1
|
Lee HE, Okumura T, Ooka H, Adachi K, Hikima T, Hirata K, Kawano Y, Matsuura H, Yamamoto M, Yamamoto M, Yamaguchi A, Lee JE, Takahashi H, Nam KT, Ohara Y, Hashizume D, McGlynn SE, Nakamura R. Osmotic energy conversion in serpentinite-hosted deep-sea hydrothermal vents. Nat Commun 2024; 15:8193. [PMID: 39322632 PMCID: PMC11424637 DOI: 10.1038/s41467-024-52332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Cells harvest energy from ionic gradients by selective ion transport across membranes, and the same principle is recently being used for osmotic power generation from salinity gradients at ocean-river interfaces. Common to these ionic gradient conversions is that they require intricate nanoscale structures. Here, we show that natural submarine serpentinite-hosted hydrothermal vent (HV) precipitates are capable of converting ionic gradients into electrochemical energy by selective transport of Na+, K+, H+, and Cl-. Layered hydroxide nanocrystals are aligned radially outwards from the HV fluid channels, constituting confined nanopores that span millimeters in the HV wall. The nanopores change the surface charge depending on adsorbed ions, allowing the mineral to function as a cation- and anion-selective ion transport membrane. Our findings indicate that chemical disequilibria originating from flow and concentration gradients in geologic environments generate confined nanospaces which enable the spontaneous establishment of osmotic energy conversion.
Collapse
Affiliation(s)
- Hye-Eun Lee
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.
| | | | - Hideshi Ooka
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kiyohiro Adachi
- RIKEN Center for Emergent Matter Science, Wako, Saitama, Japan
| | | | | | | | | | | | - Masahiro Yamamoto
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Akira Yamaguchi
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Ji-Eun Lee
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroya Takahashi
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea
| | - Yasuhiko Ohara
- Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
- Hydrographic and Oceanographic Department of Japan, Tokyo, Japan
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | | | - Shawn Erin McGlynn
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Ryuhei Nakamura
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.
| |
Collapse
|
2
|
Aslanbay Guler B, Morçimen ZG, Taşdemir Ş, Demirel Z, Turunç E, Şendemir A, Imamoglu E. Design of chemobrionic and biochemobrionic scaffolds for bone tissue engineering. Sci Rep 2024; 14:13764. [PMID: 38877025 PMCID: PMC11178857 DOI: 10.1038/s41598-024-63171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024] Open
Abstract
Chemobrionic systems have attracted great attention in material science for development of novel biomimetic materials. This study aims to design a new bioactive material by integrating biosilica into chemobrionic structure, which will be called biochemobrionic, and to comparatively investigate the use of both chemobrionic and biochemobrionic materials as bone scaffolds. Biosilica, isolated from Amphora sp. diatom, was integrated into chemobrionic structure, and a comprehensive set of analysis was conducted to evaluate their morphological, chemical, mechanical, thermal, and biodegradation properties. Then, the effects of both scaffolds on cell biocompatibility and osteogenic differentiation capacity were assessed. Cells attached to the scaffolds, spread out, and covered the entire surface, indicating the absence of cytotoxicity. Biochemobrionic scaffold exhibited a higher level of mineralization and bone formation than the chemobrionic structure due to the osteogenic activity of biosilica. These results present a comprehensive and pioneering understanding of the potential of (bio)chemobrionics for bone regeneration.
Collapse
Affiliation(s)
- Bahar Aslanbay Guler
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Zehra Gül Morçimen
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Şeyma Taşdemir
- Ioengineering Department, Faculty of Engineering, Manisa Celal Bayar University, Manisa, Turkey
| | - Zeliha Demirel
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Ezgi Turunç
- Department of Biochemistry, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, Turkey
| | - Aylin Şendemir
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Esra Imamoglu
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
3
|
Patel V, Patel M, Busupalli B, Solanki A. Interface Engineering Enables Multilevel Resistive Switching in Ultra-Low-Power Chemobrionic Copper Silicate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2311-2319. [PMID: 38232767 DOI: 10.1021/acs.langmuir.3c03431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Memristor is assuming prominence due to its exceptionally low power consumption, adaptable, and parallel signal processing capabilities that address the limitations of the von Neumann architecture to meet the growing demand for advanced technologies such as artificial intelligence, Internet of Things (IoTs), and neuromorphic computation. In this work, we demonstrate resistive switching in copper silicate-based hollow tube-forming self-organized membrane structures belonging to the category of chemobrionics or chemical gardens to demonstrate cost-effective and highly efficient memristor devices. The device architecture is configured as ITO/PEDOT:PSS/active layer (copper silicate)/PMMA/Ag, an arrangement that serves to stabilize current-voltage hysteresis and exhibit a low SET voltage ∼0.2 V with a 0.8 nJ power consumption while manifesting robust data endurance and multilevel resistive switching. The inherent self-rectifying behavior, characterized by a high rectification ratio of 60, underscores the potential utility of these devices across a spectrum of electronic applications. To emulate the functionality of biological synapses, fundamental synaptic characteristics are assessed, including paired-pulse facilitation (PPF) and potentiation and depression (P&D). We validate the potential of copper silicate chemical garden-based memristor devices for applications that require real-time synaptic processing. Importantly, the fabrication of these devices was accomplished through a comprehensive solution-based, low-temperature process conducted under ambient environmental conditions, obviating the need for specialized glovebox facilities.
Collapse
Affiliation(s)
- Vipul Patel
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India
| | - Mansi Patel
- Department of Physics, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar 382426, India
- Flextronics Lab, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India
| | - Balanagulu Busupalli
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India
| | - Ankur Solanki
- Department of Physics, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar 382426, India
- Flextronics Lab, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India
| |
Collapse
|
4
|
Patel VK, Busupalli B. Light-modulated colour transformation in highly intertwined vertically growing silver tungstate tubes. Phys Chem Chem Phys 2023; 25:30727-30734. [PMID: 37934461 DOI: 10.1039/d3cp04329k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Achieving control over growth kinetics in chemical garden architectures is challenging due to the nonequilibrium conditions. In this study, we demonstrate the vertical growth of silver tungstate chemical garden tubes under both illuminated and dark conditions, a phenomenon not observed in a comparable silver-based system, specifically silver silicate, under light exposure. Physicochemical factors, viz. thermo chemical radius of the tungstate anion, its density-buoyancy relation, the osmotic pressure gradient, and the hydration enthalpy, contributed to the tube appearance in silver tungstate even in light. Tubes grown in light illumination were greyish black, while dark-grown tubes were creamy white, and both tubes appeared twisted and highly intertwined. The colour of the as obtained silver tungstate tubes could be transformed via exposure to light. In the presence of a strong oxidizing agent, the growing tubes retain the original creamy white colour even under illumination. Colour transformation in chemical garden tubes has not yet been observed, and this report could lead the way.
Collapse
Affiliation(s)
- Vipul Kirtikumar Patel
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar 382426, Gujarat, India.
| | - Balanagulu Busupalli
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar 382426, Gujarat, India.
| |
Collapse
|
5
|
Nogal N, Sanz-Sánchez M, Vela-Gallego S, Ruiz-Mirazo K, de la Escosura A. The protometabolic nature of prebiotic chemistry. Chem Soc Rev 2023; 52:7359-7388. [PMID: 37855729 PMCID: PMC10614573 DOI: 10.1039/d3cs00594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 10/20/2023]
Abstract
The field of prebiotic chemistry has been dedicated over decades to finding abiotic routes towards the molecular components of life. There is nowadays a handful of prebiotically plausible scenarios that enable the laboratory synthesis of most amino acids, fatty acids, simple sugars, nucleotides and core metabolites of extant living organisms. The major bottleneck then seems to be the self-organization of those building blocks into systems that can self-sustain. The purpose of this tutorial review is having a close look, guided by experimental research, into the main synthetic pathways of prebiotic chemistry, suggesting how they could be wired through common intermediates and catalytic cycles, as well as how recursively changing conditions could help them engage in self-organized and dissipative networks/assemblies (i.e., systems that consume chemical or physical energy from their environment to maintain their internal organization in a dynamic steady state out of equilibrium). In the article we also pay attention to the implications of this view for the emergence of homochirality. The revealed connectivity between those prebiotic routes should constitute the basis for a robust research program towards the bottom-up implementation of protometabolic systems, taken as a central part of the origins-of-life problem. In addition, this approach should foster further exploration of control mechanisms to tame the combinatorial explosion that typically occurs in mixtures of various reactive precursors, thus regulating the functional integration of their respective chemistries into self-sustaining protocellular assemblies.
