1
|
Erguven H, Wang L, Gutierrez B, Beaven AH, Sodt AJ, Izgu EC. Biomimetic Vesicles with Designer Phospholipids Can Sense Environmental Redox Cues. JACS AU 2024; 4:1841-1853. [PMID: 38818047 PMCID: PMC11134385 DOI: 10.1021/jacsau.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 06/01/2024]
Abstract
Cell-like materials that sense environmental cues can serve as next-generation biosensors and help advance the understanding of intercellular communication. Currently, bottom-up engineering of protocell models from molecular building blocks remains a grand challenge chemists face. Herein, we describe giant unilamellar vesicles (GUVs) with biomimetic lipid membranes capable of sensing environmental redox cues. The GUVs employ activity-based sensing through designer phospholipids that are fluorescently activated in response to specific reductive (hydrogen sulfide) or oxidative (hydrogen peroxide) conditions. These synthetic phospholipids are derived from 1,2-dipalmitoyl-rac-glycero-3-phosphocholine and they possess a headgroup with heterocyclic aromatic motifs. Despite their structural deviation from the phosphocholine headgroup, the designer phospholipids (0.5-1.0 mol %) mixed with natural lipids can vesiculate, and the resulting GUVs (7-20 μm in diameter) remain intact over the course of redox sensing. All-atom molecular dynamics simulations gave insight into how these lipids are positioned within the hydrophobic core of the membrane bilayer and at the membrane-water interface. This work provides a purely chemical method to investigate potential redox signaling and opens up new design opportunities for soft materials that mimic protocells.
Collapse
Affiliation(s)
- Huseyin Erguven
- Department
of Chemistry and Chemical Biology, Rutgers
University, New Brunswick, New Jersey 08854, United States
| | - Liming Wang
- Department
of Chemistry and Chemical Biology, Rutgers
University, New Brunswick, New Jersey 08854, United States
| | - Bryan Gutierrez
- Department
of Chemistry and Chemical Biology, Rutgers
University, New Brunswick, New Jersey 08854, United States
| | - Andrew H. Beaven
- Unit
on Membrane Chemical Physics, Eunice Kennedy Shriver National Institute
of Child Health and Human Development, National
Institutes of Health, Bethesda, Maryland 20892, United States
- Postdoctoral
Research Associate Program, National Institute
of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alexander J. Sodt
- Unit
on Membrane Chemical Physics, Eunice Kennedy Shriver National Institute
of Child Health and Human Development, National
Institutes of Health, Bethesda, Maryland 20892, United States
| | - Enver Cagri Izgu
- Department
of Chemistry and Chemical Biology, Rutgers
University, New Brunswick, New Jersey 08854, United States
- Cancer
Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08901, United States
- Rutgers
Center for Lipid Research, New Jersey Institute
for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
2
|
Lopez A, Vauchez A, Ajram G, Shvetsova A, Leveau G, Fiore M, Strazewski P. From the RNA-Peptide World: Prebiotic Reaction Conditions Compatible with Lipid Membranes for the Formation of Lipophilic Random Peptides in the Presence of Short Oligonucleotides, and More. Life (Basel) 2024; 14:108. [PMID: 38255723 PMCID: PMC10817532 DOI: 10.3390/life14010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Deciphering the origins of life on a molecular level includes unravelling the numerous interactions that could occur between the most important biomolecules being the lipids, peptides and nucleotides. They were likely all present on the early Earth and all necessary for the emergence of cellular life. In this study, we intended to explore conditions that were at the same time conducive to chemical reactions critical for the origins of life (peptide-oligonucleotide couplings and templated ligation of oligonucleotides) and compatible with the presence of prebiotic lipid vesicles. For that, random peptides were generated from activated amino acids and analysed using NMR and MS, whereas short oligonucleotides were produced through solid-support synthesis, manually deprotected and purified using HPLC. After chemical activation in prebiotic conditions, the resulting mixtures were analysed using LC-MS. Vesicles could be produced through gentle hydration in similar conditions and observed using epifluorescence microscopy. Despite the absence of coupling or ligation, our results help to pave the way for future investigations on the origins of life that may gather all three types of biomolecules rather than studying them separately, as it is still too often the case.
Collapse
Affiliation(s)
- Augustin Lopez
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Antoine Vauchez
- Centre Commun de la Spectrométrie de Masse (CCSM), ICBMS, Bâtiment Edgar Lederer, 1 rue Victor Grignard, 69100 Villeurbanne, France;
| | - Ghinwa Ajram
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Anastasiia Shvetsova
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Gabrielle Leveau
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Michele Fiore
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Peter Strazewski
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| |
Collapse
|
3
|
Gutierrez B, Aggarwal T, Erguven H, Stone MRL, Guo C, Bellomo A, Abramova E, Stevenson ER, Laskin DL, Gow AJ, Izgu EC. Direct assessment of nitrative stress in lipid environments: Applications of a designer lipid-based biosensor for peroxynitrite. iScience 2023; 26:108567. [PMID: 38144454 PMCID: PMC10746523 DOI: 10.1016/j.isci.2023.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Lipid membranes and lipid-rich organelles are targets of peroxynitrite (ONOO-), a highly reactive species generated under nitrative stress. We report a membrane-localized phospholipid (DPPC-TC-ONOO-) that allows the detection of ONOO- in diverse lipid environments: biomimetic vesicles, mammalian cell compartments, and within the lung lining. DPPC-TC-ONOO- and POPC self-assemble to membrane vesicles that fluorogenically and selectively respond to ONOO-. DPPC-TC-ONOO-, delivered through lipid nanoparticles, allowed for ONOO- detection in the endoplasmic reticulum upon cytokine-induced nitrative stress in live mammalian cells. It also responded to ONOO- within lung tissue murine models upon acute lung injury. We observed nitrative stress around bronchioles in precision cut lung slices exposed to nitrogen mustard and in pulmonary macrophages following intratracheal bleomycin challenge. Results showed that DPPC-TC-ONOO- functions specifically toward iNOS, a key enzyme modulating nitrative stress, and offers significant advantages over its hydrophilic analog in terms of localization and signal generation.
Collapse
Affiliation(s)
- Bryan Gutierrez
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Tushar Aggarwal
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Huseyin Erguven
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - M. Rhia L. Stone
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Changjiang Guo
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Alyssa Bellomo
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Elena Abramova
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Emily R. Stevenson
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Debra L. Laskin
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Andrew J. Gow
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Enver Cagri Izgu
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
4
|
Dai S, Xie Z, Wang B, Ye R, Ou X, Wang C, Yu N, Huang C, Zhao J, Cai C, Zhang F, Buratto D, Khan T, Qiao Y, Hua Y, Zhou R, Tian B. An inorganic mineral-based protocell with prebiotic radiation fitness. Nat Commun 2023; 14:7699. [PMID: 38052788 DOI: 10.1038/s41467-023-43272-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Protocell fitness under extreme prebiotic conditions is critical in understanding the origin of life. However, little is known about protocell's survival and fitness under prebiotic radiations. Here we present a radioresistant protocell model based on assembly of two types of coacervate droplets, which are formed through interactions of inorganic polyphosphate (polyP) with divalent metal cation and cationic tripeptide, respectively. Among the coacervate droplets, only the polyP-Mn droplet is radiotolerant and provides strong protection for recruited proteins. The radiosensitive polyP-tripeptide droplet sequestered with both proteins and DNA could be encapsulated inside the polyP-Mn droplet, and form into a compartmentalized protocell. The protocell protects the inner nucleoid-like condensate through efficient reactive oxygen species' scavenging capacity of intracellular nonenzymic antioxidants including Mn-phosphate and Mn-peptide. Our results demonstrate a radioresistant protocell model with redox reaction system in response to ionizing radiation, which might enable the protocell fitness to prebiotic radiation on the primitive Earth preceding the emergence of enzyme-based fitness. This protocell might also provide applications in synthetic biology as bioreactor or drug delivery system.
