of anti-PD-L1 immunotherapy, we demonstrate the strategy's feasibility and reveal the high positive correlation of nascent PD-L1+ EV level to tumor volume, suggesting an important role of nascent EVs in response to immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Qiuyue Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wencheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhenlong You
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yinyan Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yinzhu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Suhui Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xingrui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yanling Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| |
Collapse
|
11
|
Wang M, Kejian S, Ye L, Chen J, Ma L. Transforms of Cell Surface Glycoproteins Charge Influences Tumor Cell Metastasis via Atypically Inhibiting Epithelial-Mesenchymal Transition Including Matrix Metalloproteinases and Cell Junctions. Bioconjug Chem 2023; 34:1498-1507. [PMID: 37498932 DOI: 10.1021/acs.bioconjchem.3c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cell communication and signal transduction rely heavily on the charge on the cell surface. The cell surface is negatively charged, with glycoproteins on the cell membrane providing a large percentage of the charge. Sialic acid is found on the outermost side of glycan chains and contributes to glycoprotein's negative charge. Sialic acid is highly expressed in tumor cells and plays an important role in tumor metastasis and immune escape by interacting with extracellular ligands. However, the specific effect of negative charge changes on glycoproteins is still poorly understood. In this study, we used 9-azido sialic acid (9Az-Sia) to create artificial epitopes on glycoproteins via metabolic glycan labeling, and we attached charged groups such as amino and carboxyl to 9Az-Sia via a click reaction with dibenzocyclooctyne (DBCO). The charge of glycoproteins was changed by metabolic glycan labeling and click modification. The results showed that the migration and invasion ability of the MDA-MB-231 cell labeled with 9Az-Sia was significantly reduced after the modification with amino groups rather than carboxyl groups. Epithelial-mesenchymal transition (EMT) is the biological process of metastatic tumor cells, with an increasing ability of tumor cells to migrate and invade. In particular, the expression of adhesion molecules increased in the amine-linked group, whereas the expression of matrix metalloproteinases (MMPs) increased significantly, which is not identical to EMT characteristics. In vivo experiments have demonstrated that the loss of negative charge on glycoproteins has an inhibitory effect on tumors. In conclusion, modifying the positive charge on the surface of glycoproteins can inhibit tumor cell metastasis and has great potential for tumor therapy.
Collapse
Affiliation(s)
- Mingzhe Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shi Kejian
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lei Ye
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiaqi Chen
- School of Mechanical Engineering, Chengdu University, Chengdu 610000, China
| | - Lan Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Institute of Biomedical Health Technology and Engineering, Shenzhen 518055, China
| |
Collapse
|
12
|
Wang J, Cao W, Zhang W, Dou B, Zeng X, Su S, Cao H, Ding X, Ma J, Li X. Ac 34FGlcNAz is an effective metabolic chemical reporter for O-GlcNAcylated proteins with decreased S-glyco-modification. Bioorg Chem 2023; 131:106139. [PMID: 36610251 DOI: 10.1016/j.bioorg.2022.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 02/02/2023]
Abstract
O-GlcNAcylation is a ubiquitous post-translational modification governing vital biological processes in cancer, diabetes and neurodegeneration. Metabolic chemical reporters (MCRs) containing bio-orthogonal groups such as azido or alkyne, are widely used for labeling of interested proteins. However, most MCRs developed for O-GlcNAc modification are not specific and always lead to unexpected side reactions termed S-glyco-modification. Here, we attempt to develop a new MCR of Ac34FGlcNAz that replacing the 4-OH of Ac4GlcNAz with fluorine, which is supposed to abolish the epimerization of GALE and enhance the selectivity. The discoveries demonstrate that Ac34FGlcNAz is a powerful MCR for O-GlcNAcylation with high efficiency and the process of this labeling is conducted by the two enzymes of OGT and OGA. Most importantly, Ac34FGlcNAz is predominantly incorporated intracellular proteins in the form of O-linkage and leads to negligible S-glyco-modification, indicating it is a selective MCR for O-GlcNAcylation. Therefore, we reason that Ac34FGlcNAz developed here is a well characterized MCR of O-GlcNAcylation, which provides more choice for label and enrichment of O-GlcNAc associated proteins.
Collapse
Affiliation(s)
- Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Wei Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Wei Zhang
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng 475000, China
| | - Biao Dou
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Xueke Zeng
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Shihao Su
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng 475000, China
| | - Hongtai Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Xin Ding
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Jing Ma
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng 475000, China.
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China.
| |
Collapse
|
13
|
Barrett K, Dube DH. Chemical tools to study bacterial glycans: a tale from discovery of glycoproteins to disruption of their function. Isr J Chem 2023; 63:e202200050. [PMID: 37324574 PMCID: PMC10266715 DOI: 10.1002/ijch.202200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 01/02/2024]
Abstract
Bacteria coat themselves with a dense array of cell envelope glycans that enhance bacterial fitness and promote survival. Despite the importance of bacterial glycans, their systematic study and perturbation remains challenging. Chemical tools have made important inroads toward understanding and altering bacterial glycans. This review describes how pioneering discoveries from Prof. Carolyn Bertozzi's laboratory inspired our laboratory to develop sugar probes to facilitate the study of bacterial glycans. As described below, we used metabolic glycan labelling to install bioorthogonal reporters into bacterial glycans, ultimately permitting the discovery of a protein glycosylation system, the identification of glycosylation genes, and the development of metabolic glycan inhibitors. Our results have provided an approach to screen bacterial glycans and gain insight into their function, even in the absence of detailed structural information.
Collapse
Affiliation(s)
- Katharine Barrett
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011 USA
| | - Danielle H Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011 USA
| |
Collapse
|
14
|
Wang Y, Yang Y, Guo J, Ju H, Chen Y. Tumor identification via in vivo portable Raman detection of sialic acid with a dual gold nanoprobe system. Chem Sci 2023; 14:923-927. [PMID: 36755728 PMCID: PMC9890552 DOI: 10.1039/d2sc05163j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
A dual gold nanoprobe system was designed for in vivo portable Raman detection of sialic acid (SA) for tumor identification. The dual gold nanoprobe system contained two gold nanoprobes, Au10-DTTC/PEG-PBA and Au40-PEG-SA. Au10-DTTC/PEG-PBA was constructed on a 10 nm gold nanoparticle modified with 3,3'-diethylthia tricarbocyanine iodide (DTTCI) as the Raman reporter and 3-aminophenylboronic acid (APBA) through a thiol PEG succinimidyl carboxymethyl ester (HS-PEG-NHS) linker for specific recognition of SA. Au40-PEG-SA was constructed on a 40 nm gold nanoparticle modified with SA through HS-PEG-NHS. For in vivo detection of SA, Au10-DTTC/PEG-PBA and Au40-PEG-SA were subsequently injected into tumor xenografted mice with optimal interval and retention times. Through the specific recognition between PBA and SA, the conjugates of Au10-DTTC/PEG-PBA and Au40-PEG-SA formed in the tumor region emitted strong SERS signals of DTTC, which could be detected by a portable Raman detector. This work provides a convenient and portable method to detect SA in tumor xenografted mice, which is useful for family-stay identification and clinical cleavage of tumors.
