1
|
Buziková M, Zhukouskaya H, Tomšík E, Vetrík M, Kučka J, Hrubý M, Kotek J. Catalytic Hydrolysis of Paraoxon by Immobilized Copper(II) Complexes of 1,4,7-Triazacyclononane Derivatives. Polymers (Basel) 2024; 16:2911. [PMID: 39458739 PMCID: PMC11510994 DOI: 10.3390/polym16202911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Organophosphate neuroactive agents represent severe security threats in various scenarios, including military conflicts, terrorist activities and industrial accidents. Addressing these threats necessitates effective protective measures, with a focus on decontamination strategies. Adsorbents such as bentonite have been explored as a preliminary method for chemical warfare agent immobilization, albeit lacking chemical destruction capabilities. Chemical decontamination, on the other hand, involves converting these agents into non-toxic or less toxic forms. In this study, we investigated the hydrolytic activity of a Cu(II) complex, previously studied for phosphate ester hydrolysis, as a potential agent for chemical warfare decontamination. Specifically, we focused on a ligand featuring a thiophene anchor bound through an aliphatic spacer, which exhibited high hydrolytic activity in its Cu(II) complex form in our previous studies. Paraoxon, an efficient insecticide, was selected as a model substrate for hydrolytic studies due to its structural resemblance to specific chemical warfare agents and due to the presence of a chromogenic 4-nitrophenolate moiety. Our findings clearly show the hydrolytic activity of the studied Cu(II) complexes. Additionally, we demonstrate the immobilization of the studied complex onto a solid substrate of Amberlite XAD4 via copolymerization of its thiophene side group with dithiophene. The hydrolytic activity of the resultant material towards paraoxon was studied, indicating its potential utilization in organophosphate neuroactive agent decontamination under mild conditions and the key importance of surface adsorption of paraoxon on the polymer surface.
Collapse
Affiliation(s)
- Michaela Buziková
- Department of Inorganic Chemistry, Charles University, Hlavova 8, 128 40 Prague, Czech Republic
| | - Hanna Zhukouskaya
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 06 Prague, Czech Republic (E.T.); (J.K.); (M.H.)
| | - Elena Tomšík
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 06 Prague, Czech Republic (E.T.); (J.K.); (M.H.)
| | - Miroslav Vetrík
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 06 Prague, Czech Republic (E.T.); (J.K.); (M.H.)
| | - Jan Kučka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 06 Prague, Czech Republic (E.T.); (J.K.); (M.H.)
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 06 Prague, Czech Republic (E.T.); (J.K.); (M.H.)
| | - Jan Kotek
- Department of Inorganic Chemistry, Charles University, Hlavova 8, 128 40 Prague, Czech Republic
| |
Collapse
|
2
|
Gibbons B, Johnson EM, Javed MK, Yang X, Morris AJ. Macromorphological Control of Zr-Based Metal-Organic Frameworks for Hydrolysis of a Nerve Agent Simulant. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52703-52711. [PMID: 39292638 PMCID: PMC11450694 DOI: 10.1021/acsami.4c11928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Zirconium-based metal-organic frameworks (MOFs) have become one of the most promising materials for the adsorption and destruction of chemical warfare agents. While numerous studies have shown differences in reactivity based on MOF topology and postsynthetic modification, the understanding of how modifying MOF macromorphology is less understood. MOF xerogels demonstrate modified defect levels and larger porosity, which increase the number of and access to potential active sites. Indeed, UiO-66 and NU-901 xerogels display reaction rates 2 and 3 times higher, respectively, for the hydrolysis of DMNP relative to their powder morphologies. Upon recycling, MOF-808 xerogel outperforms MOF-808 powder, previously noted as the fastest Zr6 MOF for hydrolysis of organophosphate nerve agents. The increase in reactivity is largely driven by a higher external surface area and the introduction of mesoporosity to previously microporous materials.
Collapse
Affiliation(s)
| | | | | | - Xiaozhou Yang
- Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Amanda J. Morris
- Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Zheng JJ, Li QZ, Wang Z, Wang X, Zhao Y, Gao X. Computer-aided nanodrug discovery: recent progress and future prospects. Chem Soc Rev 2024; 53:9059-9132. [PMID: 39148378 DOI: 10.1039/d3cs00575e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Nanodrugs, which utilise nanomaterials in disease prevention and therapy, have attracted considerable interest since their initial conceptualisation in the 1990s. Substantial efforts have been made to develop nanodrugs for overcoming the limitations of conventional drugs, such as low targeting efficacy, high dosage and toxicity, and potential drug resistance. Despite the significant progress that has been made in nanodrug discovery, the precise design or screening of nanomaterials with desired biomedical functions prior to experimentation remains a significant challenge. This is particularly the case with regard to personalised precision nanodrugs, which require the simultaneous optimisation of the structures, compositions, and surface functionalities of nanodrugs. The development of powerful computer clusters and algorithms has made it possible to overcome this challenge through in silico methods, which provide a comprehensive understanding of the medical functions of nanodrugs in relation to their physicochemical properties. In addition, machine learning techniques have been widely employed in nanodrug research, significantly accelerating the understanding of bio-nano interactions and the development of nanodrugs. This review will present a summary of the computational advances in nanodrug discovery, focusing on the understanding of how the key interfacial interactions, namely, surface adsorption, supramolecular recognition, surface catalysis, and chemical conversion, affect the therapeutic efficacy of nanodrugs. Furthermore, this review will discuss the challenges and opportunities in computer-aided nanodrug discovery, with particular emphasis on the integrated "computation + machine learning + experimentation" strategy that can potentially accelerate the discovery of precision nanodrugs.
Collapse
Affiliation(s)
- Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Qiao-Zhi Li
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xiaoli Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuliang Zhao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
4
|
Wu G, Zhang B, Zhang H, Zhang X, Hu X, Meng X, Wu J, Hou H. Morphology Regulation of UiO-66-2I Supporting Systematic Investigations of Shape-Dependent Catalytic Activity for Degradation of an Organophosphate Nerve Agent Simulant. Inorg Chem 2024; 63:12658-12666. [PMID: 38916863 DOI: 10.1021/acs.inorgchem.4c02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Phosphonate-based nerve agents, as a kind of deadly chemical warfare agent, are a persistent and evolving threat to humanity. Zirconium-based metal-organic frameworks (Zr-MOFs) are a kind of highly porous crystalline material that includes Zr-OH-Zr sites and imitates the active sites of the phosphotriesterase enzyme, representing significant potential for the adsorption and catalytic hydrolysis of phosphonate-based nerve agents. In this work, we present a new Zr-MOF, UiO-66-2I, which attaches two iodine atoms in the micropore of the MOF and exhibits excellent catalytic activity on the degradation of a nerve agent simulant, dimethyl 4-nitrophenyl phosphate (DMNP), as the result of the formation of halogen bonds between the phosphate ester bonds and iodine groups. Furthermore, various morphologies of UiO-66-2I, such as blocky-shaped nanoparticles (NPs), two-dimensional (2D) nanosheets, hexahedral NPs, stick-like NPs, colloidal microspheres, and colloidal NPs, have been obtained by adding acetic acid (AA), formic acid (FA), propionic acid (PA), valeric acid (VA), benzoic acid (BA), and trifluoroacetic acid (TFA) as modulators, respectively, and show different catalytic hydrolysis activities. Specifically, the catalytic activities follow the trend UiO-66-2I-FA (t1/2 = 1 min) > UiO-66-2I-AA-NP (t1/2 = 4 min) ≈ UiO-66-2I-VA (t1/2 = 4 min) > UiO-66-2I-BA (t1/2 = 5 min) > UiO-66-2I-PA (t1/2 = 15 min) > UiO-66-2I-TFA (t1/2 = 18 min). The experimental results show that the catalytic hydrolysis activity of Zr-MOF is regulated by the crystallinity, defect quantity, morphologies, and hydrophilicity of these samples, which synergistically affect the accessibility of catalytic sites and the diffusion of phosphate in the pores of Zr-MOFs.
Collapse
Affiliation(s)
- Gaigai Wu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Heyao Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiying Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaomeng Hu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiangru Meng
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jie Wu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongwei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
5
|
Örebrand L, Ahlinder L, Thunéll M, Afshin Sander R, Larsson A, Fredman A, Wingfors H. A Miniaturized Method for Evaluating the Dynamic Gas-Phase Adsorption and Degradation of Sarin on Porous Adsorbents at Different Humidity Levels. ACS OMEGA 2024; 9:28412-28421. [PMID: 38973844 PMCID: PMC11223133 DOI: 10.1021/acsomega.4c02306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
Metal organic frameworks based on zirconium nodes (Zr-MOFs) have impressive adsorption capacities, and many can rapidly hydrolyze toxic organophosphorus nerve agents. They could thus potentially replace commonly used adsorbents in respiratory filters. However, current test methodologies are poorly adapted to screen the large number of available MOFs, and data for nerve agent adsorption by MOFs are scarce. This paper presents a miniaturized method for assessing the capacity of Zr-MOFs for dynamic gas phase adsorption and degradation of sarin (GB) into the primary hydrolysis product isopropyl methyl phosphonic acid (IMPA). The method was validated by comparing the dynamic adsorption capacities of activated carbon (AC) and NU-1000 for GB under dry and humid conditions. Under dry conditions, unimpregnated AC had a greater capacity for GB uptake (0.68 ± 0.06 g/g) than pelletized NU-1000 (0.36 ± 0.03 g/g). At 55% relative humidity (RH), the capacity of AC was largely unchanged (0.72 ± 0.10 g/g) but that of NU-1000 increased slightly, to 0.46 ± 0.10 g/g. However, NU-1000 exhibited poor water retention at 55% RH. For both adsorbents, the degree of hydrolysis of GB into IMPA was significantly greater at 55% RH than under dry conditions, but the overall degree of hydrolysis was limited in both cases. Further tests at higher relative humidities are needed to fully evaluate the ability of NU-1000 to degrade GB after adsorption from the gas phase. The proposed experimental setup uses very small amounts of both adsorbent material (20 mg) and toxic agent, making it ideal for assessing new MOFs. However, future methodological challenges are reliable generation of sarin at higher RH and exploring sensitive methods to monitor degradation products from nerve agents in real-time.
