1
|
Xie Y, Li Z, Xu X, Jiang H, Chen K, Ou J, Liu K, Zhou Y, Luo K. Bis(2-butoxyethyl) Ether-Promoted O 2-Mediated Oxidation of Alkyl Aromatics to Ketones under Clean Conditions. Molecules 2024; 29:4909. [PMID: 39459277 PMCID: PMC11510689 DOI: 10.3390/molecules29204909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Conventional oxidation processes for alkyl aromatics to ketones employ oxidants that tend to generate harmful byproducts and cause severe equipment corrosion, ultimately creating critical environmental problems. Thus, in this study, a practical, efficient, and green method was developed for the synthesis of aromatic ketones by applying a bis(2-butoxyethyl) ether/O2 system under external catalyst-, additive-, and base-free conditions. This O2-mediated oxidation system can tolerate various functional groups and is suitable for large-scale synthesis. Diverse target ketones were prepared under clean conditions in moderate-to-high yields. The late-stage functionalization of drug derivatives with the corresponding ketones and one-pot sequential chemical conversions to ketone downstream products further broaden the application prospects of this approach.
Collapse
Affiliation(s)
- Yangyang Xie
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Zeping Li
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Xudong Xu
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Han Jiang
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Keyi Chen
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Jinhua Ou
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Kaijian Liu
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Yihui Zhou
- Collaborative Innovation Center, Hunan Automotive Engineering Vocational College, Zhuzhou 412001, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Kejun Luo
- Changsha Research Institute of Mining and Metallurgy Co., Ltd., Changsha 410012, China
| |
Collapse
|
2
|
Zhang Q, Zhang J, Qian H, Ma S. Aerobic Oxidation of PMB Ethers to Carboxylic Acids. Chemistry 2024; 30:e202401815. [PMID: 38925594 DOI: 10.1002/chem.202401815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The first aerobic protocol of direct transformation of p-methoxybenzyl (PMB) ethers to carboxylic acids efficiently with Fe(NO3)3 ⋅ 9H2O and TEMPO as catalysts at room temperature has been developed. The reaction accommodates C-Br bond, terminal/non-terminal C-C triple bond, amide, cyano, nitro, ester, and trifluoromethyl groups. Even highly selective oxidative deprotection of different benzylic PMB ethers has been realized. The reaction has been successfully applied to the total synthesis of natural product, (R)-6-hydroxy-7,9-octadecadiynoic acid, demonstrating the practicality of the method. Based on experimental studies, a possible mechanism involving oxygen-stabilized benzylic cation has been proposed.
Collapse
Affiliation(s)
- Qian Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Jiabin Zhang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang Province, China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang Province, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
3
|
Song S, Peng X, Zhou B, Zheng L, Sun J, Chen Z, Li J. Acid-Promoted Self-Photocatalyzed Regioselective Oxidation: A Novel Strategy for Accessing Quinoxaline-2,3-diones. Chemistry 2024:e202402848. [PMID: 39205466 DOI: 10.1002/chem.202402848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Disclosed here is an efficient approach for the preparation of quinoxaline-2,3-diones using air (O2) as a green oxidant via acid-promoted self-photocatalyzed regioselective oxidation of quinoxalin-2(1H)-ones at C-3 position. This protocol presents a novel synthetic route for the preparation of quinoxaline-2,3-dione derivatives, featuring mild reaction conditions, simple operation, and a wide range of substrates, without the need for external photocatalysts, metal reagents, and strong oxidants.
Collapse
Affiliation(s)
- Shengjie Song
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang, 310014, China
| | - Xiaoqing Peng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang, 310014, China
| | - Binjie Zhou
- Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou Institute, Zhejiang University of Technology, No. 788 Xueyuan Road, Jiaojiang District, Taizhou City, Zhejiang, 318014, China
| | - Lijun Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang, 310014, China
| | - Jie Sun
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang, 310014, China
| | - Zhi Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang, 310014, China
| | - Jianjun Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang, 310014, China
- Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou Institute, Zhejiang University of Technology, No. 788 Xueyuan Road, Jiaojiang District, Taizhou City, Zhejiang, 318014, China
| |
Collapse
|
4
|
Zhang Z, Lv Y, Ji L, Chen P, Han S, Zhu Y, Li L, Jia Z, Loh TP. Triaryl Carbenium Ion Pair Mediated Electrocatalytic Benzylic C-H Oxygenation in Air. Angew Chem Int Ed Engl 2024; 63:e202406588. [PMID: 38664822 DOI: 10.1002/anie.202406588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 06/05/2024]
Abstract
The selective oxidation of benzylic C-H bonds is a pivotal transformation in organic synthesis. Undoubtedly, achieving efficient and highly selective aerobic oxidation of methylarenes to benzaldehydes has been highly challenging due to the propensity of benzaldehyde to undergo overoxidation under typical aerobic conditions. Herein, we propose an innovative approach to address this issue by leveraging electrocatalytic processes, facilitated by ion-pair mediators [Ph3C]+[B(C6F5)4]-. By harnessing the power of electrochemistry, we successfully demonstrated the effectiveness of our strategy, which enables the selective oxidation of benzylic C-H bonds in benzylic molecules and toluene derivatives. Notably, our approach exhibited high efficiency, excellent selectivity, and compatibility with various functional groups, underscoring the broad applicability of our methodology.