Collapse
Affiliation(s)
- Yuru Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jingxing Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of TechnologyWuhan 430070P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
15
|
Bioorthogonal chemistry based on-demand drug delivery system in cancer therapy. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Yi W, Xiao P, Liu X, Zhao Z, Sun X, Wang J, Zhou L, Wang G, Cao H, Wang D, Li Y. Recent advances in developing active targeting and multi-functional drug delivery systems via bioorthogonal chemistry. Signal Transduct Target Ther 2022; 7:386. [PMID: 36460660 PMCID: PMC9716178 DOI: 10.1038/s41392-022-01250-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Bioorthogonal chemistry reactions occur in physiological conditions without interfering with normal physiological processes. Through metabolic engineering, bioorthogonal groups can be tagged onto cell membranes, which selectively attach to cargos with paired groups via bioorthogonal reactions. Due to its simplicity, high efficiency, and specificity, bioorthogonal chemistry has demonstrated great application potential in drug delivery. On the one hand, bioorthogonal reactions improve therapeutic agent delivery to target sites, overcoming off-target distribution. On the other hand, nanoparticles and biomolecules can be linked to cell membranes by bioorthogonal reactions, providing approaches to developing multi-functional drug delivery systems (DDSs). In this review, we first describe the principle of labeling cells or pathogenic microorganisms with bioorthogonal groups. We then highlight recent breakthroughs in developing active targeting DDSs to tumors, immune systems, or bacteria by bioorthogonal chemistry, as well as applications of bioorthogonal chemistry in developing functional bio-inspired DDSs (biomimetic DDSs, cell-based DDSs, bacteria-based and phage-based DDSs) and hydrogels. Finally, we discuss the difficulties and prospective direction of bioorthogonal chemistry in drug delivery. We expect this review will help us understand the latest advances in the development of active targeting and multi-functional DDSs using bioorthogonal chemistry and inspire innovative applications of bioorthogonal chemistry in developing smart DDSs for disease treatment.
Collapse
Affiliation(s)
- Wenzhe Yi
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Ping Xiao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xiaochen Liu
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Zitong Zhao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xiangshi Sun
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Jue Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Lei Zhou
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Guanru Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Haiqiang Cao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Dangge Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000 China
| | - Yaping Li
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264000 China
| |
Collapse
|
17
|
Chen D, Lin Y, Li A, Luo X, Yang C, Gao J, Lin H. Bio-orthogonal Metabolic Fluorine Labeling Enables Deep-Tissue Visualization of Tumor Cells In Vivo by 19F Magnetic Resonance Imaging. Anal Chem 2022; 94:16614-16621. [DOI: 10.1021/acs.analchem.2c02443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Dongxia Chen
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yaying Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ao Li
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangjie Luo
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Guo Y, Jia W, Yang J, Zhan X. Cancer glycomics offers potential biomarkers and therapeutic targets in the framework of 3P medicine. Front Endocrinol (Lausanne) 2022; 13:970489. [PMID: 36072925 PMCID: PMC9441633 DOI: 10.3389/fendo.2022.970489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Glycosylation is one of the most important post-translational modifications (PTMs) in a protein, and is the most abundant and diverse biopolymer in nature. Glycans are involved in multiple biological processes of cancer initiation and progression, including cell-cell interactions, cell-extracellular matrix interactions, tumor invasion and metastasis, tumor angiogenesis, and immune regulation. As an important biomarker, tumor-associated glycosylation changes have been extensively studied. This article reviews recent advances in glycosylation-based biomarker research, which is useful for cancer diagnosis and prognostic assessment. Truncated O-glycans, sialylation, fucosylation, and complex branched structures have been found to be the most common structural patterns in malignant tumors. In recent years, immunochemical methods, lectin recognition-based methods, mass spectrometry (MS)-related methods, and fluorescence imaging-based in situ methods have greatly promoted the discovery and application potentials of glycomic and glycoprotein biomarkers in various cancers. In particular, MS-based proteomics has significantly facilitated the comprehensive research of extracellular glycoproteins, increasing our understanding of their critical roles in regulating cellular activities. Predictive, preventive and personalized medicine (PPPM; 3P medicine) is an effective approach of early prediction, prevention and personalized treatment for different patients, and it is known as the new direction of medical development in the 21st century and represents the ultimate goal and highest stage of medical development. Glycosylation has been revealed to have new diagnostic, prognostic, and even therapeutic potentials. The purpose of glycosylation analysis and utilization of biology is to make a fundamental change in health care and medical practice, so as to lead medical research and practice into a new era of 3P medicine.
Collapse
Affiliation(s)
- Yuna Guo
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Wenshuang Jia
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jingru Yang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
19
|
Zhang X, Gao J, Tang Y, Yu J, Liew SS, Qiao C, Cao Y, Liu G, Fan H, Xia Y, Tian J, Pu K, Wang Z. Bioorthogonally activatable cyanine dye with torsion-induced disaggregation for in vivo tumor imaging. Nat Commun 2022; 13:3513. [PMID: 35717407 PMCID: PMC9206667 DOI: 10.1038/s41467-022-31136-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Advancement of bioorthogonal chemistry in molecular optical imaging lies in expanding the repertoire of fluorophores that can undergo fluorescence signal changes upon bioorthogonal ligation. However, most available bioorthogonally activatable fluorophores only emit shallow tissue-penetrating visible light via an intramolecular charge transfer mechanism. Herein, we report a serendipitous "torsion-induced disaggregation (TIDA)" phenomenon in the design of near-infrared (NIR) tetrazine (Tz)-based cyanine probe. The TIDA of the cyanine is triggered upon Tz-transcyclooctene ligation, converting its heptamethine chain from S-trans to S-cis conformation. Thus, after bioorthogonal reaction, the tendency of the resulting cyanine towards aggregation is reduced, leading to TIDA-induced fluorescence enhancement response. This Tz-cyanine probe sensitively delineates the tumor in living mice as early as 5 min post intravenous injection. As such, this work discovers a design mechanism for the construction of bioorthogonally activatable NIR fluorophores and opens up opportunities to further exploit bioorthogonal chemistry in in vivo imaging.
Collapse
Affiliation(s)
- Xianghan Zhang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Jingkai Gao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yingdi Tang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jie Yu
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Si Si Liew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Chaoqiang Qiao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yutian Cao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Guohuan Liu
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Hongyu Fan
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yuqiong Xia
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jie Tian
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China.