Collapse
Affiliation(s)
- Lillemor Örebrand
- CBRN Defence and Security, Swedish Defence Research Agency, 901 82 Umeå, Sweden
| | - Linnea Ahlinder
- CBRN Defence and Security, Swedish Defence Research Agency, 901 82 Umeå, Sweden
| | - Marianne Thunéll
- CBRN Defence and Security, Swedish Defence Research Agency, 901 82 Umeå, Sweden
| | - Robin Afshin Sander
- CBRN Defence and Security, Swedish Defence Research Agency, 901 82 Umeå, Sweden
| | - Andreas Larsson
- CBRN Defence and Security, Swedish Defence Research Agency, 901 82 Umeå, Sweden
| | - Andreas Fredman
- CBRN Defence and Security, Swedish Defence Research Agency, 901 82 Umeå, Sweden
| | - Håkan Wingfors
- CBRN Defence and Security, Swedish Defence Research Agency, 901 82 Umeå, Sweden
| |
Collapse
|
6
|
Prasad RR, Boyadjieva SS, Zhou G, Tan J, Firth FCN, Ling S, Huang Z, Cliffe MJ, Foster JA, Forgan RS. Modulated Self-Assembly of Catalytically Active Metal-Organic Nanosheets Containing Zr 6 Clusters and Dicarboxylate Ligands. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17812-17820. [PMID: 38557002 PMCID: PMC11009912 DOI: 10.1021/acsami.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Two-dimensional metal-organic nanosheets (MONs) have emerged as attractive alternatives to their three-dimensional metal-organic framework (MOF) counterparts for heterogeneous catalysis due to their greater external surface areas and higher accessibility of catalytically active sites. Zr MONs are particularly prized because of their chemical stability and high Lewis and Brønsted acidities of the Zr clusters. Herein, we show that careful control over modulated self-assembly and exfoliation conditions allows the isolation of the first example of a two-dimensional nanosheet wherein Zr6 clusters are linked by dicarboxylate ligands. The hxl topology MOF, termed GUF-14 (GUF = Glasgow University Framework), can be exfoliated into monolayer thickness hns topology MONs, and acid-induced removal of capping modulator units yields MONs with enhanced catalytic activity toward the formation of imines and the hydrolysis of an organophosphate nerve agent mimic. The discovery of GUF-14 serves as a valuable example of the undiscovered MOF/MON structural diversity extant in established metal-ligand systems that can be accessed by harnessing the power of modulated self-assembly protocols.
Collapse
Affiliation(s)
- Ram R.
R. Prasad
- Department
of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K.
| | - Sophia S. Boyadjieva
- WestCHEM
School of Chemistry, University of Glasgow, Joseph Black Building, University
Avenue, Glasgow G12 8QQ, U.K.
| | - Guojun Zhou
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Jiangtian Tan
- Department
of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K.
| | - Francesca C. N. Firth
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Sanliang Ling
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K.
| | - Zhehao Huang
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Matthew J. Cliffe
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jonathan A. Foster
- Department
of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K.
| | - Ross S. Forgan
- WestCHEM
School of Chemistry, University of Glasgow, Joseph Black Building, University
Avenue, Glasgow G12 8QQ, U.K.
| |
Collapse
|
7
|
Shen X, Wang Z, Gao XJ, Gao X. Reaction Mechanisms and Kinetics of Nanozymes: Insights from Theory and Computation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211151. [PMID: 36641629 DOI: 10.1002/adma.202211151] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
"Nanozymes" usually refers to inorganic nanomaterials with enzyme-like catalytic activities. The research into nanozymes is one of the hot topics on the horizon of interdisciplinary science involving materials, chemistry, and biology. Although great progress has been made in the design, synthesis, characterization, and application of nanozymes, the study of the underlying microscopic mechanisms and kinetics is still not straightforward. Density functional theory (DFT) calculations compute the potential energy surfaces along the reaction coordinates for chemical reactions, which can give atomistic-level insights into the micro-mechanisms and kinetics for nanozymes. Therefore, DFT calculations have been playing an increasingly important role in exploring the mechanisms and kinetics for nanozymes in the past years. The calculations either predict the microscopic details for the catalytic processes to complement the experiments or further develop theoretical models to depict the physicochemical rules. In this review, the corresponding research progress is summarized. Particularly, the review focuses on the computational studies that closely interplay with the experiments. The relevant experimental results without DFT calculations will be also briefly discussed to offer a historic overview of how the computations promote the understanding of the microscopic mechanisms and kinetics of nanozymes.
Collapse
Affiliation(s)
- Xiaomei Shen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuejiao J Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
8
|
Ma K, Cheung YH, Kirlikovali KO, Xie H, Idrees KB, Wang X, Islamoglu T, Xin JH, Farha OK. Fibrous Zr-MOF Nanozyme Aerogels with Macro-Nanoporous Structure for Enhanced Catalytic Hydrolysis of Organophosphate Toxins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300951. [PMID: 37310697 DOI: 10.1002/adma.202300951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) with Lewis acid catalytic sites, such as zirconium-based MOFs (Zr-MOFs), comprise a growing class of phosphatase-like nanozymes that can degrade toxic organophosphate pesticides and nerve agents. Rationally engineering and shaping MOFs from as-synthesized powders into hierarchically porous monoliths is essential for their use in emerging applications, such as filters for air and water purification and personal protection gear. However, several challenges still limit the production of practical MOF composites, including the need for sophisticated reaction conditions, low MOF catalyst loadings in the resulting composites, and poor accessibility to MOF-based active sites. To overcome these limitations, a rapid synthesis method is developed to introduce Zr-MOF nanozyme coating into cellulose nanofibers, resulting in the formation of processable monolithic aerogel composites with high MOF loadings. These composites contain Zr-MOF nanozymes embedded in the structure, and hierarchical macro-micro porosity enables excellent accessibility to catalytic active sites. This multifaceted rational design strategy, including the selection of a MOF with many catalytic sites, fine-tuning the coating morphology, and the fabrication of a hierarchically structured monolithic aerogel, renders synergistic effects toward the efficient continuous hydrolytic detoxification of organophosphorus-based nerve agent simulants and pesticides from contaminated water.
Collapse
Affiliation(s)
- Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Yuk Ha Cheung
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Xiaoliang Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - John H Xin
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
9
|
Marlar T, Harb JN. MOF-Enabled Electrochemical Sensor for Rapid and Robust Sensing of V-Series Nerve Agents at Low Concentrations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9569-9580. [PMID: 38329224 DOI: 10.1021/acsami.3c19185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Among nerve agents, V-series nerve agents are some of the most toxic, making low-concentration detection critical for the protection of individuals, populations, and strategic resources. Electrochemical sensors are ideally suited for the real-time and in-field sensing of these agents. While V-series nerve agents are inherently nonelectroactive, they can be hydrolyzed to electroactive products compatible with electrochemical sensing. Zr(IV) MOFs are next-generation nanoporous materials that have been shown to rapidly catalyze the hydrolysis of nerve agents. This work makes use of these nanomaterials to develop, for the first time, an MOF-enabled electrochemical sensor for V-series nerve agents. Our work demonstrates that the VX thiol hydrolysis product can be electrochemically detected at low concentrations using commercially available gold electrodes. We demonstrate that low-concentration thiol oxidation is an irreversible reaction that is dependent on both mass transport and adsorption. Demeton-S-methylsulfon, a VX simulant, is used to demonstrate the full range of sensor operation that includes hydrolysis and electrochemical detection. We demonstrate that MOF-808 rapidly, selectively, and completely hydrolyzes demeton-S-methylsulfon to less-hazardous dimethyl phosphate and 2-ethylsulfonylethanethiol. Low-concentration measurements of 2-ethylsulfonylethanethiol are performed by using electrochemical techniques. This sensor has a limit of detection of 30 nM or 7.87 μg/L for 2-ethylsulfonylethanethiol, which is near the nerve agent exposure limit for water samples established by the United States military. Our work demonstrates the feasibility of rapid, robust electrochemical sensing of V-series nerve agents at low concentrations for in-field applications.
