1
|
Lu S, Agata R, Nomura S, Matsuda H, Isozaki K, Nakamura M. Regioselective Propargylic Suzuki-Miyaura Coupling by SciPROP-Iron Catalyst. J Org Chem 2024; 89:8385-8396. [PMID: 38684935 DOI: 10.1021/acs.joc.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The iron-catalyzed Suzuki-Miyaura cross-coupling of secondary propargyl electrophiles with lithium organoborates has been established. A propyl-bridged bulky bisphosphine ligand, SciPROP-TB, cooperated with the bulky TIPS substituent at the alkyne terminal position to achieve the cross-coupling reaction with exclusive propargylic selectivity. The reaction features high functional group compatibility, regioselectivity, and yield with a broad substrate scope. The reaction of an optically active chiral propargyl bromide proceeds with complete racemization, supporting a mechanism involving propargyl radical formation.
Collapse
Affiliation(s)
- Siming Lu
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryosuke Agata
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Satsuki Nomura
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroshi Matsuda
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Katsuhiro Isozaki
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masaharu Nakamura
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
2
|
Wu H, Zheng Z, Zhang K, Kajanus J, Johansson MJ, Córdova A, Bäckvall JE. Heterogeneous Copper-Catalyzed Cross-Coupling for Sustainable Synthesis of Chiral Allenes: Application to the Synthesis of Allenic Natural Products. Angew Chem Int Ed Engl 2023; 62:e202314512. [PMID: 37899308 DOI: 10.1002/anie.202314512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 10/31/2023]
Abstract
Classical Crabbé type SN 2' substitutions of propargylic substrates has served as one of the standard methods for the synthesis of allenes. However, the stereospecific version of this transformation often requires either stoichiometric amounts of organocopper reagents or special functional groups on the substrates, and the chirality transfer efficiency is also capricious. Herein, we report a sustainable methodology for the synthesis of diverse 1,3-di and tri-substituted allenes by using a simple and cheap cellulose supported heterogeneous nanocopper catalyst (MCC-Amp-Cu(I/II)). This approach represents the first example of heterogeneous catalysis for the synthesis of chiral allenes. High yields and excellent enantiospecificity (up to 97 % yield, 99 % ee) were achieved for a wide range of di- and tri-substituted allenes bearing various functional groups. It is worth noting that the applied heterogeneous catalyst could be recycled at least 5 times without any reduced reactivity. To demonstrate the synthetic utility of the developed protocol, we have applied it to the total synthesis of several chiral allenic natural products.
Collapse
Affiliation(s)
- Haibo Wu
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Zhiyao Zheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Kaiheng Zhang
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85179, Sundsvall, Sweden
| | - Johan Kajanus
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg, 43183, Mölndal, Sweden
| | - Magnus J Johansson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg, 43183, Mölndal, Sweden
| | - Armando Córdova
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85179, Sundsvall, Sweden
| | - Jan-E Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85179, Sundsvall, Sweden
| |
Collapse
|
3
|
Xu J, Ge Z, Ding K, Wang X. Rh(II)/Pd(0) Dual-Catalyzed Regio-Divergent Three-Component Propargylic Substitution. JACS AU 2023; 3:2862-2872. [PMID: 37885573 PMCID: PMC10598837 DOI: 10.1021/jacsau.3c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Regio-divergent propargylic substitution to generate functionally diverse products from identical starting materials remains a formidable challenge, probably due to the unpredictable regiochemical complexity. In practically, the synthesis of α-quaternary propargylic-substituted products is still much less developed, and preprepared nucleophiles are generally applied in this type of reaction with propargylic substrates, which limits the reaction efficiency and diversity of the obtained products. Herein, we disclose unprecedented three-component propargylic substitution of α-diazo esters with amines and propargylic carbonates under dirhodium/palladium dual catalysis. The key to the success of this multicomponent propargylic substitution is to avoid two-component side reactions through a tandem process of dirhodium(II)-catalyzed carbene insertion and palladium-catalyzed regiodivergent propargylic substitution. The judicious selection of a diphosphine (dppf) or monophosphine (tBuBrettphos) as the ligand is crucial for the reaction to generate different products in a switchable way, α-quaternary 1,3-dienyl or propargylated products, with high regio- and chemoselectivities.
Collapse
Affiliation(s)
- Jie Xu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhaoliang Ge
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kuiling Ding
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Frontier
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, Shanghai Jiao Tong
University, 800 Dongchuan
Road, Shanghai 200240, China
| | - Xiaoming Wang
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School
of Chemistry and Materials Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, 1 Sub-lane
Xiangshan, Hangzhou 310024, China
| |
Collapse
|
4
|
Hou H, Pan Y, Sun Y, Han Y, Yan C, Shi Y, Zhu S. Visible-Light Photoredox Catalyzed Regioselective 1,4-Hydroalkylation of 1,3-Enyne. Chemistry 2023; 29:e202301633. [PMID: 37365999 DOI: 10.1002/chem.202301633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 06/28/2023]
Abstract
Described herein is a visible-light photoredox-catalyzed regioselective 1,4-hydroalkylation of 1,3-enynes. Various of di- and tri-substituent allenes were really accessible under the present reaction conditions. The visible-light photoredox activation of the carbon nucleophile to generate its radical species, allowing the addition with un-activated enynes. The synthetic utility for the present protocol was demonstrated by a large-scale reaction, as well as the derivatization of the allene product.