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| | - Zhongliang Wang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi, 710071, China.
| |
Collapse
|
20
|
Recyclable cell-surface chemical tags for repetitive cancer targeting. J Control Release 2022; 347:164-174. [PMID: 35537537 DOI: 10.1016/j.jconrel.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/18/2022] [Accepted: 05/03/2022] [Indexed: 12/31/2022]
Abstract
Metabolic glycan labeling provides a facile yet powerful tool to install chemical tags to the cell membrane via metabolic glycoengineering processes of unnatural sugars. These cell-surface chemical tags can then mediate targeted conjugation of therapeutic agents via efficient chemistries, which has been extensively explored for cancer-targeted treatment. However, the commonly used in vivo chemistries such as azide-cyclooctyne and tetrazine-cyclooctene chemistries only allow for one-time use of cell-surface chemical tags, posing a challenge for long-term, continuous cell targeting. Here we show that cell-surface ketone groups can be recycled back to the cell membrane after covalent conjugation with hydrazide-bearing molecules, enabling repetitive targeting of hydrazide-bearing agents. Upon conjugation to ketone-labeled cancer cells via a pH-responsive hydrazone linkage, Alexa Fluor 488-hydrazide became internalized and entered endosomes/lysosomes where ketone-sugars can be released and recycled. The recycled ketone groups could then mediate targeted conjugation of Alexa Fluor 647-hydrazide. We also showed that doxorubicin-hydrazide can be targeted to ketone-labeled cancer cells for enhanced cancer cell killing. This study validates the recyclability of cell-surface chemical tags for repetitive targeting of cancer cells with the use of a reversible chemistry, which will greatly facilitate future development of potent cancer-targeted therapies based on metabolic glycan labeling.
Collapse
|
21
|
Fan X, Song Q, Sun DE, Hao Y, Wang J, Wang C, Chen X. Cell-type-specific labeling and profiling of glycans in living mice. Nat Chem Biol 2022; 18:625-633. [PMID: 35513511 DOI: 10.1038/s41589-022-01016-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Metabolic labeling of glycans with clickable unnatural sugars has enabled glycan analysis in multicellular systems. However, cell-type-specific labeling of glycans in vivo remains challenging. Here we develop genetically encoded metabolic glycan labeling (GeMGL), a cell-type-specific strategy based on a bump-and-hole pair of an unnatural sugar and its matching engineered enzyme. N-pentynylacetylglucosamine (GlcNAl) serves as a bumped analog of N-acetylglucosamine (GlcNAc) that is specifically incorporated into glycans of cells expressing a UDP-GlcNAc pyrophosphorylase mutant, AGX2F383G. GeMGL with the 1,3-di-O-propionylated GlcNAl (1,3-Pr2GlcNAl) and AGX2F383G pair was demonstrated in cell cocultures, and used for specific labeling of glycans in mouse xenograft tumors. By generating a transgenic mouse line with AGX2F383G expressed under a cardiomyocyte-specific promoter, we performed specific imaging of cardiomyocyte glycans in the heart and identified 582 cardiomyocyte O-GlcNAcylated proteins with no interference from other cardiac cell types. GeMGL will facilitate cell-type-specific glycan imaging and glycoproteomics in various tissues and disease models.
Collapse
Affiliation(s)
- Xinqi Fan
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Qitao Song
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - De-En Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Yi Hao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Jingyang Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Chunting Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China. .,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China. .,Synthetic and Functional Biomolecules Center, Peking University, Beijing, China. .,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China.
| |
Collapse
|
22
|
Cheng B, Wan Y, Tang Q, Du Y, Xu F, Huang Z, Qin W, Chen X. A Photocaged Azidosugar for
Light‐Controlled
Metabolic Labeling of
Cell‐Surface
Sialoglycans. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bo Cheng
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Yi Wan
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| | - Qi Tang
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Yifei Du
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| | - Feiyang Xu
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Zhimin Huang
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| | - Wei Qin
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| | - Xing Chen
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing 100871 China
- Synthetic and Functional Biomolecules Center Peking University Beijing 100871 China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| |
Collapse
|
23
|
Cheng B, Tang Q, Zhang C, Chen X. Glycan Labeling and Analysis in Cells and In Vivo. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:363-387. [PMID: 34314224 DOI: 10.1146/annurev-anchem-091620-091314] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As one of the major types of biomacromolecules in the cell, glycans play essential functional roles in various biological processes. Compared with proteins and nucleic acids, the analysis of glycans in situ has been more challenging. Herein we review recent advances in the development of methods and strategies for labeling, imaging, and profiling of glycans in cells and in vivo. Cellular glycans can be labeled by affinity-based probes, including lectin and antibody conjugates, direct chemical modification, metabolic glycan labeling, and chemoenzymatic labeling. These methods have been applied to label glycans with fluorophores, which enables the visualization and tracking of glycans in cells, tissues, and living organisms. Alternatively, labeling glycans with affinity tags has enabled the enrichment of glycoproteins for glycoproteomic profiling. Built on the glycan labeling methods, strategies enabling cell-selective and tissue-specific glycan labeling and protein-specific glycan imaging have been developed. With these methods and strategies, researchers are now better poised than ever to dissect the biological function of glycans in physiological or pathological contexts.
Collapse
Affiliation(s)
- Bo Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Qi Tang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Che Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Cell membrane-camouflaged liposomes for tumor cell-selective glycans engineering and imaging in vivo. Proc Natl Acad Sci U S A 2021; 118:2022769118. [PMID: 34301864 DOI: 10.1073/pnas.2022769118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The dynamic change of cell-surface glycans is involved in diverse biological and pathological events such as oncogenesis and metastasis. Despite tremendous efforts, it remains a great challenge to selectively distinguish and label glycans of different cancer cells or cancer subtypes. Inspired by biomimetic cell membrane-coating technology, herein, we construct pH-responsive azidosugar liposomes camouflaged with natural cancer-cell membrane for tumor cell-selective glycan engineering. With cancer cell-membrane camouflage, the biomimetic liposomes can prevent protein corona formation and evade phagocytosis of macrophages, facilitating metabolic glycans labeling in vivo. More importantly, due to multiple membrane receptors, the biomimetic liposomes have prominent cell selectivity to homotypic cancer cells, showing higher glycan-labeling efficacy than a single-ligand targeting strategy. Further in vitro and in vivo experiments indicate that cancer cell membrane-camouflaged azidosugar liposomes not only realize cell-selective glycan imaging of different cancer cells and triple-negative breast cancer subtypes but also do well in labeling metastatic tumors. Meanwhile, the strategy is also applicable to the use of tumor tissue-derived cell membranes, which shows the prospect for individual diagnosis and treatment. This work may pave a way for efficient cancer cell-selective engineering and visualization of glycans in vivo.
