1
|
Shi X, Deng P, Rajeshkumar T, Maron L, Cheng J. Multi-electron redox reactivity of a samarium(ii) hydrido complex. Chem Sci 2024; 15:11965-11971. [PMID: 39092133 PMCID: PMC11290423 DOI: 10.1039/d4sc03104k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Well-defined low-valent molecular rare-earth metal hydrides are rare, and limited to Yb2+ and Eu2+ centers. Here, we report the first example of the divalent samarium(ii) hydrido complex [(CpAr5)SmII(μ-H)(DABCO)]2 (4) (CpAr5 = C5Ar5, Ar = 3,5-iPr2-C6H3; DABCO = 1,4-diazabicyclooctane) supported by a super-bulky penta-arylcyclopentadienyl ligand, resulting from the hydrogenolysis of the samarium(ii) alkyl complex [(CpAr5)SmII{CH(SiMe3)2}(DABCO)] (3). Complex 4 exhibits multi-electron redox reactivity toward a variety of substrates. Exposure of complex 4 to CO2 results in the formation of the trivalent samarium(iii) mixed-bis-formate/carbonate complex [(CpAr5)SmIII(μ-η2:η1-O2CH)(μ-η2:η2-CO3)(μ-η1:η1-O2CH)SmIII(CpAr5)(DABCO)] (8), mediated by hydride insertion and reductive disproportionation reactions. Complex 4 shows four-electron reduction toward four equivalents of CS2 to afford the trivalent samarium(iii) bis-trithiocarbonate complex [(CpAr5)SmIII(μ-η2:η2-CS3)(DABCO)]2 (9). A mechanistic study of the formation of complex 8 was carried out using DFT calculations.
Collapse
Affiliation(s)
- Xianghui Shi
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences No. 5625, Renmin Street Changchun 130022 China
| | - Peng Deng
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences No. 5625, Renmin Street Changchun 130022 China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, UPS, Université de Toulouse 135 Avenue de Rangueil 31077 Toulouse France
| | - Laurent Maron
- LPCNO, CNRS & INSA, UPS, Université de Toulouse 135 Avenue de Rangueil 31077 Toulouse France
| | - Jianhua Cheng
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences No. 5625, Renmin Street Changchun 130022 China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
2
|
Mahawar P, Rajeshkumar T, Maron L, Spaniol TP, Okuda J. Heterobimetallic Hydrides with a Germanium(II)-Zinc Bond. Chemistry 2023; 29:e202301496. [PMID: 37309983 DOI: 10.1002/chem.202301496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/14/2023]
Abstract
In the presence of TMEDA (TMEDA=N,N,N',N'-tetramethylethylenediamine), zinc dihydride reacted with germanium(II) compounds (BDI-H)Ge (1) and [(BDI)Ge][B(3,5-(CF3 )2 C6 H3 )4 ] (3) (BDI-H = HC{(C=CH2 )(CMe)(NAr)2 }, BDI = [HC(CMeNAr)2 ]; Ar = 2,6-i Pr2 C6 H3 ) by formal insertion of the germanium(II) center into the Zn-H bond of polymeric [ZnH2 ]n to give neutral and cationic zincagermane with a H-Ge-Zn-H core [(BDI-H)Ge(H)-(H)Zn(tmeda)] (2) and [(BDI)Ge(H)-(H)Zn(tmeda)][B(3,5-(CF3 )2 C6 H3 )4 ] (4), respectively. Compound 2 eliminated [ZnH2 ] giving diamido germylene 1 at 60 °C. Compound 2 and deuterated analogue 2-d2 exchanged with [ZnH2 ]n and [ZnD2 ]n in the presence of TMEDA to give a mixture of 2 and 2-d2 . Compounds 2 and 4 reacted with carbon dioxide (1 bar) at room temperature to form zincagermane diformate [(BDI-H)Ge(OCHO)-(OCHO)Zn(tmeda)] (5) and formate bridged digermylene [({BDI}Ge)2 (μ-OCHO)]+ [B(C6 H3 (CF3 )2 )4 ] (6) along with zinc formate [(tmeda)Zn(μ-OCHO)3 Zn(tmeda)][B(C6 H3 (CF3 )2 )4 ] (7), respectively. The hydridic nature of the Ge-H and Zn-H bonds in 2 and 4 was probed by reactions with Brönsted and Lewis acids.
Collapse
Affiliation(s)
- Pritam Mahawar
- Institute for Inorganic Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| | - Thayalan Rajeshkumar
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse, 35 Avenue de Rangueil, 31077, Toulouse, France
| | - Laurent Maron
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse, 35 Avenue de Rangueil, 31077, Toulouse, France
| | - Thomas P Spaniol
- Institute for Inorganic Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| | - Jun Okuda
- Institute for Inorganic Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| |
Collapse
|
3
|
Jiang C, Zeng S, Ma X, Feng J, Li G, Bai L, Li F, Ji X, Zhang X. Aprotic phosphonium‐based ionic liquid as electrolyte for highly
CO
2
electroreduction to oxalate. AIChE J 2022. [DOI: 10.1002/aic.17859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chongyang Jiang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| | - Shaojuan Zeng
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Xifei Ma
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Jiaqi Feng
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Guilin Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Lu Bai
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Fangfang Li
- Energy Engineering, Division of Energy Science Luleå University of Technology Luleå Sweden
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science Luleå University of Technology Luleå Sweden
| | - Xiangping Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
4
|
Liang H, Beweries T, Francke R, Beller M. Molecular Catalysts for the Reductive Homocoupling of CO 2 towards C 2+ Compounds. Angew Chem Int Ed Engl 2022; 61:e202200723. [PMID: 35187799 PMCID: PMC9311439 DOI: 10.1002/anie.202200723] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/06/2022]
Abstract
The conversion of CO2 into multicarbon (C2+ ) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create "carbon-neutral" fuels or other valuable products. Most available studies have employed heterogeneous metallic catalysts, but the use of molecular catalysts is still underexplored. However, several studies have already demonstrated the great potential of the molecular approach, namely, the possibility to gain a deep mechanistic understanding and a more precise control of the product selectivity. This Minireview summarizes recent progress in both the thermo- and electrochemical reductive homocoupling of CO2 toward C2+ products mediated by molecular catalysts. In addition, reductive CO homocoupling is discussed as a model for the further conversion of intermediates obtained from CO2 reduction, which may serve as a source of inspiration for developing novel molecular catalysts in the future.
