1
|
Liang E, Cheng K, Liu X, Xu M, Luo S, Ma C, Chen Z, Zhang Y, Liu S, Li W. Zinc cadmium sulphide-based photoreforming of biomass-based monosaccharides to lactic acid and efficient hydrogen production. J Colloid Interface Sci 2024; 683:432-445. [PMID: 39693881 DOI: 10.1016/j.jcis.2024.12.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Approaches that add value to biomass through the use of photoreforming reactions offer great opportunities for the efficient use of renewable resources. Here, we constructed a novel zinc cadmium sulphide/molybdenum dioxide-molybdenum carbide-carbon (ZnxCd1-xS-y/MoO2-Mo2C-C) heterojunction which was applied to photoreforming of biomass-based monosaccharides for hydrogen and lactic acid production. Bandgap engineering effectively modulated the redox capacity of ZnxCd1-xS-y and exposed more (101) crystalline surfaces, which improved the lactic acid selectivity. The MoO2-Mo2C-C (MC) co-catalysts had unique microstructures that increased the light absorption range and the number of active sites of ZnxCd1-xS-y. These features effectively promoted the separation and migration of photogenerated carriers, which in turn enhanced the photoreforming activity. The optimised Zn0.4Cd0.6S-0/MC composites exhibited superior photocatalytic activity with a hydrogen yield of 12.2 mmol/g/h. Conversion of biomass-based monosaccharides was approximately 100 %, where xylose had the greatest lactic acid selectivity (64.1 %). Active species, including h+, ⋅O2-, ⋅OH, and 1O2, all favoured lactic acid production, where ⋅O2- played a major role in the conversion. This study demonstrates that rational design of photocatalysts can achieve the selective conversion of biomass into high value-added chemicals as well as the generation of clean energy.
Collapse
Affiliation(s)
- Ermiao Liang
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Ke Cheng
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xue Liu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Mingcong Xu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Sha Luo
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Chunhui Ma
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Zhijun Chen
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Yahui Zhang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Shouxin Liu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Wei Li
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Zhao Q, Zeng Y, Jiang Z, Huang Z, Long DL, Cronin L, Xuan W. High-Nuclearity Polyoxometalate-Based Metal-Organic Frameworks for Photocatalytic Oxidative Cleavage of C-C Bond. Angew Chem Int Ed Engl 2024:e202421132. [PMID: 39653655 DOI: 10.1002/anie.202421132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
High-nuclearity polyoxometalate (POM) clusters are attractive building blocks (BBs) for the synthesis of metal-organic frameworks (MOFs) due to their high connectivity and inherently multiple metal centers as functional sites. This work demonstrates a strategy of step-wise growth on ring-shaped [P8W48O184]40- precursor, which produced two new high-nuclearity polyoxotungstates, a half-closed [H16P8W58O218]32- {W58} and a fully-closed [H16P8W64O236]32- {W64}. By in situ synthesis, unique MOFs of copper triazole-benzoic acid (HL) complexes incorporating the negatively-charged {W58} and {W64} as nodes, {Cu11(HL)9W58} HNPOMOF-1 and {Cu9(HL)9W64} HNPOMOF-2, were constructed by delicately tuning the reaction conditions, mainly solution pH, which controls the formation of {W58} and {W64}, and at the same time the protonation of triazole-benzoic acid ligand thus its coordination mode to copper ion that creates the highest nuclearity POM-derived MOFs reported to date. HNPOMOF-1 features 3D framework possessing cage-like cavities filled with exposed carboxyl groups, while the inherent 2D layer-like HNPOMOF-2 allows for facile exfoliation into ultrathin nanosheets, and the resulted HNPOMOF-2NS exhibits superior activity towards photocatalytic oxidative cleavage of C-C bond for a series of lignin models. This work not only provides a strategy to build high-nuclearity POM cluster-based frameworks, but also demonstrates their great potential as functional materials for green catalysis.
Collapse
Affiliation(s)
- Qixin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yang Zeng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhiqiang Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhenxuan Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - De-Liang Long
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Leroy Cronin
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Weimin Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
3
|
Zhou S, Chen C, Xia J, Li L, Qian X, Yin FX, He G, Chen Q, Chen H. FeN 4S 1 Single-Atom Sites Anchored on Three-Dimensional Porous Carbon for Highly Efficient and Durable Oxygen Electrocatalysis. ACS NANO 2024; 18:32995-33004. [PMID: 39528350 DOI: 10.1021/acsnano.4c15410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Precisely designing asymmetric active centers and exploring their electronic regulation effects to prepare efficient bifunctional single-atom catalysts (SACs) is important for boosting the practical applications of zinc-air batteries (ZABs). Herein, an effective strategy has been developed by introducing an axial S atom to the FeN4 active center, simultaneously assisted by pyrolyzing the graphene oxide (GO) sheathed zeolitic-imidazolate framework-8 (ZIF8) composite and constructing a three-dimensional (3D) porous framework with abundant FeN4S1 moieties. This structure can accelerate the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics owing to the modulated electronic redistribution and d-band center with a reduced energy barrier. The optimal S-Fe-NC/rGO showcases a lower voltage gap (ΔE) of 0.64 V between both the ORR and OER half-wave potentials at 10 mA cm-2, highlighting the excellent bifunctional activities. The assembled S-Fe-NC/rGO rechargeable liquid ZABs deliver a power density of 154.05 mW·cm-2 and a desirable durability of >900 h. More importantly, the corresponding flexible solid-state ZABs exhibit considerable foldability.
Collapse
Affiliation(s)
- Shilong Zhou
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Chao Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Jiawei Xia
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Xingyue Qian
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Feng-Xiang Yin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Qun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| |
Collapse
|
4
|
Payam AF, Khalil S, Chakrabarti S. Synthesis and Characterization of MOF-Derived Structures: Recent Advances and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310348. [PMID: 38660830 DOI: 10.1002/smll.202310348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Due to their facile tunability, metal-organic frameworks (MOFs) are employed as precursors and templates to construct advanced functional materials with unique and desired chemical, physical, mechanical, and morphological properties. By tuning MOF precursor composition and manipulating conversion processes, various MOF-derived materials commonly known as MOF derivatives can be constructed. The possibility of controlled and predictable properties makes MOF derivatives a preferred choice for numerous advanced technological applications. The innovative synthetic designs besides the plethora of interdisciplinary characterization approaches applicable to MOF derivatives provide the opportunity to perform a myriad of experiments to explore the performance and offer key insight to develop the next generation of advanced materials. Though there are many published works of literature describing various synthesis and characterization techniques of MOF derivatives, it is still not clear how the synthesis mechanism works and what are the best techniques to characterize these materials to probe their properties accurately. In this review, the recent development in synthesis techniques and mechanisms for a variety of MOF derivates such as MOF-derived metal oxides, porous carbon, composites/hybrids, and sulfides is summarized. Furthermore, the details of characterization techniques and fundamental working principles are summarized to probe the structural, mechanical, physiochemical, electrochemical, and electronic properties of MOF and MOF derivatives. The future trends and some remaining challenges in the synthesis and characterization of MOF derivatives are also discussed.