Collapse
|
25
|
Liu Z, Zhang L, Cui T, Ma M, Ren J, Qu X. A Nature-Inspired Metal-Organic Framework Discriminator for Differential Diagnosis of Cancer Cell Subtypes. Angew Chem Int Ed Engl 2021; 60:15436-15444. [PMID: 33960090 DOI: 10.1002/anie.202102286] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Indexed: 12/13/2022]
Abstract
Metabolic glycan labeling (MGL) followed by bioorthogonal chemistry provides a powerful tool for tumor imaging and therapy. However, selectively metabolic labeling of cells or tissues of interest remains a challenge. Particularly, owing to tumor heterogeneity including tumor subtypes and interpatient heterogeneity, it is far more difficult to realize tumor-cell-selective metabolic labeling for precise diagnosis. Inspired by nature, we designed azidosugar-functionalized metal-organic frameworks camouflaged with cancer cell membranes to accomplish cancer-cell-selective MGL in vivo. With abundant receptors, this biomimetic platform not only selectively targets homotypic cells but also realizes different breast cancer subtype-selective MGL. Moreover, the endo/lysosomal-escaped ZIF-8 can make azidosugar escape from lysosomes and accelerate its metabolic incorporation. This strategy also takes advantage of cancer-tissue-derived cell membranes, which may have huge potential for personalized diagnosis and therapy.
Collapse
Affiliation(s)
- Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
26
|
Liu Z, Zhang L, Cui T, Ma M, Ren J, Qu X. A Nature‐Inspired Metal–Organic Framework Discriminator for Differential Diagnosis of Cancer Cell Subtypes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
27
|
Zhang C, Jin X, Wang L, Jin C, Han X, Ma W, Li X, Teng G. Hollow MnFe 2O 4@C@APBA Nanospheres with Size Exclusion and pH Response for Efficient Enrichment of Endogenous Glycopeptides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9714-9728. [PMID: 33600144 DOI: 10.1021/acsami.0c22221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enrichment and detection of glycopeptides are an important clinical measure for the diagnosis of complex diseases. Enrichment materials play a key role in this process; they must have an effective sample-screening ability to eliminate the interference of nonglycopeptides. In this work, novel hollow MnFe2O4@C@APBA nanospheres (HMCAs) with magnetic and pH responsiveness were prepared for glycopeptide enrichment. The as-prepared composites have a suitable hollow structure and large specific surface area, and the boron hydroxyl group in their cavities can fix or disconnect the hydrophilic groups of the glycopeptides at different pH, so the glycopeptides can be adsorbed or desorbed in a controllable way. Enrichment results showed that the HMCAs exhibited an excellent enrichment performance: ultralow limit of detection (approximately 0.5 fmol μL-1), perfect size-exclusion effect (HRP/BSA, 1:800, w/w), favorable universality (HRP, IgG, and RNase B), and high binding capacity (150 mg/g). In order to verify the application of materials in practice, the HMCAs were used for the analysis of complex samples and it was found that 474 glycopeptides were identified from 210 glycoproteins in three replicate analyses of 2 μL of human serum. The results showed that the HMCAs could be used as a promising enrichment material for glycopeptide characterization in MS-based glycoproteomics and related fields.
Collapse
Affiliation(s)
- Chun Zhang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Xiaodong Jin
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Liping Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Chengzhao Jin
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Xiaoqian Han
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Weigang Ma
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xingang Li
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
- Tianjin Key Laboratory of Applied Catalysis Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guixiang Teng
- College of Life Science, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
28
|
Tan A, Liu Q, Septiadi D, Chu S, Liu T, Richards SJ, Rothen-Rutishauser B, Petri-Fink A, Gibson MI, Boyd BJ. Understanding selectivity of metabolic labelling and click-targeting in multicellular environments as a route to tissue selective drug delivery. J Mater Chem B 2021; 9:5365-5373. [PMID: 34161405 DOI: 10.1039/d1tb00721a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cancer cells generally exhibit higher metabolic demands relative to that of normal tissue cells. This offers great possibilities to exploit metabolic glycoengineering in combination with bio-orthogonal chemistry reactions to achieve tumour site-targeted therapeutic delivery. This work addresses the selectivity of metabolic glycan labelling in diseased (i.e., cancer) versus normal cells grown in a multicellular environment. Dibenzocylooctyne (DBCO)-bearing acetylated-d-mannosamine (Ac4ManNDBCO) was synthesised to metabolically label three different types of cell lines originating from the human lung tissues: A549 adenocarcinomic alveolar basal epithelial cells, MeT5A non-cancerous mesothelial cells, and MRC5 non-cancerous fibroblasts. These cell lines displayed different labelling sensitivity, which trended with their doubling time in the following order: A549 ≈ MeT5A > MRC5. The higher metabolic labelling efficiency inherently led to a higher extent of specific binding and accumulation of the clickable N3-conjugated gold nanoparticles (N3-AuNps, core diameter = 30 nm) in the DBCO-glycan modified A549 and MeT5A cells, but to a less prominent effect in MRC5 cells. These findings demonstrate that relative rates of cell metabolism can be exploited using metabolic labelling to recruit nanotherapeutics whilst minimising non-specific targeting of surrounding tissues.
Collapse
Affiliation(s)
- Angel Tan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, VIC 3052, Australia. and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia and Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Qingtao Liu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, VIC 3052, Australia.
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Shuiling Chu
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Sarah-Jane Richards
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK and Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, VIC 3052, Australia. and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
29
|
Metabolic glycan labelling for cancer-targeted therapy. Nat Chem 2020; 12:1102-1114. [PMID: 33219365 DOI: 10.1038/s41557-020-00587-w] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 10/19/2020] [Indexed: 12/19/2022]
Abstract
Metabolic glycoengineering with unnatural sugars provides a powerful tool to label cell membranes with chemical tags for subsequent targeted conjugation of molecular cargos via efficient chemistries. This technology has been widely explored for cancer labelling and targeting. However, as this metabolic labelling process can occur in both cancerous and normal cells, cancer-selective labelling needs to be achieved to develop cancer-targeted therapies. Unnatural sugars can be either rationally designed to enable preferential labelling of cancer cells, or specifically delivered to cancerous tissues. In this Review Article, we will discuss the progress to date in design and delivery of unnatural sugars for metabolic labelling of tumour cells and subsequent development of tumour-targeted therapy. Metabolic cell labelling for cancer immunotherapy will also be discussed. Finally, we will provide a perspective on future directions of metabolic labelling of cancer and immune cells for the development of potent, clinically translatable cancer therapies.
Collapse
|
30
|
Held JM. Redox Systems Biology: Harnessing the Sentinels of the Cysteine Redoxome. Antioxid Redox Signal 2020; 32:659-676. [PMID: 31368359 PMCID: PMC7047077 DOI: 10.1089/ars.2019.7725] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022]
Abstract
Significance: Cellular redox processes are highly interconnected, yet not in equilibrium, and governed by a wide range of biochemical parameters. Technological advances continue refining how specific redox processes are regulated, but broad understanding of the dynamic interconnectivity between cellular redox modules remains limited. Systems biology investigates multiple components in complex environments and can provide integrative insights into the multifaceted cellular redox state. This review describes the state of the art in redox systems biology as well as provides an updated perspective and practical guide for harnessing thousands of cysteine sensors in the redoxome for multiparameter characterization of cellular redox networks. Recent Advances: Redox systems biology has been applied to genome-scale models and large public datasets, challenged common conceptions, and provided new insights that complement reductionist approaches. Advances in public knowledge and user-friendly tools for proteome-wide annotation of cysteine sentinels can now leverage cysteine redox proteomics datasets to provide spatial, functional, and protein structural information. Critical Issues: Careful consideration of available analytical approaches is needed to broadly characterize the systems-level properties of redox signaling networks and be experimentally feasible. The cysteine redoxome is an informative focal point since it integrates many aspects of redox biology. The mechanisms and redox modules governing cysteine redox regulation, cysteine oxidation assays, proteome-wide annotation of the biophysical and biochemical properties of individual cysteines, and their clinical application are discussed. Future Directions: Investigating the cysteine redoxome at a systems level will uncover new insights into the mechanisms of selectivity and context dependence of redox signaling networks.