Collapse
Affiliation(s)
- Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yuejie Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
5
|
Zhang D, Fan J, Shi Y, Huang Y, Fu C, Wu X, Ma S. Copper-catalyzed propargylic C-H functionalization for allene syntheses. Chem Sci 2023; 14:9191-9196. [PMID: 37655026 PMCID: PMC10466309 DOI: 10.1039/d3sc01501g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Allenenitriles bearing different synthetically versatile functional groups have been prepared smoothly from 5-alkynyl fluorosulfonamides in decent yields with an excellent chemo- and regio-selectivity under redox neutral conditions. The resulting allenenitriles can be readily converted to useful functionalized heterocycles. Based on mechanistic study, it is confirmed that this is the first example of radical-based non-activated propargylic C-H functionalization for allene syntheses.
Collapse
Affiliation(s)
- Dongjie Zhang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Junjie Fan
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Yaqi Shi
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Yankai Huang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Xiaoyan Wu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| |
Collapse
|
6
|
Li M, Sun GQ, Liu YY, Li SX, Liu HC, Qiu YF, Chen DP, Wang XC, Liang YM, Quan ZJ. Nickel-Catalyzed Three-Component Tandem Radical Cyclization 1,5-Difunctionalization of 1,3-Enynes and Alkyl Bromide. J Org Chem 2023; 88:1403-1410. [PMID: 36656018 DOI: 10.1021/acs.joc.2c02271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A nickel-catalyzed three-component tandem radical cyclization reaction of aryl bromides with 1,3-enynes and aryl boric acids to construct γ-lactam-substituted allene derivatives has been described. This protocol provides lactam alkyl radicals through the free radical cyclization process, which can be effectively used to participate in the subsequent multicomponent coupling reaction so that 1,3-enynes could directly convert into corresponding poly-substituted allene compounds. In addition, this efficient method enjoys a broad substrate scope and provides a series of 1,5-difunctionalized allenes in a one-pot reaction.
Collapse
Affiliation(s)
- Ming Li
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Guo-Qing Sun
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yu-Yu Liu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Shun-Xi Li
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Hai-Chao Liu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Dong-Pin Chen
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
7
|
Bermejo-López A, Kong WJ, Tortajada PJ, Posevins D, Martín-Matute B, Bäckvall JE. Iron-Catalyzed Borylation of Propargylic Acetates for the Synthesis of Multisubstituted Allenylboronates. Chemistry 2023; 29:e202203130. [PMID: 36250587 PMCID: PMC10099795 DOI: 10.1002/chem.202203130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/23/2022]
Abstract
A novel iron-catalyzed borylation of propargylic acetates leading to allenylboronates has been developed. The method allows the preparation of a variety of di-, tri- and tetrasubstituted allenylboronates at room temperature with good functional group compatibility. Stereochemical studies show that an anti-SN 2' displacement of acetate by boron occurs; this also allows transfer of chirality to yield enantiomerically enriched allenylboronates. The synthetic utility of this protocol was further substantiated by transformations of the obtained allenylboronates including oxidation and propargylation.
Collapse
Affiliation(s)
- Aitor Bermejo-López
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Wei-Jun Kong
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Pedro J Tortajada
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Daniels Posevins
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Belén Martín-Matute
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Jan-E Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
8
|
Kong WJ, Kessler SN, Wu H, Bäckvall JE. Iron-Catalyzed Cross-Coupling of α-Allenyl Esters with Grignard Reagents for the Synthesis of 1,3-Dienes. Org Lett 2023; 25:120-124. [PMID: 36599130 PMCID: PMC9841610 DOI: 10.1021/acs.orglett.2c03916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Structurally diverse 1,3-dienes are valuable building blocks in organic synthesis. Herein we report the iron-catalyzed coupling between α-allenyl esters and Grignard reagents, which provides a fast and practical approach to a variety of complex substituted 1,3-dienes. The reaction involves an inexpensive iron catalyst, mild reaction conditions, and provides easy scale up.
Collapse
|
9
|
Zhang J, Chang X, Xu X, Wang H, Peng L, Guo C. Nickel-catalyzed switchable 1,3-dienylation and enantioselective allenylation of phosphine oxides. Nat Commun 2022; 13:7049. [PMID: 36396661 PMCID: PMC9671958 DOI: 10.1038/s41467-022-34764-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
The development of general catalytic methods for the regio- and stereoselective construction of phosphoryl derivatives from identical substrates remains a formidable challenge in organic synthesis. Enabled by the newly developed BDPP-type ligands, we disclosed a nickel-catalyzed allenylation of phosphine oxides rationally and predictably, allowing the construction of versatile chiral allenylphosphoryl derivatives with high enantiopurity (up to 94% e.e.). Alternatively, using an achiral phosphine ligand dcypbz under acidic conditions, we achieved a regiochemical switch of the 1,3-dienylation to afford functionalized phosphinoyl 1,3-butadienes (up to 93% yield). The salient features of this method include switchable reactivity, broad substrate scope, readily available feedstock, single-step preparation, and high asymmetric induction.
Collapse
Affiliation(s)
- Jiayin Zhang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Xihao Chang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Xianghong Xu
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Hongyi Wang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Lingzi Peng
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Chang Guo
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
10
|
Li Y, Bao H. Radical transformations for allene synthesis. Chem Sci 2022; 13:8491-8506. [PMID: 35974759 PMCID: PMC9337727 DOI: 10.1039/d2sc02573f] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 12/20/2022] Open
Abstract
Allenes are valuable organic molecules that feature unique physical and chemical properties. They are not only often found in natural products, but also act as versatile building blocks for the access of complex molecular targets, such as natural products, pharmaceuticals, and functional materials. Therefore, many remarkable and elegant methodologies have been established for the synthesis of allenes. Recently, more and more methods for radical synthesis of allenes have been developed, clearly emphasizing the associated great synthetic values. In this perspective, we will discuss recent important advances in the synthesis of allenes via radical intermediates by categorizing them into different types of substrates as well as distinct catalytic systems. The mechanistic studies and synthetic challenges will be highlighted.