Collapse
Affiliation(s)
- Amir Farokh Payam
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| | - Sameh Khalil
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| | - Supriya Chakrabarti
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| |
Collapse
|
5
|
Ma T, Yan R, Wu X, Wang M, Yin B, Li S, Cheng C, Thomas A. Polyoxometalate-Structured Materials: Molecular Fundamentals and Electrocatalytic Roles in Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310283. [PMID: 38193756 DOI: 10.1002/adma.202310283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Polyoxometalates (POMs), a kind of molecular metal oxide cluster with unique physical-chemical properties, have made essential contributions to creating efficient and robust electrocatalysts in renewable energy systems. Due to the fundamental advantages of POMs, such as the diversity of molecular structures and large numbers of redox active sites, numerous efforts have been devoted to extending their application areas. Up to now, various strategies of assembling POM molecules into superstructures, supporting POMs on heterogeneous substrates, and POMs-derived metal compounds have been developed for synthesizing electrocatalysts. From a multidisciplinary perspective, the latest advances in creating POM-structured materials with a unique focus on their molecular fundamentals, electrocatalytic roles, and the recent breakthroughs of POMs and POM-derived electrocatalysts, are systematically summarized. Notably, this paper focuses on exposing the current states, essences, and mechanisms of how POM-structured materials influence their electrocatalytic activities and discloses the critical requirements for future developments. The future challenges, objectives, comparisons, and perspectives for creating POM-structured materials are also systematically discussed. It is anticipated that this review will offer a substantial impact on stimulating interdisciplinary efforts for the prosperities and widespread utilizations of POM-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Arne Thomas
- Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| |
Collapse
|
6
|
Ghouri ZK, Hughes DJ, Ahmed K, Elsaid K, Nasef MM, Badreldin A, Abdel-Wahab A. Nanoengineered, Pd-doped Co@C nanoparticles as an effective electrocatalyst for OER in alkaline seawater electrolysis. Sci Rep 2023; 13:20866. [PMID: 38012177 PMCID: PMC10682028 DOI: 10.1038/s41598-023-46292-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
Water electrolysis is considered one of the major sources of green hydrogen as the fuel of the future. However, due to limited freshwater resources, more interest has been geared toward seawater electrolysis for hydrogen production. The development of effective and selective electrocatalysts from earth-abundant elements for oxygen evolution reaction (OER) as the bottleneck for seawater electrolysis is highly desirable. This work introduces novel Pd-doped Co nanoparticles encapsulated in graphite carbon shell electrode (Pd-doped CoNPs@C shell) as a highly active OER electrocatalyst towards alkaline seawater oxidation, which outperforms the state-of-the-art catalyst, RuO2. Significantly, Pd-doped CoNPs@C shell electrode exhibiting low OER overpotential of ≈213, ≈372, and ≈ 429 mV at 10, 50, and 100 mA/cm2, respectively together with a small Tafel slope of ≈ 120 mV/dec than pure Co@C and Pd@C electrode in alkaline seawater media. The high catalytic activity at the aforementioned current density reveals decent selectivity, thus obviating the evolution of chloride reaction (CER), i.e., ∼490 mV, as competitive to the OER. Results indicated that Pd-doped Co nanoparticles encapsulated in graphite carbon shell (Pd-doped CoNPs@C electrode) could be a very promising candidate for seawater electrolysis.
Collapse
Affiliation(s)
- Zafar Khan Ghouri
- School of Computing, Engineering and Digital Technologies, Teesside University, Tees Valley, Middlesbrough, TS1 3BX, UK.
- Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - David James Hughes
- School of Computing, Engineering and Digital Technologies, Teesside University, Tees Valley, Middlesbrough, TS1 3BX, UK
| | - Khalid Ahmed
- International Center for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Khaled Elsaid
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. 23874, Doha, Qatar
| | - Mohamed Mahmoud Nasef
- Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Ahmed Badreldin
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. 23874, Doha, Qatar
| | - Ahmed Abdel-Wahab
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. 23874, Doha, Qatar.
| |
Collapse
|
7
|
Zhang M, Xue H, Han X, Zhang Z, Jiang Y, Deng Y, Hu W. Accelerate charge separation in Cu 2O/MoO 2 photocathode for photoelectrocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 650:284-293. [PMID: 37413862 DOI: 10.1016/j.jcis.2023.06.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Photoelectrocatalyzing water reduction is a potential approach to building a green and sustainable society. As a benchmark photocathode, Cu2O receives much attention but faces serious charge recombination and photocorrosion. This work prepared an excellent Cu2O/MoO2 photocathode via in situ electrodeposition. A systematical study of theory and experiment demonstrates that MoO2 not only effectively passivates the surface state of Cu2O as well as accelerates reaction kinetics as a cocatalyst, but also promotes the directional migration and separation of photogenerated charge. As expected, the constructed photocathode exhibits a highly enhanced photocurrent density and an appealing energy transformation efficacy. Importantly, MoO2 can inhibit the reduction of Cu+ in Cu2O via a formed internal electric field and shows excellent photoelectrochemical stability. These findings pave the way to designing a high-activity photocathode with high stability.
Collapse
Affiliation(s)
- Mengmeng Zhang
- State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Xue
- School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Zhijia Zhang
- State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yong Jiang
- State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Yida Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
8
|
Li S, Li J, Zhu H, Zhang L, Sang X, Zhu Z, You W, Zhang F. Development of polyoxometalate-based Ag-H 2biim inorganic-organic hybrid compounds functionalized for the acid electrocatalytic hydrogen evolution reaction. Dalton Trans 2023; 52:15725-15733. [PMID: 37843464 DOI: 10.1039/d3dt02820h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The electrocatalytic hydrogen evolution reaction (HER) is an ideal method for hydrogen production. Transition metal complex electrocatalysts exhibit poor HER activity due to excessive or weak adsorption of H during the electrochemical reduction of water to molecular hydrogen in acidic environments. Developing specific functional complex materials as desired catalysts is challenging. Here, an electrochemical surface restructuring strategy of polyoxometalate (POM)-modified Ag materials toward the HER with a dramatically decreased overpotential under acidic aqueous conditions is established. We prepared two POM [SiW12O40]4- (SiW12)/[P2W18O62]6- (P2W18)-based Ag-2,2'-biimidazole (H2biim) inorganic-organic hybrid compounds (1 and 2) via the hydrothermal method and these two compounds undergo an electrochemical restructuring process in 0.5 M H2SO4 during the HER, in which Ag nanoparticles are in situ formed with the basic structures of SiW12 and P2W18 being maintained. The activated catalysts (1-AC-RDE and 2-AC-RDE) exhibit good electrocatalytic activity for the HER with good long-term stability, and the required overpotentials at a current density of 10 mA cm-2 are 112 mV (1-AC-RDE) and 91 mV (2-AC-RDE) with Tafel slopes of 77 mV dec-1 and 65 mV dec-1, respectively. The excellent electron-proton storage and transferability of SiW12 and P2W18 may provide a solution for the insufficient capture of H by Ag, leading to an effective self-optimizing behavior and superior acidic HER activity.
Collapse
Affiliation(s)
- Sifan Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China.
- Department of Biochemical Engineering, Chaoyang Teachers College, Chaoyang 122000, Liaoning, China
| | - Jiansheng Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China.
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, Liaoning, China.
| | - Haotian Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China.
| | - Liyuan Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China.
| | - Xiaojing Sang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China.
| | - Zaiming Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China.
| | - Wansheng You
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China.
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, Liaoning, China.
| |
Collapse
|
9
|
Jo YM, Jo YK, Lee JH, Jang HW, Hwang IS, Yoo DJ. MOF-Based Chemiresistive Gas Sensors: Toward New Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206842. [PMID: 35947765 DOI: 10.1002/adma.202206842] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The sensing performances of gas sensors must be improved and diversified to enhance quality of life by ensuring health, safety, and convenience. Metal-organic frameworks (MOFs), which exhibit an extremely high surface area, abundant porosity, and unique surface chemistry, provide a promising framework for facilitating gas-sensor innovations. Enhanced understanding of conduction mechanisms of MOFs has facilitated their use as gas-sensing materials, and various types of MOFs have been developed by examining the compositional and morphological dependences and implementing catalyst incorporation and light activation. Owing to their inherent separation and absorption properties and catalytic activity, MOFs are applied as molecular sieves, absorptive filtering layers, and heterogeneous catalysts. In addition, oxide- or carbon-based sensing materials with complex structures or catalytic composites can be derived by the appropriate post-treatment of MOFs. This review discusses the effective techniques to design optimal MOFs, in terms of computational screening and synthesis methods. Moreover, the mechanisms through which the distinctive functionalities of MOFs as sensing materials, heterostructures, and derivatives can be incorporated in gas-sensor applications are presented.