Collapse
Affiliation(s)
- Tyler Marlar
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - John N Harb
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
10
|
Xu W, Wu Y, Gu W, Du D, Lin Y, Zhu C. Atomic-level design of metalloenzyme-like active pockets in metal-organic frameworks for bioinspired catalysis. Chem Soc Rev 2024; 53:137-162. [PMID: 38018371 DOI: 10.1039/d3cs00767g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Natural metalloenzymes with astonishing reaction activity and specificity underpin essential life transformations. Nevertheless, enzymes only operate under mild conditions to keep sophisticated structures active, limiting their potential applications. Artificial metalloenzymes that recapitulate the catalytic activity of enzymes can not only circumvent the enzymatic fragility but also bring versatile functions into practice. Among them, metal-organic frameworks (MOFs) featuring diverse and site-isolated metal sites and supramolecular structures have emerged as promising candidates for metalloenzymes to move toward unparalleled properties and behaviour of enzymes. In this review, we systematically summarize the significant advances in MOF-based metalloenzyme mimics with a special emphasis on active pocket engineering at the atomic level, including primary catalytic sites and secondary coordination spheres. Then, the deep understanding of catalytic mechanisms and their advanced applications are discussed. Finally, a perspective on this emerging frontier research is provided to advance bioinspired catalysis.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
11
|
de Koning MC, Dadon L, Rozing LCM, van Grol M, Bross R. High Capacity Adsorption and Degradation of a Nerve Agent Simulant and a Pesticide by a Nickel Pyrazolate Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55877-55884. [PMID: 37983091 DOI: 10.1021/acsami.3c13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The development of materials that enable the efficient removal of toxic compounds is important for the improvement of current protective materials or decontamination technologies. Current materials rely either on agent removal by adsorption or by effecting (catalytic) degradation. Ideally, both of these mechanisms are combined in a single material in order to target a more broad spectrum of toxic agents and to improve the performance of the materials. Recent attempts to combine materials with either adsorptive or catalytic properties into a composite material are promising, although the overall performance often suffers from competition for the agent between the adsorptive and catalytic domains in the composites. In this work, we propose that metal-organic frameworks (MOFs) could feature both adsorptive properties as well as catalytic properties in a single structural domain, thereby avoiding a reduction in the overall performance originating from competitive agent interactions. We showcase this concept using the MOF Ni3(BTP)2, which exhibits strong affinity and high capacity for the storage of a nerve agent simulant and a pesticide. Moreover, it is demonstrated that the adsorbed agents are efficiently degraded and that the nontoxic degradation products are rapidly expelled from the MOF pores. Its ability to catalyze the hydrolytic degradation of both organophosphate and organophosphorothioate compounds highlights another unique feature of this material. The presented concept illustrates the feasibility for developing materials that target a broader spectrum of agents via adsorption, catalysis, or both and by their broader reactivity toward different types of agents.
Collapse
Affiliation(s)
- Martijn C de Koning
- Department CBRN Protection, TNO, Lange Kleiweg 137, 2288GJ Rijswijk, The Netherlands
| | - Linn Dadon
- Department CBRN Protection, TNO, Lange Kleiweg 137, 2288GJ Rijswijk, The Netherlands
| | - Laura C M Rozing
- Department CBRN Protection, TNO, Lange Kleiweg 137, 2288GJ Rijswijk, The Netherlands
| | - Marco van Grol
- Department CBRN Protection, TNO, Lange Kleiweg 137, 2288GJ Rijswijk, The Netherlands
| | - Rowdy Bross
- Department CBRN Protection, TNO, Lange Kleiweg 137, 2288GJ Rijswijk, The Netherlands
| |
Collapse
|
12
|
Oh S, Lee S, Lee G, Oh M. Boosted ability of ZIF-8 for early-stage adsorption and degradation of chemical warfare agent simulants. NANOSCALE ADVANCES 2023; 5:6449-6457. [PMID: 38024321 PMCID: PMC10662003 DOI: 10.1039/d3na00807j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Efficient adsorption of hazardous substances from the environment is crucial owing to the considerable risks they pose to both humans and ecosystems. Consequently, the development of porous materials with strong adsorption capabilities for hazardous substances, such as chemical warfare agents (CWAs), is pivotal for safeguarding human lives. Specifically, the early-stage adsorption proficiency of the adsorbents plays a vital role in determining their effectiveness as ideal adsorbents. Herein, we report the efficient adsorption of CWA simulants using thermally treated ZIF-8 (T-ZIF-8). The T-ZIF-8 samples were prepared by subjecting ZIF-8 to a simple thermal treatment, which resulted in a more positive surface charge with extra open metal sites. Although the pore volume of T-ZIF-8 decreased after thermal treatment, the positive surface charge of T-ZIF-8 proved advantageous for the adsorption of the CWA simulants. As a result, the adsorption capacity of T-ZIF-8 for the CWA simulants improved compared to that of pure ZIF-8. Notably, T-ZIF-8 exhibited a remarkably enhanced adsorption ability in the early stage of exposure to the CWA simulants, possibly due to the effective polar interactions between T-ZIF-8 and the simulants via the electron-rich components within the CWA simulants. Moreover, the enhanced adsorption capacity of T-ZIF-8 led to the fast degradation of simulant compared to pure ZIF-8. T-ZIF-8 also demonstrated excellent stability over three adsorption cycles. These findings highlight that T-ZIF-8 is an outstanding material for the early-stage adsorption and degradation of CWA simulants, offering high effectiveness and stability.
Collapse
Affiliation(s)
- Sojin Oh
- Department of Chemistry, Yonsei University 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea +82-2-364-7050 +82-2-2123-5637
| | - Sujeong Lee
- Department of Chemistry, Yonsei University 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea +82-2-364-7050 +82-2-2123-5637
| | - Gihyun Lee
- Department of Chemistry, Yonsei University 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea +82-2-364-7050 +82-2-2123-5637
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea +82-2-364-7050 +82-2-2123-5637
| |
Collapse
|
13
|
Mirante F, Leo P, Dias CN, Cunha-Silva L, Balula SS. MOF-808 as an Efficient Catalyst for Valorization of Biodiesel Waste Production: Glycerol Acetalization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7023. [PMID: 37959620 PMCID: PMC10650691 DOI: 10.3390/ma16217023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
Glycerol is the main residue in the biodiesel production industry; therefore, their valorization is crucial. The acetalization of glycerol toward fuel additives such as solketal (2,2-dimethyl-1,3-dioxolan-4-methanol) is of high interest, promoting circular economy since it can be added to biodiesel or even fossil diesel to improve their quality and efficiency. Straightforward-prepared metal-organic framework (MOF) materials of the MOF-808 family were applied to the valorization of glycerol for the first time. In particular, MOF-808(Hf) was revealed to be an effective heterogeneous catalyst to produce solketal under moderate conditions: a small amount of the MOF material (only 4 wt% of glycerol), a 1:6 ratio of glycerol/acetone, and a temperature of 333 K. The high efficiency of MOF-808(Hf) was associated with the high amount of acid centers present in its structure. Furthermore, its structural characteristics, such as window opening cavity size and pore diameters, were shown to be ideal for reusing this material for at least ten consecutive reaction cycles without losing activity (conversion > 90% and selectivity > 98%). Remarkably, it was not necessary to wash or activate the MOF-808(Hf) catalyst between cycles (no pore blockage occurred), and it maintained structural integrity after ten cycles, confirming its ability to be a sustainable heterogeneous catalyst for glycerol valorization.
Collapse
Affiliation(s)
- Fátima Mirante
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (F.M.); (P.L.); (C.N.D.)
| | - Pedro Leo
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (F.M.); (P.L.); (C.N.D.)
- Department of Chemical and Environmental Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain
| | - Catarina N. Dias
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (F.M.); (P.L.); (C.N.D.)
| | - Luís Cunha-Silva
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (F.M.); (P.L.); (C.N.D.)
| | - Salete S. Balula
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (F.M.); (P.L.); (C.N.D.)
| |
Collapse
|
14
|
Qian L, Cheng J, Xin K, Guo H, Mao Y, Tu J, Yang W. Enhancing catalytic activity and pore structure of metal-organic framework-808 via ligand competition for biodiesel production from microalgal lipids at reduced temperatures. BIORESOURCE TECHNOLOGY 2023; 386:129533. [PMID: 37479043 DOI: 10.1016/j.biortech.2023.129533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Catalysts with hierarchical porous structures and increased active defects play a crucial role in catalyzing the conversion of microalgae lipids. However, the template methods used for pore expansion and the acidification process employed to enhance activity are cumbersome and prone to deactivation. It is necessary to propose a simple and versatile synthetic approach to overcome these challenges. By modulating N,N-dimethylformamide basicity with formic acid, MOF-808 exhibited enhanced coordination of benzene-1,3,5-tricarboxylic acid to Zr-clusters, creating three types of functional defects. These defects increased pore size from 1.63 nm to 5.34 nm and enhanced catalyst acidity by 22.8%, while maintaining high porosity. The active catalytic sites were confirmed to be defect sites (exposed Zr4+) through density functional theory. Compared to regular MOF-808, catalyst MOF-808-3/1 shows enhanced hierarchical porosity and increased acidity, enabling efficient conversions at reduced reaction temperature (100 °C) and pressure (352 kPa) compared to 200 °C and 4036 kPa, respectively.