Collapse
Affiliation(s)
- Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. of China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences P. R. of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. of China
- University of Chinese Academy of Sciences Beijing 100049 P. R. of China
| |
Collapse
|
11
|
Liu Q, Zheng J, Zhang X, Ma S. Photo and copper dual catalysis for allene syntheses from propargylic derivatives via one-electron process. Nat Commun 2022; 13:3302. [PMID: 35676260 PMCID: PMC9177964 DOI: 10.1038/s41467-022-30655-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/06/2022] [Indexed: 11/09/2022] Open
Abstract
Different from the traditional two-electron oxidative addition-transmetalation-reductive elimination coupling strategy, visible light has been successfully integrated into transition metal-catalyzed coupling reaction of propargylic alcohol derivatives highly selectively forming allenenitriles: specifically speaking, visible light-mediated Cu-catalyzed cyanation of propargylic oxalates has been realized for the general, efficient, and exclusive syntheses of di-, tri, and tetra-substituted allenenitriles bearing various synthetically versatile functional groups. A set of mechanistic studies, including fluorescence quenching experiments, cyclic voltammetric measurements, radical trapping experiments, control experiments with different photocatalyst, and DFT calculation studies have proven that the current reaction proceeds via visible light-induced redox-neutral reductive quenching radical mechanism, which is a completely different approach as compared to the traditional transition metal-catalyzed two-electron oxidative addition processes.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Zheng
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, P. R. China
| | - Xue Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China. .,Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China.
| |
Collapse
|
12
|
Li W, Zhou L. Synthesis of Tetrasubstituted Allenes via Visible-Light-Promoted Radical 1,3-Difunctionalization of Alkynyl Diazo Compounds. Org Lett 2022; 24:3976-3981. [PMID: 35622019 DOI: 10.1021/acs.orglett.2c01366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we described an unprecedented process for generating allenyl radicals through radical addition to alkynyl diazo compounds followed by a 1,2-radical shift with the loss of nitrogen. Using this protocol, radical 1,3-difunctionalization of alkynyl diazo compounds for the synthesis of tetrasubstituted allenes with RSO2X (X = SeR', SR', and I) as the radical sources was developed. The reactions were promoted by visible light without photocatalyst and any additives.
Collapse
Affiliation(s)
- Weiyu Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
13
|
Sun Q, Zhang X, Duan X, Qin L, Yuan X, Wu M, Liu J, Zhu S, Qiu J, Guo K. Photoinduced Merging with Copper‐ or
Nickel‐Catalyzed
1,
4‐Cyanoalkylarylation
of 1,
3‐Enynes
to Access Multiple Functionalizatized Allenes in Batch and Continuous Flow. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qi Sun
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Xin‐Peng Zhang
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Xiu Duan
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Long‐Zhou Qin
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Xin Yuan
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Meng‐Yu Wu
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Jie Liu
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Shan‐Shan Zhu
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Jiang‐Kai Qiu
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
- State Key Laboratory of Materials‐Oriented Chemical Engineering Nanjing Tech University Nanjing 211800 P. R. China
| | - Kai Guo
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
- State Key Laboratory of Materials‐Oriented Chemical Engineering Nanjing Tech University Nanjing 211800 P. R. China
| |
Collapse
|
14
|
Posevins D, Bäckvall JE. Iron-Catalyzed Cross-Couplings of Propargylic Substrates with Grignard Reagents. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Guo K, Zeng Q, Villar-Yanez A, Bo C, Kleij AW. Ni-Catalyzed Decarboxylative Silylation of Alkynyl Carbonates: Access to Chiral Allenes via Enantiospecific Conversions. Org Lett 2022; 24:637-641. [PMID: 34978820 DOI: 10.1021/acs.orglett.1c04086] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A Ni-mediated decarboxylative silylation of alkynyl cyclic carbonates used as versatile propargylic surrogates is reported affording a wide range of highly substituted 2,3- and 3,4-allenol products in good yields. The formal cross-coupling between a tentative intermediate Ni(allenyl) and the silyl reagent was further extended to enantiospecific conversions providing access to chiral allene synthons. This protocol marks the first Ni-catalyzed propargylic silylation proceeding through an SN2' manifold.
Collapse
Affiliation(s)
- Kun Guo
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Qian Zeng
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Alba Villar-Yanez
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
16
|
Zhang Y, Du S, Yang T, Jin F, Zhou J, Cao B, Mao ZJ, Song XR, Xiao Q. Direct and Efficient Synthesis of Tetrasubstituted Allenyl organothiophosphates from Propargylic Alcohols under Catalyst- and Additive-Free Conditions. Org Chem Front 2022. [DOI: 10.1039/d2qo00455k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An environment-friendly approach that affords tetrasubstituted allenyl organothiophosphates containing highly congested carbon centers from easily prepared propargylic alcohols and phosphorothioic acids [(RO)2P(O)SH] with water as the only by-product is developed....
Collapse
|
17
|
Zhao Y, Wang JL, Zhang Z, Li XS, Niu ZJ, Liu XY. Copper-Catalyzed Direct Allenylation of Inactive Cyclic Ethers. J Org Chem 2021; 86:18056-18066. [PMID: 34842425 DOI: 10.1021/acs.joc.1c02339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here a direct allenylation reaction of inactive cyclic ethers. The reaction proceeds through a copper-catalyzed 1,4-difunctionalization of 1,3-enynes, with cyano group installed at the allenes simultaneously. This methodology shows a broad functional group compatibility to 1,3-enynes. Diversified allene-modified cyclic ether derivatives were synthesized with high regioselectivity under mild conditions.