Collapse
Affiliation(s)
- Young-Moo Jo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Yong Kun Jo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jong-Heun Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - In-Sung Hwang
- Sentech Gmi Co. Ltd, Seoul, 07548, Republic of Korea
| | - Do Joon Yoo
- SentechKorea Co. Ltd, Paju, 10863, Republic of Korea
| |
Collapse
|
10
|
Xu C, Chang P, Liu Z, Guan L, Wang X, Tao J. Electrochemical activated molybdenum oxides based multiphase heterostructures with high hydrogen evolution activity in alkaline condition. NANOTECHNOLOGY 2023; 34:465402. [PMID: 37579742 DOI: 10.1088/1361-6528/acefd9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Electrochemical activation is an effective method for synthesizing economically feasible heterogeneous hydrogen evolution reaction (HER) electrocatalysts. Herein, we first synthesized MoO2-Co2Mo3O8precatalyst, which was electrochemically activated to produce K2Mo3O10within the original phase to form the heterogeneous structure. The electrochemically activated samples demonstrate exceptional HER activity in alkaline medium, which exhibit a low overpotential of 31 mV at current density of 10 mA cm-2(135 mV at 100 mA cm-2), as well as a small Tafel slope of 34 mV dec-1. This is due to the creation of multiphase heterostructures that prompt interfacial interactions and accelerate charge transfer. Simultaneously, the creation of additional active sites increases their intrinsic activities. The combined effects collectively enhance the HER performance. The application of this method in the preparation of HER catalysts is still relatively unexplored, thus rendering our work a pioneering contribution to the field.
Collapse
Affiliation(s)
- Chao Xu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| | - Pu Chang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| | - Zongli Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| | - Lixiu Guan
- School of Sciences, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Xiaohu Wang
- Ulanqab Key Laboratory of graphite (graphene) new materials, Rising Graphite Applied Technology Research Institute, Ulanqab, Inner Mongolia, 013650, People's Republic of China
| | - Junguang Tao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| |
Collapse
|
11
|
Zeb Z, Huang Y, Chen L, Zhou W, Liao M, Jiang Y, Li H, Wang L, Wang L, Wang H, Wei T, Zang D, Fan Z, Wei Y. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
12
|
Research progress of POMs constructed by 1,3,5-benzene-tricarboxylic acid: From synthesis to application. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Sun G, Liu D, Li M, Tao S, Guan Z, Chen Y, Liu S, Du Q, Guo H, Yuan X, Zhang X, Zhu H, Liu B, Pan Y. Atomic coordination structural dynamic evolution of single-atom Mo catalyst for promoting H 2 activation in slurry phase hydrocracking. Sci Bull (Beijing) 2023; 68:503-515. [PMID: 36858839 DOI: 10.1016/j.scib.2023.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Development of efficient catalysts with high atomic utilization and turnover frequency (TOF) for H2 activation in slurry phase hydrocracking (SPHC) is crucial for the conversion of vacuum residue (VR). Herein, for the first time, we reported a robust and stable single atoms (SAs) Mo catalyst through a polymerization-pyrolysis-in situ sulfurization strategy for activating H2 in SPHC of VR. An interesting atomic coordination structural dynamic evolution of Mo active sites was discovered. During hydrocracking of VR, the O atoms that coordinated with Mo were gradually replaced by S atoms, which led to the O/S exchange process. The coordination structure of the Mo SAs changed from pre-reaction Mo-O3S1 to post-reaction Mo-O1S3 coordination configurations, promoting the efficient homolytic cleavage activation of H2 into H radical species effectively. The evolved Mo SAs catalyst exhibited robust catalytic hydrogenation activity with the per pass conversion of VR of 65 wt%, product yield of liquid oils of 93 wt%, coke content of only 0.63 wt%, TOF calculated for total metals up to 0.35 s-1, and good cyclic stability. Theoretical calculation reveals that the significant variation of occupied Mo 4d states before and after H2 interaction has a direct bearing on the dynamic evolution of Mo SAs catalyst structure. The lower d-band center of Mo-O1S3 site indicates that atomic H diffusion is easy, which is conducive to catalytic hydrogenation. The finding of this study is of great significance to the development of high atom economy catalysts for the industrial application of heavy oil upgrading technology.
Collapse
Affiliation(s)
- Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongyuan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Zekun Guan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yanfei Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Shihuan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Qingzhou Du
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Han Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Xinyue Yuan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Xinying Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Houyu Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Bin Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
14
|
Li L, Liu Z, Yu X, Zhong M. Achieving High Single-Pass Carbon Conversion Efficiencies in Durable CO 2 Electroreduction in Strong Acids via Electrode Structure Engineering. Angew Chem Int Ed Engl 2023; 62:e202300226. [PMID: 36810852 DOI: 10.1002/anie.202300226] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Acidic CO2 reduction (CO2 R) holds promise for the synthesis of low-carbon-footprint chemicals using renewable electricity. However, the corrosion of catalysts in strong acids causes severe hydrogen evolution and rapid deterioration of CO2 R performance. Here, by coating catalysts with an electrically nonconductive nanoporous SiC-NafionTM layer, a near-neutral pH was stabilized on catalyst surfaces, thereby protecting the catalysts against corrosion for durable CO2 R in strong acids. Electrode microstructures played a critical role in regulating ion diffusion and stabilizing electrohydrodynamic flows near catalyst surfaces. This surface-coating strategy was applied to three catalysts, SnBi, Ag, and Cu, and they exhibited high activity over extended CO2 R operation in strong acids. Using a stratified SiC-NafionTM /SnBi/polytetrafluoroethylene (PTFE) electrode, constant production of formic acid was achieved with a single-pass carbon efficiency of >75 % and Faradaic efficiency of >90 % at 100 mA cm-2 over 125 h at pH 1.
Collapse
Affiliation(s)
- Le Li
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, China
| | - Zhaoyang Liu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, China
| | - Xiaohan Yu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, China
| | - Miao Zhong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, China
| |
Collapse
|
15
|
Zhang Q, Cui C, Wang Z, Deng F, Qiu S, Zhu Y, Jing B. Mott Schottky CoS x-MoO x@NF heterojunctions electrode for H 2 production and urea-rich wastewater purification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160170. [PMID: 36379335 DOI: 10.1016/j.scitotenv.2022.160170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The sluggish kinetics of oxygen evolution reaction (OER) is the bottleneck of alkaline water electrolysis. The urea oxidation reaction (UOR) with much faster kinetics was to replace OER. To further promote UOR, a heterojunction structure assembled of CoSx and MoOx was established, and then its superior catalytic activity was predicted by DFT calculation. After that, an ultra-thin CoSx-MoOx@nickel foam (CoSx-MoOx@NF) electrode with a Mott-Schottky structure was prepared via a facile hydrothermal method, followed by a low-temperature vulcanization. Results highlighted CoSx-MoOx@NF electrode presented a superior performance toward UOR, OER, and H2 evolution reaction (HER). Notably, it exhibited excellent electrocatalytic performance for OER (1.32 V vs. RHE, 10 mA cm-2), UOR (1.305 V vs. RHE, 10 mA cm-2), and urea-assisted overall water splitting with a low voltage (1.38 V, 10 mA cm-2) when CoSx-MoOx@NF electrode served as both anode and cathode. It is promising to use CoSx-MoOx@NF in an electrochemical system integrated with H2 generation and urea-rich wastewater purification.