Collapse
Affiliation(s)
- Lei Qian
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Kai Xin
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Hao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yuxiang Mao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jiacan Tu
- Zhejiang Lanyou Energy Co. Ltd, Zhoushan 316013, China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Oliver MC, Huang L. Advances in Metal-Organic Frameworks for the Removal of Chemical Warfare Agents: Insights into Hydrolysis and Oxidation Reaction Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2178. [PMID: 37570496 PMCID: PMC10420847 DOI: 10.3390/nano13152178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
The destruction of chemical warfare agents (CWAs) is a crucial area of research due to the ongoing evolution of toxic chemicals. Metal-organic frameworks (MOFs), a class of porous crystalline solids, have emerged as promising materials for this purpose. Their remarkable porosity and large surface areas enable superior adsorption, reactivity, and catalytic abilities, making them ideal for capturing and decomposing target species. Moreover, the tunable networks of MOFs allow customization of their chemical functionalities, making them practicable in personal protective equipment and adjustable to dynamic environments. This review paper focuses on experimental and computational studies investigating the removal of CWAs by MOFs, specifically emphasizing the removal of nerve agents (GB, GD, and VX) via hydrolysis and sulfur mustard (HD) via selective photooxidation. Among the different MOFs, zirconium-based MOFs exhibit extraordinary structural stability and reusability, rendering them the most promising materials for the hydrolytic and photooxidative degradation of CWAs. Accordingly, this work primarily concentrates on exploring the intrinsic catalytic reaction mechanisms in Zr-MOFs through first-principles approximations, as well as the design of efficient degradation strategies in the aqueous and solid phases through the establishment of Zr-MOF structure-property relationships. Recent progress in the tuning and functionalization of MOFs is also examined, aiming to enhance practical CWA removal under realistic battlefield conditions. By providing a comprehensive overview of experimental findings and computational insights, this review paper contributes to the advancement of MOF-based strategies for the destruction of CWAs and highlights the potential of these materials to address the challenges associated with chemical warfare.
Collapse
Affiliation(s)
| | - Liangliang Huang
- School of Sustainable Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA;
| |
Collapse
|
16
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
17
|
Pander M, Gil-San-Millan R, Delgado P, Perona-Bermejo C, Kostrzewa U, Kaczkowski K, Kubicki DJ, Navarro JAR, Bury W. MOF/polymer hybrids through in situ free radical polymerization in metal-organic frameworks. MATERIALS HORIZONS 2023; 10:1301-1308. [PMID: 36655792 PMCID: PMC10068906 DOI: 10.1039/d2mh01202b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/20/2022] [Indexed: 06/15/2023]
Abstract
We use the free radical polymerization initiator 4,4'-azobis(cyanovaleric acid) coordinated to the open metal sites of metal-organic frameworks (MOFs) to give rise to highly uniform MOF/polymer hybrids. We demonstrate this strategy on two robust zirconium MOFs (NU-1000 and MOF-808), which are the most effective catalysts for degradation of chemical warfare nerve agents. The resulting hybrid materials maintain their hydrolytic catalytic activity and have substantially improved adhesion to polypropylene and activated carbon textile fibers, yielding highly robust MOF/polymer/textile hybrid systems. These composites are suitable for the green production of active protective clothing and filters capable of detoxifying organophosphorus warfare agents.
Collapse
Affiliation(s)
- Marzena Pander
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| | - Rodrigo Gil-San-Millan
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| | - Pedro Delgado
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Cristina Perona-Bermejo
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Urszula Kostrzewa
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| | - Karol Kaczkowski
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| | | | - Jorge A R Navarro
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Wojciech Bury
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| |
Collapse
|
18
|
Ye G, Wan L, Zhang Q, Liu H, Zhou J, Wu L, Zeng X, Wang H, Chen X, Wang J. Boosting Catalytic Performance of MOF-808(Zr) by Direct Generation of Rich Defective Zr Nodes via a Solvent-Free Approach. Inorg Chem 2023; 62:4248-4259. [PMID: 36857420 DOI: 10.1021/acs.inorgchem.2c04364] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Creation of rich open metal sites (defect) on the nodes of metal-organic frameworks (MOFs) is an efficient approach to enhance their catalytic performance in heterogeneous reactions; however, direct generation of such defects remains challenging. In this contribution, we developed an in situ green route for rapid fabrication of defective MOF-808(Zr) with rich Zr-OH/OH2 sites (occupying 25% Zr coordination sites) and hierarchical porosity without the assistance of formic acid and solvent. The optimal MOF-808(Zr) not only displayed superior activity in oxidative desulfurization (ODS) for removing 1000 ppm sulfur at ambient temperature within 20 min but also could convert 3.8 mmol of benzaldehyde to (dimethoxymethyl)benzene within 90 s at 30 °C. The turnover frequencies reached 45.4 h-1 for ODS and 3451 h-1 for acetalization, outperforming the most reported MOF-based catalysts. Theoretical calculation and experimental results show that the formed Zr-OH/OH2 can react with H2O2 to generate peroxo-zirconium species, which readily oxidize the sulfur compound. Our work provides a new approach to the synthesis of defect-rich MOF-808(Zr) with the accessibility of active sites for target reactions.
Collapse
Affiliation(s)
- Gan Ye
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.,College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lulu Wan
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiuli Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hu Liu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lei Wu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xingye Zeng
- College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Hanlu Wang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xixi Chen
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
19
|
Wang L, Jiang P, Liu W, Li J, Chen Z, Guo T. Molecularly imprinted self-buffering double network hydrogel containing bi-amidoxime functional groups for the rapid hydrolysis of organophosphates. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130332. [PMID: 36423451 DOI: 10.1016/j.jhazmat.2022.130332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/06/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The development of high-performance catalyst materials with high catalytic activity for the hydrolysis of organophosphorus toxicants without additional pH buffer conditions has become an urgent need for practical application. Here, a multifunctional molecularly imprinted polymer double network hydrogel (MIP-DN) material has been prepared by integrating the first polymer network containing the functional group of bi-amidoxime as the catalytic active center and the cationic polymer polyethyleneimine (PEI) with pH buffer function as the main component of the second network. Advantageously, the resultant MIP-DN hydrogel showed excellent catalytic performance without additional pH buffer conditions, exhibiting a half-life of 25 min for the hydrolysis of paraoxon in pure water. Together with multi-functions of high catalytic activity, self-buffering function and excellent processability, the MIP-DN hydrogel prepared in this work provides a new strategy for the preparation of catalytic materials with practical application value toward toxic organophosphates.
Collapse
Affiliation(s)
- Lan Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Jiang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weijie Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaoming Chen
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
20
|
Catalytic metal-organic framework-melamine foam composite as an efficient material for the elimination of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44266-44275. [PMID: 36689117 DOI: 10.1007/s11356-023-25441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/14/2023] [Indexed: 01/24/2023]
Abstract
Water-insoluble organic pollutants in environment, such as sea oil spill, industrial reagents, and the abused organic pesticides, bring great risks to global water systems, which thus requires effective approaches for organic pollutant elimination. In this study, we report a catalytic metal-organic framework (MOF)-melamine foam (MF) composite material (DDT-UiO-66-NH2@MF) showing excellent oil-water separation performance and enzyme-like degradation ability toward organophosphorus pesticides. The fabrication of DDT-UiO-66-NH2@MF is based on the immobilization of a MOF-derived nanozyme (UiO-66-NH2) on MF sponge, and followed by the hydrophobic modification of UiO-66-NH2 by 1-dodecanethiol (DDT). The obtained DDT-UiO-66-NH2@MF thus displayed superhydrophobic/superhydrophilic property with a high water contact angle (WCA = 144.6°) and specific adsorption capacity toward various oils/organic solvents (62.2-119.8 g/g), which leads to a continuous oil-water separation on a simple device. In the meanwhile, owing to the enzyme-like property of UiO-66-NH2, DDT-UiO-66-NH2@MF also displayed good ability to hydrolyze paraoxon under mild conditions, which facilitates the elimination of toxic pesticide residuals in water systems. This work provides a simple, efficient, and green approach for the separation and treatment of water-insoluble organic pollutants, as well as expands the use of MOFs-MF sponge composite materials in environmental sustainability.
Collapse
|
21
|
Luo HB, Lin FR, Liu ZY, Kong YR, Idrees KB, Liu Y, Zou Y, Farha OK, Ren XM. MOF-Polymer Mixed Matrix Membranes as Chemical Protective Layers for Solid-Phase Detoxification of Toxic Organophosphates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2933-2939. [PMID: 36602325 PMCID: PMC9869327 DOI: 10.1021/acsami.2c18691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have been demonstrated as potent catalysts for the hydrolytic detoxification of organophosphorus nerve agents and their simulants. However, the practical implementation of these Zr-MOFs is limited by the poor processability of their powdered form and the necessity of water media buffered by a volatile liquid base in the catalytic reaction. Herein, we demonstrate the efficient solid-state hydrolysis of a nerve agent simulant (dimethyl-4-nitrophenyl phosphate, DMNP) catalyzed by Zr-MOF-based mixed matrix membranes. The mixed matrix membranes were fabricated by incorporating MOF-808 into the blending matrix of poly(vinylidene fluoride) (PVDF), poly(vinylpyrrolidone) (PVP), and imidazole (Im), in which MOF-808 provides highly active catalytic sites, the hydrophilic PVP helps to retain water for promoting the hydrolytic reaction, and Im serves as a base for catalytic site regeneration. Impressively, the mixed matrix membranes displayed excellent catalytic performance for the solid-state hydrolysis of DMNP under high humidity, representing a significant step toward the practical application of Zr-MOFs in chemical protective layers against nerve agents.