Collapse
Affiliation(s)
- Noemí Nogal
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Marcos Sanz-Sánchez
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Sonia Vela-Gallego
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Philosophy, University of the Basque Country, Leioa, Spain
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemistry (IAdChem), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
6
|
Aslanbay
Guler B, Demirel Z, Imamoglu E. Comparative Evaluation of Chemical Garden Growth Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13611-13619. [PMID: 37712591 PMCID: PMC10537426 DOI: 10.1021/acs.langmuir.3c01681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Chemical gardens are an exciting area of self-organized precipitation structures that form nano- and micro-sized structures in different shapes. This field has attracted great interest from researchers due to the specific characteristics and potential applications of these structures. Today, research on chemical gardens has provided deeper information regarding the formation mechanisms of these structures, and several techniques have been developed for chemical garden growth. However, they all show different growth patterns and lead to the formation of structures with a variety of morphological, chemical, or physical properties. This study aimed to evaluate the effects of different production techniques on chemical garden growth, taking into consideration the growth patterns, morphology, microstructure, and chemical composition. The chemical garden structures obtained in seed and injection experiments, two common methods, showed highly similar surface structures, void formation, and chemical composition. The membrane growth method has a small number of applications; thus, it was comprehensively evaluated to add new insights to the existing limited data. It produced the most stable and standard structures in a flat sheet-like shape and showed different morphologies than those observed in other two methods. Overall, this study presented significant results about the effect of growth techniques on chemical garden structures and similar systems.
Collapse
Affiliation(s)
- Bahar Aslanbay
Guler
- Department of Bioengineering,
Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Zeliha Demirel
- Department of Bioengineering,
Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Esra Imamoglu
- Department of Bioengineering,
Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
7
|
Batista BC, Morris AZ, Steinbock O. Pattern selection by material aging: Modeling chemical gardens in two and three dimensions. Proc Natl Acad Sci U S A 2023; 120:e2305172120. [PMID: 37399415 PMCID: PMC10334770 DOI: 10.1073/pnas.2305172120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/18/2023] [Indexed: 07/05/2023] Open
Abstract
Chemical gardens are complex, often macroscopic, structures formed by precipitation reactions. Their thin walls compartmentalize the system and adjust in size and shape if the volume of the interior reactant solution is increased by osmosis or active injection. Spatial confinement to a thin layer is known to result in various patterns including self-extending filaments and flower-like patterns organized around a continuous, expanding front. Here, we describe a cellular automaton model for this type of self-organization, in which each lattice site is occupied by one of the two reactants or the precipitate. Reactant injection causes the random replacement of precipitate and generates an expanding near-circular precipitate front. If this process includes an age bias favoring the replacement of fresh precipitate, thin-walled filaments arise and grow-like in the experiments-at the leading tip. In addition, the inclusion of a buoyancy effect allows the model to capture various branched and unbranched chemical garden shapes in two and three dimensions. Our results provide a model of chemical garden structures and highlight the importance of temporal changes in the self-healing membrane material.
Collapse
Affiliation(s)
- Bruno C. Batista
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL32306-4390
| | - Amari Z. Morris
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL32306-4390
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL32306-4390
| |
Collapse
|
8
|
Russell MJ. A self-sustaining serpentinization mega-engine feeds the fougerite nanoengines implicated in the emergence of guided metabolism. Front Microbiol 2023; 14:1145915. [PMID: 37275164 PMCID: PMC10236563 DOI: 10.3389/fmicb.2023.1145915] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/22/2023] [Indexed: 06/07/2023] Open
Abstract
The demonstration by Ivan Barnes et al. that the serpentinization of fresh Alpine-type ultramafic rocks results in the exhalation of hot alkaline fluids is foundational to the submarine alkaline vent theory (AVT) for life's emergence to its 'improbable' thermodynamic state. In AVT, such alkaline fluids ≤ 150°C, bearing H2 > CH4 > HS--generated and driven convectively by a serpentinizing exothermic mega-engine operating in the ultramafic crust-exhale into the iron-rich, CO2> > > NO3--bearing Hadean ocean to result in hydrothermal precipitate mounds comprising macromolecular ferroferric-carbonate oxyhydroxide and minor sulfide. As the nanocrystalline minerals fougerite/green rust and mackinawite (FeS), they compose the spontaneously precipitated inorganic membranes that keep the highly contrasting solutions apart, thereby maintaining redox and pH disequilibria. They do so in the form of fine chimneys and chemical gardens. The same disequilibria drive the reduction of CO2 to HCOO- or CO, and the oxidation of CH4 to a methyl group-the two products reacting to form acetate in a sequence antedating the 'energy-producing' acetyl coenzyme-A pathway. Fougerite is a 2D-layered mineral in which the hydrous interlayers themselves harbor 2D solutions, in effect constricted to ~ 1D by preferentially directed electron hopping/tunneling, and proton Gröthuss 'bucket-brigading' when subject to charge. As a redox-driven nanoengine or peristaltic pump, fougerite forces the ordered reduction of nitrate to ammonium, the amination of pyruvate and oxalate to alanine and glycine, and their condensation to short peptides. In turn, these peptides have the flexibility to sequester the founding inorganic iron oxyhydroxide, sulfide, and pyrophosphate clusters, to produce metal- and phosphate-dosed organic films and cells. As the feed to the hydrothermal mound fails, the only equivalent sustenance on offer to the first autotrophs is the still mildly serpentinizing upper crust beneath. While the conditions here are very much less bountiful, they do offer the similar feed and disequilibria the survivors are accustomed to. Sometime during this transition, a replicating non-ribosomal guidance system is discovered to provide the rules to take on the incrementally changing surroundings. The details of how these replicating apparatuses emerged are the hard problem, but by doing so the progenote archaea and bacteria could begin to colonize what would become the deep biosphere. Indeed, that the anaerobic nitrate-respiring methanotrophic archaea and the deep-branching Acetothermia presently comprise a portion of that microbiome occupying serpentinizing rocks offers circumstantial support for this notion. However, the inescapable, if jarring conclusion is drawn that, absent fougerite/green rust, there would be no structured channelway to life.
Collapse
Affiliation(s)
- Michael J. Russell
- Dipartimento di Chimica, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
9
|
Nogueira JA, Batista BC, Cooper MA, Steinbock O. Shape Evolution of Precipitate Membranes in Flow Systems. J Phys Chem B 2023; 127:1471-1478. [PMID: 36745753 DOI: 10.1021/acs.jpcb.2c08433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemical gardens are macroscopic structures that form when a salt seed is submerged in an alkaline solution. Their thin precipitate membranes separate the reactant partners and slow down the approach toward equilibrium. During this stage, a gradual thickening occurs, which is driven by steep cross-membrane gradients and governed by selective ion transport. We study these growth dynamics in microfluidic channels for the case of Ni(OH)2 membranes. Fast flowing reactant solutions create thickening membranes of a nearly constant width along the channel, whereas slow flows produce wedge-shaped structures that fail to grow along their downstream end. The overall dynamics and shapes are caused by the competition of reactant consumption and transport replenishment. They are reproduced quantitatively by a two-variable reaction-diffusion-advection model which provides kinetic insights into the growth of precipitate membranes.
Collapse
Affiliation(s)
- Jéssica A Nogueira
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Bruno C Batista
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Maggie A Cooper
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| |
Collapse
|
10
|
Zahorán R, Kumar P, Juhász Á, Horváth D, Tóth Á. Flow-driven synthesis of calcium phosphate-calcium alginate hybrid chemical gardens. SOFT MATTER 2022; 18:8157-8164. [PMID: 36263702 DOI: 10.1039/d2sm01063a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Systems far-from-equilibrium self-assemble into spatiotemporal structures. Here, we report on the formation of calcium alginate gardens along with their inorganic hybrids when a sodium alginate solution containing sodium phosphate in various compositions is injected into a calcium chloride reservoir. The viscoelastic properties of the membranes developed are controlled by the injection rate, while their thickness by the amount of sodium phosphate besides diffusion. Inorganic hybrid membranes with constant thickness are synthesized in the presence of a sufficient amount of sodium phosphate. The electrochemical characterization of the membranes suggests that the driving force is the pH-gradient developing along the two sides; hence, the cell potential can be controlled by the addition of alkaline sodium phosphate into the sodium alginate solution.