Collapse
Affiliation(s)
- Qiwei Zhang
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chongwei Cui
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhuowen Wang
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fengxia Deng
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shan Qiu
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yingshi Zhu
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Baojian Jing
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
16
|
Sakthinathan I, Köhling J, Wagner V, McCormac T. Layer-by-Layer Construction of a Nanoarchitecture by Polyoxometalates and Polymers: Enhanced Electrochemical Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2861-2872. [PMID: 36598164 DOI: 10.1021/acsami.2c17397] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this contribution, a nanoarchitectural approach was employed to produce a nanolayer of polyoxometalate (POM) on the surface of a glassy carbon electrode (GCE) to achieve a higher surface area with higher electrocatalytic activity toward the electrochemical hydrogen evolution reaction (HER). To accomplish this, the well-known layer-by-layer (LbL) technique was employed, which involved the alternate adsorption of the POM, Na0.3[N(C4H9)4]7.7 [(Mo3O8)4(O3PC(O)(C3H6NH2CH2C4H3S)PO3)4], abbreviated as [(TBA)Mo12(AleThio)4], and polyethyleneimine (PEI) polymer. This nanolayered electrode exhibited catalytic properties toward the HER in 0.5 M H2SO4 with the resulting polarization curves indicating an increase in the HER activity with the increasing number of POM layers, and the overpotential required for this reaction was lowered by 0.83 V when compared with a bare GCE. The eighth PEI/[(TBA)Mo12(AleThio)4] bilayer exhibited a significantly lower HER overpotential of -0.077 V at a current density of 10 mA cm-2. Surface characterization of the LbL-assembled nanolayers was carried out using X-ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy. We believe that the synergetic effect of the positively charged PEI polymer and the catalytically active molybdate POM is the cause for the successful response to the electrochemical HER.
Collapse
Affiliation(s)
- Indherjith Sakthinathan
- Electrochemistry Research Group, Department of Applied Science, Dundalk Institute of Technology, Dublin Road, Dundalk A91K584, County Louth, Ireland
| | - Jonas Köhling
- Physics & Earth Sciences, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Veit Wagner
- Physics & Earth Sciences, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Timothy McCormac
- Electrochemistry Research Group, Department of Applied Science, Dundalk Institute of Technology, Dublin Road, Dundalk A91K584, County Louth, Ireland
| |
Collapse
|
17
|
kumar P, Arumugam M, Maia G, Praserthdam S, Praserthdam P. Double role of CTAB as a surfactant and carbon source in Ni-Mo2C/GA composite: as a highly active electrocatalyst for hydrogen evolution reaction. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Murmantsev A, Veklich A, Boretskij V. Optical emission spectroscopy of plasma of electric spark discharge between metal granules in liquid. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Huang Y, Zhou W, Kong W, Chen L, Lu X, Cai H, Yuan Y, Zhao L, Jiang Y, Li H, Wang L, Wang L, Wang H, Zhang J, Gu J, Fan Z. Atomically Interfacial Engineering on Molybdenum Nitride Quantum Dots Decorated N-doped Graphene for High-Rate and Stable Alkaline Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204949. [PMID: 36285692 PMCID: PMC9799021 DOI: 10.1002/advs.202204949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The development of low-cost, high-efficiency, and stable electrocatalysts for hydrogen evolution reaction (HER) under alkaline conditions is a key challenge in water electrolysis. Here, an interfacial engineering strategy that is capable of simultaneously regulating nanoscale structure, electronic structure, and interfacial structure of Mo2 N quantum dots decorated on conductive N-doped graphene via codoping single-atom Al and O (denoted as AlO@Mo2 N-NrGO) is reported. The conversion of Anderson polyoxometalates anion cluster ([AlMo6 O24 H6 ]3- , denoted as AlMo6) to Mo2 N quantum dots not only result in the generation of more exposed active sites but also in situ codoping atomically dispersed Al and O, that can fine-tune the electronic structure of Mo2 N. It is also identified that the surface reconstruction of AlOH hydrates in AlO@Mo2 N quantum dots plays an essential role in enhancing hydrophilicity and lowering the energy barriers for water dissociation and hydrogen desorption, resulting in a remarkable alkaline HER performance, even better than the commercial 20% Pt/C. Moreover, the strong interfacial interaction (MoN bonds) between AlO@Mo2 N and N-doped graphene can significantly improve electron transfer efficiency and interfacial stability. As a result, outstanding stability over 300 h at a current density higher than 100 mA cm-2 is achieved, demonstrating great potential for the practical application of this catalyst.
Collapse
Affiliation(s)
- Yichao Huang
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Wenbo Zhou
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Weichao Kong
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Lulu Chen
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Xiaolong Lu
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Hanqing Cai
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Yongrui Yuan
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Lianming Zhao
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Yangyang Jiang
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Haitao Li
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Limin Wang
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Lin Wang
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Hang Wang
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Jiangwei Zhang
- College of Energy Material and ChemistryCollege of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhot010021P. R. China
| | - Jing Gu
- Department of Chemistry and BiochemistrySan Diego State University5500 Campanile DriveSan DiegoCA92182‐1030USA
| | - Zhuangjun Fan
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| |
Collapse
|
20
|
Ye SY, Wu JQ, Yu BB, Hua YW, Han Z, He ZY, Yan Z, Li ML, Meng Y, Cao X. Highly Stable Two-Dimensional Cluster-Based Ni/Co–Organic Layers for High-Performance Supercapacitors. Inorg Chem 2022; 61:18743-18751. [DOI: 10.1021/acs.inorgchem.2c03226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Si-Yuan Ye
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Jia-Qian Wu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Bin-Bin Yu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Yi-Wei Hua
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Zongsu Han
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zi-Yi He
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Zheng Yan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Meng-Li Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Yan Meng
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University, Anqing 246011, P. R. China
| | - Xuebo Cao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| |
Collapse
|
21
|
Li J, Wang L, Wang T, Chang J, Wu D, Xu F, Jiang K, Gao Z. Self-supported molybdenum nickel oxide catalytic electrode designed via molecular cluster-mediated electroplating and electrochemical activation for an efficient and durable oxygen evolution reaction. J Colloid Interface Sci 2022; 628:607-618. [PMID: 35940145 DOI: 10.1016/j.jcis.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022]
Abstract
Efficient and durable nonprecious catalysts for the oxygen evolution reaction (OER) are crucial for practical water electrolysis for hydrogen production. A self-supported OER catalytic electrode with sufficient exposure of the catalyst and tight anchoring onto the current collector is vital for the catalytic activity and stability, and is therefore deemed to be a preferable tactic to enhance water electrolysis performance. Herein, a polyoxometalate (POM) molecular cluster-mediated electroplating and activation tactics are proposed to design a self-supported molybdenum nickel oxide (MoNiOx) catalytic electrode for the OER. The MoNiOx active layer can anchor tightly onto the Ni foam current collector with sufficient surface exposure and high structural stability, therefore enabling high alkali OER catalytic efficiency (222 mV at 10 mA cm-2) and robust durability (only slight decay in catalytic efficiency upon 12 days of chronopotentiometry (V-t) test). Moreover, the easily processable electroplating and active protocol can serve as a general approach to prepare other OER catalytic electrodes by altering the reactants and current collectors. The current work paves a facile and universal way to design a highly active and durable molybdenum (Mo) based hybrid catalytic electrode for OER via molecular cluster-assisted electroplating and activation treatment.
Collapse
Affiliation(s)
- Jinzhou Li
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang 453007, PR China
| | - Lili Wang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang 453007, PR China
| | - Tianning Wang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang 453007, PR China
| | - Jiuli Chang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang 453007, PR China.
| | - Dapeng Wu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Henan, Xinxiang 453007, PR China
| | - Fang Xu
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang 453007, PR China
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Henan, Xinxiang 453007, PR China.
| | - Zhiyong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang 453007, PR China.
| |
Collapse
|
22
|
Zhou B, Gao R, Zou JJ, Yang H. Surface Design Strategy of Catalysts for Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202336. [PMID: 35665595 DOI: 10.1002/smll.202202336] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen, a new energy carrier that can replace traditional fossil fuels, is seen as one of the most promising clean energy sources. The use of renewable electricity to drive hydrogen production has very broad prospects for addressing energy and environmental problems. Therefore, many researchers favor electrolytic water due to its green and low-cost advantages. The electrolytic water reaction comprises the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Understanding the OER and HER mechanisms in acidic and alkaline processes contributes to further studying the design of surface regulation of electrolytic water catalysts. The OER and HER catalysts are mainly reviewed for defects, doping, alloying, surface reconstruction, crystal surface structure, and heterostructures. Besides, recent catalysts for overall water splitting are also reviewed. Finally, this review paves the way to the rational design and synthesis of new materials for highly efficient electrocatalysis.