Collapse
Affiliation(s)
- Hong-Bin Luo
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Fang-Ru Lin
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zhi-Yuan Liu
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ya-Ru Kong
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Karam B. Idrees
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yangyang Liu
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Yang Zou
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Omar K. Farha
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Xiao-Ming Ren
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- State
Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
22
|
Wu T, Qiu F, Xu R, Zhao Q, Guo L, Chen D, Li C, Jiao X. Dual-Function Detoxifying Nanofabrics against Nerve Agent and Blistering Agent Simulants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1265-1275. [PMID: 36594244 DOI: 10.1021/acsami.2c19039] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of functional materials that can detoxify multiple chemical warfare agents (CWAs) at the same time is of great significance to cope with the uncertainty of CWA use in real-world situations. Although many catalysts capable of detoxifying CWAs have been reported, there is still a lack of effective means to integrate these catalytic-active materials on practical fibers/fabrics to achieve effective protection against coexistence of a variety of CWAs. In this work, by a combination of electrospinning and in situ solvothermal reaction, PAN@Zr(OH)4@MOF-808 nanofiber membranes were prepared for detoxification of both nerve agent and blistering agent simulants dimethyl 4-nitrophenyl phosphate (DMNP) and 2-chloroethyl ethyl sulfide (CEES). Under the catalytic effect of the MOF-808 component, DMNP hydrolysis with a half-life as short as 1.19 min was achieved. Meanwhile, an 89.3% CEES removal rate was obtained within 12 h by adsorption and catalysis of MOF-808 and Zr(OH)4 components at ambient conditions, respectively. PAN@Zr(OH)4@MOF-808 nanofiber membranes also showed a superior blocking effect on CEES compared to bare PAN and PAN@Zr(OH)4 nanofiber membranes. Simultaneous protection against DMNP and CEES showed effective inhibition of both simulants for at least 2 h. The preparation method also imparted intrinsically good interfacial adhesion between the components, contributing to the excellent recycling stability of PAN@Zr(OH)4@MOF-808 nanofiber membranes. Therefore, the prepared composite nanofabrics have great application potential, which provides a new idea for the construction of broad-spectrum protective detoxification materials.
Collapse
Affiliation(s)
- Ting Wu
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Feng Qiu
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Ran Xu
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Qi Zhao
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Longfei Guo
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Dairong Chen
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Cheng Li
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Xiuling Jiao
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| |
Collapse
|
23
|
Wang C, Zhang H, Wang Y, Wu J, Kirlikovali KO, Li P, Zhou Y, Farha OK. A General Strategy for the Synthesis of Hierarchically Ordered Metal-Organic Frameworks with Tunable Macro-, Meso-, and Micro-Pores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206116. [PMID: 36408824 DOI: 10.1002/smll.202206116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Hierarchically ordered porous materials with tailored and inter-connected macro-, meso-, and micro-pores would facilitate the heterogeneous adsorption and catalysis processes for a wide range of applications but remain a challenge for synthetic chemists. Here, a general and efficient strategy for the synthesis of inverse opal metal-organic frameworks (IO MOFs) with a tunable size of macro-, meso-, and micro-pores is reported. The strategy is based on the step-wise template formation, precursor infiltration, solvo-thermal reaction, and chemical etching. As a proof of the general applicability of this strategy, a series of inverse opal zirconium-based MOFs with intrinsic micro- and/or meso-pores, including UiO-66, MOF-808, NU-1200, NU-1000 and PCN-777, and tunable macropores (1 µm, 2 µm, 3 µm, 5 µm, and 10 µm), have been prepared with outstanding yields. These IO MOFs demonstrate significantly enhanced absorption rates and faster initial hydrolysis rates for organophosphorus (OPs) aggregates compared to those of the pristine MOFs. This work paves the way for the further development of hierarchically ordered MOFs for advanced applications.
Collapse
Affiliation(s)
- Chen Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Heyao Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Yao Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Jie Wu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Omar K Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA
| |
Collapse
|
24
|
Sadeghi M, Zarshenas P. ZnFe2O4/ZrO2/NaX zeolite nanocomposite catalyst: elaboration and its application for the removal of dimethyl 4-nitrophenyl phosphate (DMNP) chemical nerve agent simulant from water solution. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Zhao Z, Lei R, Zhang Y, Cai T, Han B. Defect controlled MOF-808 for seawater uranium capture with high capacity and selectivity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Wu S, Wang L, Zhu H, Liang J, Ge L, Li C, Miao T, Li J, Cheng Z. Catalytic degradation of CWAs with MOF-808 and PCN-222: Toward practical application. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221138061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chemical warfare agents, such as nerve agents (GD and VX) and blister agents (HD), have strong toxicities to mankind. In recent years, zirconium-based metal-organic frameworks have been found to be attractive materials for chemical warfare agent degradation. Among them, metal-organic framework-808 (MOF-808) and porous coordination network-222 (PCN-222) were the best. However, few papers pay attention to their practical application. In this work, we prepared MOF-808 and PCN-222 using water phase and organic solvothermal methods, respectively. Their performance for the catalytic degradation of chemical warfare agents under practical decontamination conditions was studied. The results showed that MOF-808 displayed a high potency for catalytic hydrolysis of VX (10,000 mg L−1) in unbuffered solution. PCN-222 exhibited weaker reactivity with a half-life ( t1/2) of 28.8 min. Their different performances might stem from the different connectivity of the Zr6 nodes and framework structures. The results illustrated that the hydrolysis of high-concentration GD required a strong alkaline buffer to neutralize the hydrolysis product of hydrofluoric acid (HF) to avoid catalyst poisoning. When H2O2 was used as the oxidant instead of O2, both zirconium-based metal-organic frameworks performed with effective catalytic potency for HD degradation without any special lighting and so was suitable for practical application, whereas the products obtained from HD, such as HDO2 and V-HDO2, still possessed vesicant toxicity. Overall, MOF-808 prepared via a water-phase synthesis performed with effective catalysis for the degradation of high-concentration VX, GD, and HD with t1/2 of < 0.5, 3.1 and 2.2 min, respectively, exhibiting its potential for practical applications.
Collapse
Affiliation(s)
| | | | - Haiyan Zhu
- Institute of NBC Defence, Beijing, P. R. China
| | - Jing Liang
- Institute of NBC Defence, Beijing, P. R. China
| | - Liang Ge
- Institute of NBC Defence, Beijing, P. R. China
| | - Cong Li
- Institute of NBC Defence, Beijing, P. R. China
| | - Ting Miao
- Institute of NBC Defence, Beijing, P. R. China
| | - Jian Li
- Institute of NBC Defence, Beijing, P. R. China
| | | |
Collapse
|
27
|
Wang QY, Sun ZB, Zhang M, Zhao SN, Luo P, Gong CH, Liu WX, Zang SQ. Cooperative Catalysis between Dual Copper Centers in a Metal–Organic Framework for Efficient Detoxification of Chemical Warfare Agent Simulants. J Am Chem Soc 2022; 144:21046-21055. [DOI: 10.1021/jacs.2c05176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qian-You Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi-Bing Sun
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shu-Na Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Luo
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Chun-Hua Gong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Xiao Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
28
|
Darabdhara J, Ahmaruzzaman M. Recent developments in MOF and MOF based composite as potential adsorbents for removal of aqueous environmental contaminants. CHEMOSPHERE 2022; 304:135261. [PMID: 35697109 DOI: 10.1016/j.chemosphere.2022.135261] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
With the growth of globalization which has been the primary cause of water pollution, it is utmost necessary for us living being to have access to clean water for the purpose of drinking, washing and various other useful applications. With the purpose of future security and to restore our ecological balance, it is essential to give much significance towards the removal of unwanted toxic contaminants from our water resources. In this regard adsorptive removal of toxic pollutants from wastewater with porous adsorbent is regarded as one of the most promising way for water decontamination process. Metal organic frameworks (MOFs) comprising of uniformly arranged pores, abundant active sites and containing an easily tunable structure has aroused as a promising material for adsorbent to remove the unwanted contaminants from water sources. The adsorption of pollutants by the different MOFs surface are driven by various interactions including π-π, acid-base, electrostatic and H-bonding etc. On the other hand, the removal of various contaminants by MOFs is influenced by various factors including pH, temperature and initial concentration. In this review we will specifically discuss the adsorptive removal of different organic and inorganic pollutants present in our water systems with the use of MOFs as adsorbent along with the various factors and interaction mechanism manipulating the adsorption behaviour.