Collapse
Affiliation(s)
- Shang Dai
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China
| | - Zhenming Xie
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Binqiang Wang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Rui Ye
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Xinwen Ou
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Chen Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
| | - Ning Yu
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Cheng Huang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Zhao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chunhui Cai
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Furong Zhang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Damiano Buratto
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Taimoor Khan
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Yan Qiao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yuejin Hua
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Ruhong Zhou
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China.
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Bing Tian
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Douliez JP. Double Emulsion Droplets as a Plausible Step to Fatty Acid Protocells. SMALL METHODS 2023; 7:e2300530. [PMID: 37574259 DOI: 10.1002/smtd.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/07/2023] [Indexed: 08/15/2023]
Abstract
It is assumed that life originated on the Earth from vesicles made of fatty acids. These amphiphiles are the simplest chemicals, which can be present in the prebiotic soup, capable of self-assembling into compartments mimicking modern cells. Production of fatty acid vesicles is widely studied, as their growing and division. However, how prebiotic chemicals require to further yield living cells encapsulated within protocells remains unclear. Here, one suggests a scenario based on recent studies, which shows that phospholipid vesicles can form from double emulsions affording facile encapsulation of cargos. In these works, water-in-oil-in-water droplets are produced by microfluidics, having dispersed lipids in the oil. Dewetting of the oil droplet leaves the internal aqueous droplet covered by a lipid bilayer, entrapping cargos. In this review, formation of fatty acid protocells is briefly reviewed, together with the procedure for preparing double emulsions and vesicles from double emulsion and finally, it is proposed that double emulsion droplets formed in the deep ocean where undersea volcano expulsed materials, with fatty acids (under their carboxylic form) and alkanols as the oily phase, entrapping hydrosoluble prebiotic chemicals in a double emulsion droplet core. Once formed, double emulsion droplets can move up to the surface, where an increase of pH, variation of pressure and/or temperature may have allowed dewetting of the oily droplet, leaving a fatty acid vesicular protocell with encapsulated prebiotic materials.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- Biologie du Fruit et Pathologie, UMR 1332, Institut National de Recherche Agronomique (INRAE), Université De Bordeaux, Villenave d'Ornon, F-33140, France
| |
Collapse
|
6
|
Ouazan-Reboul V, Agudo-Canalejo J, Golestanian R. Self-organization of primitive metabolic cycles due to non-reciprocal interactions. Nat Commun 2023; 14:4496. [PMID: 37495589 PMCID: PMC10372013 DOI: 10.1038/s41467-023-40241-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
One of the greatest mysteries concerning the origin of life is how it has emerged so quickly after the formation of the earth. In particular, it is not understood how metabolic cycles, which power the non-equilibrium activity of cells, have come into existence in the first instances. While it is generally expected that non-equilibrium conditions would have been necessary for the formation of primitive metabolic structures, the focus has so far been on externally imposed non-equilibrium conditions, such as temperature or proton gradients. Here, we propose an alternative paradigm in which naturally occurring non-reciprocal interactions between catalysts that can partner together in a cyclic reaction lead to their recruitment into self-organized functional structures. We uncover different classes of self-organized cycles that form through exponentially rapid coarsening processes, depending on the parity of the cycle and the nature of the interaction motifs, which are all generic but have readily tuneable features.
Collapse
Affiliation(s)
- Vincent Ouazan-Reboul
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany
| | - Jaime Agudo-Canalejo
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany.
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3PU, Oxford, UK.
| |
Collapse
|
7
|
Pašalić L, Jakas A, Pem B, Bakarić D. Adsorption/Desorption of Cationic-Hydrophobic Peptides on Zwitterionic Lipid Bilayer Is Associated with the Possibility of Proton Transfer. Antibiotics (Basel) 2023; 12:1216. [PMID: 37508312 PMCID: PMC10376034 DOI: 10.3390/antibiotics12071216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Cell-penetrating peptides (CPPs) are short peptides built up from dominantly cationic and hydrophobic amino acid residues with a distinguished ability to pass through the cell membrane. Due to the possibility of linking and delivering the appropriate cargo at the desired location, CPPs are considered an economic and less invasive alternative to antibiotics. Besides knowing that their membrane passage mechanism is a complex function of CPP chemical composition, the ionic strength of the solution, and the membrane composition, all other details on how they penetrate cell membranes are rather vague. The aim of this study is to elucidate the ad(de)sorption of arginine-/lysine- and phenylalanine-rich peptides on a lipid membrane composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipids. DSC and temperature-dependent UV-Vis measurements confirmed the impact of the adsorbed peptides on thermotropic properties of DPPC, but in an inconclusive way. On the other hand, FTIR spectra acquired at 30 °C and 50 °C (when DPPC lipids are found in the gel and fluid phase, respectively) unambiguously confirmed the proton transfer between particular titratable functional groups of R5F2/K5F2 that highly depend on their immediate surroundings (DPPC or a phosphate buffer). Molecular dynamic simulations showed that both peptides may adsorb onto the bilayer, but K5F2 desorbs more easily and favors the solvent, while R5F2 remains attached. The results obtained in this work highlight the importance of proton transfer in the design of CPPs with their desired cargo, as its charge and composition dictates the possibility of entering the cell.
Collapse
Affiliation(s)
- Lea Pašalić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Andreja Jakas
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Barbara Pem
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Danijela Bakarić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Thoma B, Powner MW. Selective Synthesis of Lysine Peptides and the Prebiotically Plausible Synthesis of Catalytically Active Diaminopropionic Acid Peptide Nitriles in Water. J Am Chem Soc 2023; 145:3121-3130. [PMID: 36700882 PMCID: PMC9912261 DOI: 10.1021/jacs.2c12497] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Why life encodes specific proteinogenic amino acids remains an unsolved problem, but a non-enzymatic synthesis that recapitulates biology's universal strategy of stepwise N-to-C terminal peptide growth may hold the key to this selection. Lysine is an important proteinogenic amino acid that, despite its essential structural, catalytic, and functional roles in biochemistry, has widely been assumed to be a late addition to the genetic code. Here, we demonstrate that lysine thioacids undergo coupling with aminonitriles in neutral water to afford peptides in near-quantitative yield, whereas non-proteinogenic lysine homologues, ornithine, and diaminobutyric acid cannot form peptides due to rapid and quantitative cyclization that irreversibly blocks peptide synthesis. We demonstrate for the first time that ornithine lactamization provides an absolute differentiation of lysine and ornithine during (non-enzymatic) N-to-C-terminal peptide ligation. We additionally demonstrate that the shortest lysine homologue, diaminopropionic acid, undergoes effective peptide ligation. This prompted us to discover a high-yielding prebiotically plausible synthesis of the diaminopropionic acid residue, by peptide nitrile modification, through the addition of ammonia to a dehydroalanine nitrile. With this synthesis in hand, we then discovered that the low basicity of diaminopropionyl residues promotes effective, biomimetic, imine catalysis in neutral water. Our results suggest diaminopropionic acid, synthesized by peptide nitrile modification, can replace or augment lysine residues during early evolution but that lysine's electronically isolated sidechain amine likely provides an evolutionary advantage for coupling and coding as a preformed monomer in monomer-by-monomer peptide translation.
Collapse
|
9
|
Hazra B, Mondal A, Prasad M, Gayen S, Mandal R, Sardar A, Tarafdar PK. Lipidated Lysine and Fatty Acids Assemble into Protocellular Membranes to Assist Regioselective Peptide Formation: Correlation to the Natural Selection of Lysine over Nonproteinogenic Lower Analogues. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15422-15432. [PMID: 36450098 DOI: 10.1021/acs.langmuir.2c02849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The self-assembly of prebiotically plausible amphiphiles (fatty acids) to form a bilayer membrane for compartmentalization is an important factor during protocellular evolution. Such fatty acid-based membranes assemble at relatively high concentrations, and they lack robust stability. We have demonstrated that a mixture of lipidated lysine (cationic) and prebiotic fatty acids (decanoic acid, anionic) can form protocellular membranes (amino acid-based membranes) at low concentrations via electrostatic, hydrogen bonding, and hydrophobic interactions. The formation of vesicular membranes was characterized by dynamic light scattering (DLS), pyrene and Nile Red partitioning, cryo-transmission electron microscopy (TEM) images, and glucose encapsulation studies. The lipidated nonproteinogenic analogues of lysine (Lys), such as ornithine (Orn) and 2,4-diaminobutyric acid (Dab), also form membranes with decanoate (DA). Time-dependent turbidimetric and 1H NMR studies suggested that the Lys-based membrane is more stable than the membranes prepared from nonproteinogenic lower analogues. The Lys-based membrane embeds a model acylating agent (aminoacyl-tRNA mimic) and facilitates the colocalization of substrates to support regioselective peptide formation via the α-amine of Lys. These membranes thereby assist peptide formation and control the positioning of the reactants (model acylating agent and -NH2 of amino acids) to initiate biologically relevant reactions during early evolution.