Collapse
Affiliation(s)
- Binghui Zhou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Ruijie Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 200237, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 200237, China
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha, 410083, China
- State Key Lab of Powder Metallurgy, Central South University, Changsha, 410083, China
| |
Collapse
|
23
|
Defect engineering tuning electron structure of biphasic tungsten-based chalcogenide heterostructure improves its catalytic activity for hydrogen evolution and triiodide reduction. J Colloid Interface Sci 2022; 625:800-816. [PMID: 35772208 DOI: 10.1016/j.jcis.2022.06.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/28/2022] [Accepted: 06/10/2022] [Indexed: 01/07/2023]
Abstract
The design and exploration of high-efficiency and low-cost electrode catalysts are of great significance to the development of novel energy conversion technologies. In this work, metal and nonmetal heteroatoms co-doped biphasic tungsten-based chalcogenide heterostructured catalyst (Co-WS2/P-WO2.9) with rich defects is successfully synthesized by a vulcanization technique. The electrocatalytic performance of WS2/WO3 in the hydrogen evolution reaction (HER) and triiodide reduction reaction is significantly enhanced by modifying and optimizing its electronic structure through a defect engineering strategy. As an electrocatalyst for HER, the optimized Co-WS2/P-WO2.9 exhibits a low overpotential at 10 mA cm-2 of 146 and 120 mV with small Tafel slopes of 86 and 74 mV dec-1 in alkaline and acidic electrolyte, respectively. In addition, a Co-WS2/P-WO2.9 assembled solar cell yields a short circuit current density of 15.85 mA cm-2, an open-circuit voltage of 0.74 V, a fill factor of 0.66, and a competitive power conversion efficiency (7.83%), which is comparable or higher than conventional Pt-based solar cell (16.02 mA cm-2, 0.70 V, 0.63, 7.14%). The formation of a heterostructure in Co-WS2/P-WO2.9 leads to the presence of a built-in electric field in the interfacial region between Co-WS2 and P-WO2.9, which leads to an increased open-circuit voltage from 0.70 V for Pt to 0.74 V for Co-WS2/P-WO2.9. This work can provide a technical support for developing high-performance heterostructured catalysts, which open up a way for improving catalytic performance of heterostructured catalysts in the field of electrocatalysis.
Collapse
|
24
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 242] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
25
|
Zhang HD, Wu YL, Ye SY, Hua YW, You XX, Yan Z, Li ML, Liu D, Meng Y, Cao X. Configuration‐Dependent Bimetallic Metal‐Organic Frameworks Nanorods for Efficient Electrocatalytic Water Oxidation. ChemElectroChem 2022. [DOI: 10.1002/celc.202200246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hao-Dong Zhang
- Anqing Normal University Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials CHINA
| | - Ya-Ling Wu
- Anqing Normal University Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials CHINA
| | - Si-Yuan Ye
- Jiaxing University College of Biological, Chemical Sciences and Engineering CHINA
| | - Yi-Wei Hua
- Jiaxing University College of Biological, Chemical Sciences and Engineering CHINA
| | - Xi-Xi You
- Jiaxing University College of Biological, Chemical Sciences and Engineering CHINA
| | - Zheng Yan
- Jiaxing University College of biological,Chemical Sciences and Engineering Jiaxing city, zhejiang province, yuexiu south road no. 56 314001 Jia xing CHINA
| | - Meng-Li Li
- Jiaxing University College of Biological, Chemical Sciences and Engineering CHINA
| | - Dan Liu
- Jiaxing University College of Biological, Chemical Sciences and Engineering CHINA
| | - Yan Meng
- Anqing Normal University Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials CHINA
| | - Xuebo Cao
- Jiaxing University College of Biological, Chemical Sciences and Engineering CHINA
| |
Collapse
|
26
|
Subnanometric Cu clusters on atomically Fe-doped MoO 2 for furfural upgrading to aviation biofuels. Nat Commun 2022; 13:2591. [PMID: 35546157 PMCID: PMC9095587 DOI: 10.1038/s41467-022-30345-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
Single cluster catalysts (SCCs) are considered as versatile boosters in heterogeneous catalysis due to their modifiable single cluster sites and supports. In this work, we report subnanometric Cu clusters dispersed on Fe-doped MoO2 support for biomass-derived furfural upgrading. Systematical characterizations suggest uniform Cu clusters (composing four Cu atoms in average) are homogeneously immobilized on the atomically Fe-doped ultrafine MoO2 nanocrystals (Cu4/Fe0.3Mo0.7O2@C). The atomic doping of Fe into MoO2 leads to significantly modified electronic structure and consequently charge redistribution inside the supported Cu clusters. The as-prepared Cu4/Fe0.3Mo0.7O2@C shows superior catalytic performance in the oxidative coupling of furfural with C3~C10 primary/secondary alcohols to produce C8~C15 aldehydes/ketones (aviation biofuel intermediates), outperforming the conventionally prepared counterparts. DFT calculations and control experiments are further carried out to interpret the structural and compositional merits of Cu4/Fe0.3Mo0.7O2@C in the oxidative coupling reaction, and elucidate the reaction pathway and related intermediates.
Collapse
|
27
|
Yao Z, Wang C, Wang Z, Liu G, Bowers C, Dong P, Ye M, Shen J. Bifunctional catalysts of Ni nanoparticle coupled MoO 2 nanorods for overall water splitting. Dalton Trans 2022; 51:4532-4540. [PMID: 35234780 DOI: 10.1039/d2dt00022a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of active and cost-effective bifunctional catalysts is crucial for water dissociation through electrolysis. In this study, bifunctional catalysts with Ni nanoparticles (NPs) anchored on MoO2 nanorods have been synthesized via in situ dissolution of NiMoO4-ZIF under an inert atmosphere without using hydrogen gas. The Ni-MoO2 catalyst exhibits high electrocatalytic activity by modulating the calcination temperature. Benefitingfrom the MOF transformation and accompanying Ni particles' outward diffusion, a precisely designed interface heterostructure between Ni and MoO2 was constructed. As a result, the optimized Ni-MoO2 catalyst achieves extremely low overpotentials of only 24 mV and 275 mV at 10 mA cm-2 for the hydrogen evolution reaction and oxygen evolution reaction, respectively. Furthermore, the catalyst required a small cell voltage of 1.55 V to deliver a current density of 10 mA cm-2 and remained stable over 20 h for overall water splitting. The proposed MOF-derived heterojunction protocol provides a general approach for designing and fabricating transition metal oxide catalysts for water electrolysis.
Collapse
Affiliation(s)
- Zhiqiang Yao
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China. .,Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Chenfeng Wang
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China. .,Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Zengyao Wang
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China. .,Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Guanglei Liu
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China. .,Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Crystal Bowers
- Department of Mechanical Engineering, George Mason University, VA 22030, USA
| | - Pei Dong
- Department of Mechanical Engineering, George Mason University, VA 22030, USA
| | - Mingxin Ye
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China.
| | - Jianfeng Shen
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
28
|
Lu M, Zhang M, Liu J, Yu TY, Chang JN, Shang LJ, Li SL, Lan YQ. Confining and Highly Dispersing Single Polyoxometalate Clusters in Covalent Organic Frameworks by Covalent Linkages for CO2 Photoreduction. J Am Chem Soc 2022; 144:1861-1871. [DOI: 10.1021/jacs.1c11987] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Meng Lu
- School of Chemistry, South China Normal University, Guangzhou 510006, People’s Republic of China
| | - Mi Zhang
- School of Chemistry, South China Normal University, Guangzhou 510006, People’s Republic of China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, People’s Republic of China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Tao-Yuan Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Jia-Nan Chang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Lin-Jie Shang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou 510006, People’s Republic of China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou 510006, People’s Republic of China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
29
|
Defect-rich CoMoS nanosheets on PANI nanowires as excellent hybrid electrocatalyst for water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Chang ZH, Chen YZ, Zhang YC, Wang XL. Polyoxometalate-based metal–organic complexes and their derivatives as electrocatalysts for energy conversion in aqueous systems. CrystEngComm 2022. [DOI: 10.1039/d2ce00815g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The research progress on polyoxometalate-based metal–organic complexes and their derivatives as electrocatalysts in sustainable and clean energy conversion applications in aqueous systems is summarized.