Collapse
Affiliation(s)
- Réka Zahorán
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
| | - Pawan Kumar
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
| | - Ádám Juhász
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
| |
Collapse
|
11
|
Rieder J, Nützl M, Kunz W, Kellermeier M. Formation and Dynamic Behavior of Macroscopic Aluminum-Based Silica Gardens. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10392-10399. [PMID: 35976253 DOI: 10.1021/acs.langmuir.2c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemical gardens are self-assembled structures with intricate plant-like morphologies and consist of mineralized membranes, which form spontaneously at interfaces between compartments with dissimilar chemical composition, most typically acidic metal salt and alkaline sodium silicate solutions. While this phenomenon is thought to occur in a number of practical settings, it has also proven to be valuable for investigating transport characteristics in distinct applied systems. For example, coupled diffusion and precipitation processes were monitored in silica gardens based on calcium and iron salts, considered to be models for cement hydration and steel corrosion, respectively. Here we extend these studies to the case of aluminum-based silica gardens, one of the so far less frequently investigated examples of silica gardens. To this end, single macroscopic tubes were prepared in a reproducible way by the controlled addition of sodium silicate solution to a pellet of pressed aluminum nitrate. Continued sampling of the volumes enclosed by and surrounding the formed membraneous structure allowed the time-dependent development of ion concentration gradients to be tracked over extended periods of time, while both the pH and electrochemical potential differences across the membrane were recorded online by immersed probes. The dynamic behavior revealed in this way was finally complemented by ex-situ analyses of the composition of the formed tubes. The collected data shows that the as-prepared tubular structures consist of sodium aluminosilicate phases with certain similarities to zeolites and geopolymers. The emerging tube wall was further found to be permeable to all ionic species present in the system, allowing significant electrochemical potential to be sustained over tens of hours until diffusion had eventually diminished the initially generated gradients. The findings of this work may have important implications for the geochemical fate of natural aluminosilicate sources, the use of such geopolymers in construction applications, and the synthesis and properties of zeolites.
Collapse
Affiliation(s)
- Julian Rieder
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstr. 31, D-93040 Regensburg, Germany
| | - Maximilian Nützl
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstr. 31, D-93040 Regensburg, Germany
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstr. 31, D-93040 Regensburg, Germany
| | - Matthias Kellermeier
- Material Science, BASF SE, RGA/BM - B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany
| |
Collapse
|
12
|
Li Y, Kitadai N, Sekine Y, Kurokawa H, Nakano Y, Johnson-Finn K. Geoelectrochemistry-driven alteration of amino acids to derivative organics in carbonaceous chondrite parent bodies. Nat Commun 2022; 13:4893. [PMID: 35986003 PMCID: PMC9391434 DOI: 10.1038/s41467-022-32596-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
A long-standing question regarding carbonaceous chondrites (CCs) is how the CCs' organics were sourced and converted before and after the accretion of their parent bodies. Growing evidence shows that amino acid abundances in CCs decrease with an elongated aqueous alteration. However, the underlying chemical processes are unclear. If CCs' parent bodies were water-rock differentiated, pH and redox gradients can drive electrochemical reactions by using H2 as an electron source. Here, we simulate such redox conditions and demonstrate that α-amino acids are electrochemically altered to monoamines and α-hydroxy acids on FeS and NiS catalysts at 25 °C. This conversion is consistent with their enrichment compared to amino acid analogs in heavily altered CCs. Our results thus suggest that H2 can be an important driver for organic evolution in water-rock differentiated CC parent bodies as well as the Solar System icy bodies that might possess similar pH and redox gradients.
Collapse
Affiliation(s)
- Yamei Li
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan.
| | - Norio Kitadai
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yasuhito Sekine
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Kurokawa
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan
| | - Yuko Nakano
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan
| | - Kristin Johnson-Finn
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, Japan
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
13
|
Kumar P, Wang Q, Horváth D, Tóth Á, Steinbock O. Collective motion of self-propelled chemical garden tubes. SOFT MATTER 2022; 18:4389-4395. [PMID: 35616522 DOI: 10.1039/d2sm00395c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In H2O2 solutions, manganese-containing chemical garden tubes can self-propel due to the catalytic production and ejection of oxygen bubbles. Here, we investigate the collective behavior of these self-assembled precipitate tubes. In thin solution layers, the tubes show definite autonomous dynamics with only weak interactions that result from fluid motion around the moving units and directional changes during collisions. In thick solution layers with convex menisci forcing spatial confinement, the tubes undergo cycles of self-assembly and dispersion. This collective motion results from the rhythmic creation of a large master bubble around which the tubes align tangentially.
Collapse
Affiliation(s)
- Pawan Kumar
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL 32306-4390, USA.
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Qingpu Wang
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL 32306-4390, USA.
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Oliver Steinbock
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL 32306-4390, USA.
| |
Collapse
|
14
|
Dynamic diffusion and precipitation processes across calcium silicate membranes. J Colloid Interface Sci 2022; 618:206-218. [PMID: 35338927 DOI: 10.1016/j.jcis.2022.03.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/15/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022]
Abstract
HYPOTHESIS Chemical gardens are tubular inorganic structures exhibiting complex morphologies and interesting dynamic properties upon ageing, with coupled diffusion and precipitation processes keeping the systems out of equilibrium for extended periods of time. Calcium-based silica gardens should comprise membranes that mimic the microstructures occurring in ordinary Portland cement and/or silicate gel layers observed around highly reactive siliceous aggregates in concrete. EXPERIMENTS Single macroscopic silica garden tubes were prepared using pellets of calcium chloride and sodium silicate solution. The composition of the mineralized tubes was characterized by means of various ex-situ techniques, while time-dependent monitoring of the solutions enclosed by and surrounding the membrane gives insight into the spatiotemporal distribution of the different ionic species. The latter data reflect transport properties and precipitation reactions in the system, thus allowing its complex dynamic behavior to be resolved. FINDINGS The results show that in contrast to the previously studied cases of iron- and cobalt-based silica gardens, the formed calcium silicate membrane is homogeneous and ultimately becomes impermeable to all species except water, hydroxide and sodium ions, resulting in the permanent conservation of considerable concentration gradients across the membrane. The insights gained in this work may help elucidate the nature and mechanisms of ion diffusion in Portland cements and concrete, especially those occurring during initial hydration of calcium silicates and the so-called alkali-silica reaction (ASR), one of the major concrete deterioration mechanisms causing serious problems with respect to the durability of concrete and the restricted use of many potential sources of raw materials.
Collapse
|
15
|
Emmanuel M, Lantos E, Horváth D, Tóth Á. Formation and growth of lithium phosphate chemical gardens. SOFT MATTER 2022; 18:1731-1736. [PMID: 35156669 DOI: 10.1039/d1sm01808f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We show that a chemical garden can be developed from an alkaline metal precipitate using a flow-driven setup. By injecting sodium phosphate solution into lithium chloride solution from below, a liquid jet appears, on which a precipitate grows forming a structure resembling a hydrothermal vent. The precipitate column continuously builds upward until a maximum height is reached. The vertical growth then significantly slows down while the tube diameter still increases. The analysis of the growth profiles has revealed a linear dependence of volume growth rate on the injection rate, hence yielding a universal growth profile. The expansion in diameter, localized at the tip of the structure, scales with a power law suggesting that the phenomenon is controlled by both diffusion and convection.
Collapse
Affiliation(s)
- Michael Emmanuel
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
| | - Emese Lantos
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
| |
Collapse
|
16
|
Busupalli B, Patel VK. Dark–induced vertical growth of chemobrionic architectures in silver based precipitating chemical gardens. Chem Commun (Camb) 2022; 58:4172-4175. [DOI: 10.1039/d1cc06430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light sensitivity of many silver compounds has restricted observation of silver based chemical gardens. Here we report for the first time, silver based chemical gardens grown in dark. An identical...