Collapse
Affiliation(s)
- Hong‐Qing Liang
- Leibniz-Institute for CatalysisAlbert-Einstein-Strasse 29a18059RostockGermany
| | - Torsten Beweries
- Leibniz-Institute for CatalysisAlbert-Einstein-Strasse 29a18059RostockGermany
| | - Robert Francke
- Leibniz-Institute for CatalysisAlbert-Einstein-Strasse 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institute for CatalysisAlbert-Einstein-Strasse 29a18059RostockGermany
| |
Collapse
|
5
|
Sinhababu S, Lakliang Y, Mankad NP. Recent advances in cooperative activation of CO 2 and N 2O by bimetallic coordination complexes or binuclear reaction pathways. Dalton Trans 2022; 51:6129-6147. [PMID: 35355033 DOI: 10.1039/d2dt00210h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The gaseous small molecules, CO2 and N2O, play important roles in climate change and ozone layer depletion, and they hold promise as underutilized reagents and chemical feedstocks. However, productive transformations of these heteroallenes are difficult to achieve because of their inertness. In nature, these gases are cycled through ecological systems by metalloenzymes featuring multimetallic active sites that employ cooperative mechanisms. Thus, cooperative bimetallic chemistry is an important strategy for synthetic systems, as well. In this Perspective, recent advances (since 2010) in cooperative activation of CO2 and N2O are reviewed, including examples involving s-block, p-block, d-block, and f-block metals and different combinations thereof.
Collapse
Affiliation(s)
- Soumen Sinhababu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA.
| | - Yutthana Lakliang
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA.
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA.
| |
Collapse
|
6
|
Marx M, Frauendorf H, Spannenberg A, Neumann H, Beller M. Revisiting Reduction of CO 2 to Oxalate with First-Row Transition Metals: Irreproducibility, Ambiguous Analysis, and Conflicting Reactivity. JACS AU 2022; 2:731-744. [PMID: 35373201 PMCID: PMC8970009 DOI: 10.1021/jacsau.2c00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Construction of higher C≥2 compounds from CO2 constitutes an attractive transformation inspired by nature's strategy to build carbohydrates. However, controlled C-C bond formation from carbon dioxide using environmentally benign reductants remains a major challenge. In this respect, reductive dimerization of CO2 to oxalate represents an important model reaction enabling investigations on the mechanism of this simplest CO2 coupling reaction. Herein, we present common pitfalls encountered in CO2 reduction, especially its reductive coupling, based on established protocols for the conversion of CO2 into oxalate. Moreover, we provide an example to systematically assess these reactions. Based on our work, we highlight the importance of utilizing suitable orthogonal analytical methods and raise awareness of oxidative reactions that can likewise result in the formation of oxalate without incorporation of CO2. These results allow for the determination of key parameters, which can be used for tailoring of prospective catalytic systems and will promote the advancement of the entire field.
Collapse
Affiliation(s)
- Maximilian Marx
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Holm Frauendorf
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Anke Spannenberg
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Helfried Neumann
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
7
|
Liang H, Beweries T, Francke R, Beller M. Molecular Catalysts for the Reductive Homocoupling of CO
2
towards C
2+
Compounds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hong‐Qing Liang
- Leibniz-Institute for Catalysis Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Torsten Beweries
- Leibniz-Institute for Catalysis Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Robert Francke
- Leibniz-Institute for Catalysis Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institute for Catalysis Albert-Einstein-Strasse 29a 18059 Rostock Germany
| |
Collapse
|
8
|
Okuda J, Okumura A, Ghana P, Fink F, Schmidt R, Hoffmann A, Spaniol TP, Herres-Pawlis S. Formate Complexes of Tri- and Tetravalent Titanium Supported by a Tris(phenolato)amine Ligand. Dalton Trans 2022; 51:14345-14351. [DOI: 10.1039/d2dt01739c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Titanium(III) and titanium(IV) formate complexes supported by the sterically encumbering tris(phenolato)amine ligand (H3(O3N) = tris(4,6-di-tert-butyl-2-hydroxybenzyl)amine) are described. Salt metathesis of the chlorido precursor [(O3N)TiCl] (1-Cl) with sodium formate in a...
Collapse
|
9
|
Paparo A, Nguyen ALP, Silvia JS, Spaniol TP, Maron L, Cummins CC, Okuda J. Dihydrogen cleavage by a dimetalloxycarbene-borane frustrated Lewis pair. Dalton Trans 2021; 50:10692-10695. [PMID: 34313284 DOI: 10.1039/d1dt02273c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A frustrated Lewis pair of dititanoxycarbene [(Ti(N[tBu]Ar)3)2(μ-CO2)] (Ar = 3,5-Me2C6H3) and B(C6F5)3 cleaved dihydrogen under ambient conditions to give the zwitterionic formate [(Ti(N[tBu]Ar)3)2(μ-OCHO-ηO:ηO')(B(C6F5)3)] and the hydrido borate [Ti(N[tBu]Ar)3][HB(C6F5)3].
Collapse
Affiliation(s)
- Albert Paparo
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany.
| | - Anh L P Nguyen
- School of Chemistry, Monash University, PO Box 23 and Clayton, VIC 3800, Australia
| | - Jared S Silvia
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Thomas P Spaniol
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany.
| | - Laurent Maron
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany.
| |
Collapse
|
10
|
Kinzel NW, Werlé C, Leitner W. Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective. Angew Chem Int Ed Engl 2021; 60:11628-11686. [PMID: 33464678 PMCID: PMC8248444 DOI: 10.1002/anie.202006988] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Indexed: 12/17/2022]
Abstract
The electrocatalytic transformation of carbon dioxide has been a topic of interest in the field of CO2 utilization for a long time. Recently, the area has seen increasing dynamics as an alternative strategy to catalytic hydrogenation for CO2 reduction. While many studies focus on the direct electron transfer to the CO2 molecule at the electrode material, molecular transition metal complexes in solution offer the possibility to act as catalysts for the electron transfer. C1 compounds such as carbon monoxide, formate, and methanol are often targeted as the main products, but more elaborate transformations are also possible within the coordination sphere of the metal center. This perspective article will cover selected examples to illustrate and categorize the currently favored mechanisms for the electrochemically induced transformation of CO2 promoted by homogeneous transition metal complexes. The insights will be corroborated with the concepts and elementary steps of organometallic catalysis to derive potential strategies to broaden the molecular diversity of possible products.