Collapse
Affiliation(s)
- Bibhas Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Anoy Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Mahesh Prasad
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Soumajit Gayen
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Raki Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Avijit Sardar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
10
|
Parker DM, Winkenbach LP, Osborne Nishimura E. It’s Just a Phase: Exploring the Relationship Between mRNA, Biomolecular Condensates, and Translational Control. Front Genet 2022; 13:931220. [PMID: 35832192 PMCID: PMC9271857 DOI: 10.3389/fgene.2022.931220] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Cells spatially organize their molecular components to carry out fundamental biological processes and guide proper development. The spatial organization of RNA within the cell can both promote and result from gene expression regulatory control. Recent studies have demonstrated diverse associations between RNA spatial patterning and translation regulatory control. One form of patterning, compartmentalization in biomolecular condensates, has been of particular interest. Generally, transcripts associated with cytoplasmic biomolecular condensates—such as germ granules, stress granules, and P-bodies—are linked with low translational status. However, recent studies have identified new biomolecular condensates with diverse roles associated with active translation. This review outlines RNA compartmentalization in various condensates that occur in association with repressed or active translational states, highlights recent findings in well-studied condensates, and explores novel condensate behaviors.
Collapse
Affiliation(s)
- Dylan M. Parker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- Department of Biochemistry, University of Colorado, Boulder, CO, United States
| | - Lindsay P. Winkenbach
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- *Correspondence: Erin Osborne Nishimura,
| |
Collapse
|
11
|
Hu J, Li G. Recent Progress in Fluorescent Chemosensors for Protein Kinases. Chem Asian J 2022; 17:e202200182. [PMID: 35486328 DOI: 10.1002/asia.202200182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Indexed: 11/10/2022]
Abstract
Protein kinases are involved in almost all biological activities. The activities of different kinases reflect the normal or abnormal status of the human body. Therefore, detecting the activities of different kinases is important for disease diagnosis and drug discovery. Fluorescent probes offer opportunities for studying kinase behaviors at different times and spatial locations. In this review, we summarize different kinds of fluorescent chemosensors that have been used to detect the activities of many different kinases.
Collapse
Affiliation(s)
- Jun Hu
- Fujian Agriculture and Forestry University, College of Life Sciences, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, CHINA
| | - Gao Li
- Minjiang University, College of Material and Chemical Engineering, CHINA
| |
Collapse
|
12
|
Ramsay K, Levy J, Gobbo P, Elvira KS. Programmed assembly of bespoke prototissues on a microfluidic platform. LAB ON A CHIP 2021; 21:4574-4585. [PMID: 34723291 DOI: 10.1039/d1lc00602a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The precise assembly of protocell building blocks into prototissues that are stable in water, capable of sensing the external environment and which display collective behaviours remains a considerable challenge in prototissue engineering. We have designed a microfluidic platform that enables us to build bespoke prototissues from predetermined compositions of two types of protein-polymer protocells. We can accurately control their size, composition and create unique Janus configurations in a way that is not possible with traditional methods. Because we can control the number and type of the protocells that compose the prototissue, we can hence modulate the collective behaviours of this biomaterial. We show control over both the amplitude of thermally induced contractions in the biomaterial and its collective endogenous biochemical reactivity. Our results show that microfluidic technologies enable a new route to the precise and high-throughput fabrication of tissue-like materials with programmable collective properties that can be tuned through careful assembly of protocell building blocks of different types. We anticipate that our bespoke prototissues will be a starting point for the development of more sophisticated artificial tissues for use in medicine, soft robotics, and environmentally beneficial bioreactor technologies.
Collapse
Affiliation(s)
- Kaitlyn Ramsay
- Department of Chemistry, University of Victoria, Victoria, Canada.
- The Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, Canada
| | - Jae Levy
- Department of Chemistry, University of Victoria, Victoria, Canada.
| | | | - Katherine S Elvira
- Department of Chemistry, University of Victoria, Victoria, Canada.
- The Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, Canada
| |
Collapse
|
13
|
Börner M, Klose J, Gutierrez Suburu ME, Strassert CA, Yang F, Monakhov KY, Abel B, Kersting B. Synthesis and Characterisation of Luminescent [Cr III 2 L(μ-carboxylato)] 3+ Complexes with High-Spin S=3 Ground States (L=N 6 S 2 donor ligand). Chemistry 2021; 27:14899-14910. [PMID: 34490947 PMCID: PMC8596867 DOI: 10.1002/chem.202102079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 01/02/2023]
Abstract
The synthesis, structure, magnetic, and photophysical properties of two dinuclear, luminescent, mixed-ligand [CrIII 2 L(O2 CR)]3+ complexes (R=CH3 (1), Ph (2)) of a 24-membered binucleating hexa-aza-dithiophenolate macrocycle (L)2- are presented. X-ray crystallographic analysis reveals an edge-sharing bioctahedral N3 Cr(μ-SR)2 (μ1,3 -O2 CR)CrN3 core structure with μ1,3 -bridging carboxylate groups. A ferromagnetic superexchange interaction between the electron spins of the Cr3+ ions leads to a high-spin (S=3) ground state. The coupling constants (J=+24.2(1) cm-1 (1), +34.8(4) cm-1 (2), H=-2JS1 S2 ) are significantly larger than in related bis-μ-alkoxido-μ-carboxylato structures. DFT calculations performed on both complexes reproduce both the sign and strength of the exchange interactions found experimentally. Frozen methanol-dichloromethane 1 : 1 solutions of 1 and 2 luminesce at 750 nm when excited into the 4 LMCT state on the 4 A2 → 2 T1 (ν2 ) bands (λexc =405 nm). The absolute quantum yields (ΦL ) for 1 and 2 were found to be strongly temperature dependent. At 77 K in frozen MeOH/CH2 Cl2 glasses, ΦL =0.44±0.02 (for 1), ΦL =0.45±0.02 (for 2).
Collapse
Affiliation(s)
- Martin Börner
- Institut für Anorganische ChemieUniversität LeipzigJohannisallee 2904103LeipzigGermany
- Leibniz Institut für OberflächenmodifizierungPermoserstraße 1504318LeipzigGermany
| | - Jennifer Klose
- Institut für Anorganische ChemieUniversität LeipzigJohannisallee 2904103LeipzigGermany
| | - Matias E. Gutierrez Suburu
- Institut für Anorganische und Analytische ChemieCiMICSoNWestfälische Wilhelms-Universität MünsterCorrensstraße 28/3048149MünsterGermany
- CeNTechWestfälische Wilhelms-Universität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische ChemieCiMICSoNWestfälische Wilhelms-Universität MünsterCorrensstraße 28/3048149MünsterGermany
- CeNTechWestfälische Wilhelms-Universität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Fangshun Yang
- Leibniz Institut für OberflächenmodifizierungPermoserstraße 1504318LeipzigGermany
| | - Kirill Yu. Monakhov
- Leibniz Institut für OberflächenmodifizierungPermoserstraße 1504318LeipzigGermany
| | - Bernd Abel
- Leibniz Institut für OberflächenmodifizierungPermoserstraße 1504318LeipzigGermany
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische ChemieUniversität LeipzigLinnéstrasse 204103LeipzigGermany
| | - Berthold Kersting
- Institut für Anorganische ChemieUniversität LeipzigJohannisallee 2904103LeipzigGermany
| |
Collapse
|
14
|
Xue M, Black RA, Cohen ZR, Roehrich A, Drobny GP, Keller SL. Binding of Dipeptides to Fatty Acid Membranes Explains Their Colocalization in Protocells but Does Not Select for Them Relative to Unjoined Amino Acids. J Phys Chem B 2021; 125:7933-7939. [PMID: 34283913 DOI: 10.1021/acs.jpcb.1c01485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dipeptides, which consist of two amino acids joined by a peptide bond, have been shown to have catalytic functions. This observation leads to fundamental questions relevant to the origin of life. How could peptides have become colocalized with the first protocells? Which structural features would have determined the association of amino acids and peptides with membranes? Could the association of dipeptides with protocell membranes have driven molecular evolution, favoring dipeptides over individual amino acids? Using pulsed-field gradient nuclear magnetic resonance, we find that several prebiotic amino acids and dipeptides bind to prebiotic membranes. For amino acids, the side chains and carboxylate contribute to the interaction. For dipeptides, the extent of binding is generally less than that of the constituent amino acids, implying that other mechanisms would be necessary to drive molecular evolution. Nevertheless, our results are consistent with a scheme in which the building blocks of the biological polymers colocalized with protocells prior to the emergence of RNA and proteins.