Collapse
|
17
|
Getenet M, Rieder J, Kellermeier M, Kunz W, Manuel García-Ruiz J. Tubular Structures of Calcium Carbonate: Formation, Characterization, and Implications in Natural Mineral Environments. Chemistry 2021; 27:16135-16144. [PMID: 34590745 DOI: 10.1002/chem.202101417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 01/16/2023]
Abstract
Chemical gardens are self-assembled tubular precipitates formed by a combination of osmosis, buoyancy, and chemical reaction, and thought to be capable of catalyzing prebiotic condensation reactions. In many cases, the tube wall is a bilayer structure with the properties of a diaphragm and/or a membrane. The interest in silica gardens as microreactors for materials science has increased over the past decade because of their ability to create long-lasting electrochemical potential. In this study, we have grown single macroscopic tubes based on calcium carbonate and monitored their time-dependent behavior by in situ measurements of pH, ionic concentrations inside and outside the tubular membranes, and electrochemical potential differences. Furthermore, we have characterized the composition and structure of the tubular membranes by using ex situ X-ray diffraction, infrared and Raman spectroscopy, as well as scanning electron microscopy. Based on the collected data, we propose a physicochemical mechanism for the formation and ripening of these peculiar CaCO3 structures and compare the results to those of other chemical garden systems. We find that the wall of the macroscopic calcium carbonate tubes is a bilayer of texturally distinct but compositionally similar calcite showing high crystallinity. The resulting high density of the material prevents macroscopic calcium carbonate gardens from developing significant electrochemical potential differences. In the light of these observations, possible implications in materials science and prebiotic (geo)chemistry are discussed.
Collapse
Affiliation(s)
- Melese Getenet
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avenida de las Palmeras 4, Armilla, 18100, Granada, Spain
| | - Julian Rieder
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Matthias Kellermeier
- Material Physics, BASF SE, RAA/OS-B007, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Juan Manuel García-Ruiz
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avenida de las Palmeras 4, Armilla, 18100, Granada, Spain
| |
Collapse
|
18
|
Kumar P, Sebők D, Kukovecz Á, Horváth D, Tóth Á. Hierarchical Self-Assembly of Metal-Ion-Modulated Chitosan Tubules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12690-12696. [PMID: 34672616 PMCID: PMC8567419 DOI: 10.1021/acs.langmuir.1c02097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Soft materials such as gels or biological tissues can develop via self-assembly under chemo-mechanical forces. Here, we report the instantaneous formation of soft tubular structures with a two-level hierarchy by injecting a mixture of inorganic salt and chitosan (CS) solution from below into a reactor filled with alkaline solution. Folding and wrinkling instabilities occur on the originally smooth surface controlled by the salt composition and concentration. Liesegang-like precipitation patterns develop on the outer surface on a μm length scale in the presence of calcium chloride, while the precipitate particles are distributed evenly in the bulk as corroborated by X-ray μ-CT. On the other hand, barium hydroxide precipitates out only in the thin outer layer of the CS tubule when barium chloride is introduced into the CS solution. Independent of the concentration of the weakly interacting salt, an electric potential gradient across the CS membrane develops, which vanishes when the pH difference between the two sides of the membrane diminishes.
Collapse
Affiliation(s)
- Pawan Kumar
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| | - Dániel Sebők
- Department
of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| | - Ákos Kukovecz
- Department
of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| | - Dezső Horváth
- Department
of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| | - Ágota Tóth
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| |
Collapse
|
19
|
Controlled self-assembly of chemical gardens enables fabrication of heterogeneous chemobrionic materials. Commun Chem 2021; 4:145. [PMID: 36697856 PMCID: PMC9814108 DOI: 10.1038/s42004-021-00579-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/08/2021] [Indexed: 01/28/2023] Open
Abstract
Chemical gardens are an example of a chemobrionic system that typically result in abiotic macro-, micro- and nano- material architectures, with formation driven by complex out-of-equilibrium reaction mechanisms. From a technological perspective, controlling chemobrionic processes may hold great promise for the creation of novel, compositionally diverse and ultimately, useful materials and devices. In this work, we engineer an innovative custom-built liquid exchange unit that enables us to control the formation of tubular chemical garden structures grown from the interface between calcium loaded hydrogel and phosphate solution. We show that systematic displacement of phosphate solution with water (H2O) can halt self-assembly, precisely control tube height and purify structures in situ. Furthermore, we demonstrate the fabrication of a heterogeneous chemobrionic composite material composed of aligned, high-aspect ratio calcium phosphate channels running through an otherwise dense matrix of poly(2-hydroxyethyl methacrylate) (pHEMA). Given that the principles we derive can be broadly applied to potentially control various chemobrionic systems, this work paves the way for fabricating multifunctional materials that may hold great potential in a variety of application areas, such as regenerative medicine, catalysis and microfluidics.
Collapse
|
20
|
Gaylor MO, Miro P, Vlaisavljevich B, Kondage AAS, Barge LM, Omran A, Videau P, Swenson VA, Leinen LJ, Fitch NW, Cole KL, Stone C, Drummond SM, Rageth K, Dewitt LR, González Henao S, Karanauskus V. Plausible Emergence and Self Assembly of a Primitive Phospholipid from Reduced Phosphorus on the Primordial Earth. ORIGINS LIFE EVOL B 2021; 51:185-213. [PMID: 34279769 DOI: 10.1007/s11084-021-09613-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/19/2021] [Indexed: 11/28/2022]
Abstract
How life arose on the primitive Earth is one of the biggest questions in science. Biomolecular emergence scenarios have proliferated in the literature but accounting for the ubiquity of oxidized (+ 5) phosphate (PO43-) in extant biochemistries has been challenging due to the dearth of phosphate and molecular oxygen on the primordial Earth. A compelling body of work suggests that exogenous schreibersite ((Fe,Ni)3P) was delivered to Earth via meteorite impacts during the Heavy Bombardment (ca. 4.1-3.8 Gya) and there converted to reduced P oxyanions (e.g., phosphite (HPO32-) and hypophosphite (H2PO2-)) and phosphonates. Inspired by this idea, we review the relevant literature to deduce a plausible reduced phospholipid analog of modern phosphatidylcholines that could have emerged in a primordial hydrothermal setting. A shallow alkaline lacustrine basin underlain by active hydrothermal fissures and meteoritic schreibersite-, clay-, and metal-enriched sediments is envisioned. The water column is laden with known and putative primordial hydrothermal reagents. Small system dimensions and thermal- and UV-driven evaporation further concentrate chemical precursors. We hypothesize that a reduced phospholipid arises from Fischer-Tropsch-type (FTT) production of a C8 alkanoic acid, which condenses with an organophosphinate (derived from schreibersite corrosion to hypophosphite with subsequent methylation/oxidation), to yield a reduced protophospholipid. This then condenses with an α-amino nitrile (derived from Strecker-type reactions) to form the polar head. Preliminary modeling results indicate that reduced phospholipids do not aggregate rapidly; however, single layer micelles are stable up to aggregates with approximately 100 molecules.
Collapse
Affiliation(s)
- Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA.
| | - Pere Miro
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | | | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Arthur Omran
- School of Geosciences, University of South Florida, Tampa, FL, 33620, USA
- Department of Chemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
- Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Vaille A Swenson
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lucas J Leinen
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Nathaniel W Fitch
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Krista L Cole
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Chris Stone
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
| | - Samuel M Drummond
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Kayli Rageth
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Lillian R Dewitt
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | | | | |
Collapse
|
21
|
Altair T, Borges LGF, Galante D, Varela H. Experimental Approaches for Testing the Hypothesis of the Emergence of Life at Submarine Alkaline Vents. Life (Basel) 2021; 11:777. [PMID: 34440521 PMCID: PMC8401828 DOI: 10.3390/life11080777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Since the pioneering experimental work performed by Urey and Miller around 70 years ago, several experimental works have been developed for approaching the question of the origin of life based on very few well-constructed hypotheses. In recent years, attention has been drawn to the so-called alkaline hydrothermal vents model (AHV model) for the emergence of life. Since the first works, perspectives from complexity sciences, bioenergetics and thermodynamics have been incorporated into the model. Consequently, a high number of experimental works from the model using several tools have been developed. In this review, we present the key concepts that provide a background for the AHV model and then analyze the experimental approaches that were motivated by it. Experimental tools based on hydrothermal reactors, microfluidics and chemical gardens were used for simulating the environments of early AHVs on the Hadean Earth (~4.0 Ga). In addition, it is noteworthy that several works used techniques from electrochemistry to investigate phenomena in the vent-ocean interface for early AHVs. Their results provided important parameters and details that are used for the evaluation of the plausibility of the AHV model, and for the enhancement of it.