Collapse
Affiliation(s)
- Niklas W. Kinzel
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
11
|
Zimmermann P, Ar D, Rößler M, Holze P, Cula B, Herwig C, Limberg C. Selective Transformation of Nickel‐Bound Formate to CO or C−C Coupling Products Triggered by Deprotonation and Steered by Alkali‐Metal Ions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Philipp Zimmermann
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Deniz Ar
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Marie Rößler
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Patrick Holze
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Beatrice Cula
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Christian Herwig
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Christian Limberg
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
12
|
Zimmermann P, Ar D, Rößler M, Holze P, Cula B, Herwig C, Limberg C. Selective Transformation of Nickel-Bound Formate to CO or C-C Coupling Products Triggered by Deprotonation and Steered by Alkali-Metal Ions. Angew Chem Int Ed Engl 2021; 60:2312-2321. [PMID: 33084156 PMCID: PMC7898393 DOI: 10.1002/anie.202010180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Indexed: 11/23/2022]
Abstract
The complexes [LtBu Ni(OCO-κ2 O,C)]M3 [N(SiMe3 )2 ]2 (M=Li, Na, K), synthesized by deprotonation of a nickel formate complex [LtBu NiOOCH] with the corresponding amides M[N(SiMe3 )2 ], feature a NiII -CO2 2- core surrounded by Lewis-acidic cations (M+ ) and the influence of the latter on the behavior and reactivity was studied. The results point to a decrease of CO2 activation within the series Li, Na, and K, which is also reflected in the reactivity with Me3 SiOTf leading to the liberation of CO and formation of a Ni-OSiMe3 complex. Furthermore, in case of K+ , the {[K3 [N(SiMe3 )2 ]2 }+ shell around the Ni-CO2 2- entity was shown to have a large impact on its stabilization and behavior. If the number of K[N(SiMe3 )2 ] equivalents used in the reaction with [LtBu NiOOCH] is decreased from 3 to 0.5, the deprotonated part of the precursor enters a complex reaction sequence with formation of [LtBu NiI (μ-OOCH)NiI LtBu ]K and [LtBu Ni(C2 O4 )NiLtBu ]. The same reaction at higher concentrations additionally led to the formation of a unique hexanuclear NiII complex containing both oxalate and mesoxalate ([O2 C-CO2 -CO2 ]4- ) ligands.
Collapse
Affiliation(s)
- Philipp Zimmermann
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Deniz Ar
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Marie Rößler
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Patrick Holze
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Beatrice Cula
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Christian Herwig
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Christian Limberg
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| |
Collapse
|
13
|
Freeman LA, Obi AD, Machost HR, Molino A, Nichols AW, Dickie DA, Wilson DJD, Machan CW, Gilliard RJ. Soluble, crystalline, and thermally stable alkali CO 2 - and carbonite (CO 2 2-) clusters supported by cyclic(alkyl)(amino) carbenes. Chem Sci 2021; 12:3544-3550. [PMID: 34163627 PMCID: PMC8179443 DOI: 10.1039/d0sc06851a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/22/2021] [Indexed: 01/05/2023] Open
Abstract
The mono- and dianions of CO2 (i.e., CO2 - and CO2 2-) have been studied for decades as both fundamentally important oxycarbanions (anions containing only C and O atoms) and as critical species in CO2 reduction and fixation chemistry. However, CO2 anions are highly unstable and difficult to study. As such, examples of stable compounds containing these ions are extremely limited; the unadulterated alkali salts of CO2 (i.e., MCO2, M2CO2, M = alkali metal) decompose rapidly above 15 K, for example. Herein we report the chemical reduction of a cyclic (alkyl)(amino) carbene (CAAC) adduct of CO2 at room temperature by alkali metals, which results in the formation of CAAC-stabilized alkali CO2 - and CO2 2- clusters. One-electron reduction of CAAC-CO2 adduct (1) with lithium, sodium or potassium metal yields stable monoanionic radicals [M(CAAC-CO2)] n (M = Li, Na, K, 2-4) analogous to the alkali CO2 - radical, and two-electron alkali metal reduction affords dianionic clusters of the general formula [M2(CAAC-CO2)] n (5-8) with reduced CO2 units which are structurally analogous to the carbonite anion CO2 2-. It is notable that crystalline clusters of these alkali-CO2 salts may also be isolated via the "one-pot" reaction of free CO2 with free CAAC followed by the addition of alkali metals - a process which does not occur in the absence of carbene. Each of the products 2-8 was investigated using a combination of experimental and theoretical methods.
Collapse
Affiliation(s)
- Lucas A Freeman
- Department of Chemistry, University of Virginia 409 McCormick Road, PO Box 400319 Charlottesville Virginia 22904 USA
| | - Akachukwu D Obi
- Department of Chemistry, University of Virginia 409 McCormick Road, PO Box 400319 Charlottesville Virginia 22904 USA
| | - Haleigh R Machost
- Department of Chemistry, University of Virginia 409 McCormick Road, PO Box 400319 Charlottesville Virginia 22904 USA
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University Bundoora Victoria 3086 Australia
| | - Asa W Nichols
- Department of Chemistry, University of Virginia 409 McCormick Road, PO Box 400319 Charlottesville Virginia 22904 USA
| | - Diane A Dickie
- Department of Chemistry, University of Virginia 409 McCormick Road, PO Box 400319 Charlottesville Virginia 22904 USA
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University Bundoora Victoria 3086 Australia
| | - Charles W Machan
- Department of Chemistry, University of Virginia 409 McCormick Road, PO Box 400319 Charlottesville Virginia 22904 USA
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia 409 McCormick Road, PO Box 400319 Charlottesville Virginia 22904 USA
| |
Collapse
|
14
|
Kinzel NW, Werlé C, Leitner W. Übergangsmetallkomplexe als Katalysatoren für die elektrische Umwandlung von CO
2
– eine metallorganische Perspektive. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006988] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niklas W. Kinzel
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| | - Christophe Werlé
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Walter Leitner
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| |
Collapse
|
15
|
Abstract
The mechanism studies of transition-metal-catalyzed reductive coupling reactions
investigated using Density Functional Theory calculations in the recent ten years have been
reviewed. This review introduces the computational mechanism studies of Ni-, Pd-, Cu- and
some other metals (Rh, Ti and Zr)-catalyzed reductive coupling reactions and presents the
methodology used in these computational mechanism studies. The mechanisms of the transition-
metal-catalyzed reductive coupling reactions normally include three main steps: oxidative
addition; transmetalation; and reductive elimination or four main steps: the first oxidative
addition; reduction; the second oxidative addition; and reductive elimination. The ratelimiting
step is most likely the final reductive elimination step in the whole mechanism.
Currently, the B3LYP method used in DFT calculations is the most popular choice in the structural geometry
optimizations and the M06 method is often used to carry out single-point calculations to refine the energy values.
We hope that this review will stimulate more and more experimental and computational combinations and the
computational chemistry will significantly contribute to the development of future organic synthesis reactions.