Collapse
Affiliation(s)
- Mengjun Xue
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Roy A Black
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Zachary R Cohen
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Adrienne Roehrich
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Gary P Drobny
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Sarah L Keller
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| |
Collapse
|
15
|
Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002932. [PMID: 32954548 DOI: 10.1002/adma.202002932] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Synthetic cells have a major role in gaining insight into the complex biological processes of living cells; they also give rise to a range of emerging applications from gene delivery to enzymatic nanoreactors. Living cells rely on compartmentalization to orchestrate reaction networks for specialized and coordinated functions. Principally, the compartmentalization has been an essential engineering theme in constructing cell-mimicking systems. Here, efforts to engineer liquid-liquid interfaces of multiphase systems into membrane-bounded and membraneless compartments, which include lipid vesicles, polymer vesicles, colloidosomes, hybrids, and coacervate droplets, are summarized. Examples are provided of how these compartments are designed to imitate biological behaviors or machinery, including molecule trafficking, growth, fusion, energy conversion, intercellular communication, and adaptivity. Subsequently, the state-of-art applications of these cell-inspired synthetic compartments are discussed. Apart from being simplified and cell models for bridging the gap between nonliving matter and cellular life, synthetic compartments also are utilized as intracellular delivery vehicles for nuclei acids and nanoreactors for biochemical synthesis. Finally, key challenges and future directions for achieving the full potential of synthetic cells are highlighted.
Collapse
Affiliation(s)
- Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wen Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
16
|
Ruiz-Lopez MF, Francisco JS, Martins-Costa MTC, Anglada JM. Molecular reactions at aqueous interfaces. Nat Rev Chem 2020; 4:459-475. [PMID: 37127962 DOI: 10.1038/s41570-020-0203-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
This Review aims to critically analyse the emerging field of chemical reactivity at aqueous interfaces. The subject has evolved rapidly since the discovery of the so-called 'on-water catalysis', alluding to the dramatic acceleration of reactions at the surface of water or at its interface with hydrophobic media. We review critical experimental studies in the fields of atmospheric and synthetic organic chemistry, as well as related research exploring the origins of life, to showcase the importance of this phenomenon. The physico-chemical aspects of these processes, such as the structure, dynamics and thermodynamics of adsorption and solvation processes at aqueous interfaces, are also discussed. We also present the basic theories intended to explain interface catalysis, followed by the results of advanced ab initio molecular-dynamics simulations. Although some topics addressed here have already been the focus of previous reviews, we aim at highlighting their interconnection across diverse disciplines, providing a common perspective that would help us to identify the most fundamental issues still incompletely understood in this fast-moving field.
Collapse
|
17
|
Frenkel-Pinter M, Haynes JW, Mohyeldin AM, C M, Sargon AB, Petrov AS, Krishnamurthy R, Hud NV, Williams LD, Leman LJ. Mutually stabilizing interactions between proto-peptides and RNA. Nat Commun 2020; 11:3137. [PMID: 32561731 PMCID: PMC7305224 DOI: 10.1038/s41467-020-16891-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
The close synergy between peptides and nucleic acids in current biology is suggestive of a functional co-evolution between the two polymers. Here we show that cationic proto-peptides (depsipeptides and polyesters), either produced as mixtures from plausibly prebiotic dry-down reactions or synthetically prepared in pure form, can engage in direct interactions with RNA resulting in mutual stabilization. Cationic proto-peptides significantly increase the thermal stability of folded RNA structures. In turn, RNA increases the lifetime of a depsipeptide by >30-fold. Proto-peptides containing the proteinaceous amino acids Lys, Arg, or His adjacent to backbone ester bonds generally promote RNA duplex thermal stability to a greater magnitude than do analogous sequences containing non-proteinaceous residues. Our findings support a model in which tightly-intertwined biological dependencies of RNA and protein reflect a long co-evolutionary history that began with rudimentary, mutually-stabilizing interactions at early stages of polypeptide and nucleic acid co-existence.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jay W Haynes
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ahmad M Mohyeldin
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Martin C
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alyssa B Sargon
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anton S Petrov
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ramanarayanan Krishnamurthy
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nicholas V Hud
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Loren Dean Williams
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA. .,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA. .,Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
18
|
Becker PM, Förster C, Carrella LM, Boden P, Hunger D, van Slageren J, Gerhards M, Rentschler E, Heinze K. Spin Crossover and Long-Lived Excited States in a Reduced Molecular Ruby. Chemistry 2020; 26:7199-7204. [PMID: 32167607 PMCID: PMC7318154 DOI: 10.1002/chem.202001237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Indexed: 12/27/2022]
Abstract
The chromium(III) complex [CrIII (ddpd)2 ]3+ (molecular ruby; ddpd=N,N'-dimethyl-N,N'-dipyridine-2-yl-pyridine-2,6-diamine) is reduced to the genuine chromium(II) complex [CrII (ddpd)2 ]2+ with d4 electron configuration. This reduced molecular ruby represents one of the very few chromium(II) complexes showing spin crossover (SCO). The reversible SCO is gradual with T1/2 around room temperature. The low-spin and high-spin chromium(II) isomers exhibit distinct spectroscopic and structural properties (UV/Vis/NIR, IR, EPR spectroscopies, single-crystal XRD). Excitation of [CrII (ddpd)2 ]2+ with UV light at 20 and 290 K generates electronically excited states with microsecond lifetimes. This initial study on the unique reduced molecular ruby paves the way for thermally and photochemically switchable magnetic systems based on chromium complexes complementing the well-established iron(II) SCO systems.
Collapse
Affiliation(s)
- Patrick M. Becker
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10-1455128MainzGermany
| | - Christoph Förster
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10-1455128MainzGermany
| | - Luca M. Carrella
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10-1455128MainzGermany
| | - Pit Boden
- Department of Chemistry and Research Center OptimasUniversity KaiserslauternErwin-Schrödinger-Straße67663KaiserslauternGermany
| | - David Hunger
- Institute of Physical Chemistry and Center for, Integrated Quantum Science and TechnologyUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for, Integrated Quantum Science and TechnologyUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Markus Gerhards
- Department of Chemistry and Research Center OptimasUniversity KaiserslauternErwin-Schrödinger-Straße67663KaiserslauternGermany
| | - Eva Rentschler
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10-1455128MainzGermany
| | - Katja Heinze
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10-1455128MainzGermany
| |
Collapse
|
19
|
Taylor CGP, Metherell AJ, Argent SP, Ashour FM, Williams NH, Ward MD. Coordination-Cage-Catalysed Hydrolysis of Organophosphates: Cavity- or Surface-Based? Chemistry 2020; 26:3065-3073. [PMID: 31774202 PMCID: PMC7079011 DOI: 10.1002/chem.201904708] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 12/27/2022]
Abstract
The hydrophobic central cavity of a water-soluble M8 L12 cubic coordination cage can accommodate a range of phospho-diester and phospho-triester guests such as the insecticide "dichlorvos" (2,2-dichlorovinyl dimethyl phosphate) and the chemical warfare agent analogue di(isopropyl) chlorophosphate. The accumulation of hydroxide ions around the cationic cage surface due to ion-pairing in solution generates a high local pH around the cage, resulting in catalysed hydrolysis of the phospho-triester guests. A series of control experiments unexpectedly demonstrates that-in marked contrast to previous cases-it is not necessary for the phospho-triester substrates to be bound inside the cavity for catalysed hydrolysis to occur. This suggests that catalysis can occur on the exterior surface of the cage as well as the interior surface, with the exterior-binding catalysis pathway dominating here because of the small binding constants for these phospho-triester substrates in the cage cavity. These observations suggest that cationic but hydrophobic surfaces could act as quite general catalysts in water by bringing substrates into contact with the surface (via the hydrophobic effect) where there is also a high local concentration of anions (due to ion pairing/electrostatic effects).