Collapse
Affiliation(s)
- Zhenguo Zhang
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
| | - Yongheng Lv
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Liang Ji
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Peng Chen
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Shuyan Han
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Yufei Zhu
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Lanyang Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhenhua Jia
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Teck-Peng Loh
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
5
|
Bo C, Li M, Chen F, Liu J, Dai B, Liu N. Visible-Light-Initiated Air-Oxygenation of Alkylarenes to Carbonyls Mediated by Carbon Tetrabromide in Water. CHEMSUSCHEM 2024; 17:e202301015. [PMID: 37661194 DOI: 10.1002/cssc.202301015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Synthesizing benzyl skeleton derivatives via direct oxidation of functionalized benzylic C-H bonds has received extensive research attention. Herein, a method was developed to prepare carbonyl compounds via photoinduced aerobic oxidation of ubiquitous benzylic C-H bonds mediated by bromine radicals and tribromomethane radicals. This method employed commercially available CBr4 as a hydrogen atom transfer reagent precursor, air as an oxidant, water as a reaction solvent, and tetrabutylammonium perchlorate (TBAPC) as an additive under mild conditions. A series of substrates bearing different functional groups was converted to aromatic carbonyls in moderate to good yields. Moreover, a low environmental factor (E-factor value=0.45) showed that the proposed method is ecofriendly and environmentally sustainable.
Collapse
Affiliation(s)
- Chunbo Bo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Min Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Fei Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Jichang Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Bin Dai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Ning Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| |
Collapse
|
6
|
Takeda A, Oka M, Iida H. Atom-Economical Syntheses of Dihydropyrroles Using Flavin-Iodine-Catalyzed Aerobic Multistep and Multicomponent Reactions. J Org Chem 2023. [PMID: 37183405 DOI: 10.1021/acs.joc.3c00444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Herein, we report facile, atom-economical syntheses of multisubstituted 2,3-dihydropyrroles using flavin-iodine-catalyzed aerobic oxidative multistep transformations of chalcones with β-enamine ketones or 1,3-dicarbonyl compounds and amines. Exploiting coupled flavin-iodine catalysis, the multistep reaction, including C-C and C-N bond formation, is promoted only by the consumption of O2 (1 atm), thus allowing aerobic oxidative synthesis that generates green H2O as the only waste.
Collapse
Affiliation(s)
- Aki Takeda
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|
7
|
Hofmann E, Degot P, Touraud D, König B, Kunz W. Novel green production of natural-like vanilla extract from curcuminoids. Food Chem 2023; 417:135944. [PMID: 36934704 DOI: 10.1016/j.foodchem.2023.135944] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
The demand for natural vanilla extract, and vanillin in particular, by far exceeds the current production, as both the cultivation of vanilla beans and the extraction of vanillin are laborious. For this purpose, most vanillin used today is produced synthetically, contrary to the general trend toward bio-based products. The present study deals with the synthesis of nature-based vanillin, starting with the more accessible rhizomes of the plant Curcuma longa. Besides vanillin, vanillic acid and p-hydroxybenzaldehyde are synthesized that way, which are also found in the natural vanilla bean. The extraction of the curcuminoids and, finally, their conversion to the flavors are performed using visible light and food-grade chemicals only. A binary mixture of ethanol and triacetin, as well as a surfactant-free microemulsion consisting of water, ethanol, and triacetin, are investigated in this context. The results exceed the literature values for Soxhlet extraction of vanilla beans by a factor > 7.
Collapse
Affiliation(s)
- Evamaria Hofmann
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| | - Pierre Degot
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| | - Didier Touraud
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| |
Collapse
|
8
|
Shiogai Y, Oka M, Iida H. Aerobic cross-dehydrogenative coupling of toluenes and o-phenylenediamines by flavin photocatalysis for the facile synthesis of benzimidazoles. Org Biomol Chem 2023; 21:2081-2085. [PMID: 36804653 DOI: 10.1039/d3ob00113j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Herein, we demonstrate a green atom-economical synthesis of benzimidazoles via the flavin-photocatalysed aerobic oxidative cross-dehydrogenative coupling of toluenes and o-phenylenediamines. The proposed metal-free reaction proceeds in methanol/H2O under visible light irradiation by consuming only molecular oxygen from atmospheric air and produces only water as waste.
Collapse
Affiliation(s)
- Yuta Shiogai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan.
| | - Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan.
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan.
| |
Collapse
|
9
|
Zhou J, Jia M, Song M, Huang Z, Steiner A, An Q, Ma J, Guo Z, Zhang Q, Sun H, Robertson C, Bacsa J, Xiao J, Li C. Chemoselective Oxyfunctionalization of Functionalized Benzylic Compounds with a Manganese Catalyst. Angew Chem Int Ed Engl 2022; 61:e202205983. [PMID: 35594169 PMCID: PMC9400980 DOI: 10.1002/anie.202205983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/06/2022]
Abstract
Whilst allowing for easy access to synthetically versatile motifs and for modification of bioactive molecules, the chemoselective benzylic oxidation reactions of functionalized alkyl arenes remain challenging. Reported in this study is a new non-heme Mn catalyst stabilized by a bipiperidine-based tetradentate ligand, which enables methylene oxidation of benzylic compounds by H2 O2 , showing high activity and excellent chemoselectivity under mild conditions. The protocol tolerates an unprecedentedly wide range of functional groups, including carboxylic acid and derivatives, ketone, cyano, azide, acetate, sulfonate, alkyne, amino acid, and amine units, thus providing a low-cost, more sustainable and robust pathway for the facile synthesis of ketones, increase of complexity of organic molecules, and late-stage modification of drugs.