Collapse
Affiliation(s)
- Yuling Wang
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Qinghua Ren
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
16
|
Yang Y, Gao H, Feng J, Zeng S, Liu L, Liu L, Ren B, Li T, Zhang S, Zhang X. Aromatic Ester-Functionalized Ionic Liquid for Highly Efficient CO 2 Electrochemical Reduction to Oxalic Acid. CHEMSUSCHEM 2020; 13:4900-4905. [PMID: 32668086 DOI: 10.1002/cssc.202001194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Electrochemical reduction of CO2 into valuable chemicals is a significant route to utilize CO2 resources. Among various electroreduction products, oxalic acid (H2 C2 O4 ) is an important chemical for pharmaceuticals, rare earth extraction, and metal processing. Here, an aprotic aromatic ester-functionalized ionic liquid (IL), 4-(methoxycarbonyl) phenol tetraethylammonium ([TEA][4-MF-PhO]), was designed as an electrolyte for CO2 electroreduction into oxalic acid. It exhibited a large oxalic acid partial current density of 9.03 mA cm-2 with a faradaic efficiency (FE) of 86 % at -2.6 V (vs. Ag/Ag+ ), and the oxalic acid formation rate was as high as 168.4 μmol cm-2 h-1 , which is the highest reported value to date. Moreover, the results of density functional theory calculations demonstrated that CO2 was efficiently activated to a -COOH intermediate by bis-active sites of the aromatic ester anion via the formation of a [4-MF-PhO-COOH]- adduct, which finally dimerized into oxalic acid.
Collapse
Affiliation(s)
- Yingliang Yang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Hongshuai Gao
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiaqi Feng
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shaojuan Zeng
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Licheng Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Baozeng Ren
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Tao Li
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangping Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| |
Collapse
|
17
|
Abstract
Alkali metal naphthalenide or anthracenide reacted with scandium(III) anilides [Sc(X){N(tBu)Xy}2 (thf)] (X=N(tBu)Xy (1); X=Cl (2); Xy=C6 H3 -3,5-Me2 ) to give scandium complexes [M(thf)n ][Sc{N(tBu)Xy}2 (RA)] (M=Li-K; n=1-6; RA=C10 H8 2- (3-Naph-K) and C14 H10 2- (3-Anth-M)) containing a reduced arene ligand. Single-crystal X-ray diffraction revealed the scandium(III) center bonded to the naphthalene dianion in a σ2 :π-coordination mode, whereas the anthracene dianion is symmetrically attached to the scandium(III) center in a σ2 -fashion. All compounds have been characterized by multinuclear, including 45 Sc NMR spectroscopy. Quantum chemical calculations of these intensely colored arene complexes confirm scandium to be in the oxidation state +3. The intense absorptions observed in the UV/Vis spectra are due to ligand-to-metal charge transfers. Whereas nitriles underwent C-C coupling reaction with the reduced arene ligand, the reaction with one equivalent of [NEt3 H][BPh4 ] led to the mono-protonation of the reduced arene ligand.
Collapse
Affiliation(s)
- Priyabrata Ghana
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Alexander Hoffmann
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Thomas P. Spaniol
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Jun Okuda
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| |
Collapse
|
18
|
Haiduc I. Inverse coordination metal complexes with oxalate and sulfur, selenium and nitrogen analogues as coordination centers. Topology and systematization. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1789120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ionel Haiduc
- Facultatea de Chimie, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| |
Collapse
|
19
|
Tseng Y, Ching W, Liaw W, Lu T. Dinitrosyl Iron Complex [K‐18‐crown‐6‐ether][(NO)
2
Fe(
Me
PyrCO
2
)]: Intermediate for Capture and Reduction of Carbon Dioxide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yu‐Ting Tseng
- Department of Chemistry Chung Yuan Christian University Taoyuan 32023 Taiwan
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
| | - Wei‐Min Ching
- Institute of Chemistry Academia Sinica Taipei 10529 Taiwan
| | - Wen‐Feng Liaw
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
| | - Tsai‐Te Lu
- Department of Chemistry Chung Yuan Christian University Taoyuan 32023 Taiwan
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
20
|
Tseng Y, Ching W, Liaw W, Lu T. Dinitrosyl Iron Complex [K‐18‐crown‐6‐ether][(NO)
2
Fe(
Me
PyrCO
2
)]: Intermediate for Capture and Reduction of Carbon Dioxide. Angew Chem Int Ed Engl 2020; 59:11819-11823. [DOI: 10.1002/anie.202002977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/01/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yu‐Ting Tseng
- Department of Chemistry Chung Yuan Christian University Taoyuan 32023 Taiwan
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
| | - Wei‐Min Ching
- Institute of Chemistry Academia Sinica Taipei 10529 Taiwan
| | - Wen‐Feng Liaw
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
| | - Tsai‐Te Lu
- Department of Chemistry Chung Yuan Christian University Taoyuan 32023 Taiwan
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
21
|
Beaumier EP, Gordon CP, Harkins RP, McGreal ME, Wen X, Copéret C, Goodpaster JD, Tonks IA. Cp 2Ti(κ 2-tBuNCN tBu): A Complex with an Unusual κ 2 Coordination Mode of a Heterocumulene Featuring a Free Carbene. J Am Chem Soc 2020; 142:8006-8018. [PMID: 32240590 PMCID: PMC7201867 DOI: 10.1021/jacs.0c02487] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although there are myriad binding modes of heterocumulenes to metal centers, the monometallic κ2-ECE (E = O, S, NR) coordination mode has not been reported. Herein, the synthesis, isolation, and physical characterization of Cp2Ti(κ2-tBuNCNtBu) (3) (Cp = cyclopentadienyl, tBu = tert-butyl), a strained 4-membered metallacycle bearing a free carbene, is described. Computational (DFT, CASSCF, QT-AIM, ELF) and solid-state CP-MAS 13C NMR spectroscopic analysis indicate that 3 is best described as a free carbene with partial Ti-Cβ bonding that results from Ti-N π-bonding mixing with N-C-N σ-bonding of the bent N-C-N framework. Reactivity studies of 3 corroborate its carbene-like nature: protonation with [LutH]I results in the formation of a Ti-formamidinate (4), while oxidation with S8 yields a Ti-thioureate (5). Additionally, a related bridged dititanamidocarbene, (Cp2Ti)2(μ-η1,η1-CyNCNCy) (10) (Cy = cyclohexyl) is reported. Taken together, this work suggests that the 2-electron reduction of heterocumulene moieties can allow access to unusual free carbene coordination geometries given the proper stabilizing coordination environment from the reducing transition metal fragment.