Collapse
Affiliation(s)
- Thiago Altair
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| | - Luiz G. F. Borges
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (L.G.F.B.); (D.G.)
| | - Douglas Galante
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (L.G.F.B.); (D.G.)
| | - Hamilton Varela
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| |
Collapse
|
22
|
Chin K, Pasalic J, Hermis N, Barge LM. Chemical Gardens as Electrochemical Systems: In Situ Characterization of Simulated Prebiotic Hydrothermal Vents by Impedance Spectroscopy. Chempluschem 2021; 85:2619-2628. [PMID: 33270995 DOI: 10.1002/cplu.202000600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/17/2020] [Indexed: 11/05/2022]
Abstract
In an early earth or planetary chimney systems, hydrothermal fluid chemistry and flow durations play a large role in the chimney's ability to drive electrochemical reactions for the origin of life. We performed continuous electrochemical impedance spectroscopy (EIS) characterization on inorganic membranes representing prebiotic hydrothermal chimney vents in natural seafloor systems, by incorporating an electrode array into a chimney growth experiment. Localized potential and capacitances profiles in the chimney reveal a dynamic system where redox processes are driven by transport phenomena, increasing rapidly due to disequilibrium until achieving equilibrium at about 100 mV and 1000 μF/cm2 . The impedance in the chimney interior is three orders of magnitude lower (100 Ohms/cm2 vs 100 KOhms/cm2 ) than at the ocean or the ocean/chimney interface. The calculated peak dissipation factor (DF) values are more than ten times higher (40.0 vs 3.0) and also confirm the elevated chemical reactivity in the chimney interior.
Collapse
Affiliation(s)
- Keith Chin
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Jasmina Pasalic
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Ninos Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| |
Collapse
|
23
|
Russell MJ. The "Water Problem"( sic), the Illusory Pond and Life's Submarine Emergence-A Review. Life (Basel) 2021; 11:429. [PMID: 34068713 PMCID: PMC8151828 DOI: 10.3390/life11050429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 01/10/2023] Open
Abstract
The assumption that there was a "water problem" at the emergence of life-that the Hadean Ocean was simply too wet and salty for life to have emerged in it-is here subjected to geological and experimental reality checks. The "warm little pond" that would take the place of the submarine alkaline vent theory (AVT), as recently extolled in the journal Nature, flies in the face of decades of geological, microbiological and evolutionary research and reasoning. To the present author, the evidence refuting the warm little pond scheme is overwhelming given the facts that (i) the early Earth was a water world, (ii) its all-enveloping ocean was never less than 4 km deep, (iii) there were no figurative "Icelands" or "Hawaiis", nor even an "Ontong Java" then because (iv) the solidifying magma ocean beneath was still too mushy to support such salient loadings on the oceanic crust. In place of the supposed warm little pond, we offer a well-protected mineral mound precipitated at a submarine alkaline vent as life's womb: in place of lipid membranes, we suggest peptides; we replace poisonous cyanide with ammonium and hydrazine; instead of deleterious radiation we have the appropriate life-giving redox and pH disequilibria; and in place of messy chemistry we offer the potential for life's emergence from the simplest of geochemically available molecules and ions focused at a submarine alkaline vent in the Hadean-specifically within the nano-confined flexible and redox active interlayer walls of the mixed-valent double layer oxyhydroxide mineral, fougerite/green rust comprising much of that mound.
Collapse
Affiliation(s)
- Michael J Russell
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| |
Collapse
|
24
|
Fogde A, Qudsia S, Le T, Sandberg T, Huynh T. (Calcium‐Phosphate)/Carrageenan Gardens Grown from the Gel/Liquid Interface. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Anna Fogde
- Laboratory of Molecular Sciences and Engineering Åbo Akademi Universit 20500 Turku Finland
| | - Syeda Qudsia
- Laboratory of Molecular Sciences and Engineering Åbo Akademi Universit 20500 Turku Finland
| | - Trung‐Anh Le
- Laboratory of Molecular Sciences and Engineering Åbo Akademi Universit 20500 Turku Finland
| | - Thomas Sandberg
- Laboratory of Molecular Sciences and Engineering Åbo Akademi Universit 20500 Turku Finland
| | - Tan‐Phat Huynh
- Laboratory of Molecular Sciences and Engineering Åbo Akademi Universit 20500 Turku Finland
| |
Collapse
|
25
|
Wang Q, Steinbock O. Chemical Garden Membranes in Temperature-Controlled Microfluidic Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2485-2493. [PMID: 33555186 DOI: 10.1021/acs.langmuir.0c03548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Thin-walled tubes that classically form when metal salts react with sodium silicate solution are known as chemical gardens. They share similarities with the porous, catalytic materials in hydrothermal vent chimneys, and both structures are exposed to steep pH gradients that, combined with thermal factors, might have provided the free energy for prebiotic chemistry on early Earth. We report temperature effects on the shape, composition, and opacity of chemical gardens. Tubes grown at high temperature are more opaque, indicating changes to the membrane structure or thickness. To study this dependence, we developed a temperature-controlled microfluidic device, which allows the formation of analogous membranes at the interface of two coflowing reactant solutions. For the case of Ni(OH)2, membranes thicken according to a diffusion-controlled mechanism. In the studied range of 10-40 °C, the effective diffusion coefficient is independent of temperature. This suggests that counteracting processes are at play (including an increased solubility) and that the opacity of chemical garden tubes arises from changes in internal morphology. The latter could be linked to experimentally observed dendritic structures within the membranes.
Collapse
Affiliation(s)
- Qingpu Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
26
|
Hughes EAB, Jones‐Salkey O, Forey P, Chipara M, Grover LM. Exploring the Formation of Calcium Orthophosphate‐Pyrophosphate Chemical Gardens. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Erik A. B. Hughes
- School of Chemical Engineering University of Birmingham Birmingham B15 2TT UK
- NIHR Surgical Reconstruction and Microbiology Research Centre Queen Elizabeth Hospital Birmingham UK
| | - Owen Jones‐Salkey
- School of Chemical Engineering University of Birmingham Birmingham B15 2TT UK
| | - Prescillia Forey
- Ensaia Université De Lorraine 34 Cours Léopold, CS 25233 F-54052 Nancy France
| | - Miruna Chipara
- School of Chemical Engineering University of Birmingham Birmingham B15 2TT UK
| | - Liam M. Grover
- School of Chemical Engineering University of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
27
|
Spanoudaki D, Brau F, De Wit A. Oscillatory budding dynamics of a chemical garden within a co-flow of reactants. Phys Chem Chem Phys 2021; 23:1684-1693. [PMID: 33416815 DOI: 10.1039/d0cp05668e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oscillatory growth of chemical gardens is studied experimentally in the budding regime using a co-flow of two reactant solutions within a microfluidic reactor. The confined environment of the reactor tames the erratic budding growth and the oscillations leave their imprint with the formation of orderly spaced membranes on the precipitate surface. The average wavelength of the spacing between membranes, the growth velocity of the chemical garden and the oscillations period are measured as a function of the velocity of each reactant. By means of materials characterization techniques, the micro-morphology and the chemical composition of the precipitate are explored. A mathematical model is developed to explain the periodic rupture of droplets delimitated by a shell of precipitate and growing when one reactant is injected into the other. The predictions of this model are in good agreement with the experimental data.
Collapse
Affiliation(s)
- D Spanoudaki
- Université libre de Bruxelles (ULB), Faculté des Sciences, Non Linear Physical Chemistry Unit, C. P. 231, 1050 Brussels, Belgium.
| | - Fabian Brau
- Université libre de Bruxelles (ULB), Faculté des Sciences, Non Linear Physical Chemistry Unit, C. P. 231, 1050 Brussels, Belgium.
| | - A De Wit
- Université libre de Bruxelles (ULB), Faculté des Sciences, Non Linear Physical Chemistry Unit, C. P. 231, 1050 Brussels, Belgium.
| |
Collapse
|
28
|
Kotopoulou E, Lopez‐Haro M, Calvino Gamez JJ, García‐Ruiz JM. Nanoscale Anatomy of Iron-Silica Self-Organized Membranes: Implications for Prebiotic Chemistry. Angew Chem Int Ed Engl 2021; 60:1396-1402. [PMID: 33022871 PMCID: PMC7839773 DOI: 10.1002/anie.202012059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 12/26/2022]
Abstract
Iron-silica self-organized membranes, so-called chemical gardens, behave as fuel cells and catalyze the formation of amino/carboxylic acids and RNA nucleobases from organics that were available on early Earth. Despite their relevance for prebiotic chemistry, little is known about their structure and mineralogy at the nanoscale. Studied here are focused ion beam milled sections of iron-silica membranes, grown from synthetic and natural, alkaline, serpentinization-derived fluids thought to be widespread on early Earth. Electron microscopy shows they comprise amorphous silica and iron nanoparticles of large surface areas and inter/intraparticle porosities. Their construction resembles that of a heterogeneous catalyst, but they can also exhibit a bilayer structure. Surface-area measurements suggest that membranes grown from natural waters have even higher catalytic potential. Considering their geochemically plausible precipitation in the early hydrothermal systems where abiotic organics were produced, iron-silica membranes might have assisted the generation and organization of the first biologically relevant organics.