Collapse
Affiliation(s)
- Jason M. Held
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
31
|
Li Z, Yuan B, Lin X, Meng X, Wen X, Guo Q, Li L, Jiang H, Wang K. Intramolecular trigger remodeling-induced HCR for amplified detection of protein-specific glycosylation. Talanta 2020; 215:120889. [PMID: 32312435 DOI: 10.1016/j.talanta.2020.120889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
Abstract
Dynamic changes of protein-glycosylation on cell surface act as an important indicator that reflects cellular physiological states and disease developments. The enhanced visualization of protein-specific glycosylation is of great value to interpret its functions and mechanisms. Hence, we present an intramolecular trigger remodeling-induced hybridization chain reaction (HCR) for imaging protein-specific glycosylation. This strategy relies on designing two DNA probes, protein and glycan probes, labeled respectively on protein by aptamer recognition and glycan through metabolic oligosaccharide engineering (MOE). Upon the same glycoprotein was labeled, the complementary domain of two probes induces hybridization and thus to remodel an intact trigger, followed by initiating HCR assembly. Applying this strategy, we successfully achieved imaging of specific protein-glycosylation on CEM cell surface and monitored dynamic changes of the glycosylation after treating with drugs. It provides a powerful tool with high flexibility, specificity and sensitivity in the research field of protein-specific glycosylation on living cells.
Collapse
Affiliation(s)
- Zenghui Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Baoyin Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoxia Lin
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Xiangxian Meng
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Xiaohong Wen
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Qiuping Guo
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
| | - Lie Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Huishan Jiang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Kemin Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
| |
Collapse
|
32
|
Cheng B, Dong L, Zhu Y, Huang R, Sun Y, You Q, Song Q, Paton JC, Paton AW, Chen X. 9-Azido Analogues of Three Sialic Acid Forms for Metabolic Remodeling of Cell-Surface Sialoglycans. ACS Chem Biol 2019; 14:2141-2147. [PMID: 31584261 DOI: 10.1021/acschembio.9b00556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neu5Ac, Neu5Gc, and KDN are three forms of sialic acids in vertebrates that possess distinct biological functions. Herein, we report the synthesis and metabolic incorporation of the 9-azido analogues of three sialic acid forms in mammalian cells. The incorporated sialic acid analogues enable fluorescent imaging of cell-surface sialoglycans and proteomic profiling of sialoglycoproteins. Furthermore, we apply them to metabolically engineer cell surfaces with sialoglycans terminated with distinct sialic acids or their 9-azido analogues. The remodeled cells expressing specific cell-surface sialoglycoforms show distinct binding affinity toward subtilase cytotoxin (SubAB), a toxin secreted by Shiga toxigenic Escherichia coli. The 9-azido analogues of sialic acid forms developed in this work provide a versatile tool for metabolic remodeling of cell-surface properties and modulating pathogen-host interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide SA 5005, Australia
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide SA 5005, Australia
| | | |
Collapse
|
33
|
Hong S, Sahai-Hernandez P, Chapla DG, Moremen KW, Traver D, Wu P. Direct Visualization of Live Zebrafish Glycans via Single-Step Metabolic Labeling with Fluorophore-Tagged Nucleotide Sugars. Angew Chem Int Ed Engl 2019; 58:14327-14333. [PMID: 31295389 PMCID: PMC6820142 DOI: 10.1002/anie.201907410] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Dynamic turnover of cell-surface glycans is involved in a myriad of biological events, making this process an attractive target for in vivo molecular imaging. Metabolic glycan labeling coupled with bioorthogonal chemistry has paved the way for visualizing glycans in living organisms. However, a two-step labeling sequence is required, which suffers from the tissue-penetration difficulties of the imaging probes. Here, by exploring the substrate promiscuity of endogenous glycosyltransferases, we developed a single-step fluorescent glycan labeling strategy by using fluorophore-tagged analogues of the nucleotide sugars. Injecting fluorophore-tagged sialic acid and fucose into the yolk of zebrafish embryos at the one-cell stage enables systematic imaging of sialylation and fucosylation in live zebrafish embryos at distinct developmental stages. From these studies, we obtained insights into the role of sialylated and fucosylated glycans in zebrafish hematopoiesis.
Collapse
Affiliation(s)
- Senlian Hong
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pankaj Sahai-Hernandez
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | | | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
34
|
Zhang P, Zhang X, Li C, Zhou S, Wu W, Jiang X. Target-Amplified Drug Delivery of Polymer Micelles Bearing Staudinger Ligation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32697-32705. [PMID: 31411033 DOI: 10.1021/acsami.9b10295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bioorthogonal chemistry together with biomarker-installing techniques is very promising in the amplification of the tumor targeting efficiency of nanomedicine. In this work, we newly synthesized an amphiphilic block copolymer polyoxazoline-block-polycaprolactone (POX-PCL) in which a certain number of amino groups were dangled in the side chain of the POX block and then functionalized into triarylphosphine groups for active tumor targeting via Staudinger ligation. By using the block copolymer self-assembly, the Staudinger ligation reagent-containing and drug-loaded reactive micelles were prepared with a hydrodynamic diameter of ∼74 nm. Such drug-loaded reactive POX-PCL micelles exhibited significant tumor target ability through the Staudinger ligation between the micelles and the tumors metabolically labeled with azide group, as demonstrated by a series of in vitro and in vivo evaluations. In this work, a novel method was proposed for the application of Staudinger ligation in the nanomedicine for amplifying the tumor targeting ability and antitumor activity of nanodrugs.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Xiaoke Zhang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Cheng Li
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Sensen Zhou
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Wei Wu
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| |
Collapse
|
35
|
Hong S, Sahai‐Hernandez P, Chapla DG, Moremen KW, Traver D, Wu P. Direct Visualization of Live Zebrafish Glycans via Single‐Step Metabolic Labeling with Fluorophore‐Tagged Nucleotide Sugars. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Senlian Hong
- Department of Molecular Medicine The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Pankaj Sahai‐Hernandez
- Department of Cellular and Molecular Medicine University of California at San Diego La Jolla CA 92037 USA
| | | | - Kelley W. Moremen
- Complex Carbohydrate Research Center University of Georgia Athens GA 30602 USA
| | - David Traver
- Department of Cellular and Molecular Medicine University of California at San Diego La Jolla CA 92037 USA
| | - Peng Wu
- Department of Molecular Medicine The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
36
|
Wang H, Liu Y, Xu M, Cheng J. Azido-galactose outperforms azido-mannose for metabolic labeling and targeting of hepatocellular carcinoma. Biomater Sci 2019; 7:4166-4173. [PMID: 31368459 DOI: 10.1039/c9bm00898e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metabolic glycoengineering of unnatural monosaccharides provides a facile method to label cancer cells with chemical tags for glycan imaging and cancer targeting. Multiple types of monosaccharides have been utilized for metabolic cell labeling. However, the comparison of different types of monosaccharides in labeling efficiency and selectivity has not been reported. In this study, we compared N-azidoacetylgalactosamine (GalAz) and N-azidoacetylmannosamine (ManAz) for metabolic labeling of HepG2 hepatocellular carcinoma in vitro and in vivo. GalAz showed higher labeling efficiency at low concentrations, and outperformed ManAz in metabolic labeling of HepG2 tumors in vivo. GalAz mediated labeling of HepG2 tumors with azido groups significantly improved the tumor accumulation of dibenzocyclooctyne (DBCO)-Cy5 and DBCO-doxorubicin conjugate via efficient Click chemistry. This study, for the first time, uncovered the distinct labeling efficiency and selectivity of different unnatural monosaccharides in liver cancers.