Collapse
Affiliation(s)
- Evan P. Beaumier
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Christopher P. Gordon
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093 Zürich, Switzerland
| | - Robin P. Harkins
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Meghan E. McGreal
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Xuelan Wen
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093 Zürich, Switzerland
| | - Jason D. Goodpaster
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Ian A. Tonks
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| |
Collapse
|
22
|
Jestilä JS, Denton JK, Perez EH, Khuu T, Aprà E, Xantheas SS, Johnson MA, Uggerud E. Characterization of the alkali metal oxalates (MC 2O 4-) and their formation by CO 2 reduction via the alkali metal carbonites (MCO 2-). Phys Chem Chem Phys 2020; 22:7460-7473. [PMID: 32219243 DOI: 10.1039/d0cp00547a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction of carbon dioxide to oxalate has been studied by experimental Collisionally Induced Dissociation (CID) and vibrational characterization of the alkali metal oxalates, supplemented by theoretical electronic structure calculations. The critical step in the reductive process is the coordination of CO2 to an alkali metal anion, forming a metal carbonite MCO2- able to subsequently receive a second CO2 molecule. While the energetic demand for these reactions is generally low, we find that the degree of activation of CO2 in terms of charge transfer and transition state energies is the highest for lithium and systematically decreases down the group (M = Li-Cs). This is correlated to the strength of the binding interaction between the alkali metal and CO2, which can be related to the structure of the oxalate moiety within the product metal complexes evolving from a planar to a staggered conformer with increasing atomic number of the interacting metal. Similar structural changes are observed for crystalline alkali metal oxalates, although the C2O42- moiety is in general more planar in these, a fact that is attributed to the increased number of interacting alkali metal cations compared to the gas-phase ions.
Collapse
Affiliation(s)
- Joakim S Jestilä
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0135, Norway.
| | - Joanna K Denton
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | - Evan H Perez
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | - Thien Khuu
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | - Edoardo Aprà
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Sotiris S Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington, USA and Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | - Einar Uggerud
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0135, Norway.
| |
Collapse
|
23
|
Viasus CJ, Gabidullin B, Gambarotta S. Linear End-On Coordination Modes of CO 2. Angew Chem Int Ed Engl 2019; 58:14887-14890. [PMID: 31329324 DOI: 10.1002/anie.201907651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Indexed: 11/05/2022]
Abstract
The second case of linear end-on and evidence for an unprecedented bridging end-on coordination mode of CO2 have been discovered for vanadium aryloxide complexes of the tetradentate ligand system (ONNO)2- (ONNO=2,4-Me2 -2-(OH) C6 H2 CH2 ]2 N(CH2 )2 NMe2 ). The reaction of divalent (ONNO)VII (TMEDA) with CO2 and under the appropriate reaction conditions affords the trivalent (ONNO)VIII (OH)(η1 -CO2 ) resulting from an intermediate CO2 deoxygenation pathway followed by H-atom abstraction from the aromatic solvent, and CO2 fixation. In contrast, the reduction of trivalent (ONNO)VIII Cl(THF) with K, followed by exposure to CO2 in ethereal solvent, afforded the dinuclear [(ONNO)VII ]2 (μ, η1 -CO2 ).
Collapse
Affiliation(s)
- Camilo J Viasus
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Sandro Gambarotta
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
24
|
Linear End‐On Coordination Modes of CO
2. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Magnall R, Balázs G, Lu E, Kern M, Slageren J, Tuna F, Wooles AJ, Scheer M, Liddle ST. Photolytic and Reductive Activations of 2‐Arsaethynolate in a Uranium–Triamidoamine Complex: Decarbonylative Arsenic‐Group Transfer Reactions and Trapping of a Highly Bent and Reduced Form. Chemistry 2019; 25:14246-14252. [DOI: 10.1002/chem.201903973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Rosie Magnall
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 Regensburg 93053 Germany
| | - Erli Lu
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Michal Kern
- Institute of Physical ChemistryUniversity of Stuttgart Pfaffenwaldring 55 Stuttgart 70569 Germany
| | - Joris Slageren
- Institute of Physical ChemistryUniversity of Stuttgart Pfaffenwaldring 55 Stuttgart 70569 Germany
| | - Floriana Tuna
- School of Chemistry and Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 Regensburg 93053 Germany
| | - Stephen T. Liddle
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
26
|
|
27
|
Magnall R, Balázs G, Lu E, Tuna F, Wooles AJ, Scheer M, Liddle ST. Trapping of a Highly Bent and Reduced Form of 2‐Phosphaethynolate in a Mixed‐Valence Diuranium–Triamidoamine Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rosie Magnall
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 93053 Regensburg Germany
| | - Erli Lu
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Floriana Tuna
- School of Chemistry and Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 93053 Regensburg Germany
| | - Stephen T. Liddle
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
28
|
Magnall R, Balázs G, Lu E, Tuna F, Wooles AJ, Scheer M, Liddle ST. Trapping of a Highly Bent and Reduced Form of 2-Phosphaethynolate in a Mixed-Valence Diuranium-Triamidoamine Complex. Angew Chem Int Ed Engl 2019; 58:10215-10219. [PMID: 31125153 DOI: 10.1002/anie.201904676] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 11/07/2022]
Abstract
The chemistry of 2-phosphaethynolate is burgeoning, but there remains much to learn about this ligand, for example its reduction chemistry is scarce as this promotes P-C-O fragmentations or couplings. Here, we report that reduction of [U(TrenTIPS )(OCP)] (TrenTIPS =N(CH2 CH2 NSiPri 3 )3 ) with KC8 /2,2,2-cryptand gives [{U(TrenTIPS )}2 {μ-η2 (OP):η2 (CP)-OCP}][K(2,2,2-cryptand)]. The coordination mode of this trapped 2-phosphaethynolate is unique, and derives from an unprecedented highly reduced and highly bent form of this ligand with the most acute P-C-O angle in any complex to date (P-C-O ∡ ≈127°). The characterisation data support a mixed-valence diuranium(III/IV) formulation, where backbonding from uranium gives a highly reduced form of the P-C-O unit that is perhaps best described as a uranium-stabilised OCP2-. radical dianion. Quantum chemical calculations reveal that this gives unprecedented carbene character to the P-C-O unit, which engages in a weak donor-acceptor interaction with one of the uranium ions.
Collapse
Affiliation(s)
- Rosie Magnall
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr.31, 93053, Regensburg, Germany
| | - Erli Lu
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Floriana Tuna
- School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ashley J Wooles
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr.31, 93053, Regensburg, Germany
| | - Stephen T Liddle
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
29
|
Dalle K, Warnan J, Leung JJ, Reuillard B, Karmel IS, Reisner E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem Rev 2019; 119:2752-2875. [PMID: 30767519 PMCID: PMC6396143 DOI: 10.1021/acs.chemrev.8b00392] [Citation(s) in RCA: 460] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/31/2022]
Abstract
The synthesis of renewable fuels from abundant water or the greenhouse gas CO2 is a major step toward creating sustainable and scalable energy storage technologies. In the last few decades, much attention has focused on the development of nonprecious metal-based catalysts and, in more recent years, their integration in solid-state support materials and devices that operate in water. This review surveys the literature on 3d metal-based molecular catalysts and focuses on their immobilization on heterogeneous solid-state supports for electro-, photo-, and photoelectrocatalytic synthesis of fuels in aqueous media. The first sections highlight benchmark homogeneous systems using proton and CO2 reducing 3d transition metal catalysts as well as commonly employed methods for catalyst immobilization, including a discussion of supporting materials and anchoring groups. The subsequent sections elaborate on productive associations between molecular catalysts and a wide range of substrates based on carbon, quantum dots, metal oxide surfaces, and semiconductors. The molecule-material hybrid systems are organized as "dark" cathodes, colloidal photocatalysts, and photocathodes, and their figures of merit are discussed alongside system stability and catalyst integrity. The final section extends the scope of this review to prospects and challenges in targeting catalysis beyond "classical" H2 evolution and CO2 reduction to C1 products, by summarizing cases for higher-value products from N2 reduction, C x>1 products from CO2 utilization, and other reductive organic transformations.