Collapse
Affiliation(s)
| | | | | | - Fatma M. Ashour
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | | | - Michael D. Ward
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
20
|
The evolution of aminoacyl-tRNA synthetases: From dawn to LUCA. BIOLOGY OF AMINOACYL-TRNA SYNTHETASES 2020; 48:11-37. [DOI: 10.1016/bs.enz.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Treiling S, Wang C, Förster C, Reichenauer F, Kalmbach J, Boden P, Harris JP, Carrella LM, Rentschler E, Resch‐Genger U, Reber C, Seitz M, Gerhards M, Heinze K. Luminescence and Light-Driven Energy and Electron Transfer from an Exceptionally Long-Lived Excited State of a Non-Innocent Chromium(III) Complex. Angew Chem Int Ed Engl 2019; 58:18075-18085. [PMID: 31600421 PMCID: PMC6916301 DOI: 10.1002/anie.201909325] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/01/2019] [Indexed: 01/10/2023]
Abstract
Photoactive metal complexes employing Earth-abundant metal ions are a key to sustainable photophysical and photochemical applications. We exploit the effects of an inversion center and ligand non-innocence to tune the luminescence and photochemistry of the excited state of the [CrN6 ] chromophore [Cr(tpe)2 ]3+ with close to octahedral symmetry (tpe=1,1,1-tris(pyrid-2-yl)ethane). [Cr(tpe)2 ]3+ exhibits the longest luminescence lifetime (τ=4500 μs) reported up to date for a molecular polypyridyl chromium(III) complex together with a very high luminescence quantum yield of Φ=8.2 % at room temperature in fluid solution. Furthermore, the tpe ligands in [Cr(tpe)2 ]3+ are redox non-innocent, leading to reversible reductive chemistry. The excited state redox potential and lifetime of [Cr(tpe)2 ]3+ surpass those of the classical photosensitizer [Ru(bpy)3 ]2+ (bpy=2,2'-bipyridine) enabling energy transfer (to oxygen) and photoredox processes (with azulene and tri(n-butyl)amine).
Collapse
Affiliation(s)
- Steffen Treiling
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Cui Wang
- Division BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Christoph Förster
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Florian Reichenauer
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Jens Kalmbach
- Institute of Inorganic ChemistryUniversity of TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Pit Boden
- Department of Chemistry and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße67663KaiserslauternGermany
| | - Joe P. Harris
- Département de chimieUniversité de MontréalMontréalQuébecH3C 3J7Canada
| | - Luca M. Carrella
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Eva Rentschler
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Ute Resch‐Genger
- Division BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
| | - Christian Reber
- Département de chimieUniversité de MontréalMontréalQuébecH3C 3J7Canada
| | - Michael Seitz
- Institute of Inorganic ChemistryUniversity of TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Markus Gerhards
- Department of Chemistry and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße67663KaiserslauternGermany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
22
|
Bhowmik S, Krishnamurthy R. The role of sugar-backbone heterogeneity and chimeras in the simultaneous emergence of RNA and DNA. Nat Chem 2019; 11:1009-1018. [PMID: 31527850 PMCID: PMC6815252 DOI: 10.1038/s41557-019-0322-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023]
Abstract
Hypotheses of the origins of RNA and DNA are generally centred on the prebiotic synthesis of a pristine system (pre-RNA or RNA), which gives rise to its descendent. However, a lack of specificity in the synthesis of genetic polymers would probably result in chimeric sequences; the roles and fate of such sequences are unknown. Here, we show that chimeras, exemplified by mixed threose nucleic acid (TNA)-RNA and RNA-DNA oligonucleotides, preferentially bind to, and act as templates for, homogeneous TNA, RNA and DNA ligands. The chimeric templates can act as a catalyst that mediates the ligation of oligomers to give homogeneous backbone sequences, and the regeneration of the chimeric templates potentiates a scenario for a possible cross-catalytic cycle with amplification. This process provides a proof-of-principle demonstration of a heterogeneity-to-homogeneity scenario and also gives credence to the idea that DNA could appear concurrently with RNA, instead of being its later descendent.
Collapse
Affiliation(s)
- Subhendu Bhowmik
- The Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
23
|
Ousalem F, Singh S, Chesneau O, Hunt JF, Boël G. ABC-F proteins in mRNA translation and antibiotic resistance. Res Microbiol 2019; 170:435-447. [PMID: 31563533 DOI: 10.1016/j.resmic.2019.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/01/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022]
Abstract
The ATP binding cassette protein superfamily comprises ATPase enzymes which are, for the most part, involved in transmembrane transport. Within this superfamily however, some protein families have other functions unrelated to transport. One example is the ABC-F family, which comprises an extremely diverse set of cytoplasmic proteins. All of the proteins in the ABC-F family characterized to date act on the ribosome and are translation factors. Their common function is ATP-dependent modulation of the stereochemistry of the peptidyl transferase center (PTC) in the ribosome coupled to changes in its global conformation and P-site tRNA binding geometry. In this review, we give an overview of the function, structure, and theories for the mechanisms-of-action of microbial proteins in the ABC-F family, including those involved in mediating resistance to ribosome-binding antibiotics.
Collapse
Affiliation(s)
- Farès Ousalem
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Shikha Singh
- Department of Biological, 702A Sherman Fairchild Center, Columbia University, New York, NY, 10027, United States
| | - Olivier Chesneau
- Département de Microbiologie, Institut Pasteur, 75724, Paris Cedex 15, France.
| | - John F Hunt
- Department of Biological, 702A Sherman Fairchild Center, Columbia University, New York, NY, 10027, United States.
| | - Grégory Boël
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 75005, Paris, France.
| |
Collapse
|
24
|
Cornell CE, Black RA, Xue M, Litz HE, Ramsay A, Gordon M, Mileant A, Cohen ZR, Williams JA, Lee KK, Drobny GP, Keller SL. Prebiotic amino acids bind to and stabilize prebiotic fatty acid membranes. Proc Natl Acad Sci U S A 2019; 116:17239-17244. [PMID: 31405964 PMCID: PMC6717294 DOI: 10.1073/pnas.1900275116] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The membranes of the first protocells on the early Earth were likely self-assembled from fatty acids. A major challenge in understanding how protocells could have arisen and withstood changes in their environment is that fatty acid membranes are unstable in solutions containing high concentrations of salt (such as would have been prevalent in early oceans) or divalent cations (which would have been required for RNA catalysis). To test whether the inclusion of amino acids addresses this problem, we coupled direct techniques of cryoelectron microscopy and fluorescence microscopy with techniques of NMR spectroscopy, centrifuge filtration assays, and turbidity measurements. We find that a set of unmodified, prebiotic amino acids binds to prebiotic fatty acid membranes and that a subset stabilizes membranes in the presence of salt and Mg2+ Furthermore, we find that final concentrations of the amino acids need not be high to cause these effects; membrane stabilization persists after dilution as would have occurred during the rehydration of dried or partially dried pools. In addition to providing a means to stabilize protocell membranes, our results address the challenge of explaining how proteins could have become colocalized with membranes. Amino acids are the building blocks of proteins, and our results are consistent with a positive feedback loop in which amino acids bound to self-assembled fatty acid membranes, resulting in membrane stabilization and leading to more binding in turn. High local concentrations of molecular building blocks at the surface of fatty acid membranes may have aided the eventual formation of proteins.