Collapse
Affiliation(s)
- Jimei Zhou
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Minxian Jia
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Menghui Song
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Zhiliang Huang
- Department of ChemistryUniversity of LiverpoolLiverpoolL69 7ZDUK
| | | | - Qidong An
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Jianwei Ma
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Zhiyin Guo
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Qianqian Zhang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Craig Robertson
- Department of ChemistryUniversity of LiverpoolLiverpoolL69 7ZDUK
| | - John Bacsa
- Department of ChemistryEmory University1515 Dickey Dr.AtlantaGA 30322USA
| | - Jianliang Xiao
- Department of ChemistryUniversity of LiverpoolLiverpoolL69 7ZDUK
| | - Chaoqun Li
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| |
Collapse
|
10
|
Hou ZW, Zhang MM, Yang WC, Wang L. Catalyst- and Oxidizing Reagent-Free Electrochemical Benzylic C(sp 3)-H Oxidation of Phenol Derivatives. J Org Chem 2022; 87:7806-7817. [PMID: 35648817 DOI: 10.1021/acs.joc.2c00455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A site-selective electrochemical approach for the benzylic C(sp3)-H oxidation reaction of phenol derivatives along with hydrogen evolution has been developed. The protocol proceeds in an easily available undivided cell at room temperature under catalyst- and oxidizing reagent-free conditions. The corresponding aryl aldehydes and ketones are obtained in satisfactory yields, and the gram-scale synthesis is easy to be carried out.
Collapse
Affiliation(s)
- Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang, Taizhou 318000, P. R. China
| | - Ming-Ming Zhang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, Yangzhou 225009, P. R. China
| | - Wen-Chao Yang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, Yangzhou 225009, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang, Taizhou 318000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| |
Collapse
|
11
|
Zhou J, Jia M, Song M, Huang Z, Steiner A, An Q, Ma J, Guo Z, Zhang Q, Sun H, Robertson CM, Bacsa J, Xiao J, Li C. Chemoselective Oxyfunctionalization of Functionalized Benzylic Compounds with a Manganese Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jimei Zhou
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an CHINA
| | - Minxian Jia
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an UNITED KINGDOM
| | - Menghui Song
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an UNITED KINGDOM
| | - Zhiliang Huang
- University of Liverpool Department of Chemistry UNITED KINGDOM
| | | | - Qidong An
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an UNITED KINGDOM
| | - Jianwei Ma
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an UNITED KINGDOM
| | - Zhiyin Guo
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an UNITED KINGDOM
| | - Qianqian Zhang
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an UNITED KINGDOM
| | - Huaming Sun
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an UNITED KINGDOM
| | | | - John Bacsa
- Emory University Department of Chemistry UNITED KINGDOM
| | - Jianliang Xiao
- University of Liverpool Department of Chemistry Oxford Street L69 7ZD Liverpool UNITED KINGDOM
| | - Chaoqun Li
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an CHINA
| |
Collapse
|
12
|
Li C, Xu R, Song Q, Mao Z, Li J, Yang H, Chen J. Highly efficient photocatalytic oxidation of C-H bond based on microchannel reactor. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Ju ZY, Song LN, Chong MB, Cheng DG, Hou Y, Zhang XM, Zhang QH, Ren LH. Selective Aerobic Oxidation of C sp3-H Bonds Catalyzed by Yeast-Derived Nitrogen, Phosphorus, and Oxygen Codoped Carbon Materials. J Org Chem 2022; 87:3978-3988. [PMID: 35254832 DOI: 10.1021/acs.joc.1c02641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nitrogen, phosphorus, and oxygen codoped carbon catalysts were successfully synthesized using dried yeast powder as a pyrolysis precursor. The yeast-derived heteroatom-doped carbon (yeast@C) catalysts exhibited outstanding performance in the oxidation of Csp3-H bonds to ketones and esters, giving excellent product yields (of up to 98% yield) without organic solvents at low O2 pressure (0.1 MPa). The catalytic oxidation protocol exhibited a broad range of substrates (38 examples) with good functional group tolerance, excellent regioselectivity, and synthetic utility. The yeast-derived heteroatom-doped carbon catalysts showed good reusability and stability after recycling six times without any significant loss of activity. Experimental results and DFT calculations proved the important role of N-oxide (N+-O-) on the surface of yeast@C and a reasonable carbon radical mechanism.
Collapse
Affiliation(s)
- Zhao-Yang Ju
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Li-Na Song
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Ming-Ben Chong
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhuabei Road, Quzhou 324000, P. R. China
| | - Dang-Guo Cheng
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Xi-Ming Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Qing-Hua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Lan-Hui Ren
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhuabei Road, Quzhou 324000, P. R. China
| |
Collapse
|
14
|
Li S, Tian D, Zhao X, Yin Y, Lee R, Jiang Z. Visible light-driven copper( ii) catalyzed aerobic oxidative cleavage of carbon–carbon bonds: a combined experimental and theoretical study. Org Chem Front 2022. [DOI: 10.1039/d2qo01264b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By switching on visible blue light, aerobic oxidation of various substrates, such as α-substituted, β-substituted and α-halo styrenes, was first realized with a copper(ii) catalyst.