Collapse
Affiliation(s)
- Jnyanashree Darabdhara
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
29
|
Deng Q, Hou X, Zhong Y, Zhu J, Wang J, Cai J, Zeng Z, Zou J, Deng S, Yoskamtorn T, Tsang SCE. 2D MOF with Compact Catalytic Sites for the One-pot Synthesis of 2,5-Dimethylfuran from Saccharides via Tandem Catalysis. Angew Chem Int Ed Engl 2022; 61:e202205453. [PMID: 35700334 PMCID: PMC9544098 DOI: 10.1002/anie.202205453] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 11/20/2022]
Abstract
One pot synthesis of 2,5-dimethylfuran (2,5-DMF) from saccharides under mild conditions is of importance for the production of biofuel and fine chemicals. However, the synthesis requires a multitude of active sites and suffers from slow kinetics due to poor diffusion in most composite catalysts. Herein, a metal-acid functionalized 2D metal-organic framework (MOF; Pd/NUS-SO3 H), as an ultrathin nanosheet of 3-4 nm with Lewis acid, Brønsted acid, and metal active sites, was prepared based on the diazo method for acid modification and subsequent metal loading. This new composite catalyst gives substantially higher yields of DMF than all reported catalysts for different saccharides (fructose, glucose, cellobiose, sucrose, and inulins). Characterization suggests that a cascade of reactions including polysaccharide hydrolysis, isomerization, dehydration, and hydrodeoxygenation takes place with rapid molecular interactions.
Collapse
Affiliation(s)
- Qiang Deng
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Xuemeng Hou
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Yao Zhong
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Jiawei Zhu
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Jun Wang
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Jianxin Cai
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Zheling Zeng
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Ji‐Jun Zou
- School of Chemical Engineering and TechnologyTianjin UniversityNo.92 Weijin RoadTianjin300072P. R. China
| | - Shuguang Deng
- School for Engineering of MatterTransport and EnergyArizona State University551 E. Tyler MallTempeAZ 85287USA
| | | | - Shik Chi Edman Tsang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| |
Collapse
|
30
|
Yost BT, Gibbons B, Wilson A, Morris AJ, McNeil LE. Vibrational spectroscopy investigation of defects in Zr- and Hf-UiO-66. RSC Adv 2022; 12:22440-22447. [PMID: 36105986 PMCID: PMC9366761 DOI: 10.1039/d2ra03131k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Defect engineering in metal-organic framework compounds has allowed for improvements in catalysis-based functionalities, gas sensing, and gas storage. Metal-organic framework UiO-66 compounds with Zr- and Hf-based metal secondary building units were studied with Raman and infrared vibrational spectroscopy. Missing linker and missing cluster defects were engineered into the crystal structure via a modulated synthesis technique. Missing cluster defects in Hf-UiO-66 are first characterized by powder X-ray diffraction (PXRD) whereby two low-angle peaks were fit to extract the relative quantity of reo topology in four defective samples. A monotonic red-shift of the Raman-active Hf-O coordination bond vibration is interpreted as a signature of missing cluster defects, resulting from less-rigid charge-balancing monocarboxylate formate ions replacing the dicarboxylate linker molecule. This signature is hypothesized to be independent of the topology in which the defects appear. Missing linker defects in Zr-UiO-66 are characterized by infrared absorption spectroscopy by the quenching of C-C and C-H vibrational modes confined to the linker molecule. Together, Raman and infrared vibrational spectroscopies coupled with standard characterization techniques are employed to directly probe the nature of defects as well as offer new characterization tools for missing cluster defects in UiO-66.
Collapse
Affiliation(s)
- Brandon T Yost
- Department of Physics and Astronomy, University of North Carolina Chapel Hill North Carolina 27599 USA
| | - Bradley Gibbons
- Department of Chemistry, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
| | - Addison Wilson
- Department of Physics and Astronomy, University of North Carolina Chapel Hill North Carolina 27599 USA
| | - Amanda J Morris
- Department of Chemistry, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
| | - L E McNeil
- Department of Physics and Astronomy, University of North Carolina Chapel Hill North Carolina 27599 USA
| |
Collapse
|
31
|
Zhang L, Sun Y, Zhang Z, Shen Y, Li Y, Ma T, Zhang Q, Ying Y, Fu Y. Portable and durable sensor based on porous MOFs hybrid sponge for fluorescent-visual detection of organophosphorus pesticide. Biosens Bioelectron 2022; 216:114659. [DOI: 10.1016/j.bios.2022.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022]
|
32
|
Liu J, Xue J, Yang GP, Dang LL, Ma LF, Li DS, Wang YY. Recent advances of functional heterometallic-organic framework (HMOF) materials: Design strategies and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214521] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Deng Q, Hou X, Zhong Y, Zhu J, Wang J, Cai J, Zeng Z, Zou JJ, Deng S, Yoskamtorn T, Tsang ESC. 2D MOF with Compact Catalytic Sites for the One‐pot Synthesis of 2,5‐Dimethylfuran from Saccharides via Tandem Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qiang Deng
- Nanchang University School of Resource, Environmental and Chemical Engineering CHINA
| | - Xuemeng Hou
- Nanchang University School of Resource, Environmental and Chemical Engineering CHINA
| | - Yao Zhong
- Nanchang University School of Resource, Environmental and Chemical Engineering CHINA
| | - Jiawei Zhu
- Nanchang University School of Resource, Environmental and Chemical Engineering CHINA
| | - Jun Wang
- Nanchang University School of Resource, Environmental and Chemical Engineering CHINA
| | - Jianxin Cai
- Nanchang University School of Resource, Environmental and Chemical Engineering CHINA
| | - Zheling Zeng
- Nanchang University School of Resource, Environmental and Chemical Engineering CHINA
| | - Ji-Jun Zou
- Tianjin University School of Chemical Engineering and Technology, CHINA
| | - Shuguang Deng
- Arizona State University School for Engineering of Matter, Transport and Energy, UNITED STATES
| | | | - Edman Shik Chi Tsang
- University of Oxford Chemistry South Parks RoadUniversity of Oxford OX1 3QR Oxford UNITED KINGDOM
| |
Collapse
|
34
|
Li YM, Cao L, Ren H, Ji CY, Li W, Cheng L. Chiral Polymer-Mediated Pd@MOF-808 for Efficient Sequential Asymmetric Reaction. Catal Letters 2022. [DOI: 10.1007/s10562-022-04053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Wang C, Li A, Ma Y, Qing S. Preparation of formate-free PMA@MOF-808 catalysts for deep oxidative desulfurization of model fuels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39427-39440. [PMID: 35102511 DOI: 10.1007/s11356-022-18685-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Due to the increasingly serious environmental problems caused by the combustion of sulfides in fuel, deep desulfurization of fuel became particularly urgent. Herein, the catalyst (PMA@MOF-808) of the Zr-based metal-organic framework (MOF-808) encapsulating phosphomolybdic acid (PMA) was prepared via a one-pot hydrothermal method. Besides, the formate ions of PMA@MOF-808 were removed by posttreatment with methanol, resulting in formate-free PMA@MOF-808-H catalysts with unsaturated open metal sites. The as-synthesized catalysts were systematically characterized by XRD, FT-IR, SEM, BET, TGA, 1H NMR and XPS. The catalysts were also applied in catalytic oxidation desulfurization of fuel. The results indicated that the introduction of PMA and the removal of formate ions can improve the desulfurization performance of catalysts. Formate-free 0.2-PMA@MOF-808-H catalyst can reach 100% desulfurization rate for DBT. Besides, the kinetic properties were studied, and the apparent activation energy was 29.34 kJ/mol.
Collapse
Affiliation(s)
- Cheng Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Airong Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| | - Yuling Ma
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Shenglan Qing
- Research Institute of Petroleum Exploration and Development, PetroChina Southwest Oil and Gas Field Company, Chengdu, 610500, China
| |
Collapse
|
36
|
Johnson EM, Boyanich MC, Gibbons B, Sapienza NS, Yang X, Karim AM, Morris JR, Troya D, Morris AJ. Aqueous-Phase Destruction of Nerve-Agent Simulants at Copper Single Atoms in UiO-66. Inorg Chem 2022; 61:8585-8591. [PMID: 35613459 DOI: 10.1021/acs.inorgchem.2c01351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) have shown great success in aqueous-phase hydrolysis of nerve agents, with some even showing promise in the gas phase. However, both aqueous-phase reactivity and gas-phase reactivity are hindered because of the binding of the hydrolyzed products to the MOF nodes in a stable, bridging configuration, which limits turnover. Single transition-metal atoms in MOFs have been a growing field of interest for catalytic applications, and single atoms have been proposed to prevent the unwanted bridged conformation and increase catalytic turnover. To date, there has been little experimental evidence to support the hypothesis. Herein, we report two copper single atom-modified UiO-66 MOFs for nerve-agent simulant degradation. Despite the capping of highly active Zr4+ nodes with fewer Lewis acidic Cun+ atoms, the reactivity of both CuMOFs approaches that of native UiO-66 under aqueous conditions. Computational studies reveal that the Cu coordination environment impairs product inhibition with respect to the native MOF.