Collapse
Affiliation(s)
- Caitlin E Cornell
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Roy A Black
- Department of Chemistry, University of Washington, Seattle, WA 98195;
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Mengjun Xue
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Helen E Litz
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Andrew Ramsay
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Moshe Gordon
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Alexander Mileant
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195
- Biological Structure, Physics, and Design Graduate Program, University of Washington, Seattle, WA 98195
| | - Zachary R Cohen
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - James A Williams
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195
| | - Gary P Drobny
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Sarah L Keller
- Department of Chemistry, University of Washington, Seattle, WA 98195;
| |
Collapse
|
25
|
Frenkel-Pinter M, Haynes JW, C M, Petrov AS, Burcar BT, Krishnamurthy R, Hud NV, Leman LJ, Williams LD. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proc Natl Acad Sci U S A 2019; 116:16338-16346. [PMID: 31358633 PMCID: PMC6697887 DOI: 10.1073/pnas.1904849116] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Numerous long-standing questions in origins-of-life research center on the history of biopolymers. For example, how and why did nature select the polypeptide backbone and proteinaceous side chains? Depsipeptides, containing both ester and amide linkages, have been proposed as ancestors of polypeptides. In this paper, we investigate cationic depsipeptides that form under mild dry-down reactions. We compare the oligomerization of various cationic amino acids, including the cationic proteinaceous amino acids (lysine, Lys; arginine, Arg; and histidine, His), along with nonproteinaceous analogs of Lys harboring fewer methylene groups in their side chains. These analogs, which have been discussed as potential prebiotic alternatives to Lys, are ornithine, 2,4-diaminobutyric acid, and 2,3-diaminopropionic acid (Orn, Dab, and Dpr). We observe that the proteinaceous amino acids condense more extensively than these nonproteinaceous amino acids. Orn and Dab readily cyclize into lactams, while Dab and Dpr condense less efficiently. Furthermore, the proteinaceous amino acids exhibit more selective oligomerization through their α-amines relative to their side-chain groups. This selectivity results in predominantly linear depsipeptides in which the amino acids are α-amine-linked, analogous to today's proteins. These results suggest a chemical basis for the selection of Lys, Arg, and His over other cationic amino acids for incorporation into proto-proteins on the early Earth. Given that electrostatics are key elements of protein-RNA and protein-DNA interactions in extant life, we hypothesize that cationic side chains incorporated into proto-peptides, as reported in this study, served in a variety of functions with ancestral nucleic acid polymers in the early stages of life.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
- NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jay W Haynes
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Martin C
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Anton S Petrov
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
- NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA 30332
| | - Bradley T Burcar
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Ramanarayanan Krishnamurthy
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Nicholas V Hud
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Luke J Leman
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332;
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Loren Dean Williams
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332;
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
- NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
26
|
Lopez A, Fiore M. Investigating Prebiotic Protocells for A Comprehensive Understanding of the Origins of Life: A Prebiotic Systems Chemistry Perspective. Life (Basel) 2019; 9:E49. [PMID: 31181679 PMCID: PMC6616946 DOI: 10.3390/life9020049] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 01/06/2023] Open
Abstract
Protocells are supramolecular systems commonly used for numerous applications, such as the formation of self-evolvable systems, in systems chemistry and synthetic biology. Certain types of protocells imitate plausible prebiotic compartments, such as giant vesicles, that are formed with the hydration of thin films of amphiphiles. These constructs can be studied to address the emergence of life from a non-living chemical network. They are useful tools since they offer the possibility to understand the mechanisms underlying any living cellular system: Its formation, its metabolism, its replication and its evolution. Protocells allow the investigation of the synergies occurring in a web of chemical compounds. This cooperation can explain the transition between chemical (inanimate) and biological systems (living) due to the discoveries of emerging properties. The aim of this review is to provide an overview of relevant concept in prebiotic protocell research.
Collapse
Affiliation(s)
- Augustin Lopez
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 1 Rue Victor Grignard, Bâtiment Lederer, 69622 Villeurbanne CEDEX, France.
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, 69342 Lyon CEDEX 07, France.
| | - Michele Fiore
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 1 Rue Victor Grignard, Bâtiment Lederer, 69622 Villeurbanne CEDEX, France.
| |
Collapse
|
27
|
Matsuo M, Kan Y, Kurihara K, Jimbo T, Imai M, Toyota T, Hirata Y, Suzuki K, Sugawara T. DNA Length-dependent Division of a Giant Vesicle-based Model Protocell. Sci Rep 2019; 9:6916. [PMID: 31061467 PMCID: PMC6502804 DOI: 10.1038/s41598-019-43367-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
DNA is an essential carrier of sequence-based genetic information for all life today. However, the chemical and physical properties of DNA may also affect the structure and dynamics of a vesicle-based model protocell in which it is encapsulated. To test these effects, we constructed a polyethylene glycol-grafted giant vesicle system capable of undergoing growth and division. The system incorporates a specific interaction between DNA and lipophilic catalysts as well as components of PCR. We found that vesicle division depends on the length of the encapsulated DNA, and the self-assembly of an internal supramolecular catalyst possibly leads to the direct causal relationship between DNA length and the capacity of the vesicle to self-reproduce. These results may help elucidate how nucleic acids could have functioned in the division of prebiotic protocells.
Collapse
Affiliation(s)
- Muneyuki Matsuo
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan.,Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Yumi Kan
- Department of Physics, Graduate School of Science, Ochanomizu University, Otsuka, Bunkyo, Tokyo, 112-8610, Japan
| | - Kensuke Kurihara
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), Myodaiji, Okazaki, Aichi, 444-8787, Japan.,Determent of Life and Coordination-Complex Molecular Science, Biomolecular Functions, Institute for Molecular Science, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Takehiro Jimbo
- Department of Physics, Graduate School of Science, Tohoku University, Aoba, Sendai, Miyagi, 980-8578, Japan
| | - Masayuki Imai
- Department of Physics, Graduate School of Science, Ochanomizu University, Otsuka, Bunkyo, Tokyo, 112-8610, Japan.,Department of Physics, Graduate School of Science, Tohoku University, Aoba, Sendai, Miyagi, 980-8578, Japan
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan. .,Universal Biology Institute, The University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Yuiko Hirata
- Department of Chemistry, Faculty of Science, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
| | - Kentaro Suzuki
- Department of Chemistry, Faculty of Science, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
| | - Tadashi Sugawara
- Department of Chemistry, Faculty of Science, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan.
| |
Collapse
|
28
|
Taira T, Ishizaki Y, Yamamoto S, Sakai K, Sakai H, Imura T. Spontaneous Vesicle Formation of Monododecenyl Phosphonic Acid in Water. J Oleo Sci 2019; 68:1223-1230. [DOI: 10.5650/jos.ess19164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Toshiaki Taira
- National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yuki Ishizaki
- Faculty of Science and Technology, Tokyo University of Science
| | - Shusei Yamamoto
- Faculty of Science and Technology, Tokyo University of Science
| | - Kenichi Sakai
- Faculty of Science and Technology, Tokyo University of Science
| | - Hideki Sakai
- Faculty of Science and Technology, Tokyo University of Science
| | - Tomohiro Imura
- National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
29
|
Nothling MD, Xiao Z, Bhaskaran A, Blyth MT, Bennett CW, Coote ML, Connal LA. Synthetic Catalysts Inspired by Hydrolytic Enzymes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03326] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mitchell D. Nothling
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Ayana Bhaskaran
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Mitchell T. Blyth
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christopher W. Bennett
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michelle L. Coote
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Luke A. Connal
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
30
|
Serrano-Luginbühl S, Ruiz-Mirazo K, Ostaszewski R, Gallou F, Walde P. Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0042-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
O’Flaherty D, Kamat NP, Mirza FN, Li L, Prywes N, Szostak JW. Copying of Mixed-Sequence RNA Templates inside Model Protocells. J Am Chem Soc 2018; 140:5171-5178. [PMID: 29608310 PMCID: PMC7547884 DOI: 10.1021/jacs.8b00639] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 01/11/2023]
Abstract
The chemical replication of RNA inside fatty acid vesicles is a plausible step in the emergence of cellular life. On the primitive Earth, simple protocells with the ability to import nucleotides and short oligomers from their environment could potentially have replicated and retained larger genomic RNA oligonucleotides within a spatially defined compartment. We have previously shown that short 5'-phosphoroimidazolide-activated "helper" RNA oligomers enable the nonenzymatic copying of mixed-sequence templates in solution, using 5'-phosphoroimidazolide-activated mononucleotides. Here, we report that citrate-chelated Mg2+, a catalyst of nonenzymatic primer extension, enhances fatty acid membrane permeability to such short RNA oligomers up to the size of tetramers, without disrupting vesicle membranes. In addition, selective permeability of short, but not long, oligomers can be further enhanced by elevating the temperature. The ability to increase the permeability of fatty acid membranes to short oligonucleotides allows for the nonenzymatic copying of RNA templates containing all four nucleotides inside vesicles, bringing us one step closer to the goal of building a protocell capable of Darwinian evolution.