Collapse
Affiliation(s)
- Yichuan Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jin-Lin Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
18
|
Posevins D, Bermejo‐López A, Bäckvall J. Iron‐Catalyzed Cross‐Coupling of Propargyl Ethers with Grignard Reagents for the Synthesis of Functionalized Allenes and Allenols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniels Posevins
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Aitor Bermejo‐López
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Jan‐E. Bäckvall
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
- Department of Natural Sciences Mid Sweden University 85170 Sundsvall Sweden
| |
Collapse
|
19
|
Posevins D, Bermejo-López A, Bäckvall JE. Iron-Catalyzed Cross-Coupling of Propargyl Ethers with Grignard Reagents for the Synthesis of Functionalized Allenes and Allenols. Angew Chem Int Ed Engl 2021; 60:22178-22183. [PMID: 34318557 PMCID: PMC8518087 DOI: 10.1002/anie.202106742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Herein we disclose an iron‐catalyzed cross‐coupling reaction of propargyl ethers with Grignard reagents. The reaction was demonstrated to be stereospecific and allows for a facile preparation of optically active allenes via efficient chirality transfer. Various tri‐ and tetrasubstituted fluoroalkyl allenes can be obtained in good to excellent yields. In addition, an iron‐catalyzed cross‐coupling of Grignard reagents with α‐alkynyl oxetanes and tetrahydrofurans is disclosed herein, which constitutes a straightforward approach towards fully substituted β‐ or γ‐allenols, respectively.
Collapse
Affiliation(s)
- Daniels Posevins
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Aitor Bermejo-López
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Jan-E Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden.,Department of Natural Sciences, Mid Sweden University, 85170, Sundsvall, Sweden
| |
Collapse
|
20
|
Manna S, Kong WJ, Bäckvall JE. Iron(II)-Catalyzed Aerobic Biomimetic Oxidation of N-Heterocycles. Chemistry 2021; 27:13725-13729. [PMID: 34324754 PMCID: PMC8518507 DOI: 10.1002/chem.202102483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/29/2022]
Abstract
Herein, an iron(II)-catalyzed biomimetic oxidation of N-heterocycles under aerobic conditions is described. The dehydrogenation process, involving several electron-transfer steps, is inspired by oxidations occurring in the respiratory chain. An environmentally friendly and inexpensive iron catalyst together with a hydroquinone/cobalt Schiff base hybrid catalyst as electron-transfer mediator were used for the substrate-selective dehydrogenation reaction of various N-heterocycles. The method shows a broad substrate scope and delivers important heterocycles in good-to-excellent yields.
Collapse
Affiliation(s)
- Srimanta Manna
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Wei-Jun Kong
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Jan-E Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
- Department of Natural Sciences, Mid Sweden University, 85170, Sundsvall, Sweden
| |
Collapse
|
21
|
Zhou ZZ, Song XR, Du S, Xia KJ, Tian WF, Xiao Q, Liang YM. Photoredox/nickel dual-catalyzed regioselective alkylation of propargylic carbonates for trisubstituted allenes. Chem Commun (Camb) 2021; 57:9390-9393. [PMID: 34528958 DOI: 10.1039/d1cc03303d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, a highly regioselective alkylation of propargylic carbonates for trisubstituted allenes with alkyl 1,4-dihydropyridine derivatives (1,4-DHPs) is developed via a photoredox/nickel dual-catalyzed process, which represents the first direct approach to access alkylated allene products without alkyl organometallic reagents. This method features a broad substrate scope and mild conditions. A hypothetical mechanism with an alkyl radical and an allenyl Ni(III) species is proposed. Benzylation products were also obtained to be the complement building blocks for the potential synthesis of pharmaceuticals.
Collapse
Affiliation(s)
- Zhao-Zhao Zhou
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330000, P. R. China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xian-Rong Song
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Sha Du
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Ke-Jian Xia
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330000, P. R. China.
| | - Wan-Fa Tian
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Qiang Xiao
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China.
| |
Collapse
|
22
|
Zorba L, Egaña E, Gómez-Bengoa E, Vougioukalakis GC. Zinc Iodide Catalyzed Synthesis of Trisubstituted Allenes from Terminal Alkynes and Ketones. ACS OMEGA 2021; 6:23329-23346. [PMID: 34549133 PMCID: PMC8444324 DOI: 10.1021/acsomega.1c03092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/13/2021] [Indexed: 05/03/2023]
Abstract
A straightforward, user-friendly, efficient protocol for the one pot, ZnI2-catalyzed allenylation of terminal alkynes with pyrrolidine and ketones, toward trisubstituted allenes, is described. Trisubstituted allenes can be obtained under either conventional heating or microwave irradiation conditions, which significantly reduces the reaction time. A sustainable, widely available, and low-cost metal salt catalyst is employed, and the reactions are carried out under solvent-free conditions. Among others, synthetically valuable allenes bearing functionalities such as amide, hydroxyl, or phthalimide can be efficiently prepared. Mechanistic experiments, including kinetic isotope effect measurements and density functional theory (DFT) calculations, suggest a rate-determining [1,5]-hydride transfer during the transformation of the intermediate propargylamine to the final allene.
Collapse
Affiliation(s)
- Leandros
P. Zorba
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Eunate Egaña
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Enrique Gómez-Bengoa
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Georgios C. Vougioukalakis
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| |
Collapse
|
23
|
Guðmundsson A, Manna S, Bäckvall J. Iron(II)‐Catalyzed Aerobic Biomimetic Oxidation of Amines using a Hybrid Hydroquinone/Cobalt Catalyst as Electron Transfer Mediator. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Arnar Guðmundsson
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Srimanta Manna
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Jan‐E. Bäckvall
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
- Department of Natural Sciences Mid Sweden University 85170 Sundsvall Sweden
| |
Collapse
|
24
|
Guðmundsson A, Manna S, Bäckvall J. Iron(II)-Catalyzed Aerobic Biomimetic Oxidation of Amines using a Hybrid Hydroquinone/Cobalt Catalyst as Electron Transfer Mediator. Angew Chem Int Ed Engl 2021; 60:11819-11823. [PMID: 33725364 PMCID: PMC8252094 DOI: 10.1002/anie.202102681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 11/30/2022]
Abstract
Herein we report the first FeII -catalyzed aerobic biomimetic oxidation of amines. This oxidation reaction involves several electron transfer steps and is inspired by biological oxidation in the respiratory chain. The electron transfer from the amine to molecular oxygen is aided by two coupled catalytic redox systems, which lower the energy barrier and improve the selectivity of the oxidation reaction. An iron hydrogen transfer complex was utilized as the substrate-selective dehydrogenation catalyst along with a bifunctional hydroquinone/cobalt Schiff base complex as a hybrid electron transfer mediator. Various primary and secondary amines were oxidized in air to their corresponding aldimines or ketimines in good to excellent yield.