Collapse
Affiliation(s)
| | | | - Jane J. Leung
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Bertrand Reuillard
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Isabell S. Karmel
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
30
|
|
31
|
Willauer AR, Toniolo D, Fadaei-Tirani F, Yang Y, Laurent M, Mazzanti M. Carbon dioxide reduction by dinuclear Yb(ii) and Sm(ii) complexes supported by siloxide ligands. Dalton Trans 2019; 48:6100-6110. [DOI: 10.1039/c9dt00554d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Low-coordinate dinuclear lanthanide complexes supported by siloxides effect the reduction of carbon dioxide to both carbonate and oxalate, but the cooperative binding of CO2 to the two Ln(ii) cations in the dimer favours oxalate formation.
Collapse
Affiliation(s)
- Aurélien R. Willauer
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Davide Toniolo
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Yan Yang
- Université de Toulouse et CNRS INSA
- UPS
- CNRS
- UMR 5215
- LPCNO
| | - Maron Laurent
- Université de Toulouse et CNRS INSA
- UPS
- CNRS
- UMR 5215
- LPCNO
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| |
Collapse
|
32
|
Chandra Sau S, Bhattacharjee R, Hota PK, Vardhanapu PK, Vijaykumar G, Govindarajan R, Datta A, Mandal SK. Transforming atmospheric CO 2 into alternative fuels: a metal-free approach under ambient conditions. Chem Sci 2018; 10:1879-1884. [PMID: 30842857 PMCID: PMC6371756 DOI: 10.1039/c8sc03581d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/29/2018] [Indexed: 11/21/2022] Open
Abstract
This work demonstrates the first-ever completely metal-free approach to the capture of CO2 from air followed by reduction to methoxyborane (which produces methanol on hydrolysis) or sodium formate (which produces formic acid on hydrolysis) under ambient conditions. This was accomplished using an abnormal N-heterocyclic carbene (aNHC)-borane adduct. The intermediate involved in CO2 capture (aNHC-H, HCOO, B(OH)3) was structurally characterized by single-crystal X-ray diffraction. Interestingly, the captured CO2 can be released by heating the intermediate, or by passing this compound through an ion-exchange resin. The capture of CO2 from air can even proceed in the solid state via the formation of a bicarbonate complex (aNHC-H, HCO3, B(OH)3), which was also structurally characterized. A detailed mechanism for this process is proposed based on tandem density functional theory calculations and experiments.
Collapse
Affiliation(s)
- Samaresh Chandra Sau
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246, Nadia , West Bengal , India .
| | - Rameswar Bhattacharjee
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A and 2B Raja S. C. Mullick Road, Jadavpur 700032 , Kolkata , West Bengal , India .
| | - Pradip Kumar Hota
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246, Nadia , West Bengal , India .
| | - Pavan K Vardhanapu
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246, Nadia , West Bengal , India .
| | - Gonela Vijaykumar
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246, Nadia , West Bengal , India .
| | - R Govindarajan
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246, Nadia , West Bengal , India .
| | - Ayan Datta
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A and 2B Raja S. C. Mullick Road, Jadavpur 700032 , Kolkata , West Bengal , India .
| | - Swadhin K Mandal
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246, Nadia , West Bengal , India .
| |
Collapse
|
33
|
Paparo A, Silvia JS, Spaniol TP, Okuda J, Cummins CC. Countercation Effect on CO
2
Binding to Oxo Titanate with Bulky Anilide Ligands. Chemistry 2018; 24:17072-17079. [DOI: 10.1002/chem.201803265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Albert Paparo
- Institute of Inorganic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
- Current address: School of ChemistryMonash University PO Box 23 VIC 3800 Australia
| | - Jared S. Silvia
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
| | - Thomas P. Spaniol
- Institute of Inorganic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Jun Okuda
- Institute of Inorganic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Christopher C. Cummins
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
| |
Collapse
|
34
|
Schindler T, Paparo A, Nishiyama H, Spaniol TP, Tsurugi H, Mashima K, Okuda J. Deprotonation of a formato ligand by a cis-coordinated carbyne ligand within a bis(phenolate) tungsten complex. Dalton Trans 2018; 47:13328-13331. [PMID: 30192356 DOI: 10.1039/c8dt03056a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deprotonation of a formato ligand by a cis-coordinated propylidyne ligand in a tungsten(vi) complex [(OSSO)W([triple bond, length as m-dash]CEt)(OCHO)] (3) that contains a tetradentate bis(phenolato) ligand (OSSO = {1,4-dithiabutanediyl-2,2'-bis(4,6-di-tert-butyl-phenolato)}) gave the dioxo complex [(OSSO)WO2] (4) along with CO, ethylene and propylene as major products of decomposition.
Collapse
Affiliation(s)
- Tobias Schindler
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Woen DH, Huh DN, Ziller JW, Evans WJ. Reactivity of Ln(II) Complexes Supported by (C5H4Me)1– Ligands with THF and PhSiH3: Isolation of Ring-Opened, Bridging Alkoxyalkyl, Hydride, and Silyl Products. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00419] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David H. Woen
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Daniel N. Huh
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - William J. Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
36
|
Viasus CJ, Alderman NP, Gabidullin B, Gambarotta S. Reaction of CO 2 with a Vanadium(II) Aryl Oxide: Synergistic Activation of CO 2 /Oxo Groups towards H-Atom Radical Abstraction. Angew Chem Int Ed Engl 2018; 57:10928-10932. [PMID: 29949678 DOI: 10.1002/anie.201805569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Indexed: 12/14/2022]
Abstract
Treatment of divalent (ONNO)V(TMEDA) (1; ONNO=[2,4-Me2 -2-(OH)C6 H2 CH2 ]2 N(CH2 )2 NMe2 ) with CO2 afforded [(ONNO)V]2 (μ-OH)(μ-formate) (2). Whereas the bridging hydroxo and formate groups both originated from CO2 , the H atoms present on the two residues were obtained through H-atom radical abstraction from the solvent. DFT calculations revealed an initially linear CO2 bonding mode, followed by deoxygenation, and highlighted a synergistic effect between the so-formed oxo group and an additional bridging CO2 residue in promoting radical behavior.