Collapse
Affiliation(s)
- Zhi-Han Chang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Yong-Zhen Chen
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Yu-Chen Zhang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiu-Li Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
31
|
Han JY, Cai SH, Zhu JY, Yang S, Li JS. MOF-derived ruthenium-doped amorphous molybdenum dioxide hybrid for highly efficient hydrogen evolution reaction in alkaline media. Chem Commun (Camb) 2021; 58:100-103. [PMID: 34874028 DOI: 10.1039/d1cc05683b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ruthenium-doped amorphous molybdenum dioxide coupled with a reduced graphene oxide hybrid (Ru-MoO2@PC/rGO) is synthesized using polyoxometalate-based MOFs/GO as a precursor. Benefitting from the synergistic effect of numerous exposed active sites, Ru dopants and the introduction of GO, the designed catalyst shows exceptional electrocatalytic performance toward the HER in alkaline media.
Collapse
Affiliation(s)
- Ji-Yuan Han
- Department of Chemistry and Chemical Engineering, Jining University, Shandong, 273155, China.
| | - Sheng-Hao Cai
- Department of Chemistry and Chemical Engineering, Jining University, Shandong, 273155, China.
| | - Ji-Yu Zhu
- Department of Chemistry and Chemical Engineering, Jining University, Shandong, 273155, China.
| | - Shuang Yang
- Department of Chemistry and Chemical Engineering, Jining University, Shandong, 273155, China.
| | - Ji-Sen Li
- Department of Chemistry and Chemical Engineering, Jining University, Shandong, 273155, China.
| |
Collapse
|
32
|
Abstract
As a sustainable and clean energy source, hydrogen can be generated by electrolytic water splitting (i.e., a hydrogen evolution reaction, HER). Compared with conventional noble metal catalysts (e.g., Pt), Mo based materials have been deemed as a promising alternative, with a relatively low cost and comparable catalytic performances. In this review, we demonstrate a comprehensive summary of various Mo based materials, such as MoO2, MoS2 and Mo2C. Moreover, state of the art designs of the catalyst structures are presented, to improve the activity and stability for hydrogen evolution, including Mo based carbon composites, heteroatom doping and heterostructure construction. The structure–performance relationships relating to the number of active sites, electron/ion conductivity, H/H2O binding and activation energy, as well as hydrophilicity, are discussed in depth. Finally, conclusive remarks and future works are proposed.
Collapse
|
33
|
Luo X, Li F, Peng F, Huang L, Lang X, Shi M. Strategies for Perfect Confinement of POM@MOF and Its Applications in Producing Defect-Rich Electrocatalyst. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57803-57813. [PMID: 34797968 DOI: 10.1021/acsami.1c17808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyoxometalate encapsulated by metal-organic framework (POM@MOF) hybrid is an ideal precursor for electrocatalysts because it provides a homogeneous catalyst system with a flexible synergistic effect. However, controlling its fine structures to activate the derived catalyst after pyrolysis remains a challenge. The uniformly distributed carbon-defect tungsten oxides on the 3D carbon matrix were synthesized by using phospho-tungstic acid confined in HKUST-1 (PA@HKUST-1) as the precursor. By choosing ethanol as the solvent, the framework of PA@HKUST-1 was retained integrally and each pore of HKUST-1 kept intact even with holding the PA molecule inside. The well-organized structure of PA@HKUST-1 facilitated to offer a highly distributed metal source, and further transform into defect-rich catalyst. The average size of the resulting WOxCy/C catalysts was 1.5 nm, which was similar to a single molecule of PA. The WOxCy/C catalysts exhibited superior activity in the methanol oxidation reaction after being platinized due to the enhanced resistance to CO poisoning, which is also confirmed by DFT. This finding suggests a new route to design and achieve the defect-rich catalyst with controllable size.
Collapse
Affiliation(s)
- Xingyu Luo
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310032, Zhejiang China
| | - Fengjiao Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310032, Zhejiang China
| | - Fei Peng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310032, Zhejiang China
| | - Lizhen Huang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310032, Zhejiang China
| | - Xiaoling Lang
- Fujian Provincial Key Laboratory of Clean Energy Materials Longyan 364000, Fujian China
| | - Meiqin Shi
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310032, Zhejiang China
| |
Collapse
|
34
|
Liu Q, Ranocchiari M, van Bokhoven JA. Catalyst overcoating engineering towards high-performance electrocatalysis. Chem Soc Rev 2021; 51:188-236. [PMID: 34870651 DOI: 10.1039/d1cs00270h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clean and sustainable energy needs the development of advanced heterogeneous catalysts as they are of vital importance for electrochemical transformation reactions in renewable energy conversion and storage devices. Advances in nanoscience and material chemistry have afforded great opportunities for the design and optimization of nanostructured electrocatalysts with high efficiency and practical durability. In this review article, we specifically emphasize the synthetic methodologies for the versatile surface overcoating engineering reported to date for optimal electrocatalysts. We discuss the recent progress in the development of surface overcoating-derived electrocatalysts potentially applied in polymer electrolyte fuel cells and water electrolyzers by correlating catalyst intrinsic structures with electrocatalytic properties. Finally, we present the opportunities and perspectives of surface overcoating engineering for the design of advanced (electro)catalysts and their deep exploitation in a broad scope of applications.
Collapse
Affiliation(s)
- Qiang Liu
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
35
|
Zhang W, Cai G, Wu R, He Z, Yao HB, Jiang HL, Yu SH. Templating Synthesis of Metal-Organic Framework Nanofiber Aerogels and Their Derived Hollow Porous Carbon Nanofibers for Energy Storage and Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004140. [PMID: 33522114 DOI: 10.1002/smll.202004140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/01/2020] [Indexed: 06/12/2023]
Abstract
A kind of metal-organic framework (MOF) aerogels are synthesized by the self-assembly of uniform and monodisperse MOF nanofibers. Such MOF nanofiber aerogels as carbon precursors can effectively avoid the aggregation of nanofibers during calcination, resulting in the formation of well-dispersed hollow porous carbon nanofibers (HPCNs). Moreover, HPCNs with well-dispersion are investigated as sulfur host materials for Li-S batteries and electrocatalysts for cathode oxygen reduction reaction (ORR). On the one hand, HPCNs act as hosts for the encapsulation of sulfur into their hierarchical micro- and mesopores as well as hollow nanostructures. The obtained sulfur cathode exhibits excellent electrochemical features, good cycling stability and high coulombic efficiency. On the other hand, HPCNs exhibit better electrocatalytic activity than aggregated counterparts for ORR. Furthermore, a highly active single atom electrocatalyst can be prepared by the carbonization of bimetallic MOF nanofiber aerogels. The results indicate that well-dispersed HPCNs show enhanced electrochemical properties in contrast to their aggregated counterparts, suggesting that the dispersion situation of nanomaterials significantly influence their final performance. The present concept of employing MOF nanofiber aerogels as precursors will provide a new strategy to the design of MOF-derived nanomaterials with well-dispersion for their applications in energy storage and conversion.