Collapse
Affiliation(s)
- Electra Kotopoulou
- Instituto Andaluz de Ciencias de la TierraConsejo Superior de Investigaciones Científicas- Universidad de GranadaAvda. de las Palmeras 418100GranadaSpain
| | - Miguel Lopez‐Haro
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química InorgánicaFacultad de CienciasUniversidad de CadizCampus Rio San PedroPuerto Real11510CádizSpain
| | - Jose Juan Calvino Gamez
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química InorgánicaFacultad de CienciasUniversidad de CadizCampus Rio San PedroPuerto Real11510CádizSpain
| | - Juan Manuel García‐Ruiz
- Instituto Andaluz de Ciencias de la TierraConsejo Superior de Investigaciones Científicas- Universidad de GranadaAvda. de las Palmeras 418100GranadaSpain
| |
Collapse
|
29
|
Bernini F, Castellini E, Sebastianelli L, Bighi B, Sainz‐Díaz CI, Mucci A, Malferrari D, Ranieri A, Brigatti MF, Borsari M. Self‐Assembled Structures from Solid Cadmium(II) Acetate in Thiol/Ethanol Solutions: A Novel Type of Organic Chemical Garden. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Fabrizio Bernini
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Elena Castellini
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Lorenzo Sebastianelli
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Beatrice Bighi
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Claro Ignacio Sainz‐Díaz
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR) Av. de las Palmeras, 4 18100 Armilla Granada Spain
| | - Adele Mucci
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Daniele Malferrari
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Antonio Ranieri
- Department of Life Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Maria Franca Brigatti
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| |
Collapse
|
30
|
Jones JP, Firdosy SA, Barge LM, Bescup JC, Perl SM, Zhang X, Pate AM, Price RE. 3D Printed Minerals as Astrobiology Analogs of Hydrothermal Vent Chimneys. ASTROBIOLOGY 2020; 20:1405-1412. [PMID: 32924535 DOI: 10.1089/ast.2020.2260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrothermal vents, which are highly plausible habitable environments for life and of interest for some origin-of-life scenarios, may exist on icy moons such as Europa or Enceladus in addition to Earth. Some hydrothermal vent chimney structures are extremely porous and friable, making their reconstruction in the lab challenging (e.g., brucite or saponite in alkaline hydrothermal settings). Here, we present the results from our efforts to reconstruct a simplified chimney structure directly out of mineral powder using binder jet additive manufacturing. Olivine sand was chosen for this initial method development effort since it represents a naturally occurring seafloor material and is inexpensively available in large quantities in powder form. The crystal structure of olivine used for the print was not modified during the process, as confirmed by powder X-ray diffraction (XRD). To characterize the microstructure of our 3D printed precipitates, we used computed tomography (CT) X-ray scan techniques. We also evaluated a chimney precipitate from a sample collected from the Prony Hydrothermal Field (PHF), southern New Caledonia, an alkaline system driven by serpentinization with mineralogy composed of brucite and carbonates. While not directly comparable from a mineralogical point of view, the microstructure and porosity of both precipitates was similar, suggesting that our 3D printing technique may be a valuable tool for future astrobiology research on hydrothermal vent precipitates.
Collapse
Affiliation(s)
- John-Paul Jones
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Samad A Firdosy
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - John C Bescup
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Scott M Perl
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Xu Zhang
- College of Engineering Center for Design and Manufacturing Excellence, Ohio State University, Columbus, Ohio, USA
| | - Andre M Pate
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Roy E Price
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
31
|
Kotopoulou E, Lopez‐Haro M, Calvino Gamez JJ, García‐Ruiz JM. Nanoscale Anatomy of Iron‐Silica Self‐Organized Membranes: Implications for Prebiotic Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Electra Kotopoulou
- Instituto Andaluz de Ciencias de la Tierra Consejo Superior de Investigaciones Científicas- Universidad de Granada Avda. de las Palmeras 4 18100 Granada Spain
| | - Miguel Lopez‐Haro
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica Facultad de Ciencias Universidad de Cadiz Campus Rio San Pedro Puerto Real 11510 Cádiz Spain
| | - Jose Juan Calvino Gamez
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica Facultad de Ciencias Universidad de Cadiz Campus Rio San Pedro Puerto Real 11510 Cádiz Spain
| | - Juan Manuel García‐Ruiz
- Instituto Andaluz de Ciencias de la Tierra Consejo Superior de Investigaciones Científicas- Universidad de Granada Avda. de las Palmeras 4 18100 Granada Spain
| |
Collapse
|
32
|
Russell MJ, Ponce A. Six 'Must-Have' Minerals for Life's Emergence: Olivine, Pyrrhotite, Bridgmanite, Serpentine, Fougerite and Mackinawite. Life (Basel) 2020; 10:E291. [PMID: 33228029 PMCID: PMC7699418 DOI: 10.3390/life10110291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/25/2022] Open
Abstract
Life cannot emerge on a planet or moon without the appropriate electrochemical disequilibria and the minerals that mediate energy-dissipative processes. Here, it is argued that four minerals, olivine ([Mg>Fe]2SiO4), bridgmanite ([Mg,Fe]SiO3), serpentine ([Mg,Fe,]2-3Si2O5[OH)]4), and pyrrhotite (Fe(1-x)S), are an essential requirement in planetary bodies to produce such disequilibria and, thereby, life. Yet only two minerals, fougerite ([Fe2+6xFe3+6(x-1)O12H2(7-3x)]2+·[(CO2-)·3H2O]2-) and mackinawite (Fe[Ni]S), are vital-comprising precipitate membranes-as initial "free energy" conductors and converters of such disequilibria, i.e., as the initiators of a CO2-reducing metabolism. The fact that wet and rocky bodies in the solar system much smaller than Earth or Venus do not reach the internal pressure (≥23 GPa) requirements in their mantles sufficient for producing bridgmanite and, therefore, are too reduced to stabilize and emit CO2-the staple of life-may explain the apparent absence or negligible concentrations of that gas on these bodies, and thereby serves as a constraint in the search for extraterrestrial life. The astrobiological challenge then is to search for worlds that (i) are large enough to generate internal pressures such as to produce bridgmanite or (ii) boast electron acceptors, including imported CO2, from extraterrestrial sources in their hydrospheres.
Collapse
Affiliation(s)
- Michael J. Russell
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| | - Adrian Ponce
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA;
| |
Collapse
|
33
|
Zissi GD, Angelis G, Pampalakis G. The Generation and Study of a Gold‐Based Chemobrionic Plant‐Like Structure. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Georgia D. Zissi
- Department of Pharmacy University of Patras Panepistimioupolis, Rion Patras 26504 Greece
| | - George Angelis
- Department of Pharmacognosy-Pharmacology Aristotle University Thessaloniki Thessaloniki 54124 Greece
| | - Georgios Pampalakis
- Department of Pharmacognosy-Pharmacology Aristotle University Thessaloniki Thessaloniki 54124 Greece
| |
Collapse
|
34
|
Mineral self-organized structures in pre-biotic chemistry: Comment on: "Mineral self-organization on a lifeless planet" by J.M. Garcia-Ruiz et al. Phys Life Rev 2020; 34-35:89-91. [PMID: 32586714 DOI: 10.1016/j.plrev.2020.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 11/23/2022]
|
35
|
Hooks MR, Webster P, Weber JM, Perl S, Barge LM. Effects of Amino Acids on Iron-Silicate Chemical Garden Precipitation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5793-5801. [PMID: 32421344 DOI: 10.1021/acs.langmuir.0c00502] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Understanding the structure and behavior of chemical gardens is of interest for materials science, for understanding organic-mineral interactions, and for simulating geological mineral structures in hydrothermal systems on Earth and other worlds. Herein, we explored the effects of amino acids on inorganic chemical garden precipitate systems of iron chloride and sodium silicate to determine if/how the addition of organics can affect self-assembling morphologies or crystal growth. Amino acids affect chemical garden growth and morphology at the macro-scale and at the nanoscale. In this reaction system, the concentration of amino acid had a greater impact than the amino acid side chain, and increasing concentrations of organics caused structures to have smoother exteriors as amino acids accumulated on the outside surface. These results provide an example of how organic compounds can become incorporated into and influence the growth of inorganic self-organizing precipitates in far-from-equilibrium systems. Additionally, sample handing methods were developed to successfully image these delicate structures.