Collapse
Affiliation(s)
- Sanliang Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Dong Tian
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Xiaowei Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Yanli Yin
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Richmond Lee
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Zhiyong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
15
|
Two transition-metal-modified Nb/W mixed-addendum polyoxometalates for visible-light-mediated aerobic benzylic C–H oxidations. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Singh S, Nautiyal D, Thetiot F, Le Poul N, Goswami T, Kumar A, Kumar S. Bioinspired Heterobimetallic Photocatalyst ( RuIIchrom-FeIIIcat) for Visible-Light-Driven C-H Oxidation of Organic Substrates via Dioxygen Activation. Inorg Chem 2021; 60:16059-16064. [PMID: 34662098 DOI: 10.1021/acs.inorgchem.1c02514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a bioinspired heterobimetallic photocatalyst RuIIchrom-FeIIIcat and its relevant applications toward visible-light-driven C-H bond oxidation of a series of hydrocarbons using O2 as the O-atom source. The RuII center absorbs visible light near 460 nm and triggers a cascade of electrons to FeIII to afford a catalytically active high-valent FeIV═O species. The in situ formed FeIV═O has been employed for several high-impact oxidation reactions in the presence of triethanolamine (TEOA) as the sacrificial electron donor.
Collapse
Affiliation(s)
- Siddhant Singh
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248001, Uttarakhand, India
| | - Divyanshu Nautiyal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248001, Uttarakhand, India
| | - Franck Thetiot
- CEMCA, CNRS, UMR 6521, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, CS 93837, Brest 29238, France
| | - Nicolas Le Poul
- CEMCA, CNRS, UMR 6521, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, CS 93837, Brest 29238, France
| | - Tapas Goswami
- Department of Chemistry, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248001, Uttarakhand, India
| | - Sushil Kumar
- Department of Chemistry, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
17
|
Aerobic oxidation of C-H bonds to carboxylic acids enabled by decatungstate photocatalysis. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
18
|
Manna S, Kong WJ, Bäckvall JE. Iron(II)-Catalyzed Aerobic Biomimetic Oxidation of N-Heterocycles. Chemistry 2021; 27:13725-13729. [PMID: 34324754 PMCID: PMC8518507 DOI: 10.1002/chem.202102483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/29/2022]
Abstract
Herein, an iron(II)-catalyzed biomimetic oxidation of N-heterocycles under aerobic conditions is described. The dehydrogenation process, involving several electron-transfer steps, is inspired by oxidations occurring in the respiratory chain. An environmentally friendly and inexpensive iron catalyst together with a hydroquinone/cobalt Schiff base hybrid catalyst as electron-transfer mediator were used for the substrate-selective dehydrogenation reaction of various N-heterocycles. The method shows a broad substrate scope and delivers important heterocycles in good-to-excellent yields.
Collapse
Affiliation(s)
- Srimanta Manna
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Wei-Jun Kong
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Jan-E Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
- Department of Natural Sciences, Mid Sweden University, 85170, Sundsvall, Sweden
| |
Collapse
|
19
|
Li X, Bai F, Liu C, Ma X, Gu C, Dai B. Selective Electrochemical Oxygenation of Alkylarenes to Carbonyls. Org Lett 2021; 23:7445-7449. [PMID: 34517705 DOI: 10.1021/acs.orglett.1c02651] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient electrochemical method for benzylic C(sp3)-H bond oxidation has been developed. A variety of methylarenes, methylheteroarenes, and benzylic (hetero)methylenes could be converted into the desired aryl aldehydes and aryl ketones in moderate to excellent yields in an undivided cell, using O2 as the oxygen source and lutidinium perchlorate as an electrolyte. On the basis of cyclic voltammetry studies, 18O labeling experiments, and radical trapping experiments, a possible single-electron transfer mechanism has been proposed for the electrooxidation reaction.
Collapse
Affiliation(s)
- Xue Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, Uygur Autonomous Region 832000, China
| | - Fang Bai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, Uygur Autonomous Region 832000, China
| | - Chaogan Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, Uygur Autonomous Region 832000, China
| | - Xiaowei Ma
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, Uygur Autonomous Region 832000, China
| | - Chengzhi Gu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, Uygur Autonomous Region 832000, China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, Uygur Autonomous Region 832000, China
| |
Collapse
|
20
|
Krylov IB, Lopat’eva ER, Subbotina IR, Nikishin GI, Yu B, Terent’ev AO. Mixed hetero-/homogeneous TiO2/N-hydroxyimide photocatalysis in visible-light-induced controllable benzylic oxidation by molecular oxygen. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63831-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Hassan Tolba A, Krupička M, Chudoba J, Cibulka R. Amide Bond Formation via Aerobic Photooxidative Coupling of Aldehydes with Amines Catalyzed by a Riboflavin Derivative. Org Lett 2021; 23:6825-6830. [PMID: 34424722 DOI: 10.1021/acs.orglett.1c02391] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report an effective, operationally simple, and environmentally friendly system for the synthesis of tertiary amides by the oxidative coupling of aromatic or aliphatic aldehydes with amines mediated by riboflavin tetraacetate (RFTA), an inexpensive organic photocatalyst, and visible light using oxygen as the sole oxidant. The method is based on the oxidative power of an excited flavin catalyst and the relatively low oxidation potential of the hemiaminal formed by amine to aldehyde addition.