Collapse
Affiliation(s)
- Wang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Guorui Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Rui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhen He
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hong-Bin Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shu-Hong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
36
|
Fang Y, Wang S, Zhang X, Lin G, Zhao W, Wang X, Wang W, Huang F. Realizing the Excellent HER Performance of Pt 3Pb 2S 2 by d-Orbital Electronic Modulation. Inorg Chem 2021; 60:16538-16543. [PMID: 34637295 DOI: 10.1021/acs.inorgchem.1c02422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exploring new excellent electrocatalysts for the hydrogen evolution reaction (HER) is of significance for the development of hydrogen energy. Herein, a ternary chalcogenide (Pt3Pb2S2) is successfully designed and synthesized using layered PtS2 as a matrix. The energy level of the Pt 5d orbital is upshifted to the Fermi surface after replacing S atoms by Pb atoms, which results in the high conductivity of Pt3Pb2S2. In addition, the low-coordinated Pt atoms inserted in the voids of [Pt2Pb2S2] layers have a lower free energy of H* adsorption than do metallic Pt atoms, which endows Pt3Pb2S2 with excellent HER performance. The overpotential and Tafel slope of Pt3Pb2S2 toward HER activity are measured to be 43 mV at 10 mA cm-2 and 43 mV dec-1, respectively. More importantly, Pt3Pb2S2 shows high intrinsic HER catalytic activity and long-term stability. This work provides a promising strategy for designing novel excellent transition-metal chalcogenide electrocatalysts.
Collapse
Affiliation(s)
- Yuqiang Fang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Sishun Wang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Xilin Zhang
- College of Physics Department, Henan Normal University, Xinxiang 453007, P.R. China
| | - GaoXin Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Wei Zhao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Xin Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Weichao Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Fuqiang Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
37
|
Bi J, Zhai X, Chi J, Wu X, Chen S, Wang X, Wang L. Ultrafine CoPt
3
nanoparticles encapsulated in nitrogen‐doped carbon nanospheres for efficient water electrolysis. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Junlu Bi
- Key Laboratory of Eco‐chemical Engineering Key Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao PR China
| | - Xuejun Zhai
- Key Laboratory of Eco‐chemical Engineering Key Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao PR China
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao PR China
| | - Jingqi Chi
- Key Laboratory of Eco‐chemical Engineering Key Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao PR China
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao PR China
| | - Xueke Wu
- Key Laboratory of Eco‐chemical Engineering Key Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao PR China
| | - Shaojin Chen
- Key Laboratory of Eco‐chemical Engineering Key Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao PR China
| | - Xinping Wang
- College of Marine Science and Biological Engineering Qingdao University of Science and Technology Qingdao PR China
| | - Lei Wang
- Key Laboratory of Eco‐chemical Engineering Key Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao PR China
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao PR China
| |
Collapse
|
38
|
Kiani M, Tian XQ, Zhang W. Non-precious metal electrocatalysts design for oxygen reduction reaction in polymer electrolyte membrane fuel cells: Recent advances, challenges and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213954] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Li H, Li H, Qiu Y, Liu S, Fan J, Guo X. Improving oxygen vacancies by cobalt doping in MoO
2
nanorods for efficient electrocatalytic hydrogen evolution reaction. NANO SELECT 2021. [DOI: 10.1002/nano.202100075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Hailong Li
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and College of Chemistry and Materials Science Northwest University Xi'an 710069 P. R. China
| | - Hong Li
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and College of Chemistry and Materials Science Northwest University Xi'an 710069 P. R. China
| | - Yu Qiu
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and College of Chemistry and Materials Science Northwest University Xi'an 710069 P. R. China
| | - Shuangquan Liu
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and College of Chemistry and Materials Science Northwest University Xi'an 710069 P. R. China
| | - Jianxiong Fan
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and College of Chemistry and Materials Science Northwest University Xi'an 710069 P. R. China
| | - XiaoHui Guo
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and College of Chemistry and Materials Science Northwest University Xi'an 710069 P. R. China
| |
Collapse
|
40
|
Xu B, Xu Q, Wang Q, Liu Z, Zhao R, Li D, Ma P, Wang J, Niu J. A Copper-Containing Polyoxometalate-Based Metal-Organic Framework as an Efficient Catalyst for Selective Catalytic Oxidation of Alkylbenzenes. Inorg Chem 2021; 60:4792-4799. [PMID: 33715352 DOI: 10.1021/acs.inorgchem.0c03741] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A copper-containing polyoxometalate-based metal-organic framework (POMOF), CuI12Cl2(trz)8[HPW12O40] (HENU-7, HENU = Henan University; trz = 1,2,4-triazole), has been successfully synthesized and well-characterized. In addition, the excellent catalytic ability of HENU-7 has been proved by the selective oxidation of diphenylmethane. Under the optimal conditions, the diphenylmethane conversion obtained over HENU-7 is 96%, while the selectivity to benzophenone is 99%, which outperforms most noble-metal-free POM-based catalysts. Moreover, HENU-7 is stable to reuse for five runs without an obvious loss in activity and also can catalyze the oxidation of different benzylic C-H with satisfactory conversions and selectivities, which implied the significant catalytic activity and recyclability.
Collapse
Affiliation(s)
- Baijie Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Qian Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Quanzhong Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Zhen Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Ruikun Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Dandan Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
41
|
Wang K, Hui KN, San Hui K, Peng S, Xu Y. Recent progress in metal-organic framework/graphene-derived materials for energy storage and conversion: design, preparation, and application. Chem Sci 2021; 12:5737-5766. [PMID: 34168802 PMCID: PMC8179663 DOI: 10.1039/d1sc00095k] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Graphene or chemically modified graphene, because of its high specific surface area and abundant functional groups, provides an ideal template for the controllable growth of metal-organic framework (MOF) particles. The nanocomposite assembled from graphene and MOFs can effectively overcome the limitations of low stability and poor conductivity of MOFs, greatly widening their application in the field of electrochemistry. Furthermore, it can also be utilized as a versatile precursor due to the tunable structure and composition for various derivatives with sophisticated structures, showing their unique advantages and great potential in many applications, especially energy storage and conversion. Therefore, the related studies have been becoming a hot research topic and have achieved great progress. This review summarizes comprehensively the latest methods of synthesizing MOFs/graphene and their derivatives, and their application in energy storage and conversion with a detailed analysis of the structure-property relationship. Additionally, the current challenges and opportunities in this field will be discussed with an outlook also provided.
Collapse
Affiliation(s)
- Kaixi Wang
- School of Engineering, Westlake University Hangzhou 310024 Zhejiang Province China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa Macau SAR China
| | - Kwun Nam Hui
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa Macau SAR China
| | - Kwan San Hui
- Engineering, Faculty of Science, University of East Anglia Norwich NR4 7TJ UK
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University Zhuhai Guangdong 519000 China
| | - Yuxi Xu
- School of Engineering, Westlake University Hangzhou 310024 Zhejiang Province China
| |
Collapse
|
42
|
Conversion of bimetallic MOF to Ru-doped Cu electrocatalysts for efficient hydrogen evolution in alkaline media. Sci Bull (Beijing) 2021; 66:257-264. [PMID: 36654331 DOI: 10.1016/j.scib.2020.06.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/28/2020] [Accepted: 06/22/2020] [Indexed: 01/20/2023]
Abstract
The rational design and construction of inexpensive and highly active electrocatalysts for hydrogen evolution reaction (HER) is of great importance for water splitting. Herein, we develop a facile approach for preparation of porous carbon-confined Ru-doped Cu nanoparticles (denoted as Ru-Cu@C) by direct pyrolysis of the Ru-exchanged Cu-BTC metal-organic framework. When served as the electrocatalyst for HER, strikingly, the obtained Ru-Cu@C catalyst exhibits an ultralow overpotential (only 20 mV at 10 mA cm-2) with a small Tafel slope of 37 mV dec-1 in alkaline electrolyte. The excellent performance is comparable or even superior to that of commercial Pt/C catalyst. Density functional theory (DFT) calculations confirm that introducing Ru atoms into Cu nanocrystals can significantly alter the desorption of H2 to achieve a close-to-zero hydrogen adsorption energy and thereby boost the HER process. This strategy gives a fresh impetus to explore low-cost and high-performance catalysts for HER in alkaline media.