Collapse
Affiliation(s)
- Camilo J Viasus
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nicholas P Alderman
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Sandro Gambarotta
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
37
|
|
38
|
Viasus CJ, Alderman NP, Gabidullin B, Gambarotta S. Reaction of CO2
with a Vanadium(II) Aryl Oxide: Synergistic Activation of CO2
/Oxo Groups towards H-Atom Radical Abstraction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Camilo J. Viasus
- Department of Chemistry and Biomolecular Science; University of Ottawa; Ottawa ON K1N 6N5 Canada
| | - Nicholas P. Alderman
- Department of Chemistry and Biomolecular Science; University of Ottawa; Ottawa ON K1N 6N5 Canada
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Science; University of Ottawa; Ottawa ON K1N 6N5 Canada
| | - Sandro Gambarotta
- Department of Chemistry and Biomolecular Science; University of Ottawa; Ottawa ON K1N 6N5 Canada
| |
Collapse
|
39
|
Banerjee A, Kanan MW. Carbonate-Promoted Hydrogenation of Carbon Dioxide to Multicarbon Carboxylates. ACS CENTRAL SCIENCE 2018; 4:606-613. [PMID: 29806007 PMCID: PMC5968515 DOI: 10.1021/acscentsci.8b00108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 05/24/2023]
Abstract
CO2 hydrogenation is a potential alternative to conventional petrochemical methods for making commodity chemicals and fuels. Research in this area has focused mostly on transition-metal-based catalysts. Here we show that hydrated alkali carbonates promote CO2 hydrogenation to formate, oxalate, and other C2+ carboxylates at elevated temperature and pressure in the absence of transition-metal catalysts or solvent. The reactions proceed rapidly, reaching up to 56% yield (with respect to CO32-) within minutes. Isotope labeling experiments indicate facile H2 and C-H deprotonations in the alkali cation-rich reaction media and identify probable intermediates for the C-C bond formations leading to the various C2+ products. The carboxylate salts are in equilibrium with volatile carboxylic acids under CO2 hydrogenation conditions, which may enable catalytic carboxylic acid syntheses. Our results provide a foundation for base-promoted and base-catalyzed CO2 hydrogenation processes that could complement existing approaches.
Collapse
|
40
|
Zimmermann P, Hoof S, Braun-Cula B, Herwig C, Limberg C. A Biomimetic Nickel Complex with a Reduced CO2
Ligand Generated by Formate Deprotonation and Its Behaviour towards CO2. Angew Chem Int Ed Engl 2018; 57:7230-7233. [DOI: 10.1002/anie.201802655] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Philipp Zimmermann
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Santina Hoof
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Beatrice Braun-Cula
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Christian Herwig
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Christian Limberg
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
41
|
Abstract
Carbon dioxide conversion mediated by transition metal complexes continues to attract much attention because of its future potential utilization as a nontoxic and inexpensive C1 source for the chemical industry. Given the presence of nickel in natural systems that allow for extremely efficient catalysis, albeit in an Fe cluster arrangement, studies that focus on selective CO2 conversion with synthetic nickel species are currently of considerable interest in our group. In this Account, the selective conversion of CO2 to carbon monoxide occurring at a single nickel center is discussed. The chemistry is based on a series of related nickel pincer complexes with attention to the uniqueness of the coordination geometry, which is crucial in allowing for particular reactivity toward CO2. Our research is inspired by the efficient enzymatic CO2 catalysis occurring at the active site of carbon monoxide dehydrogenase. Since the binding and reactivity toward CO2 are controlled in part by the geometry of a L3Ni scaffold, we have explored the chemistry of low-valent nickel supported by PPMeP and PNP ligands, in which a pseudotetrahedral or square-planar geometry is accommodated. Two isolated nickel-CO2 adducts, (PPMeP)Ni(η2-CO2-κ C) (2) and {Na(12-C-4)2}{(PNP)Ni(η1-CO2-κ C)} (7), clearly demonstrate that the geometry of the nickel ion is crucial in the binding of CO2 and its level of activation. In the case of a square-planar nickel center supported by a PNP ligand, a series of bimetallic metallacarboxylate Ni-μ-CO2-κ C, O-M species (M = H, Na, Ni, Fe) were synthesized, and their structural features and reactivity were studied. Protonation cleaves the C-O bond, resulting in the formation of a nickel(II) monocarbonyl complex. By sequential reduction, the corresponding mono- and zero-valent Ni-CO species were produced. The reactivities of three nickel carbonyl species toward various iodoalkanes and CO2 were explored to address whether their corresponding reactivities could be controlled by the number of valence d electrons. In particular, a (PNP)Ni(0)-CO species (13) shows immediate reactivity toward CO2 but displays multiple product formation. By incorporation of a -CMe2- bridging unit, a structurally rigidified acriPNP ligand was newly designed and produced. This ligand modification was successful in preparing the T-shaped nickel(I) metalloradical species 9 exhibiting open-shell reactivity due to the sterically exposed nickel center possessing a half-filled d x2- y2 orbital. More importantly, the selective addition of CO2 to a nickel(0)-CO species was enabled to afford a nickel(II)-carboxylate species (22) with the expulsion of CO(g). Finally, the (acriPNP)Ni system provides a synthetic cycle in the study of the selective conversion of CO2 to CO that involves two-electron reduction of Ni-CO followed by the direct addition of CO2 to release the coordinated CO ligand.
Collapse
Affiliation(s)
- Changho Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeong-Eun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
42
|
Zimmermann P, Hoof S, Braun-Cula B, Herwig C, Limberg C. Ein biomimetischer Nickelkomplex mit einem reduzierten, durch Formiatdeprotonierung erzeugten CO2
-Liganden und sein Verhalten gegenüber CO2. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Philipp Zimmermann
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Santina Hoof
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Beatrice Braun-Cula
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Christian Herwig
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Christian Limberg
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
43
|
Paparo A, van Krüchten FD, Spaniol TP, Okuda J. Formate complexes of titanium(iv) supported by a triamido-amine ligand. Dalton Trans 2018; 47:3530-3537. [PMID: 29431800 DOI: 10.1039/c7dt04859a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The terminal formate complex [(OCHO)Ti(N3N)] (3) containing the trianionic triamido-amine ligand (Me3SiNCH2CH2)3N3- (N3N) was prepared via salt metathesis of [ClTi(N3N)] (1) with sodium formate or alternatively by treatment of the alkyl complex [nBuTi(N3N)] (2) with ammonium formate [HNEt3][OCHO]. Deprotonation of 3 with potassium hexamethyldisilazide gave a polymeric helical chain of the oxo complex {K[OTi(N3N)]}n (4). Reaction of 2 with the trityl salt [Ph3C][B(3,5-Cl2C6H3)4] or the Brønsted acid [HNEt3][B(C6F5)4] gave [(Et2O)Ti(N3N)][BR4] (6[BR4]·Et2O) with R = 3,5-Cl2C6H3 or C6F5. The diethyl ether ligand was easily replaced by other L-type donor ligands such as tetrahydrofuran, pyridine, and 4-dimethylaminopyridine to give 6[BR4]·L with L = thf, py, and dmap. Reaction of 6[BR4]·Et2O with a stoichiometric amount of CO2 gave the dimeric, dicationic bis(carbamate)-bridged complexes [Ti{N(CH2CH2NSiMe3)2(CH2CH2NSiMe3(μ-CO2-ηO:ηO'))}]2[BR4]2 (7[BR4]2) through insertion of one CO2 into one of the titanium-amido bonds. Addition of pyridine to 7[B(C6F5)4]2 formed the monomeric carbamate complex [(py)Ti{((O2C-κ2O,O')NSiMe3CH2CH2)N(CH2CH2NSiMe3)2}][B(C6F5)4] (8[B(C6F5)4]·py). The cationic formate-bridged species [(Ti(N3N))2(μ-OCHO-ηO:ηO')][BR4] (10[BR4]) readily formed when the terminal formate complex 3 was reacted with the cationic 6[BR4]. The reactivity of triamido-amine stabilized titanium(iv) complexes is shown to differ considerably from that of related titanium tris(anilide) complexes.