Collapse
|
22
|
Song Y, Wang X, Wang L, Dong Z, Fan S, Huang P, Zeng J, Cheng P. Visible-light promoted allylation of N-substituted tetrahydroisoquinoline using riboflavin tetra-acetate as photocatalyst. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Liu J, Guðmundsson A, Bäckvall J. Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University 410082 Changsha China
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
| | - Arnar Guðmundsson
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
| | - Jan‐E. Bäckvall
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
- Department of Natural Sciences Mid Sweden University Holmgatan 10 SE-85170 Sundsvall Sweden
| |
Collapse
|
24
|
Liu J, Guðmundsson A, Bäckvall J. Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angew Chem Int Ed Engl 2021; 60:15686-15704. [PMID: 33368909 PMCID: PMC9545650 DOI: 10.1002/anie.202012707] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/17/2022]
Abstract
This Minireview presents recent important homogenous aerobic oxidative reactions which are assisted by electron transfer mediators (ETMs). Compared with direct oxidation by molecular oxygen (O2 ), the use of a coupled catalyst system with ETMs leads to a lower overall energy barrier via stepwise electron transfer. This cooperative catalytic process significantly facilitates the transport of electrons from the reduced form of the substrate-selective redox catalyst (SSRCred ) to O2 , thereby increasing the efficiency of the aerobic oxidation. In this Minireview, we have summarized the advances accomplished in recent years in transition-metal-catalyzed as well as metal-free aerobic oxidations of organic molecules in the presence of ETMs. In addition, the recent progress of photochemical and electrochemical oxidative functionalization using ETMs and O2 as the terminal oxidant is also highlighted. Furthermore, the mechanisms of these transformations are showcased.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University410082ChangshaChina
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
| | - Arnar Guðmundsson
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
- Department of Natural SciencesMid Sweden UniversityHolmgatan 10SE-85170SundsvallSweden
| |
Collapse
|
25
|
Gu J, Wan Y, Ma H, Zhu H, Bu H, Zhou Y, Zhang W, Wu ZG, Li Y. Ferric ion concentration-controlled aerobic photo-oxidation of benzylic C–H bond with high selectivity and conversion. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Pokluda A, Anwar Z, Boguschová V, Anusiewicz I, Skurski P, Sikorski M, Cibulka R. Robust Photocatalytic Method Using Ethylene‐Bridged Flavinium Salts for the Aerobic Oxidation of Unactivated Benzylic Substrates. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adam Pokluda
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Zubair Anwar
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61–614 Poznań Poland
| | - Veronika Boguschová
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Iwona Anusiewicz
- Faculty of Chemistry University of Gdańsk Wita Stwosza 63 80–308 Gdańsk Poland
| | - Piotr Skurski
- Faculty of Chemistry University of Gdańsk Wita Stwosza 63 80–308 Gdańsk Poland
| | - Marek Sikorski
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61–614 Poznań Poland
| | - Radek Cibulka
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
27
|
Tanimoto K, Okai H, Oka M, Ohkado R, Iida H. Aerobic Oxidative C-H Azolation of Indoles and One-Pot Synthesis of Azolyl Thioindoles by Flavin-Iodine-Coupled Organocatalysis. Org Lett 2021; 23:2084-2088. [PMID: 33656903 DOI: 10.1021/acs.orglett.1c00241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aerobic oxidative cross-coupling of indoles with azoles driven by flavin-iodine-coupled organocatalysis has been developed for the green synthesis of 2-(azol-1-yl)indoles. The coupled organocatalytic system enabled the one-pot three-component synthesis of 2-azolyl-3-thioindoles from indoles, azoles, and thiols in an atom-economical manner by utilizing molecular oxygen as the only sacrificial reagent.
Collapse
Affiliation(s)
- Kazumasa Tanimoto
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Hayaki Okai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryoma Ohkado
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| |
Collapse
|
28
|
Torregrosa-Chinillach A, Chinchilla R. Synthesis of Xanthones, Thioxanthones and Acridones by a Metal-Free Photocatalytic Oxidation Using Visible Light and Molecular Oxygen. Molecules 2021; 26:molecules26040974. [PMID: 33673146 PMCID: PMC7918112 DOI: 10.3390/molecules26040974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022] Open
Abstract
9H-Xanthenes, 9H-thioxanthenes and 9,10-dihydroacridines can be easily oxidized to the corresponding xanthones, thioxanthones and acridones, respectively, by a simple photo-oxidation procedure carried out using molecular oxygen as oxidant under the irradiation of visible blue light and in the presence of riboflavin tetraacetate as a metal-free photocatalyst. The obtained yields are high or quantitative.
Collapse
|
29
|
Hartman T, Reisnerová M, Chudoba J, Svobodová E, Archipowa N, Kutta RJ, Cibulka R. Photocatalytic Oxidative [2+2] Cycloelimination Reactions with Flavinium Salts: Mechanistic Study and Influence of the Catalyst Structure. Chempluschem 2021; 86:373-386. [DOI: 10.1002/cplu.202000767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Tomáš Hartman
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Martina Reisnerová
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Josef Chudoba
- Central Laboratories University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Eva Svobodová
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Nataliya Archipowa
- Manchester Institute of Biotechnology and School of Chemistry The University of Manchester Manchester M1 7DN United Kingdom
| | - Roger Jan Kutta
- Institute of Physical and Theoretical Chemistry University of Regensburg 93040 Regensburg Germany
| | - Radek Cibulka
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
30
|
Feng X, Pi Y, Song Y, Xu Z, Li Z, Lin W. Integration of Earth-Abundant Photosensitizers and Catalysts in Metal–Organic Frameworks Enhances Photocatalytic Aerobic Oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05053] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xuanyu Feng
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Yunhong Pi
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yang Song
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Ziwan Xu
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Zhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
31
|
Srivastava V, Singh PK, Srivastava A, Singh PP. Synthetic applications of flavin photocatalysis: a review. RSC Adv 2021. [DOI: 10.1039/d1ra00925g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Encouraging developments in the field of photocatalysis in last decades, biomolecules namely flavins have been observed to act as a catalyst in several photoredox-catalysed synthetic methodologies.