Collapse
Affiliation(s)
- Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Yang Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Ming Xu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
37
|
Takayama Y, Kusamori K, Nishikawa M. Click Chemistry as a Tool for Cell Engineering and Drug Delivery. Molecules 2019; 24:molecules24010172. [PMID: 30621193 PMCID: PMC6337375 DOI: 10.3390/molecules24010172] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 01/14/2023] Open
Abstract
Click chemistry has great potential for use in binding between nucleic acids, lipids, proteins, and other molecules, and has been used in many research fields because of its beneficial characteristics, including high yield, high specificity, and simplicity. The recent development of copper-free and less cytotoxic click chemistry reactions has allowed for the application of click chemistry to the field of medicine. Moreover, metabolic glycoengineering allows for the direct modification of living cells with substrates for click chemistry either in vitro or in vivo. As such, click chemistry has become a powerful tool for cell transplantation and drug delivery. In this review, we describe some applications of click chemistry for cell engineering in cell transplantation and for drug delivery in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yukiya Takayama
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
38
|
Gilormini PA, Batt AR, Pratt MR, Biot C. Asking more from metabolic oligosaccharide engineering. Chem Sci 2018; 9:7585-7595. [PMID: 30393518 PMCID: PMC6187459 DOI: 10.1039/c8sc02241k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/17/2018] [Indexed: 01/20/2023] Open
Abstract
Glycans form one of the four classes of biomolecules, are found in every living system and present a huge structural and functional diversity. As an illustration of this diversity, it has been reported that more than 50% of the human proteome is glycosylated and that 2% of the human genome is dedicated to glycosylation processes. Glycans are involved in many biological processes such as signalization, cell-cell or host pathogen interactions, immunity, etc. However, fundamental processes associated with glycans are not yet fully understood and the development of glycobiology is relatively recent compared to the study of genes or proteins. Approximately 25 years ago, the studies of Bertozzi's and Reutter's groups paved the way for metabolic oligosaccharide engineering (MOE), a strategy which consists in the use of modified sugar analogs which are taken up into the cells, metabolized, incorporated into glycoconjugates, and finally detected in a specific manner. This groundbreaking strategy has been widely used during the last few decades and the concomitant development of new bioorthogonal ligation reactions has allowed many advances in the field. Typically, MOE has been used to either visualize glycans or identify different classes of glycoproteins. The present review aims to highlight recent studies that lie somewhat outside of these more traditional approaches and that are pushing the boundaries of MOE applications.
Collapse
Affiliation(s)
- Pierre-André Gilormini
- University of Lille , CNRS UMR 8576 , UGSF - Unité de Glycobiologie Structurale et Fonctionnelle , F-59000 Lille , France .
| | - Anna R Batt
- Department of Chemistry , University of Southern California , 840 Downey Way , LJS 250 Los Angeles , CA 90089 , USA
| | - Matthew R Pratt
- Department of Chemistry , University of Southern California , 840 Downey Way , LJS 250 Los Angeles , CA 90089 , USA
- Department of Biological Sciences , University of Southern California , 840 Downey Way , LJS 250 Los Angeles , CA 90089 , USA
| | - Christophe Biot
- University of Lille , CNRS UMR 8576 , UGSF - Unité de Glycobiologie Structurale et Fonctionnelle , F-59000 Lille , France .
| |
Collapse
|
39
|
Whited J, Zhang X, Nie H, Wang D, Li Y, Sun XL. Recent Chemical Biology Approaches for Profiling Cell Surface Sialylation Status. ACS Chem Biol 2018; 13:2364-2374. [PMID: 30053371 DOI: 10.1021/acschembio.8b00456] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sialic acids (SAs) often exist as the terminal sugars of glycans of either glycoproteins or glycolipids on the cell surface and thus are directly involved in biological processes, such as cell-cell, cell-ligand, and cell-pathogen interactions. Cell surface SA expression levels and their linkages are collectively termed cell surface sialylation status, which represent varying cellular states and contribute to the overall functionality of a cell. Accordingly, systemic and specific profiling of the cell surface sialyation status is critical in deciphering the structures and functions of cell surface glycoconjugates and the molecular mechanisms of their underlying biological processes. In recent decades, several advanced chemical biology approaches have been developed to profile the cell surface sialyation status of both in vitro and in vivo samples, including metabolic labeling, direct chemical modification, and boronic acid coupling approaches. Various investigative technologies have also been explored for their unique competence, including fluorescent imaging, flow cytometry, Raman imaging, magnetic resonance imaging (MRI), and matrix-assisted laser desorption ionization imaging mass spectrometry. In particular, the sialylation status of a specific glycoprotein on the cell surface has been investigated. This review highlights the recent advancements in chemical biology approaches for profiling cell surface sialyation status. It is expected that this review will provide researchers different choices for both biological and biomedical research and applications.