Collapse
Affiliation(s)
- Arnar Guðmundsson
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Srimanta Manna
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
- Department of Natural SciencesMid Sweden University85170SundsvallSweden
| |
Collapse
|
25
|
Zhang CY, Zhu J, Cui SH, Xie XY, Wang XD, Wu L. Visible-Light-Induced 1,4-Hydroxysulfonylation of Vinyl Enynes with Sulfonyl Chlorides: The Bridge of Chloride Linking Water and Enynes. Org Lett 2021; 23:3530-3535. [PMID: 33881322 DOI: 10.1021/acs.orglett.1c00943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel visible-light-induced 1,4-hydroxysulfonylation of vinyl enynes with sulfonyl chlorides has been established, providing a highly efficient protocol to access multisubstituted sulfonyl allenic alcohols. Control experiments and mechanistic studies disclose that the target products result from sequential reactions of hydroxyl and tosyl radicals, among which chloride anion plays a key role to generate the requisite •OH, thus bridging water and enynes. Moreover, the vinyl pendant is believed to decisively affect the site-selectivity of hydroxyl radical.
Collapse
Affiliation(s)
- Cheng-Yun Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Su-Hang Cui
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiao-Yu Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiao-Dong Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China.,College of Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, P.R. China
| |
Collapse
|
26
|
Li S, Hou B, Wang J. Palladium-Catalyzed Oxidative Coupling of the Allenic C-H Bond with α-Diazo Esters: Synthesis of [3]Dendralenes. J Org Chem 2021; 86:5371-5379. [PMID: 33754719 DOI: 10.1021/acs.joc.0c03033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed highly regio- and stereoselective allenic C-H oxidative coupling with α-diazo esters is developed. The reaction pathway involves allylic palladium carbene as the key intermediate, which is followed by a carbene migratory insertion process. The reaction proceeds efficiently under mild conditions without external base, providing substituted [3]dendralenes bearing various functional groups.
Collapse
Affiliation(s)
- Shichao Li
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Bo Hou
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Kobayashi Y, Takashima Y, Motoyama Y, Isogawa Y, Katagiri K, Tsuboi A, Ogawa N. α- and γ-Regiocontrol and Enantiospecificity in the Copper-Catalyzed Substitution Reaction of Propargylic Phosphates with Grignard Reagents. Chemistry 2021; 27:3779-3785. [PMID: 33128320 DOI: 10.1002/chem.202004413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Indexed: 01/31/2023]
Abstract
The regioselectivity (r.s.) and enantiospecificity (e.s.) of the substitution reactions of secondary propargylic alcohol derivatives using reagents derived from ArMgBr and Cu salts were studied. First, the picolinate, 3-methylpicolinate, and diethylphosphonate derivatives of Ph(CH2 )2 CH(OH)C≡CTMS were reacted with PhMgBr/CuCN in ratios of 2.5:2.7-2.5:0.25. The use of 2.5:0.25 ratio in THF/DME (6:1) at 0 °C for 1 h afforded the α-substitution product from the phosphate with ≥98 % r.s. and 99 % e.s. CuBr⋅Me2 S gave similar selectivity. The reaction system was then applied to phosphates derived from R1 CH(OH)C≡CR2 and ArMgBr to obtain synthetically sufficient r.s. and e.s. values with R2 =TMS, Ph, whereas iPr was borderline in terms of size as an R1 substituent. The presence of a substituent at the o-position of Ar marginally affected the selectivity. We also found that the use of PhMgBr/Cu(acac)2 in a 2:1 ratio in THF produced the γ-substitution products (allenes) with high r.s. and e.s.
Collapse
Affiliation(s)
- Yuichi Kobayashi
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan.,Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yuji Takashima
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan
| | - Yuuya Motoyama
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan
| | - Yukari Isogawa
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan
| | - Kyosuke Katagiri
- Department of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Atsuki Tsuboi
- Department of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Narihito Ogawa
- Department of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
28
|
Fürstner A. Iron Catalyzed C–C-Bond Formation: From Canonical Cross Coupling to a Quest for New Reactivity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
29
|
Zhang G, Song YK, Zhang F, Xue ZJ, Li MY, Zhang GS, Zhu BB, Wei J, Li C, Feng CG, Lin GQ. Palladium-catalyzed allene synthesis enabled by β-hydrogen elimination from sp 2-carbon. Nat Commun 2021; 12:728. [PMID: 33526773 PMCID: PMC7851150 DOI: 10.1038/s41467-020-20740-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
The rational design based on a deep understanding of the present reaction mechanism is an important, viable approach to discover new organic transformations. β-Hydrogen elimination from palladium complexes is a fundamental reaction in palladium catalysis. Normally, the eliminated β-hydrogen has to be attached to a sp3-carbon. We envision that the hydrogen elimination from sp2-carbon is possible by using thoroughly designed reaction systems, which may offer a new strategy for the preparation of allenes. Here, we describe a palladium-catalyzed cross-coupling of 2,2-diarylvinyl bromides and diazo compounds, where a β-vinylic hydrogen elimination from allylic palladium intermediate is proposed to be the key step. Both aryl diazo carbonyl compounds and N-tosylhydrazones are competent carbene precursors in this reaction. The reaction mechanism is explored by control experiments, KIE studies and DFT calculations.