Collapse
Affiliation(s)
- Vishal Srivastava
- Department of Chemistry
- CMP Degree College
- University of Allahabad
- Prayagraj 211002
- India
| | - Pravin K. Singh
- Department of Chemistry
- CMP Degree College
- University of Allahabad
- Prayagraj 211002
- India
| | - Arjita Srivastava
- Department of Chemistry
- CMP Degree College
- University of Allahabad
- Prayagraj 211002
- India
| | - Praveen P. Singh
- Department of Chemistry
- United College of Engineering & Research
- Prayagraj 211010
- India
| |
Collapse
|
32
|
Abstract
Photochemical transformations of molecular building blocks have become an important and widely recognized research field in the past decade. Detailed and deep understanding of novel photochemical catalysts and reaction concepts with visible light as the energy source has enabled a broad application portfolio for synthetic organic chemistry. In parallel, continuous-flow chemistry and microreaction technology have become the basis for thinking and doing chemistry in a novel fashion with clear focus on improved process control for higher conversion and selectivity. As can be seen by the large number of scientific publications on flow photochemistry in the recent past, both research topics have found each other as exceptionally well-suited counterparts with high synergy by combining chemistry and technology. This review will give an overview on selected reaction classes, which represent important photochemical transformations in synthetic organic chemistry, and which benefit from mild and defined process conditions by the transfer from batch to continuous-flow mode.
Collapse
Affiliation(s)
- Thomas H. Rehm
- Division Energy & Chemical Technology/Flow Chemistry GroupFraunhofer Institute for Microengineering and Microsystems IMMCarl-Zeiss-Straße 18–2055129MainzGermany
| |
Collapse
|
33
|
Oka M, Katsube D, Tsuji T, Iida H. Phototropin-Inspired Chemoselective Synthesis of Unsymmetrical Disulfides: Aerobic Oxidative Heterocoupling of Thiols Using Flavin Photocatalysis. Org Lett 2020; 22:9244-9248. [PMID: 33226236 DOI: 10.1021/acs.orglett.0c03458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inspired by the photochemical mechanism of a plant blue-light receptor, a unique flavin-based photocatalytic system was developed for the chemoselective heterocoupling of two different thiols, which enabled the facile synthesis of unsymmetrical disulfides. Owing to the redox- and photo-organocatalysis of flavin, the coupling reaction took place under mild metal-free conditions and visible light irradiation with the use of air, which is recognized as the ideal green oxidant.
Collapse
Affiliation(s)
- Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan
| | - Daichi Katsube
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan
| | - Takeshi Tsuji
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan
| |
Collapse
|
34
|
Okai H, Tanimoto K, Ohkado R, Iida H. Multicomponent Synthesis of Imidazo[1,2-a]pyridines: Aerobic Oxidative Formation of C–N and C–S Bonds by Flavin–Iodine-Coupled Organocatalysis. Org Lett 2020; 22:8002-8006. [DOI: 10.1021/acs.orglett.0c02929] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hayaki Okai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Kazumasa Tanimoto
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Ryoma Ohkado
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|
35
|
Zhou W, Wu X, Miao M, Wang Z, Chen L, Shan S, Cao G, Yu D. Light Runs Across Iron Catalysts in Organic Transformations. Chemistry 2020; 26:15052-15064. [DOI: 10.1002/chem.202000508] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/24/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Wen‐Jun Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of, Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
- College of Chemistry and Chemical Engineering Neijiang Normal University Neijiang 641100 P. R. China
| | - Xu‐Dong Wu
- Faculty of Material and Chemical Engineering Yibin University Yibin, Sichuan 644007 P. R. China
| | - Meng Miao
- Key Laboratory of Green Chemistry & Technology of Ministry of, Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Zhe‐Hao Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of, Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Liang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of, Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Si‐Yi Shan
- Key Laboratory of Green Chemistry & Technology of Ministry of, Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Guang‐Mei Cao
- Key Laboratory of Green Chemistry & Technology of Ministry of, Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Da‐Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of, Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
36
|
Deazaflavin reductive photocatalysis involves excited semiquinone radicals. Nat Commun 2020; 11:3174. [PMID: 32576821 PMCID: PMC7311442 DOI: 10.1038/s41467-020-16909-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/02/2020] [Indexed: 11/30/2022] Open
Abstract
Flavin-mediated photocatalytic oxidations are established in synthetic chemistry. In contrast, their use in reductive chemistry is rare. Deazaflavins with a much lower reduction potential are even better suited for reductive chemistry rendering also deazaflavin semiquinones as strong reductants. However, no direct evidence exists for the involvement of these radical species in reductive processes. Here, we synthesise deazaflavins with different substituents at C5 and demonstrate their photocatalytic activity in the dehalogenation of p-halogenanisoles with best performance under basic conditions. Mechanistic investigations reveal a consecutive photo-induced electron transfer via the semiquinone form of the deazaflavin as part of a triplet-correlated radical pair after electron transfer from a sacrificial electron donor to the triplet state. A second electron transfer from the excited semiquinone to p-halogenanisoles triggers the final product formation. This study provides first evidence that the reductive power of excited deazaflavin semiquinones can be used in photocatalytic reductive chemistry. Flavins and deazaflavins are well suited for photoredox processes but their application in photoreductions is challenging. Here, the authors provide direct evidence of the high reductive power of excited deazaflavin semiquinones and their application in catalytic photodehalogenations.