Collapse
|
43
|
Molybdenum-Containing Metalloenzymes and Synthetic Catalysts for Conversion of Small Molecules. Catalysts 2021. [DOI: 10.3390/catal11020217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The energy deficiency and environmental problems have motivated researchers to develop energy conversion systems into a sustainable pathway, and the development of catalysts holds the center of the research endeavors. Natural catalysts such as metalloenzymes have maintained energy cycles on Earth, thus proving themselves the optimal catalysts. In the previous research results, the structural and functional analogs of enzymes and nano-sized electrocatalysts have shown promising activities in energy conversion reactions. Mo ion plays essential roles in natural and artificial catalysts, and the unique electrochemical properties render its versatile utilization as an electrocatalyst. In this review paper, we show the current understandings of the Mo-enzyme active sites and the recent advances in the synthesis of Mo-catalysts aiming for high-performing catalysts.
Collapse
|
44
|
Sarwar S, Ali A, Liu Z, Li J, Uprety S, Lee H, Wang R, Park M, Bozack MJ, Adamczyk AJ, Zhang X. Towards thermoneutral hydrogen evolution reaction using noble metal free molybdenum ditelluride/graphene nanocomposites. J Colloid Interface Sci 2021; 581:847-859. [PMID: 32818685 DOI: 10.1016/j.jcis.2020.07.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/18/2022]
Abstract
The development of efficient electrocatalysts for hydrogen generation is an essential task to meet future energy demand. In recent years, molybdenum ditelluride (MoTe2) has triggered incredible research interests due to intrinsic nontrivial band gap with promising semi-metallic behaviors. In this work, 2D MoTe2 nanosheets have been synthesized uniformly on graphene substrate through ultra-fast microwave-initiated approach, that shows a superior hydrogen evolution in acidic medium with low overpotential (~150 mV), low activation energy (8.4362 ± 1.5413 kJ mol-1), along with a Tafel slope of 94.5 mV/decade. Interestingly, MoTe2/graphene exhibits the enhanced electrocatalytic stability during the long cycling test, resulting an increase in specific surface area of catalyst materials. Moreover, the results from periodic plane-wave density functional theory (DFT) indicate that, the best active sites are the corner of a Mo-atom and a critical bifunctional site comprised of adjacent Mo and Te edge atoms. Furthermore, the corresponding volcano plot reveals the near thermoneutral catalytic activity of MoTe2/graphene for hydrogen generation.
Collapse
Affiliation(s)
- Shatila Sarwar
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA.
| | - Ashraf Ali
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA.
| | - Zhongqi Liu
- Department of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Junhao Li
- Department of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Sunil Uprety
- Department of Physics, Auburn University, Auburn, AL 36849, USA.
| | - Horyun Lee
- Department of Physics, Auburn University, Auburn, AL 36849, USA.
| | - Ruigang Wang
- Department of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Minseo Park
- Department of Physics, Auburn University, Auburn, AL 36849, USA.
| | - Michael J Bozack
- Department of Physics, Auburn University, Auburn, AL 36849, USA.
| | - Andrew J Adamczyk
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA.
| | - Xinyu Zhang
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
45
|
Zhang S, Ou F, Ning S, Cheng P. Polyoxometalate-based metal–organic frameworks for heterogeneous catalysis. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01407a] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
POM-based MOFs simultaneously possessing the virtues of POMs and MOFs exhibit excellent heterogeneous catalytic properties.
Collapse
Affiliation(s)
- Shaowei Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Fuxia Ou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Shiggang Ning
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Peng Cheng
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
46
|
Yin P, Cai H, Zhang X, Chen B, Liu Y, Gao R, Shi C. α-MoC 1−x nanorods as an efficient hydrogen evolution reaction electrocatalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj01088c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benefiting from their more exposed active sites, α-MoC1−x nanorods exhibited significantly enhanced HER performance under both acidic and alkaline conditions.
Collapse
Affiliation(s)
- Punian Yin
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Huizhu Cai
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Xiao Zhang
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Bingbing Chen
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Yang Liu
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Rui Gao
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- China
| | - Chuan Shi
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
47
|
Huang S, Qin X, Miao X, Xu X, Lei C, Wei T. Novel Core‐Dual Shell Si@MoO
2
@C Nanoparticles as Improved Anode Materials for Lithium‐Ion Batteries. ChemElectroChem 2020. [DOI: 10.1002/celc.202001401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shengyang Huang
- Department of Chemistry School of Science Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Xue Qin
- Department of Chemistry School of Science Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 China
| | - Xinyu Miao
- Department of Chemistry School of Science Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Xiaorui Xu
- Department of Chemistry School of Science Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Chanrong Lei
- Department of Chemistry School of Science Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Tianyu Wei
- Department of Chemistry School of Science Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| |
Collapse
|
48
|
Theoretical Study on Improving the Catalytic Activity of a Tungsten Carbide Surface for Hydrogen Evolution by Nonmetallic Doping. Catalysts 2020. [DOI: 10.3390/catal10111272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tungsten carbide (WC) has received widespread attention as a new type of nonprecious metal catalyst for hydrogen evolution reaction (HER). However, it is still a challenge to improve the surface HER catalytic activity. In this work, the effects of different nonmetallic dopants on the catalytic activity and stabilities of WC (0001) surface for HER were studied by first principles methods. The effects of different types of non-metal (NM = B; N; O; P and S) and doping concentrations (ni = 25–100%) on HER catalytic activity and stability were investigated by calculating the Gibbs free energy of hydrogen adsorption (∆GH) and substitution energy. It was found that the catalytic performance can be improved by doping O and P non-metallic elements. Especially, the ∆GH with P doped is −0.04eV better than Pt (−0.085 eV), which is a potential ideal catalyst for HER. Furthermore, the electronic structure analysis was used to explore the origin of the regulation of doping on stability and catalytic activity. The results show that nonmetallic doping is an effective strategy to control the catalytic activity, which provides theoretical support for the future research of HER catalysts.
Collapse
|
49
|
Geng S, Yang W, Liu Y, Yu Y. Engineering sulfur vacancies in basal plane of MoS2 for enhanced hydrogen evolution reaction. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Thomas AM, Peter J, Nagappan S, Mohan A, Ha CS. Dual Stimuli-Responsive Copper Nanoparticles Decorated SBA-15: A Highly Efficient Catalyst for the Oxidation of Alcohols in Water. NANOMATERIALS 2020; 10:nano10102051. [PMID: 33081325 PMCID: PMC7603010 DOI: 10.3390/nano10102051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 01/05/2023]
Abstract
In the present work, a temperature and pH-responsive hybrid catalytic system using copolymer-capped mesoporous silica particles with metal nanoparticles is proposed. The poly(2-(dimethylamino)ethyl methacrylate)(DMAEMA)-co-N-tert-butyl acrylamide) (TBA)) shell on mesoporous silica SBA-15 was obtained through free radical polymerization. Then, copper nanoparticles (CuNPs) decorated SBA-15/copolymer hybrid materials were synthesized using the NaBH4 reduction method. SBA-15 was functionalized with trimethoxylsilylpropyl methacrylate (TMSPM) and named TSBA. It was found that the CuNPs were uniformly dispersed in the mesoporous channels of SBA-15, and the hybrid catalyst exhibited excellent catalytic performance for the selective oxidation of different substituted benzyl alcohols in water using H2O2 as an oxidant at room temperature. The dual (temperature and pH-) responsive behaviors of the CuNPs/p(DMAEMA-co-TBA)/TSBA catalyst were investigated using the dynamic light scattering technique. The conversion of catalytic products and selectivity were calculated using gas chromatographic techniques, whereas the molecular structure of the products was identified using 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The catalyst showed excellent catalytic activity toward the oxidation of alcohol to aldehyde in an aqueous medium below the lower critical solution temperature (LCST) and pKa values (7–7.5) of the copolymer. The main advantages of the hybrid catalyst, as compared to the existing catalysts, are outstanding alcohol conversion (up to 99%) for a short reaction time (1 h), small amount of the catalyst (5 mg), and good recyclability equal to at least five times.
Collapse
|