Collapse
Affiliation(s)
- Ge Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Road, Shanghai, 201210, China
| | - Yi-Kang Song
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Fang Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Ze-Jian Xue
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Meng-Yao Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Gui-Shan Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Bin-Bin Zhu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jing Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou, 350002, China.
| | - Chunsen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou, 350002, China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Road, Shanghai, 201210, China.
| |
Collapse
|
30
|
Agata R, Lu S, Matsuda H, Isozaki K, Nakamura M. Regio- and stereoselective synthesis of 1,4-enynes by iron-catalysed Suzuki-Miyaura coupling of propargyl electrophiles under ligand-free conditions. Org Biomol Chem 2020; 18:3022-3026. [PMID: 32239018 DOI: 10.1039/d0ob00357c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The first iron-catalysed cross coupling of propargyl electrophiles with lithium alkenylborates has been developed. Various propargyl electrophiles can be cross-coupled with lithium (E)- or (Z)-alkenylborates in a stereospecific manner to afford the corresponding 1,4-enynes in good to excellent yields. The reaction features high SN2-type regioselectivity and functional group compatibility.
Collapse
Affiliation(s)
- Ryosuke Agata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan. and Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Siming Lu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan. and Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroshi Matsuda
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Katsuhiro Isozaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan. and Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masaharu Nakamura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan. and Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
31
|
Naidu VR, Bäckvall JE. Synthesis of Cross-Conjugated Polyenes via Palladium-Catalyzed Oxidative C-C Bond Forming Cascade Reactions of Allenes. J Org Chem 2020; 85:5428-5437. [PMID: 32207975 PMCID: PMC7311062 DOI: 10.1021/acs.joc.0c00186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient palladium-catalyzed oxidative C-C bond forming cascade reaction of allenes involving a coupling between an enallene and an allenyne followed by a carbocyclization of the generated Pd-intermediate was developed. This cascade reaction afforded functionalized cross-conjugated polyenes. The enallene is initially activated by palladium and reacts with the allenyne to give the cross-conjugated polyenes.
Collapse
Affiliation(s)
- Veluru Ramesh Naidu
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.,Department of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-851 79, Sundsvall, Sweden
| | - Jan-E Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.,Department of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-851 79, Sundsvall, Sweden
| |
Collapse
|
32
|
Sk M, Kumar A, Das J, Banerjee D. A Simple Iron-Catalyst for Alkenylation of Ketones Using Primary Alcohols. Molecules 2020; 25:molecules25071590. [PMID: 32235642 PMCID: PMC7181299 DOI: 10.3390/molecules25071590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/20/2020] [Accepted: 03/06/2020] [Indexed: 11/28/2022] Open
Abstract
Herein, we developed a simple iron-catalyzed system for the α-alkenylation of ketones using primary alcohols. Such acceptor-less dehydrogenative coupling (ADC) of alcohols resulted in the synthesis of a series of important α,β-unsaturated functionalized ketones, having aryl, heteroaryl, alkyl, nitro, nitrile and trifluoro-methyl, as well as halogen moieties, with excellent yields and selectivity. Initial mechanistic studies, including deuterium labeling experiments, determination of rate and order of the reaction, and quantitative determination of H2 gas, were performed. The overall transformations produce water and dihydrogen as byproducts.
Collapse
|
33
|
Guðmundsson A, Schlipköter KE, Bäckvall J. Iron(II)-Catalyzed Biomimetic Aerobic Oxidation of Alcohols. Angew Chem Int Ed Engl 2020; 59:5403-5406. [PMID: 31999013 PMCID: PMC7154773 DOI: 10.1002/anie.202000054] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 12/16/2022]
Abstract
We report the first FeII -catalyzed biomimetic aerobic oxidation of alcohols. The principle of this oxidation, which involves several electron-transfer steps, is reminiscent of biological oxidation in the respiratory chain. The electron transfer from the alcohol to molecular oxygen occurs with the aid of three coupled catalytic redox systems, leading to a low-energy pathway. An iron transfer-hydrogenation complex was utilized as a substrate-selective dehydrogenation catalyst, along with an electron-rich quinone and an oxygen-activating Co(salen)-type complex as electron-transfer mediators. Various primary and secondary alcohols were oxidized in air to the corresponding aldehydes or ketones with this method in good to excellent yields.
Collapse
Affiliation(s)
- Arnar Guðmundsson
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Kim Elisabeth Schlipköter
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
- Current address: Institute of Technical BiocatalysisHamburg University of Technology TUHH21071HamburgGermany
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| |
Collapse
|
34
|
Guðmundsson A, Bäckvall JE. On the Use of Iron in Organic Chemistry. Molecules 2020; 25:molecules25061349. [PMID: 32188092 PMCID: PMC7144124 DOI: 10.3390/molecules25061349] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
Transition metal catalysis in modern organic synthesis has largely focused on noble transition metals like palladium, platinum and ruthenium. The toxicity and low abundance of these metals, however, has led to a rising focus on the development of the more sustainable base metals like iron, copper and nickel for use in catalysis. Iron is a particularly good candidate for this purpose due to its abundance, wide redox potential range, and the ease with which its properties can be tuned through the exploitation of its multiple oxidation states, electron spin states and redox potential. This is a fact made clear by all life on Earth, where iron is used as a cornerstone in the chemistry of living processes. In this mini review, we report on the general advancements in the field of iron catalysis in organic chemistry covering addition reactions, C-H activation, cross-coupling reactions, cycloadditions, isomerization and redox reactions.