Collapse
Affiliation(s)
- Derek
K. O’Flaherty
- Howard
Hughes Medical Institute, Department of Molecular Biology, and Center
for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Neha P. Kamat
- Howard
Hughes Medical Institute, Department of Molecular Biology, and Center
for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Biomedical
Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Fatima N. Mirza
- Howard
Hughes Medical Institute, Department of Molecular Biology, and Center
for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Li Li
- Howard
Hughes Medical Institute, Department of Molecular Biology, and Center
for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Noam Prywes
- Howard
Hughes Medical Institute, Department of Molecular Biology, and Center
for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jack W. Szostak
- Howard
Hughes Medical Institute, Department of Molecular Biology, and Center
for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| |
Collapse
|
32
|
Abstract
The emergence of functional cooperation between the three main classes of biomolecules - nucleic acids, peptides and lipids - defines life at the molecular level. However, how such mutually interdependent molecular systems emerged from prebiotic chemistry remains a mystery. A key hypothesis, formulated by Crick, Orgel and Woese over 40 year ago, posits that early life must have been simpler. Specifically, it proposed that an early primordial biology lacked proteins and DNA but instead relied on RNA as the key biopolymer responsible not just for genetic information storage and propagation, but also for catalysis, i.e. metabolism. Indeed, there is compelling evidence for such an 'RNA world', notably in the structure of the ribosome as a likely molecular fossil from that time. Nevertheless, one might justifiably ask whether RNA alone would be up to the task. From a purely chemical perspective, RNA is a molecule of rather uniform composition with all four bases comprising organic heterocycles of similar size and comparable polarity and pK a values. Thus, RNA molecules cover a much narrower range of steric, electronic and physicochemical properties than, e.g. the 20 amino acid side-chains of proteins. Herein we will examine the functional potential of RNA (and other nucleic acids) with respect to self-replication, catalysis and assembly into simple protocellular entities.
Collapse
|
33
|
Xu Y, Shi W, He X, Wu X, Li X, Ma H. Facile and Sensitive Method for Protein Kinase A Activity Assay Based on Fluorescent Off-On PolyU-peptide Assembly. Anal Chem 2017; 89:10980-10984. [PMID: 28937207 DOI: 10.1021/acs.analchem.7b02815] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphorylation mediated by protein kinases plays a pivotal role in metabolic and cell-signaling processes, and the dysfunction of protein kinases such as protein kinase A (PKA) may induce several human diseases. Therefore, it is of great significance to develop a facile and effective method for PKA activity assay and high-throughput screening of inhibitors. Herein, we develop a new fluorescent off-on method for PKA assay based on the assembly of anionic polyuridylic acid (polyU) and cationic fluorescent peptide. The phosphorylation of the peptide disrupts its electrostatic binding with polyU, suppresses the concentration quenching effect of polyU, and thus causes fluorescence recovery. The recovered fluorescence intensity at 585 nm is directly proportional to the PKA activity in the range of 0.1-3.2 U/mL with a detection limit of 0.05 U/mL. Using our method, the PKA activity in HeLa cell lysate is determined to be 58.2 ± 5.1 U/mg protein. The method has also been employed to evaluate the inhibitory effect of PKA inhibitors with satisfactory results and may be expected to be a promising candidate for facile and cost-effective assay of kinase activity and high-throughput inhibitor screening.
Collapse
Affiliation(s)
- Yanhui Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xinyuan He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Xiaofeng Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
34
|
Kyne C, Crowley PB. Short Arginine Motifs Drive Protein Stickiness in the Escherichia coli Cytoplasm. Biochemistry 2017; 56:5026-5032. [DOI: 10.1021/acs.biochem.7b00731] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ciara Kyne
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Peter B. Crowley
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
35
|
Perez L, Mettry M, Hinman SS, Byers SR, McKeating KS, Caulkins BG, Cheng Q, Hooley RJ. Selective protein recognition in supported lipid bilayer arrays by tailored, dual-mode deep cavitand hosts. SOFT MATTER 2017; 13:3966-3974. [PMID: 28512660 PMCID: PMC6041475 DOI: 10.1039/c7sm00192d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-folding deep cavitands with variably functionalized upper rims are able to selectively immobilize proteins at a biomimetic supported lipid bilayer surface. The immobilization process takes advantage of the dual-mode binding capabilities of the hosts, combining a defined binding pocket with upper rim charged/H-bonding groups. A variety of proteins can be selectively immobilized at the bilayer interface, either via complementary charge/H-bonding interactions, cavity-based molecular recognition, or a combination of both. The immobilization process can be used to bind unmodified native proteins, epitopes for bioadhesion, or proteins covalently modified with suitable RNMe3+ binding "handles" and charged groups that can either match or mismatch with the cavitand rim. The immobilization process can be monitored in real time using surface plasmon resonance (SPR) spectroscopy, and applied to the construction of cavitand:lipid arrays using the hosts and trehalose vitrified phospholipid vesicles. The selective, dual-mode protein recognition is maintained in the arrays, and can be visualized using SPR imaging.
Collapse
Affiliation(s)
- Lizeth Perez
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wieczorek R, Adamala K, Gasperi T, Polticelli F, Stano P. Small and Random Peptides: An Unexplored Reservoir of Potentially Functional Primitive Organocatalysts. The Case of Seryl-Histidine. Life (Basel) 2017; 7:E19. [PMID: 28397774 PMCID: PMC5492141 DOI: 10.3390/life7020019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
Catalysis is an essential feature of living systems biochemistry, and probably, it played a key role in primordial times, helping to produce more complex molecules from simple ones. However, enzymes, the biocatalysts par excellence, were not available in such an ancient context, and so, instead, small molecule catalysis (organocatalysis) may have occurred. The best candidates for the role of primitive organocatalysts are amino acids and short random peptides, which are believed to have been available in an early period on Earth. In this review, we discuss the occurrence of primordial organocatalysts in the form of peptides, in particular commenting on reports about seryl-histidine dipeptide, which have recently been investigated. Starting from this specific case, we also mention a peptide fragment condensation scenario, as well as other potential roles of peptides in primordial times. The review actually aims to stimulate further investigation on an unexplored field of research, namely one that specifically looks at the catalytic activity of small random peptides with respect to reactions relevant to prebiotic chemistry and early chemical evolution.
Collapse
Affiliation(s)
- Rafal Wieczorek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Katarzyna Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Tecla Gasperi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.
| | - Fabio Polticelli
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.
- National Institute of Nuclear Physics, Roma Tre Section, Via della Vasca Navale 84, 00146 Rome, Italy.