Collapse
Affiliation(s)
- Eric M Johnson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mikaela C Boyanich
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bradley Gibbons
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas S Sapienza
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaozhou Yang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ayman M Karim
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John R Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Diego Troya
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amanda J Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
37
|
Couzon N, Ferreira M, Duval S, El-Achari A, Campagne C, Loiseau T, Volkringer C. Microwave-Assisted Synthesis of Porous Composites MOF-Textile for the Protection against Chemical and Nuclear Hazards. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21497-21508. [PMID: 35471817 DOI: 10.1021/acsami.2c03247] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Since the emergence of chemical, biological, radiological, and nuclear risks, significant efforts have been made to create efficient personal protection equipment. Recently, metal-organic framework (MOF) materials have emerged as new promising candidates for the capture and degradation of various threats, like chemical warfare agents (CWAs) or radioactive species. Herein, we report a new synthesis method of MOF-textile composites by microwave irradiation, with direct anchoring of MOFs on textiles. The resistance of the composite has been tested using normed abrasion measurements, and non-stable samples were optimized. The protection capacity of the MOF-textile composite has been tested against dimethyl 4-nitrophenyl phosphate, a common CWA simulant, showing short degradation half-life (30 min). Radiological/nuclear protection has also been tested through uranium uptake (up to 15 mg g-1 adsorbent) and the capture of Kr or Xe gas at 0.9 and 2.9 cm3/g, respectively.
Collapse
Affiliation(s)
- Nelly Couzon
- Univ. Lille, CNRS, Centrale Lille, UMR 8181─UCCS─Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Manuela Ferreira
- Univ. Lille, ENSAIT, ULR 2461─GEMTEX─Génie et Matériaux Textiles, Lille F-59000, France
| | - Sylvain Duval
- Univ. Lille, CNRS, Centrale Lille, UMR 8181─UCCS─Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Ahmida El-Achari
- Univ. Lille, ENSAIT, ULR 2461─GEMTEX─Génie et Matériaux Textiles, Lille F-59000, France
| | - Christine Campagne
- Univ. Lille, ENSAIT, ULR 2461─GEMTEX─Génie et Matériaux Textiles, Lille F-59000, France
| | - Thierry Loiseau
- Univ. Lille, CNRS, Centrale Lille, UMR 8181─UCCS─Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Christophe Volkringer
- Univ. Lille, CNRS, Centrale Lille, UMR 8181─UCCS─Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| |
Collapse
|
38
|
Cheung YH, Ma K, Wasson MC, Wang X, Idrees KB, Islamoglu T, Mahle J, Peterson GW, Xin JH, Farha OK. Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angew Chem Int Ed Engl 2022; 61:e202202207. [PMID: 35212125 DOI: 10.1002/anie.202202207] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/12/2022]
Abstract
The fabrication of MOF polymer composite materials enables the practical applications of MOF-based technology, in particular for protective suits and masks. However, traditional production methods typically require organic solvent for processing which leads to environmental pollution, low-loading efficiency, poor accessibility, and loss of functionality due to poor solvent resistance properties. For the first time, we have developed a microbial synthesis strategy to prepare a MOF/bacterial cellulose nanofiber composite sponge. The prepared sponge exhibited a hierarchically porous structure, high MOF loading (up to ≈90 %), good solvent resistance, and high catalytic activity for the liquid- and solid-state hydrolysis of nerve agent simulants. Moreover, the MOF/ bacterial cellulose composite sponge reported here showed a nearly 8-fold enhancement in the protection against an ultra-toxic nerve agent (GD) in permeability studies as compared to a commercialized adsorptive carbon cloth. The results shown here present an essential step toward the practical application of MOF-based protective gear against nerve agents.
Collapse
Affiliation(s)
- Yuk Ha Cheung
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Megan C Wasson
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - John Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - Gregory W Peterson
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - John H Xin
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
39
|
Xuan K, Chen S, Pu Y, Guo Y, Guo Y, Li Y, Pu C, Zhao N, Xiao F. Encapsulating phosphotungstic acid within metal-organic framework for direct synthesis of dimethyl carbonate from CO2 and methanol. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
A zirconium(IV)-based metal–organic framework modified with ruthenium and palladium nanoparticles: synthesis and catalytic performance for selective hydrogenation of furfural to furfuryl alcohol. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02193-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Cheung YH, Ma K, Wasson MC, Wang X, Idrees KB, Islamoglu T, Mahle J, Peterson GW, Xin JH, Farha OK. Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuk Ha Cheung
- Research Centre for Smart Wearable Technology Institute of Textiles and Clothing The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Megan C. Wasson
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Karam B. Idrees
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - John Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center 8198 Blackhawk Road Aberdeen Proving Ground MD 21010 USA
| | - Gregory W. Peterson
- U.S. Army Combat Capabilities Development Command Chemical Biological Center 8198 Blackhawk Road Aberdeen Proving Ground MD 21010 USA
| | - John H. Xin
- Research Centre for Smart Wearable Technology Institute of Textiles and Clothing The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
42
|
de Koning MC, Vieira Soares C, van Grol M, Bross RPT, Maurin G. Effective Degradation of Novichok Nerve Agents by the Zirconium Metal-Organic Framework MOF-808. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9222-9230. [PMID: 35138813 DOI: 10.1021/acsami.1c24295] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Novichoks are a novel class of nerve agents (also referred to as the A-series) that were employed in several poisonings over the last few years. This calls for the development of novel countermeasures that can be applied in protective concepts (e.g., protective clothing) or in decontamination methods. The Zr metal-organic framework MOF-808 has recently emerged as a promising catalyst in the hydrolysis of the V- and G-series of nerve agents as well as their simulants. In this paper, we report a detailed study of the degradation of three Novichok agents by MOF-808 in buffers with varying pH. MOF-808 is revealed to be a highly efficient and regenerable catalyst for Novichok agent hydrolysis under basic conditions. In contrast to the V- and G-series of agents, degradation of Novichoks is demonstrated to proceed in two consecutive hydrolysis steps. Initial extremely rapid P-F bond breaking is followed by MOF-catalyzed removal of the amidine group from the intermediate product. The intermediate thus acted as a competitive substrate that was rate-determining for the whole two-step degradation route. Under acidic conditions, the amidine group in Novichok A-230 is more rapidly hydrolyzed than the P-F bond, giving rise to another moderately toxic intermediate. This intermediate could in turn be efficiently hydrolyzed by MOF-808 under basic conditions. These experimental observations were corroborated by density functional theory calculations to shed light on molecular mechanisms.
Collapse
Affiliation(s)
- Martijn C de Koning
- TNO Defense, Safety and Security, Lange Kleiweg 137, Rijswijk 2288GJ, The Netherlands
| | - Carla Vieira Soares
- ICGM, Univ. Montpellier, CNRS, ENSCM, Place E. Bataillon, Montpellier 34095, France
| | - Marco van Grol
- TNO Defense, Safety and Security, Lange Kleiweg 137, Rijswijk 2288GJ, The Netherlands
| | - Rowdy P T Bross
- TNO Defense, Safety and Security, Lange Kleiweg 137, Rijswijk 2288GJ, The Netherlands
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, Place E. Bataillon, Montpellier 34095, France
| |
Collapse
|
43
|
Pangestu A, Lestari WW, Wibowo FR, Larasati L. Green Electro-Synthesized MIL-101(Fe) and Its Aspirin Detoxification Performance Compared to MOF-808. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02235-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Fabrication of MOF-808(Zr) with abundant defects by cleaving Zr O bond for oxidative desulfurization of fuel oil. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Imran M, Singh VV, Garg P, Mazumder A, Pandey LK, Sharma PK, Acharya J, Ganesan K. In-situ detoxification of schedule-I chemical warfare agents utilizing Zr(OH) 4@W-ACF functional material for the development of next generation NBC protective gears. Sci Rep 2021; 11:24421. [PMID: 34952902 PMCID: PMC8709862 DOI: 10.1038/s41598-021-03786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022] Open
Abstract
Chemical warfare agents (CWAs) have become a pivotal concern for the global community and spurred a wide spectrum of research for the development of new generation protective materials. Herein, a highly effective self-detoxifying filter consisting of in-situ immobilized Zirconium hydroxide [Zr(OH)4] over woven activated carbon fabric [Zr(OH)4@W-ACF] is presented for the removal of CWAs. It was prepared to harness the synergistic effect of high surface area of W-ACF, leads to high dispersion of CWAs and high phosphilicity and reactivity of [Zr(OH)4]. The synthesized materials were characterized by ATR-FTIR, EDX, SEM, TEM, XPS, TGA, and BET surface area analyzer. The kinetics of in-situ degradation of CWAs over Zr(OH)4@W-ACF were studied and found to be following the first-order reaction kinetics. The rate constant was found to be 0.244 min-1 and 2.31 × 10-2 min-1 for sarin and soman, respectively over Zr(OH)4@W-ACF. The potential practical applicability of this work was established by fabricating Zr(OH)4@W-ACF as reactive adsorbent layer for protective suit, and found to be meeting the specified criteria in terms of air permeability, tearing strength and nerve agent permeation as per TOP-08-2-501A:2013 and IS-17380:2020. The degradation products of CWAs were analyzed with NMR and GC-MS. The combined properties of dual functional textile with reactive material are expected to open up new exciting avenues in the field of CWAs protective clothing and thus find diverse application in defence and environmental sector.