Collapse
Affiliation(s)
- Arnar Guðmundsson
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden;
| | - Jan-E. Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden;
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85179 Sundsvall, Sweden
- Correspondence: ; Tel.: +46-08-674-71-78
| |
Collapse
|
35
|
Guðmundsson A, Schlipköter KE, Bäckvall J. Iron(II)‐Catalyzed Biomimetic Aerobic Oxidation of Alcohols. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arnar Guðmundsson
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Kim Elisabeth Schlipköter
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 10691 Stockholm Sweden
- Current address: Institute of Technical BiocatalysisHamburg University of Technology TUHH 21071 Hamburg Germany
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| |
Collapse
|
36
|
Duan XF. Iron catalyzed stereoselective alkene synthesis: a sustainable pathway. Chem Commun (Camb) 2020; 56:14937-14961. [DOI: 10.1039/d0cc04882h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replacing expensive or toxic transition metals with iron has become an important trend. This article summarises the recent progresses of a wide range of Fe-catalyzed reactions for accessing various stereodefined alkenes.
Collapse
|
37
|
Manjón‐Mata I, Quirós MT, Buñuel E, Cárdenas DJ. Regioselective Iron‐Catalysed Cross‐Coupling Reaction of Aryl Propargylic Bromides and Aryl Grignard Reagents. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Inés Manjón‐Mata
- Department of Organic Chemistry, Facultad de Ciencias, Universidad Autónoma de MadridInstitute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - M. Teresa Quirós
- Department of Organic Chemistry, Facultad de Ciencias, Universidad Autónoma de MadridInstitute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - Elena Buñuel
- Department of Organic Chemistry, Facultad de Ciencias, Universidad Autónoma de MadridInstitute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - Diego J. Cárdenas
- Department of Organic Chemistry, Facultad de Ciencias, Universidad Autónoma de MadridInstitute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
38
|
Bernauer J, Wu G, Jacobi von Wangelin A. Iron-catalysed allylation-hydrogenation sequences as masked alkyl-alkyl cross-couplings. RSC Adv 2019; 9:31217-31223. [PMID: 35527959 PMCID: PMC9072617 DOI: 10.1039/c9ra07604b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/25/2019] [Indexed: 01/19/2023] Open
Abstract
An iron-catalysed allylation of organomagnesium reagents (alkyl, aryl) with simple allyl acetates proceeds under mild conditions (Fe(OAc)2 or Fe(acac)2, Et2O, r.t.) to furnish various alkene and styrene derivatives. Mechanistic studies indicate the operation of a homotopic catalyst. The sequential combination of such iron-catalysed allylation with an iron-catalysed hydrogenation results in overall C(sp3)-C(sp3)-bond formation that constitutes an attractive alternative to challenging direct cross-coupling protocols with alkyl halides.
Collapse
Affiliation(s)
- Josef Bernauer
- Department of Chemistry, University of Hamburg Martin Luther King Pl 6 20146 Hamburg Germany
| | - Guojiao Wu
- Department of Chemistry, University of Hamburg Martin Luther King Pl 6 20146 Hamburg Germany
| | | |
Collapse
|
39
|
Alanthadka A, Bera S, Banerjee D. Iron-Catalyzed Ligand Free α-Alkylation of Methylene Ketones and β-Alkylation of Secondary Alcohols Using Primary Alcohols. J Org Chem 2019; 84:11676-11686. [DOI: 10.1021/acs.joc.9b01600] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anitha Alanthadka
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
40
|
Cabrera-Lobera N, Velasco N, Sanz R, Fernández-Rodríguez MA. Brønsted acid−catalyzed synthesis of tetrasubstituted allenes and polysubstituted 2H-chromenes from tertiary propargylic alcohols. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Pulikottil FT, Pilli R, Murugesan V, Krishnan CG, Rasappan R. A Free‐Radical Reduction and Cyclization of Alkyl Halides Mediated by FeCl
2. ChemCatChem 2019. [DOI: 10.1002/cctc.201900230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Feba Thomas Pulikottil
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Vithura, Thiruvananthapuram Kerala India
| | - Ramadevi Pilli
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Vithura, Thiruvananthapuram Kerala India
| | - Vetrivelan Murugesan
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Vithura, Thiruvananthapuram Kerala India
| | - Chandu G. Krishnan
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Vithura, Thiruvananthapuram Kerala India
| | - Ramesh Rasappan
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Vithura, Thiruvananthapuram Kerala India
| |
Collapse
|
42
|
Ye C, Li Y, Zhu X, Hu S, Yuan D, Bao H. Copper-catalyzed 1,4-alkylarylation of 1,3-enynes with masked alkyl electrophiles. Chem Sci 2019; 10:3632-3636. [PMID: 30996957 PMCID: PMC6432612 DOI: 10.1039/c8sc05689g] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/18/2019] [Indexed: 01/08/2023] Open
Abstract
Classical 1,4-dicarbofunctionalization of 1,3-enynes employs organometallic reagents as nucleophiles to initiate the reaction. We report a copper-catalyzed 1,4-alkylarylation of 1,3-enynes with alkyl diacyl peroxides as masked alkyl electrophiles and aryl boronic acids as nucleophiles, selectively affording structurally diversified tetrasubstituted allenes under mild conditions. Mechanistic studies suggest that an allenyl radical might be involved.
Collapse
Affiliation(s)
- Changqing Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
- University of Chinese Academy of Sciences , No. 19(A) Yuquan Road, Shijingshan District , Beijing 100049 , P. R. China .