Collapse
Affiliation(s)
- Joshua Whited
- Department of Chemistry, Department of Chemical and Biomedical Engineering, and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Xiaoqing Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang-jie, Harbin, Heilongjiang 5001, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang-jie, Harbin, Heilongjiang 5001, China
| | - Dan Wang
- Department of Chemistry, Department of Chemical and Biomedical Engineering, and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang-jie, Harbin, Heilongjiang 5001, China
| | - Xue-Long Sun
- Department of Chemistry, Department of Chemical and Biomedical Engineering, and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| |
Collapse
|
40
|
Chemical and biological methods for probing the structure and functions of polysialic acids. Emerg Top Life Sci 2018; 2:363-376. [DOI: 10.1042/etls20180008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/18/2018] [Accepted: 08/01/2018] [Indexed: 01/27/2023]
Abstract
Owing to its poly-anionic charge and large hydrodynamic volume, polysialic acid (polySia) attached to neural cell adhesion molecule regulates axon–axon and axon–substratum interactions and signalling, particularly, in the development of the central nervous system (CNS). Expression of polySia is spatiotemporally regulated by the action of two polysialyl transferases, namely ST8SiaII and ST8SiaIV. PolySia expression peaks during late embryonic and early post-natal period and maintained at a steady state in adulthood in neurogenic niche of the brain. Aberrant polySia expression is associated with neurological disorders and brain tumours. Investigations on the structure and functions, over the past four decades, have shed light on the physiology of polySia. This review focuses on the biological, biochemical, and chemical tools available for polySia engineering. Genetic knockouts, endo-neuraminidases that cleave polySia, antibodies, exogenous expression, and neuroblastoma cells have provided deep insights into the ability of polySia to guide migration of neuronal precursors in neonatal brain development, neuronal clustering, axonal pathway guidance, and axonal targeting. Advent of metabolic sialic acid engineering using ManNAc analogues has enabled reversible and dose-dependent modulation polySia in vitro and ex vivo. In vivo, ManNAc analogues readily engineer the sialoglycans in peripheral tissues, but show no effect in the brain. A recently developed carbohydrate-neuroactive hybrid strategy enables a non-invasive access to the brain in living animals across the blood–brain barrier. A combination of recent advances in CNS drugs and imaging with ManNAc analogues for polySia modulation would pave novel avenues for understanding intricacies of brain development and tackling the challenges of neurological disorders.
Collapse
|
41
|
Praveschotinunt P, Dorval Courchesne NM, den Hartog I, Lu C, Kim JJ, Nguyen PQ, Joshi NS. Tracking of Engineered Bacteria In Vivo Using Nonstandard Amino Acid Incorporation. ACS Synth Biol 2018; 7:1640-1650. [PMID: 29791796 PMCID: PMC6415965 DOI: 10.1021/acssynbio.8b00135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rapidly growing field of microbiome research presents a need for better methods of monitoring gut microbes in vivo with high spatial and temporal resolution. We report a method of tracking microbes in vivo within the gastrointestinal tract by programming them to incorporate nonstandard amino acids (NSAA) and labeling them via click chemistry. Using established machinery constituting an orthogonal translation system (OTS), we engineered Escherichia coli to incorporate p-azido-l-phenylalanine (pAzF) in place of the UAG (amber) stop codon. We also introduced a mutant gene encoding for a cell surface protein (CsgA) that was altered to contain an in-frame UAG codon. After pAzF incorporation and extracellular display, the engineered strains could be covalently labeled via copper-free click reaction with a Cy5 dye conjugated to the dibenzocyclooctyl (DBCO) group. We confirmed the functionality of the labeling strategy in vivo using a murine model. Labeling of the engineered strain could be observed using oral administration of the dye to mice several days after colonization of the gastrointestinal tract. This work sets the foundation for the development of in vivo tracking microbial strategies that may be compatible with noninvasive imaging modalities and are capable of longitudinal spatiotemporal monitoring of specific microbial populations.
Collapse
Affiliation(s)
- Pichet Praveschotinunt
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02138 , United States
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Noémie-Manuelle Dorval Courchesne
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02138 , United States
- Department of Chemical Engineering , McGill University , Montréal , Québec H3A 0C5 , Canada
| | - Ilona den Hartog
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02138 , United States
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems, Department of Biomedical Engineering , Eindhoven University of Technology , 5612 AZ Eindhoven , The Netherlands
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research , Leiden University , 2311 EZ Leiden , The Netherlands
| | - Chaochen Lu
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02138 , United States
- Dr. von Hauner Children's Hospital , 80337 Munich , Germany
- Medical Center of the University of Munich , 80539 Munich , Germany
- Ludwig Maximilians University , 80539 Munich , Germany
| | - Jessica J Kim
- Harvard College , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Peter Q Nguyen
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02138 , United States
| | - Neel S Joshi
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02138 , United States
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
42
|
Wang R, Cai K, Wang H, Yin C, Cheng J. A caged metabolic precursor for DT-diaphorase-responsive cell labeling. Chem Commun (Camb) 2018; 54:4878-4881. [PMID: 29700507 PMCID: PMC6508093 DOI: 10.1039/c8cc01715h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we report incorporation of a covalent linker at the anomeric position of N-azidoacetylmannosamine (ManNAz) for caging its metabolic process. We synthesized a DT-diaphorase-responsive metabolic precursor, HQ-NN-AAM, using an optimized linker. The caged metabolite showed responsiveness to DT-diaphorase in vitro, resulting in metabolic incorporation of an azido sugar into the cell surface in multiple cell lines.
Collapse
Affiliation(s)
- Ruibo Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Glycan decorates all mammalian cell surfaces through glycosylation, which is one of the most important post-modifications of proteins. Glycans mediate a wide variety of biological processes, including cell growth and differentiation, cell-cell communication, immune response, pathogen interaction, and intracellular signaling events. Besides, tumor cells aberrantly express distinct sets of glycans, which can indicate different tumor onsets and progression processes. Thus, analysis of cellular glycans may contribute to understanding of glycan-related biological processes and correlation of glycan patterns with disease states for clinical diagnosis and treatment. Although proteomics and glycomics have included great efforts for in vitro study of glycan structures and functions using lysis samples of cells or tissues, they cannot offer real-time qualitative or quantitative information, especially spatial distribution, of glycans on/in intact cells, which is important to the revelation of glycan-related biological events. Moreover, the complex lysis and separation procedures may bring unpredictable loss of glycan information. Focusing on the great urgency for in situ analysis of cellular glycans, our group developed a series of methods for in situ analysis of cellular glycans in the past 10 years. By construction of electrochemical glycan-recognizable probes, glycans on the cell surface can be quantified by direct or competitive electrochemical detection. Using multichannel electrodes or encoded lectin probes, multiple glycans on the cell surface can be dynamically monitored simultaneously. Through design of functional nanoprobes, the cell surface protein-specific glycans and intracellular glycan-related enzymes can be visualized by fluorescence or Raman imaging. Besides, some biological enzymes-based methods have been developed for remodeling or imaging of protein-specific glycans and other types of glycoconjugates, such as gangliosides. Through tracing the changes of glycan expression induced by drugs or gene interference, some glycan-related biological processes have been deduced or proved, demonstrating the reliability and practicability of the developed methods. This Account surveys the key technologies developed in this area, along with the discussion on the shortages of current methodology as well as the possible strategies to overcome those shortages. The future trend in this topic is also discussed. It is expected that this Account can provide a versatile arsenal for chemical and biological researchers to unravel the complex mechanisms involved in glycan-related biological processes and light new beacons in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
44
|
Abstract
Exciting new technological developments have pushed the boundaries of structural biology, and have enabled studies of biological macromolecules and assemblies that would have been unthinkable not long ago. Yet, the enhanced capabilities of structural biologists to pry into the complex molecular world have also placed new demands on the abilities of protein engineers to reproduce this complexity into the test tube. With this challenge in mind, we review the contents of the modern molecular engineering toolbox that allow the manipulation of proteins in a site-specific and chemically well-defined fashion. Thus, we cover concepts related to the modification of cysteines and other natural amino acids, native chemical ligation, intein and sortase-based approaches, amber suppression, as well as chemical and enzymatic bio-conjugation strategies. We also describe how these tools can be used to aid methodology development in X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy and in the studies of dynamic interactions. It is our hope that this monograph will inspire structural biologists and protein engineers alike to apply these tools to novel systems, and to enhance and broaden their scope to meet the outstanding challenges in understanding the molecular basis of cellular processes and disease.