Collapse
Affiliation(s)
- Michelle R Hooks
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Paul Webster
- Oak Crest Institute of Science, 132 W Chestnut Ave, Monrovia, California 91016, United States
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Scott Perl
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| |
Collapse
|
36
|
Affiliation(s)
- Georgios Angelis
- Department of Pharmacognosy-PharmacologySchool of PharmacyAristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Georgios Pampalakis
- Department of Pharmacognosy-PharmacologySchool of PharmacyAristotle University of Thessaloniki 54124 Thessaloniki Greece
| |
Collapse
|
37
|
Cardoso SSS, Cartwright JHE, Čejková J, Cronin L, De Wit A, Giannerini S, Horváth D, Rodrigues A, Russell MJ, Sainz-Díaz CI, Tóth Á. Chemobrionics: From Self-Assembled Material Architectures to the Origin of Life. ARTIFICIAL LIFE 2020; 26:315-326. [PMID: 32697160 DOI: 10.1162/artl_a_00323] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Self-organizing precipitation processes, such as chemical gardens forming biomimetic micro- and nanotubular forms, have the potential to show us new fundamental science to explore, quantify, and understand nonequilibrium physicochemical systems, and shed light on the conditions for life's emergence. The physics and chemistry of these phenomena, due to the assembly of material architectures under a flux of ions, and their exploitation in applications, have recently been termed chemobrionics. Advances in understanding in this area require a combination of expertise in physics, chemistry, mathematical modeling, biology, and nanoengineering, as well as in complex systems and nonlinear and materials sciences, giving rise to this new synergistic discipline of chemobrionics.
Collapse
Affiliation(s)
- Silvana S S Cardoso
- University of Cambridge, Department of Chemical Engineering and Biotechnology.
| | - Julyan H E Cartwright
- Universidad de Granada CSIC, Instituto Andaluz de Ciencias de la Tierra, Instituto Carlos I de Física Teórica y Computacional.
| | - Jitka Čejková
- University of Chemistry and Technology Prague, Department of Chemical Engineering
| | | | - Anne De Wit
- Université Libre de Bruxelles (ULB), Nonlinear Physical Chemistry Unit
| | - Simone Giannerini
- Università di Bologna, Dipartimento di Scienze Statistiche "Paolo Fortunati"
| | - Dezső Horváth
- University of Szeged, Department of Applied and Environmental Chemistry
| | | | | | | | - Ágota Tóth
- University of Szeged, Department of Physical Chemistry and Materials Science
| |
Collapse
|
38
|
Hughes EAB, Chipara M, Hall TJ, Williams RL, Grover LM. Chemobrionic structures in tissue engineering: self-assembling calcium phosphate tubes as cellular scaffolds. Biomater Sci 2020; 8:812-822. [DOI: 10.1039/c9bm01010f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A diverse range of complex patterns and mineralised hierarchical microstructures can be derived from chemobrionic systems. In this work, we explore chemobrionic calcium phosphate tubes as cellular scaffolds.
Collapse
Affiliation(s)
- Erik A. B. Hughes
- School of Chemical Engineering
- University of Birmingham
- UK
- NIHR Surgical Reconstruction and Microbiology Research Centre
- Queen Elizabeth Hospital
| | - Miruna Chipara
- School of Chemical Engineering
- University of Birmingham
- UK
| | - Thomas J. Hall
- School of Chemical Engineering
- University of Birmingham
- UK
| | | | - Liam M. Grover
- School of Chemical Engineering
- University of Birmingham
- UK
| |
Collapse
|
39
|
Abstract
In the 1930s, Lars Onsager published his famous 'reciprocal relations' describing free energy conversion processes. Importantly, these relations were derived on the assumption that the fluxes of the processes involved in the conversion were proportional to the forces (free energy gradients) driving them. For chemical reactions, however, this condition holds only for systems operating close to equilibrium-indeed very close; nominally requiring driving forces to be smaller than k B T. Fairly soon thereafter, however, it was quite inexplicably observed that in at least some biological conversions both the reciprocal relations and linear flux-force dependency appeared to be obeyed no matter how far from equilibrium the system was being driven. No successful explanation of how this 'paradoxical' behaviour could occur has emerged and it has remained a mystery. We here argue, however, that this anomalous behaviour is simply a gift of water, of its viscosity in particular; a gift, moreover, without which life almost certainly could not have emerged. And a gift whose appreciation we primarily owe to recent work by Prof. R. Dean Astumian who, as providence has kindly seen to it, was led to the relevant insights by the later work of Onsager himself.
Collapse
Affiliation(s)
- E. Branscomb
- Carl R. Woese Institute for Genomic Biology, and Department of Physics, University of Illinois, 3113 IGB MC 195, 128 W. Gregory Dr., Urbana, IL 61801, USA
| | - M. J. Russell
- NASA Astrobiology Institute, Ames Research Center, Mountain View, CA, USA
| |
Collapse
|
40
|
Wang Q, Steinbock O. Materials Synthesis and Catalysis in Microfluidic Devices: Prebiotic Chemistry in Mineral Membranes. ChemCatChem 2019. [DOI: 10.1002/cctc.201901495] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Qingpu Wang
- Department of Chemistry and BiochemistryFlorida State University 102 Varsity Drive Tallahassee FL 32306-4390 USA
| | - Oliver Steinbock
- Department of Chemistry and BiochemistryFlorida State University 102 Varsity Drive Tallahassee FL 32306-4390 USA
| |
Collapse
|
41
|
Knoll P, Gonzalez AV, McQueen ZC, Steinbock O. Flow‐Induced Precipitation in Thin Capillaries Creates Helices, Lamellae, and Tubes. Chemistry 2019; 25:13885-13889. [DOI: 10.1002/chem.201903951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Pamela Knoll
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | - Alexander V. Gonzalez
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | - Zachary C. McQueen
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| |
Collapse
|
42
|
Angelis G, Zayed DN, Karioti A, Lazari D, Kanata E, Sklaviadis T, Pampalakis G. A Closed Chemobrionic System as a Biochemical Delivery Platform. Chemistry 2019; 25:12916-12919. [DOI: 10.1002/chem.201903255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/06/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Georgios Angelis
- Department of Pharmacognosy-PharmacologySchool of PharmacyAristotle University of Thessaloniki Thessaloniki 54124 Greece
| | - Dimitris Nabil Zayed
- Department of Pharmacognosy-PharmacologySchool of PharmacyAristotle University of Thessaloniki Thessaloniki 54124 Greece
| | - Anastasia Karioti
- Department of Pharmacognosy-PharmacologySchool of PharmacyAristotle University of Thessaloniki Thessaloniki 54124 Greece
| | - Diamanto Lazari
- Department of Pharmacognosy-PharmacologySchool of PharmacyAristotle University of Thessaloniki Thessaloniki 54124 Greece
| | - Eirini Kanata
- Department of Pharmacognosy-PharmacologySchool of PharmacyAristotle University of Thessaloniki Thessaloniki 54124 Greece
| | - Theodoros Sklaviadis
- Department of Pharmacognosy-PharmacologySchool of PharmacyAristotle University of Thessaloniki Thessaloniki 54124 Greece
| | - Georgios Pampalakis
- Department of Pharmacognosy-PharmacologySchool of PharmacyAristotle University of Thessaloniki Thessaloniki 54124 Greece
| |
Collapse
|
43
|
Wang Q, Steinbock O. Flow‐Assisted Self‐Organization of Hybrid Membranes. Chemistry 2019; 25:10427-10432. [DOI: 10.1002/chem.201901595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/15/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Qingpu Wang
- Department of Chemistry and Biochemistry Florida State University Tallahassee Florida 32306-4390 USA
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry Florida State University Tallahassee Florida 32306-4390 USA
| |
Collapse
|
44
|
Pótári G, Tóth Á, Horváth D. Precipitation patterns driven by gravity current. CHAOS (WOODBURY, N.Y.) 2019; 29:073117. [PMID: 31370424 DOI: 10.1063/1.5094491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
A precipitation reaction can be driven by a gravity current that spreads on the bottom as a denser fluid is injected into an initially stagnant liquid. Supersaturation and nucleation are restricted to locations where the two liquids come into contact; hence, the flow pattern governs the spatial distribution of the final product. In this numerical study, we quantitatively characterize the flow associated with the gravity current prior to the onset of nucleation and distinguish three zones where the coupling of transport processes with the reaction can take place depending on their time scales. A scaling law associated with the region of Rayleigh-Taylor instability behind the tip of the gravity current is also determined.