Collapse
|
37
|
Enciso AE, Lorandi F, Mehmood A, Fantin M, Szczepaniak G, Janesko BG, Matyjaszewski K. p
‐Substituted Tris(2‐pyridylmethyl)amines as Ligands for Highly Active ATRP Catalysts: Facile Synthesis and Characterization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alan E. Enciso
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Arshad Mehmood
- Department of Chemistry and Biochemistry Texas Christian University 2800 South University Drive Fort Worth TX 76129 USA
| | - Marco Fantin
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Grzegorz Szczepaniak
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Benjamin G. Janesko
- Department of Chemistry and Biochemistry Texas Christian University 2800 South University Drive Fort Worth TX 76129 USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
38
|
Enciso AE, Lorandi F, Mehmood A, Fantin M, Szczepaniak G, Janesko BG, Matyjaszewski K. p-Substituted Tris(2-pyridylmethyl)amines as Ligands for Highly Active ATRP Catalysts: Facile Synthesis and Characterization. Angew Chem Int Ed Engl 2020; 59:14910-14920. [PMID: 32416006 DOI: 10.1002/anie.202004724] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/10/2020] [Indexed: 12/28/2022]
Abstract
A facile and efficient two-step synthesis of p-substituted tris(2-pyridylmethyl)amine (TPMA) ligands to form Cu complexes with the highest activity to date in atom transfer radical polymerization (ATRP) is presented. In the divergent synthesis, p-Cl substituents in tris(4-chloro-2-pyridylmethyl)amine (TPMA3Cl ) were replaced in one step and high yield by electron-donating cyclic amines (pyrrolidine (TPMAPYR ), piperidine (TPMAPIP ), and morpholine (TPMAMOR )) by nucleophilic aromatic substitution. The [CuII (TPMANR2 )Br]+ complexes exhibited larger energy gaps between frontier molecular orbitals and >0.2 V more negative reduction potentials than [CuII (TPMA)Br]+ , indicating >3 orders of magnitude higher ATRP activity. [CuI (TPMAPYR )]+ exhibited the highest reported activity for Br-capped acrylate chain ends in DMF, and moderate activity toward C-F bonds at room temperature. ATRP of n-butyl acrylate using only 10-25 part per million loadings of [CuII (TPMANR2 )Br]+ exhibited excellent control.
Collapse
Affiliation(s)
- Alan E Enciso
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Arshad Mehmood
- Department of Chemistry and Biochemistry, Texas Christian University, 2800 South University Drive, Fort Worth, TX, 76129, USA
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Benjamin G Janesko
- Department of Chemistry and Biochemistry, Texas Christian University, 2800 South University Drive, Fort Worth, TX, 76129, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
39
|
Lubov DP, Talsi EP, Bryliakov KP. Methods for selective benzylic C–H oxofunctionalization of organic compounds. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Arakawa Y, Mihara T, Fujii H, Minagawa K, Imada Y. An uncommon use of irradiated flavins: Brønsted acid catalysis. Chem Commun (Camb) 2020; 56:5661-5664. [PMID: 32315001 DOI: 10.1039/d0cc01960g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present that thioacetalization of aldehydes can be induced by blue light irradiation in the presence of a catalytic amount of riboflavin tetraacetate (RFTA) under aerobic conditions. Several control experiments have suggested that the reaction is more likely to be catalyzed by acidic species generated in situ upon light irradiation. We have proposed that single electron transfer from a thiol (RSH) to the excited state of RFTA can take place to give a one-electron oxidized thiol (RSH+˙) and the one-electron reduced RFTA (RFTA-˙), which can be trapped by molecular oxygen to be stabilized as Brønsted acids including the protonated RFTA-˙ (RFTAH˙). Finally, we have demonstrated that such acidic species can be prepared in advance as a solution and used as Brønsted acid catalysts for not only thioacetalization but also Mannich-type reactions.
Collapse
Affiliation(s)
- Yukihiro Arakawa
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan.
| | - Tomohiro Mihara
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan.
| | - Hiroki Fujii
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan.
| | - Keiji Minagawa
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan. and Institute of Liberal Arts and Sciences, Tokushima University, Minamijosanjima, Tokushima 770-8502, Japan
| | - Yasushi Imada
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan.