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Campus Ecotekne (S.P. 6 Lecce-Monteroni), 73100 Lecce, Italy.
| |
Collapse
|
37
|
Tagami S, Attwater J, Holliger P. Simple peptides derived from the ribosomal core potentiate RNA polymerase ribozyme function. Nat Chem 2017; 9:325-332. [PMID: 28338682 DOI: 10.1038/nchem.2739] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/20/2017] [Indexed: 11/09/2022]
Abstract
The emergence of functional interactions between nucleic acids and polypeptides was a key transition in the origin of life and remains at the heart of all biology. However, how and why simple non-coded peptides could have become critical for RNA function is unclear. Here, we show that putative ancient peptide segments from the cores of both ribosomal subunits enhance RNA polymerase ribozyme (RPR) function, as do derived homopolymeric peptides comprising lysine or the non-proteinogenic lysine analogues ornithine or, to a lesser extent, diaminobutyric acid, irrespective of chirality or chiral purity. Lysine decapeptides enhance RPR function by promoting holoenzyme assembly through primer-template docking, accelerate RPR evolution, and allow RPR-catalysed RNA synthesis at near physiological (≥1 mM) Mg2+ concentrations, enabling templated RNA synthesis within membranous protocells. Our results outline how compositionally simple, mixed-chirality peptides may have augmented the functional potential of early RNAs and promoted the emergence of the first protocells.
Collapse
Affiliation(s)
- Shunsuke Tagami
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - James Attwater
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
38
|
Kobayashi S, Terai T, Yoshikawa Y, Ohkawa R, Ebihara M, Hayashi M, Takiguchi K, Nemoto N. In vitro selection of random peptides against artificial lipid bilayers: a potential tool to immobilize molecules on membranes. Chem Commun (Camb) 2017; 53:3458-3461. [DOI: 10.1039/c7cc00099e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first in vitro selection of binding peptides against artificial lipid membranes was performed using a cDNA display method.
Collapse
Affiliation(s)
- Shota Kobayashi
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| | - Takuya Terai
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| | - Yuki Yoshikawa
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| | - Ryoya Ohkawa
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| | - Mika Ebihara
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| | - Masahito Hayashi
- Division of Biological Science
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Kingo Takiguchi
- Division of Biological Science
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Naoto Nemoto
- Graduate School of Science and Engineering
- Saitama University
- Saitama City
- Japan
| |
Collapse
|
39
|
Izgu EC, Björkbom A, Kamat NP, Lelyveld VS, Zhang W, Jia TZ, Szostak JW. N-Carboxyanhydride-Mediated Fatty Acylation of Amino Acids and Peptides for Functionalization of Protocell Membranes. J Am Chem Soc 2016; 138:16669-16676. [PMID: 27959544 PMCID: PMC7547885 DOI: 10.1021/jacs.6b08801] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Early protocells are likely to have arisen from the self-assembly of RNA, peptide, and lipid molecules that were generated and concentrated within geologically favorable environments on the early Earth. The reactivity of these components in a prebiotic environment that supplied sources of chemical energy could have produced additional species with properties favorable to the emergence of protocells. The geochemically plausible activation of amino acids by carbonyl sulfide has been shown to generate short peptides via the formation of cyclic amino acid N-carboxyanhydrides (NCAs). Here, we show that the polymerization of valine-NCA in the presence of fatty acids yields acylated amino acids and peptides via a mixed anhydride intermediate. Notably, Nα-oleoylarginine, a product of the reaction between arginine and oleic acid in the presence of valine-NCA, partitions spontaneously into vesicle membranes and mediates the association of RNA with the vesicles. Our results suggest a potential mechanism by which activated amino acids could diversify the chemical functionality of fatty acid membranes and colocalize RNA with vesicles during the formation of early protocells.
Collapse
Affiliation(s)
- Enver Cagri Izgu
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Anders Björkbom
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Biosciences, Åbo Akademi University , Åbo FI-20520, Finland
| | - Neha P Kamat
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Victor S Lelyveld
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Weicheng Zhang
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Tony Z Jia
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
40
|
Gavette JV, Stoop M, Hud NV, Krishnamurthy R. RNA-DNA Chimeras in the Context of an RNA World Transition to an RNA/DNA World. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jesse V. Gavette
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Matthias Stoop
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta GA 30332 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| |
Collapse
|
41
|
Gavette JV, Stoop M, Hud NV, Krishnamurthy R. RNA-DNA Chimeras in the Context of an RNA World Transition to an RNA/DNA World. Angew Chem Int Ed Engl 2016; 55:13204-13209. [DOI: 10.1002/anie.201607919] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Jesse V. Gavette
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Matthias Stoop
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta GA 30332 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| |
Collapse
|
42
|
Abstract
To study the origin of life, synthetic biologists construct simple 'protocells', but previous models were not able to reproduce both genome and membrane sustainably. A recent advance feeds the protocells by vesicle fusion, suggesting a practical pathway for indefinite self-reproduction.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA
| | - Irene A Chen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA; Program in Biomolecular Sciences and Engineering, University of California, Santa Barbara, CA 93106-9510, USA.
| |
Collapse
|
43
|
Liu K, Xing R, Li Y, Zou Q, Möhwald H, Yan X. Mimicking Primitive Photobacteria: Sustainable Hydrogen Evolution Based on Peptide-Porphyrin Co-Assemblies with a Self-Mineralized Reaction Center. Angew Chem Int Ed Engl 2016; 55:12503-7. [DOI: 10.1002/anie.201606795] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/27/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Kai Liu
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- Center for Mesoscience; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
| | - Yongxin Li
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
| | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 14476 Potsdam/Golm Germany
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- Center for Mesoscience; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
| |
Collapse
|
44
|
Liu K, Xing R, Li Y, Zou Q, Möhwald H, Yan X. Mimicking Primitive Photobacteria: Sustainable Hydrogen Evolution Based on Peptide-Porphyrin Co-Assemblies with a Self-Mineralized Reaction Center. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606795] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kai Liu
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- Center for Mesoscience; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
| | - Yongxin Li
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
| | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 14476 Potsdam/Golm Germany
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- Center for Mesoscience; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
| |
Collapse
|
45
|
Black RA, Blosser MC. A Self-Assembled Aggregate Composed of a Fatty Acid Membrane and the Building Blocks of Biological Polymers Provides a First Step in the Emergence of Protocells. Life (Basel) 2016; 6:E33. [PMID: 27529283 PMCID: PMC5041009 DOI: 10.3390/life6030033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 02/01/2023] Open
Abstract
We propose that the first step in the origin of cellular life on Earth was the self-assembly of fatty acids with the building blocks of RNA and protein, resulting in a stable aggregate. This scheme provides explanations for the selection and concentration of the prebiotic components of cells; the stabilization and growth of early membranes; the catalysis of biopolymer synthesis; and the co-localization of membranes, RNA and protein. In this article, we review the evidence and rationale for the formation of the proposed aggregate: (i) the well-established phenomenon of self-assembly of fatty acids to form vesicles; (ii) our published evidence that nucleobases and sugars bind to and stabilize such vesicles; and (iii) the reasons why amino acids likely do so as well. We then explain how the conformational constraints and altered chemical environment due to binding of the components to the membrane could facilitate the formation of nucleosides, oligonucleotides and peptides. We conclude by discussing how the resulting oligomers, even if short and random, could have increased vesicle stability and growth more than their building blocks did, and how competition among these vesicles could have led to longer polymers with complex functions.
Collapse
Affiliation(s)
- Roy A Black
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
46
|
Oligoarginine peptides slow strand annealing and assist non-enzymatic RNA replication. Nat Chem 2016; 8:915-21. [PMID: 27657866 PMCID: PMC5061144 DOI: 10.1038/nchem.2551] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/16/2016] [Indexed: 01/01/2023]
Abstract
The nonenzymatic replication of RNA is thought to have been a critical process required for the origin of life. One unsolved difficulty with nonenzymatic RNA replication is that template-directed copying of RNA results in a double-stranded product; following strand separation, rapid strand reannealing outcompetes slow nonenzymatic template copying, rendering multiple rounds of RNA replication impossible. Here we show that oligoarginine peptides slow the annealing of complementary oligoribonucleotides by up to several thousand-fold; however, short primers and activated monomers can still bind to template strands, and template-directed primer extension can still occur within a phase-separated condensed state, or coacervate. Furthermore, we show that within this phase, partial template copying occurs even in the presence of full-length complementary strands. This method for enabling further rounds of replication suggests one mechanism by which short, non-coded peptides could have enhanced early cellular fitness, potentially explaining how longer, coded peptides, i.e. proteins, came to prominence in modern biology.
Collapse
|