Collapse
Affiliation(s)
- Gábor Pótári
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| |
Collapse
|
45
|
Cafferty BJ, Yuan L, Baghbanzadeh M, Rappoport D, Beyzavi MH, Whitesides GM. Charge Transport through Self‐Assembled Monolayers of Monoterpenoids. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Brian J. Cafferty
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Li Yuan
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Mostafa Baghbanzadeh
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Dmitrij Rappoport
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - M. Hassan Beyzavi
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
- Current address: Department of Chemistry and Biochemistry University of Arkansas Fayetteville AR 72701 USA
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
- Kalvi Institute for Bionano Science and Technology Harvard University 29 Oxford Street Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University 60 Oxford Street Cambridge MA 02138 USA
| |
Collapse
|
46
|
Cafferty BJ, Yuan L, Baghbanzadeh M, Rappoport D, Beyzavi MH, Whitesides GM. Charge Transport through Self-Assembled Monolayers of Monoterpenoids. Angew Chem Int Ed Engl 2019; 58:8097-8102. [PMID: 30989746 DOI: 10.1002/anie.201902997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Indexed: 11/08/2022]
Abstract
The nature of the processes at the origin of life that selected specific classes of molecules for broad incorporation into cells is controversial. Among those classes selected were polyisoprenoids and their derivatives. This paper tests the hypothesis that polyisoprenoids were early contributors to membranes in part because they (or their derivatives) could facilitate charge transport by quantum tunneling. It measures charge transport across self-assembled monolayers (SAMs) of carboxyl-terminated monoterpenoids (O2 C(C9 HX)) and alkanoates (O2 C(C7 HX)) with different degrees of unsaturation, supported on silver (AgTS ) bottom electrodes, with Ga2 O3 /EGaIn top electrodes. Measurements of current density of SAMs of linear length-matched hydrocarbons-both saturated and unsaturated-show that completely unsaturated molecules transport charge faster than those that are completely saturated by approximately a factor of ten. This increase in relative rates of charge transport correlates with the number of carbon-carbon double bonds, but not with the extent of conjugation. These results suggest that polyisoprenoids-even fully unsaturated-are not sufficiently good tunneling conductors for their conductivity to have favored them as building blocks in the prebiotic world.
Collapse
Affiliation(s)
- Brian J Cafferty
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Li Yuan
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Mostafa Baghbanzadeh
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Dmitrij Rappoport
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - M Hassan Beyzavi
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.,Current address: Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - George M Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.,Kalvi Institute for Bionano Science and Technology, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
47
|
Vance SD, Barge LM, Cardoso SSS, Cartwright JHE. Self-Assembling Ice Membranes on Europa: Brinicle Properties, Field Examples, and Possible Energetic Systems in Icy Ocean Worlds. ASTROBIOLOGY 2019; 19:685-695. [PMID: 30964322 DOI: 10.1089/ast.2018.1826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Brinicles are self-assembling tubular ice membrane structures, centimeters to meters in length, found beneath sea ice in the polar regions of Earth. We discuss how the properties of brinicles make them of possible importance for chemistry in cold environments-including that of life's emergence-and we consider their formation in icy ocean worlds. We argue that the non-ice composition of the ice on Europa and Enceladus will vary spatially due to thermodynamic and mechanical properties that serve to separate and fractionate brines and solid materials. The specifics of the composition and dynamics of both the ice and the ocean in these worlds remain poorly constrained. We demonstrate through calculations using FREZCHEM that sulfate likely fractionates out of accreting ice in Europa and Enceladus, and thus that an exogenous origin of sulfate observed on Europa's surface need not preclude additional endogenous sulfate in Europa's ocean. We suggest that, like hydrothermal vents on Earth, brinicles in icy ocean worlds constitute ideal places where ecosystems of organisms might be found.
Collapse
Affiliation(s)
- Steven D Vance
- 1 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura M Barge
- 1 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Silvana S S Cardoso
- 2 Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Julyan H E Cartwright
- 3 Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Granada, Spain
- 4 Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| |
Collapse
|
48
|
Saladino R, Di Mauro E, García‐Ruiz JM. A Universal Geochemical Scenario for Formamide Condensation and Prebiotic Chemistry. Chemistry 2019; 25:3181-3189. [PMID: 30230056 PMCID: PMC6470889 DOI: 10.1002/chem.201803889] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2018] [Indexed: 11/06/2022]
Abstract
The condensation of formamide has been shown to be a robust chemical pathway affording molecules necessary for the origin of life. It has been experimentally demonstrated that condensation reactions of formamide are catalyzed by a number of minerals, including silicates, phosphates, sulfides, zirconia, and borates, and by cosmic dusts and meteorites. However, a critical discussion of the catalytic power of the tested minerals, and the geochemical conditions under which the condensation would occur, is still missing. We show here that mineral self-assembled structures forming under alkaline silica-rich solutions are excellent catalysts for the condensation of formamide with respect to other minerals. We also propose that these structures were likely forming as early as 4.4 billion years ago when the whole earth surface was a reactor, a global scale factory, releasing large amounts of organic compounds. Our experimental results suggest that the conditions required for the synthesis of the molecular bricks from which life self-assembles, rather than being local and bizarre, appears to be universal and geologically rather conventional.
Collapse
Affiliation(s)
- Raffaele Saladino
- Dipartimento di Scienze Ecologiche e BiologicheUniversità della TusciaVia San Camillo De Lellis01100ViterboItaly
| | - Ernesto Di Mauro
- Dipartimento di Scienze Ecologiche e BiologicheUniversità della TusciaVia San Camillo De Lellis01100ViterboItaly
| | - Juan Manuel García‐Ruiz
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la TierraCSIC-Universidad de GranadaAv. De las Palmeras 4ArmillaGranadaSpain
| |
Collapse
|
49
|
Wang Q, Barge LM, Steinbock O. Microfluidic Production of Pyrophosphate Catalyzed by Mineral Membranes with Steep pH Gradients. Chemistry 2019; 25:4732-4739. [DOI: 10.1002/chem.201805950] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/05/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Qingpu Wang
- Department of Chemistry and BiochemistryFlorida State University Tallahassee Florida 32306-4390 USA
| | - Laura M. Barge
- NASA Jet Propulsion LaboratoryCalifornia Institute of Technology Pasadena California 91109 USA
| | - Oliver Steinbock
- Department of Chemistry and BiochemistryFlorida State University Tallahassee Florida 32306-4390 USA
| |
Collapse
|
50
|
Ooka H, McGlynn SE, Nakamura R. Electrochemistry at Deep‐Sea Hydrothermal Vents: Utilization of the Thermodynamic Driving Force towards the Autotrophic Origin of Life. ChemElectroChem 2019. [DOI: 10.1002/celc.201801432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hideshi Ooka
- Biofunctional Catalyst Research TeamRIKEN Center for Sustainable Resource Science (CSRS) 2-1, Hirosawa, Wako Saitama 351-0198 Japan
| | - Shawn E. McGlynn
- Biofunctional Catalyst Research TeamRIKEN Center for Sustainable Resource Science (CSRS) 2-1, Hirosawa, Wako Saitama 351-0198 Japan
- Earth-Life Science Institute (ELSI)Tokyo Institute of Technology 2-12-1-1E-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
- Blue Marble Space Institute of Science Seattle, WA USA
| | - Ryuhei Nakamura
- Biofunctional Catalyst Research TeamRIKEN Center for Sustainable Resource Science (CSRS) 2-1, Hirosawa, Wako Saitama 351-0198 Japan
- Earth-Life Science Institute (ELSI)Tokyo Institute of Technology 2-12-1-1E-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|