Collapse
|
45
|
Sun Y, Hong S, Xie R, Huang R, Lei R, Cheng B, Sun D, Du Y, Nycholat CM, Paulson JC, Chen X. Mechanistic Investigation and Multiplexing of Liposome-Assisted Metabolic Glycan Labeling. J Am Chem Soc 2018; 140:3592-3602. [PMID: 29446631 PMCID: PMC6031147 DOI: 10.1021/jacs.7b10990] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolic labeling of glycans with bioorthogonal reporters has been widely used for glycan imaging and glycoproteomic profiling. One of the intrinsic limitations of metabolic glycan labeling is the lack of cell-type selectivity. The recently developed liposome-assisted bioorthogonal reporter (LABOR) strategy provides a promising means to overcome this limitation, but the mechanism of LABOR has not been investigated in detail. In this work, we performed a mechanistic study on LABOR and explored its multiplexing capability. Our studies support an endocytosis-salvage mechanism. The ligand-targeted liposomes encapsulating azidosugars are internalized into the endosome via the receptor-mediated endocytosis. Unlike the conventional drug delivery, LABOR does not rely on the endosomal escape pathways. Rather, the liposomes are allowed to enter the lysosome, inside which the azidosugars are released from the liposomes. The released azidosugars then intercept the salvage pathways of monosaccharides and get transported into the cytosol by lysosomal sugar transporters. Based on this mechanism, we expanded the scope of LABOR by evaluating a series of ligand-receptor pairs for targeting sialoglycans in various cell types. Different ligand types including small molecules, antibodies, aptamers, and peptides could be easily implemented into LABOR. Finally, we demonstrated that the sialoglycans in two distinct cell populations in a co-cultured system could be selectively labeled with two distinct chemical reporters by performing a multiplexed LABOR labeling.
Collapse
Affiliation(s)
- Yuting Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Senlian Hong
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ran Xie
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rongbing Huang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruoxing Lei
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Deen Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yifei Du
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Corwin M. Nycholat
- Departments of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - James C. Paulson
- Departments of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
46
|
Du Y, Xie R, Sun Y, Fan X, Chen X. Liposome-Assisted Metabolic Glycan Labeling With Cell and Tissue Selectivity. Methods Enzymol 2018; 598:321-353. [DOI: 10.1016/bs.mie.2017.06.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Lee S, Jung S, Koo H, Na JH, Yoon HY, Shim MK, Park J, Kim JH, Lee S, Pomper MG, Kwon IC, Ahn CH, Kim K. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo. Biomaterials 2017; 148:1-15. [DOI: 10.1016/j.biomaterials.2017.09.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/03/2017] [Accepted: 09/18/2017] [Indexed: 01/22/2023]
|
48
|
Chemical remodeling cell surface glycans for immunotargeting of tumor cells. Carbohydr Res 2017; 452:25-34. [PMID: 29035749 DOI: 10.1016/j.carres.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/08/2017] [Accepted: 10/08/2017] [Indexed: 11/20/2022]
Abstract
Recruitment of human endogenous antibodies to target and eliminate tumor cells is a promising therapeutic strategy in the biomedical field. Current antibody-recruiting molecules are typically bi-functional agents that utilize cell-surface receptor binding property for targeting. This approach has intrinsic limitations due to the heterogeneity of tumor cells and the limited number of receptors on the cell surface. Here we report a targeting strategy based on remodeling of cell surface glycans through metabolic engineering and bioorthogonal chemical ligation. In vitro cultured tumor cells and in vivo xenograft tumors were actively remodeled with rhamnose carbohydrate epitopes, which were capable of recruiting endogenous anti-rhamnose antibodies and activating complement-mediated cell cytotoxicity. This study highlights the therapeutic potential for modulating endogenous immune response through cell-surface glycan engineering.
Collapse
|
49
|
Wang W, Zhao Z, Zhang Z, Zhang C, Xiao S, Ye X, Zhang L, Xia Q, Zhou D. Redirecting Killer T Cells through Incorporation of Azido Sugars for Tethering Ligands. Chembiochem 2017; 18:2082-2086. [PMID: 28862366 DOI: 10.1002/cbic.201700340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Indexed: 01/23/2023]
Abstract
The genetic expression of chimeric antigen receptors (CARs) on the surfaces of T cells enables the redirection of T cell specificity. To enhance the versatility of T cells as tumor-specific killers, we developed a nongenetic approach by which azide-containing sialic acids were metabolically incorporated into T cells to modify cellular sialyl glycans. After successful display of these moieties on the T cells, small-molecule ligands such as RGD and folate (as proof-of-concept, rather than supersized antibodies) were clicked orthogonally, leading to highly selective time- and dose-dependent cytotoxicity to integrin αv β3 - and folate-receptor-positive cells, respectively. This chemical approach provides a facile platform for rational design of tumor-specific cytotoxic T cells for targeted immunotherapy.
Collapse
Affiliation(s)
- Weiling Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Zhiying Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Ziwei Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Chuanling Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Xinshan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| |
Collapse
|
50
|
Zhu Y, Chen X. Expanding the Scope of Metabolic Glycan Labeling in Arabidopsis thaliana. Chembiochem 2017; 18:1286-1296. [PMID: 28383803 DOI: 10.1002/cbic.201700069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Indexed: 12/26/2022]
Abstract
Metabolic glycan labeling (MGL) has gained wide utility and has become a useful tool for probing glycosylation in living systems. For the past three decades, the development and application of MGL have mostly focused on animal glycosylation. Recently, exploiting MGL for studying plant glycosylation has gained interest. Here, we describe a systematic evaluation of MGL for fluorescence imaging of root glycans in Arabidopsis thaliana. Nineteen monosaccharide analogues containing a bioorthogonal group (azide, alkyne, or cyclopropene) were synthesized and evaluated for metabolic incorporation into root glycans. Among these unnatural sugars, 14 (including three new compounds) were evaluated in plants for the first time. Our results showed that five unnatural sugars metabolically labeled root glycans efficiently, and enabled fluorescence imaging by bioorthogonal conjugation with fluorophores. We optimized the experimental procedures for MGL in Arabidopsis. Finally, distinct distribution patterns of the newly synthesized glycans were observed along the root developmental zones, thus indicating regulated biosynthesis of glycans during root development. We envision that MGL will find broad applications in plant glycobiology.
Collapse
Affiliation(s)
- Yuntao Zhu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center and, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|