Collapse
Affiliation(s)
- Mohammad Imran
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Virendra V Singh
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India.
| | - Prabhat Garg
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Avik Mazumder
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Lokesh K Pandey
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Pushpendra K Sharma
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Jyotiranjan Acharya
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| | - Kumaran Ganesan
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior, 474002, India
| |
Collapse
|
46
|
Gorzkowska‐Sobas A, Lausund KB, de Koning MC, Petrovic V, Chavan SM, Smith MW, Nilsen O. Utilizing Zirconium MOF-functionalized Fiber Substrates Prepared by Molecular Layer Deposition for Toxic Gas Capture and Chemical Warfare Agent Degradation. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2100001. [PMID: 34938573 PMCID: PMC8671619 DOI: 10.1002/gch2.202100001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/02/2021] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of porous organic-inorganic solids extensively explored for numerous applications owing to their catalytic activity and high surface area. In this work MOF thin films deposited in a one-step, molecular layer deposition (MLD), an all-gas-phase process, on glass wool fibers are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and their capabilities towards toxic industrial chemical (TIC) capture and chemical warfare agents (CWA) degradation are investigated. It is shown that despite low volume of the active material used, MOFs thin films are capable of removal of harmful gaseous chemicals from air stream and CWA from neutral aqueous environment. The results confirm that the MLD-deposited MOF thin films, amorphous and crystalline, are suitable materials for use in air filtration, decontamination, and physical protection against CWA and TIC.
Collapse
Affiliation(s)
| | - Kristian Blindheim Lausund
- Centre for Materials Science and NanotechnologyDepartment of ChemistryUniversity of OsloSem Sælands vei 26Oslo0371Norway
- TNOLange Kleiweg 1372288GJ, RijswijkThe Netherlands
| | | | - Veljko Petrovic
- Centre for Materials Science and NanotechnologyDepartment of ChemistryUniversity of OsloSem Sælands vei 26Oslo0371Norway
| | - Sachin M. Chavan
- Department of ChemistryBioscience and Environmental EngineeringUniversity of StavangerStavanger4036Norway
| | - Martin W. Smith
- CBR DivisionDefence Science & Technology LaboratoryPorton DownSalisburySP4 0JQUK
| | - Ola Nilsen
- Centre for Materials Science and NanotechnologyDepartment of ChemistryUniversity of OsloSem Sælands vei 26Oslo0371Norway
| |
Collapse
|
47
|
Mahato D, Fajal S, Samanta P, Mandal W, Ghosh SK. Selective and Sensitive Fluorescence Turn-On Detection of Cyanide Ions in Water by Post Metallization of a MOF. Chempluschem 2021; 87:e202100426. [PMID: 34898033 DOI: 10.1002/cplu.202100426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/29/2021] [Indexed: 12/29/2022]
Abstract
Owing to detrimental impact of cyanide ion (CN- ) towards the entire living system as well as its availability in drinking water, it has become very important developing potential sensory materials for the selective and sensitive recognition of CN- ions in water. In the domain of sensory materials, luminescent metal-organic frameworks (LMOFs) have been considered as a promising candidate owing to their unique host-guest interaction, where MOFs can serve as an ideal scaffold for encapsulating relevant guest molecules rendering specific functionality. In this study, a post-synthetically modified MOF (viz., CuCl2 @MOF-867) was applied to recognize cyanide (CN- ) ions in water via "turn-on" response. The bipyridyl functionalities in MOF-867 were used to perform post-synthetic metalation to infiltrate CuCl2 inside porous architecture of the MOF. Moreover, a CuCl2 @MOF-867 based probe demonstrated highly selective and sensitive aqueous phase recognition of CN- ions even in the presence of other interfering anions such as Br- , NO3 - , I- , SO4 2- , OAc- , SCN- , NO2 - , etc. The selective binding of CN- ions to the copper-metal center has led to the generation of stable Cu(CN)2 species. This phenomenon has further resulted in a fluorescence turn-on response. The aqueous phase cyanide detection by the rationally modified MOF system exhibited very low limit of detection (0.19 μM), which meets the standardized limit stated by World Health Organization (WHO) that is 1.9 μM.
Collapse
Affiliation(s)
- Debanjan Mahato
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Partha Samanta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
48
|
Cartagenova D, Bachmann S, Van Bokhoven JA, Püntener K, Ranocchiari M. Heterogeneous Metal-Organic Framework Catalysts for Suzuki-Miyaura Cross Coupling in the Pharma Industry. Chimia (Aarau) 2021; 75:972-978. [PMID: 34798920 DOI: 10.2533/chimia.2021.972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The synthesis of drug substances (DS) requires the continuous effort of the pharma industry to ensure high sustainability standards. The Suzuki-Miyaura cross coupling is a fundamental C-C bond-forming reaction to produce complex DS intermediates. The present contribution points out the way in which the synthesis of DS intermediates by C-C cross coupling can be economically competitive, while minimizing waste by selecting the appropriate heterogeneous catalyst. By comparing homogeneous, immobilized heterogeneous catalysts on silica and metal-organic framework (MOF) catalysts, while considering the perspectives of academia and industry, the critical parameters for a successful industrial application of heterogeneous catalytic Suzuki-Miyaura cross coupling reactions were identified. Heterogeneous catalysts, such as MOFs, may provide a complementary platform for reducing waste and the costs of production related to such transformations.
Collapse
Affiliation(s)
- Daniele Cartagenova
- Paul Scherrer Institute, Laboratory for Catalysis and Sustainable Chemistry, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Stephan Bachmann
- F. Hoffmann-La Roche Ltd., Department of Process Chemistry & Catalysis, Grenzacherstrasse 124, CH-4070 Basel, Switzerland,
| | - Jeroen A Van Bokhoven
- Paul Scherrer Institute, Laboratory for Catalysis and Sustainable Chemistry, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland; ETH Zurich, Institute for Chemical and Bioengineering, CH-8093 Zurich
| | - Kurt Püntener
- F. Hoffmann-La Roche Ltd., Department of Process Chemistry & Catalysis, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Marco Ranocchiari
- Paul Scherrer Institute, Laboratory for Catalysis and Sustainable Chemistry, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland;,
| |
Collapse
|
49
|
Zhang J, Jin N, Ji N, Chen X, Shen Y, Pan T, Li L, Li S, Zhang W, Huo F. The Encounter of Biomolecules in Metal-Organic Framework Micro/Nano Reactors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52215-52233. [PMID: 34369162 DOI: 10.1021/acsami.1c09660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In nature, biochemical reactions often take place in confined spaces, as typically exemplified by cells. As numerous cellular reactors can be integrated to maintain the living system, researchers have made constant efforts to construct cell-like structures for achieving similar transformations in vitro. Micro/nano reactors engineered by polymers and colloids are becoming popular and being applied in many fields, especially there has been an increasing trend toward constructing metal-organic framework (MOF) micro/nano reactors with the thriving of MOF nanotechnologies. Because of the uniform pores of MOFs, the transmission of substances can be regulated more accurately. Along with properties of large specific surface area, functional diversity and precise control of the particle size, MOFs are also ideal platforms for building distinct microenvironments for biological substances. Compared with traditional polymersomes and colloidosomes, the unique characteristics of MOFs render them potent micro/nano reactor shell materials, mimicking cells for applications in enzymatic catalysis, sensing, nanotherapy, vaccine, biodegradation, etc. This review highlights recent signs of progress on the design of MOF micro/nano reactors and their applications in biology, discusses the existing problems, and prospects their promising properties for smarter multifunctional applications.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Na Jin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Ning Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Xinyi Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Ting Pan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| |
Collapse
|
50
|
Shen Y, Pan T, Wang L, Ren Z, Zhang W, Huo F. Programmable Logic in Metal-Organic Frameworks for Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007442. [PMID: 34050572 DOI: 10.1002/adma.202007442] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as one of the most widely investigated materials in catalysis mainly due to their excellent component tunability, high surface area, adjustable pore size, and uniform active sites. However, the overwhelming number of MOF materials and complex structures has brought difficulties for researchers to select and construct suitable MOF-based catalysts. Herein, a programmable design strategy is presented based on metal ions/clusters, organic ligands, modifiers, functional materials, and post-treatment modules, which can be used to design the components, structures, and morphologies of MOF catalysts for different reactions. By establishing the corresponding relationship between these modules and functions, researchers can accurately and efficiently construct heterometallic MOFs, chiral MOFs, conductive MOFs, hierarchically porous MOFs, defective MOFs, MOF composites, and MOF-derivative catalysts. Further, this programmable design approach can also be used to regulate the physical/chemical microenvironments of pristine MOFs, MOF composites, and MOF-derivative materials for heterogeneous catalysis, electrocatalysis, and photocatalysis. Finally, the challenging issues and opportunities for the future research of MOF-based catalysts are discussed. Overall, the modular design concept of this review can be applied as a potent tool for exploring the structure-activity relationships and accelerating the on-demand design of multicomponent catalysts.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Pan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Liu Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhen Ren
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|