| |
Collapse
|
41
|
|
42
|
Robert Wolf. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Robert Wolf. Angew Chem Int Ed Engl 2020; 59:5432. [DOI: 10.1002/anie.202001471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Petzold D, Giedyk M, Chatterjee A, König B. A Retrosynthetic Approach for Photocatalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901421] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel Petzold
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Maciej Giedyk
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01‐224 Warsaw Poland
| | - Anamitra Chatterjee
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Burkhard König
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| |
Collapse
|
45
|
Govaerts S, Nyuchev A, Noel T. Pushing the boundaries of C–H bond functionalization chemistry using flow technology. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00077-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractC–H functionalization chemistry is one of the most vibrant research areas within synthetic organic chemistry. While most researchers focus on the development of small-scale batch-type transformations, more recently such transformations have been carried out in flow reactors to explore new chemical space, to boost reactivity or to enable scalability of this important reaction class. Herein, an up-to-date overview of C–H bond functionalization reactions carried out in continuous-flow microreactors is presented. A comprehensive overview of reactions which establish the formal conversion of a C–H bond into carbon–carbon or carbon–heteroatom bonds is provided; this includes metal-assisted C–H bond cleavages, hydrogen atom transfer reactions and C–H bond functionalizations which involve an SE-type process to aromatic or olefinic systems. Particular focus is devoted to showcase the advantages of flow processing to enhance C–H bond functionalization chemistry. Consequently, it is our hope that this review will serve as a guide to inspire researchers to push the boundaries of C–H functionalization chemistry using flow technology.
Collapse
|
46
|
Peng Y, Li D, Fan J, Xu W, Xu J, Yu H, Lin X, Wu Q. Enantiocomplementary C-H Bond Hydroxylation Combining Photo-Catalysis and Whole-Cell Biocatalysis in a One-Pot Cascade Process. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yongzhen Peng
- Department of Chemistry; Zhejiang University; 310027 Hangzhou China
| | - Danyang Li
- Department of Chemistry; Zhejiang University; 310027 Hangzhou China
| | - Jiajie Fan
- Department of Chemistry; Zhejiang University; 310027 Hangzhou China
| | - Weihua Xu
- Department of Chemistry; Zhejiang University; 310027 Hangzhou China
| | - Jian Xu
- Department of Chemistry; Zhejiang University; 310027 Hangzhou China
| | - Huilei Yu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; 200237 Shanghai China
| | - Xianfu Lin
- Department of Chemistry; Zhejiang University; 310027 Hangzhou China
| | - Qi Wu
- Department of Chemistry; Zhejiang University; 310027 Hangzhou China
| |
Collapse
|
47
|
Bo CB, Bu Q, Li X, Ma G, Wei D, Guo C, Dai B, Liu N. Highly Active and Robust Ruthenium Complexes Based on Hemilability of Hybrid Ligands for C–H Oxidation. J Org Chem 2020; 85:4324-4334. [DOI: 10.1021/acs.joc.0c00025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chun-Bo Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Qingqing Bu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Xue Li
- College of Chemistry and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, People’s Republic of China
| | - Ge Ma
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People’s Republic of China
| | - Donghui Wei
- College of Chemistry and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, People’s Republic of China
| | - Cheng Guo
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People’s Republic of China
| | - Bin Dai
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Ning Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| |
Collapse
|
48
|
Zhang W, Carpenter KL, Lin S. Electrochemistry Broadens the Scope of Flavin Photocatalysis: Photoelectrocatalytic Oxidation of Unactivated Alcohols. Angew Chem Int Ed Engl 2020; 59:409-417. [PMID: 31617271 PMCID: PMC6923568 DOI: 10.1002/anie.201910300] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/20/2019] [Indexed: 11/10/2022]
Abstract
Riboflavin-derived photocatalysts have been extensively studied in the context of alcohol oxidation. However, to date, the scope of this catalytic methodology has been limited to benzyl alcohols. In this work, mechanistic understanding of flavin-catalyzed oxidation reactions, in either the absence or presence of thiourea as a cocatalyst, was obtained. The mechanistic insights enabled development of an electrochemically driven photochemical oxidation of primary and secondary aliphatic alcohols using a pair of flavin and dialkylthiourea catalysts. Electrochemistry makes it possible to avoid using O2 and an oxidant and generating H2 O2 as a byproduct, both of which oxidatively degrade thiourea under the reaction conditions. This modification unlocks a new mechanistic pathway in which the oxidation of unactivated alcohols is achieved by thiyl radical mediated hydrogen-atom abstraction.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Keith L Carpenter
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
49
|
Yu Y, Guo P, Zhong JS, Yuan Y, Ye KY. Merging photochemistry with electrochemistry in organic synthesis. Org Chem Front 2020. [DOI: 10.1039/c9qo01193e] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances merging photochemistry with electrochemistry in organic synthesis are highlighted.
Collapse
Affiliation(s)
- Yi Yu
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P.R. China
| | - Peng Guo
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P.R. China
| | - Jun-Song Zhong
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P.R. China
| | - Yaofeng Yuan
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P.R. China
| | - Ke-Yin Ye
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P.R. China
| |
Collapse
|
50
|
Tolba AH, Vávra F, Chudoba J, Cibulka R. Tuning Flavin-Based Photocatalytic Systems for Application in the Mild Chemoselective Aerobic Oxidation of Benzylic Substrates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901628] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amal Hassan Tolba
- Department of Organic Chemistry; University of Chemistry and Technology, Prague; Technická 5 166 28 Prague Czech Republic
| | - František Vávra
- Department of Organic Chemistry; University of Chemistry and Technology, Prague; Technická 5 166 28 Prague Czech Republic
| | - Josef Chudoba
- Central Laboratories; University of Chemistry and Technology Prague; Technická 5 166 28 Prague Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry; University of Chemistry and Technology, Prague; Technická 5 166 28 Prague Czech Republic
| |
Collapse
|