Collapse
Affiliation(s)
- A Paparo
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany.
| | | | | | | |
Collapse
|
44
|
Sahoo D, Yoo C, Lee Y. Direct CO 2 Addition to a Ni(0)-CO Species Allows the Selective Generation of a Nickel(II) Carboxylate with Expulsion of CO. J Am Chem Soc 2018; 140:2179-2185. [PMID: 29343060 DOI: 10.1021/jacs.7b11074] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Addition of CO2 to a low-valent nickel species has been explored with a newly designed acriPNP pincer ligand (acriPNP- = 4,5-bis(diisopropylphosphino)-2,7,9,9-tetramethyl-9H-acridin-10-ide). This is a crucial step in understanding biological CO2 conversion to CO found in carbon monoxide dehydrogenase (CODH). A four-coordinate nickel(0) state was reliably accessed in the presence of a CO ligand, which can be prepared from a stepwise reduction of a cationic {(acriPNP)Ni(II)-CO}+ species. All three Ni(II), Ni(I), and Ni(0) monocarbonyl species were cleanly isolated and spectroscopically characterized. Addition of electrons to the nickel(II) species significantly alters its geometry from square planar toward tetrahedral because of the filling of the dx2-y2 orbital. Accordingly, the CO ligand position changes from equatorial to axial, ∠N-Ni-C of 176.2(2)° to 129.1(4)°, allowing opening of a CO2 binding site. Upon addition of CO2 to a nickel(0)-CO species, a nickel(II) carboxylate species with a Ni(η1-CO2-κC) moiety was formed and isolated (75%). This reaction occurs with the concomitant expulsion of CO(g). This is a unique result markedly different from our previous report involving the flexible analogous PNP ligand, which revealed the formation of multiple products including a tetrameric cluster from the reaction with CO2. Finally, the carbon dioxide conversion to CO at a single nickel center is modeled by the successful isolation of all relevant intermediates, such as Ni-CO2, Ni-COOH, and Ni-CO.
Collapse
Affiliation(s)
- Dipankar Sahoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology , Daejeon 34141, Republic of Korea
| | - Changho Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology , Daejeon 34141, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology , Daejeon 34141, Republic of Korea
| |
Collapse
|
45
|
Yang Y, Yan L, Xie Q, Liang Q, Song D. Zwitterionic indenylammonium with carbon-centred reactivity towards reversible CO 2 binding and catalytic reduction. Org Biomol Chem 2018; 15:2240-2245. [PMID: 28230885 DOI: 10.1039/c7ob00364a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the synthesis and characterization of a zwitterionic indenylammonium compound and its carbon-centred reactivity towards reversible CO2 binding at ambient temperature through its formal insertion into a C-H bond as well as the catalytic hydroboration of CO2 to methanol derivatives.
Collapse
Affiliation(s)
- Yanxin Yang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Linfan Yan
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Qinyu Xie
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Qiuming Liang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
46
|
Woen DH, Chen GP, Ziller JW, Boyle TJ, Furche F, Evans WJ. End-On Bridging Dinitrogen Complex of Scandium. J Am Chem Soc 2017; 139:14861-14864. [DOI: 10.1021/jacs.7b08456] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- David H. Woen
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Guo P. Chen
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph W. Ziller
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Timothy J. Boyle
- Chemical
Synthesis and Nanomaterials Department, Sandia National Laboratories, Albuquerque, New Mexico 87106, United States
| | - Filipp Furche
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - William J. Evans
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
47
|
Grice KA. Carbon dioxide reduction with homogenous early transition metal complexes: Opportunities and challenges for developing CO 2 catalysis. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
48
|
|
49
|
Woen DH, Chen GP, Ziller JW, Boyle TJ, Furche F, Evans WJ. Solution Synthesis, Structure, and CO2
Reduction Reactivity of a Scandium(II) Complex, {Sc[N(SiMe3
)2
]3
}−. Angew Chem Int Ed Engl 2017; 56:2050-2053. [DOI: 10.1002/anie.201611758] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Indexed: 11/10/2022]
Affiliation(s)
- David H. Woen
- Department of Chemistry; University of California, Irvine; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| | - Guo P. Chen
- Department of Chemistry; University of California, Irvine; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| | - Joseph W. Ziller
- Department of Chemistry; University of California, Irvine; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| | - Timothy J. Boyle
- Sandia National Laboratories; Advanced Materials Laboratory; 1001 University Blvd. SE Albuquerque NM 87106 USA
| | - Filipp Furche
- Department of Chemistry; University of California, Irvine; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| | - William J. Evans
- Department of Chemistry; University of California, Irvine; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| |
Collapse
|
50
|
Woen DH, Chen GP, Ziller JW, Boyle TJ, Furche F, Evans WJ. Solution Synthesis, Structure, and CO2
Reduction Reactivity of a Scandium(II) Complex, {Sc[N(SiMe3
)2
]3
}−. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611758] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David H. Woen
- Department of Chemistry; University of California, Irvine; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| | - Guo P. Chen
- Department of Chemistry; University of California, Irvine; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| | - Joseph W. Ziller
- Department of Chemistry; University of California, Irvine; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| | - Timothy J. Boyle
- Sandia National Laboratories; Advanced Materials Laboratory; 1001 University Blvd. SE Albuquerque NM 87106 USA
| | - Filipp Furche
- Department of Chemistry; University of California, Irvine; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| | - William J. Evans
- Department of Chemistry; University of California, Irvine; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| |
Collapse
|