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
| | - Xiaotao Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
| | - Shengmin Hu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
| | - Daqiang Yuan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
- University of Chinese Academy of Sciences , No. 19(A) Yuquan Road, Shijingshan District , Beijing 100049 , P. R. China .
| |
Collapse
|
43
|
Zhang C, Zhen L, Yao Z, Jiang L. Iron(III)-Catalyzed Domino Claisen Rearrangement/Regio- and Chemoselective Aerobic Dehydrogenative Cyclization of β-Naphthyl-Substituted-Allenylmethyl Ether. Org Lett 2019; 21:955-959. [DOI: 10.1021/acs.orglett.8b03941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chenyun Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Long Zhen
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhi Yao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Liqin Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
44
|
Guđmundsson A, Gustafson KPJ, Mai BK, Hobiger V, Himo F, Bäckvall JE. Diastereoselective Synthesis of N-Protected 2,3-Dihydropyrroles via Iron-Catalyzed Cycloisomerization of α-Allenic Sulfonamides. ACS Catal 2019. [DOI: 10.1021/acscatal.8b05029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Arnar Guđmundsson
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Karl P. J. Gustafson
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Binh Khanh Mai
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Viola Hobiger
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jan-E. Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
45
|
Wu P, Jia M, Ma S. Pd-Catalyzed coupling reaction of cyclobutanols with propargylic carbonates. Org Chem Front 2019. [DOI: 10.1039/c9qo00192a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pd-Catalyzed ring opening coupling reaction of cyclobutanols with propargylic carbonates afforded δ-allenyl ketones efficiently.
Collapse
Affiliation(s)
- Penglin Wu
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Minqiang Jia
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
46
|
Zhu X, Deng W, Chiou MF, Ye C, Jian W, Zeng Y, Jiao Y, Ge L, Li Y, Zhang X, Bao H. Copper-Catalyzed Radical 1,4-Difunctionalization of 1,3-Enynes with Alkyl Diacyl Peroxides and N-Fluorobenzenesulfonimide. J Am Chem Soc 2018; 141:548-559. [PMID: 30509065 DOI: 10.1021/jacs.8b11499] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many reactions involving allenyl ion species have been studied, but reactions involving allenyl radicals are less well understood, perhaps because of the inconvenience associated with the generation of short-lived allenyl radicals. We describe here a versatile method for the generation of allenyl radicals and their previously unreported applications in the intermolecular 1,4-carbocyanation and 1,4-sulfimidocyanation of 1,3-enynes. With the assistance of the trifunctional reagents, alkyl diacyl peroxides or N-fluorobenzenesulfonimide, a range of synthetically challenging multisubstituted allenes can be prepared with high regioselectivity. These multisubstituted allenes can be easily transformed into synthetically useful structures such as fluorinated vinyl cyanides, lactones, functionalized allenyl amides, 1-aminonaphthalenes, and pyridin-2(1 H)-ones, and several novel transformations are reported. The results of radical scavenger and radical clock experiments are consistent with the proposed allenyl radical pathway. Density functional theory (DFT) and IR spectroscopy studies suggest the formation of an isocyanocopper(II) species in the ligand exchange step. On the basis of the results of IR, DFT, and diastereoselectivity studies, an isocyanocopper(II)/copper(I) catalytic cycle is proposed, which differs from the previously considered Cu(III) mechanism in cyanation reactions.
Collapse
Affiliation(s)
- Xiaotao Zhu
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter , University of Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , People's Republic of China
| | - Weili Deng
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter , University of Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , People's Republic of China
| | - Mong-Feng Chiou
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter , University of Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , People's Republic of China
| | - Changqing Ye
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter , University of Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Wujun Jian
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter , University of Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , People's Republic of China
| | - Yuehua Zeng
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter , University of Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , People's Republic of China
| | - Yihang Jiao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter , University of Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Liang Ge
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter , University of Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Yajun Li
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter , University of Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , People's Republic of China
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , People's Republic of China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter , University of Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
47
|
Gomes F, Echeverria PG, Fürstner A. Iron- or Palladium-Catalyzed Reaction Cascades Merging Cycloisomerization and Cross-Coupling Chemistry. Chemistry 2018; 24:16814-16822. [PMID: 30183112 DOI: 10.1002/chem.201803360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 12/26/2022]
Abstract
A conceptually novel reaction cascade is presented, which allows readily available enynes to be converted into functionalized 1,3-dienes comprising a stereodefined tetrasubstituted alkene unit; such compounds are difficult to make by conventional means. The overall transformation is thought to commence with formation of a metallacyclic intermediate that evolves via cleavage of an unstrained C-X bond in its backbone. This non-canonical cycloisomerization process is followed by a cross-coupling step, such that reductive C-C bond formation regenerates the necessary low-valent metal fragment and hence closes an intricate catalytic cycle. The cascade entails the formation of two new C-C bonds at the expense of the constitutional C-X entity of the substrate: importantly, the extruded group X must not be a heteroelement (X=O, NR), since activated β-C-C bonds can also be broken. This concern was reduced to practice in two largely complementary formats: one procedure relies on the use of alkyl-Grignard reagents in combination with catalytic amounts of Fe(acac)3, whereas the second method amalgamates cycloisomerization with Suzuki coupling by recourse to arylboronic acids and phosphine-ligated palladium catalysts.
Collapse
Affiliation(s)
- Filipe Gomes
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | | | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
48
|
Domingo-Legarda P, Soler-Yanes R, Quirós-López MT, Buñuel E, Cárdenas DJ. Iron-Catalyzed Coupling of Propargyl Bromides and Alkyl Grignard Reagents. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pablo Domingo-Legarda
- Department of Organic Chemistry; Facultad de Ciencias; Universidad Autónoma de Madrid; Institute for Advanced Research in Chemical Sciences (IAdChem); Campus de Cantoblanco 28049 Madrid Spain
| | - Rita Soler-Yanes
- Department of Organic Chemistry; Facultad de Ciencias; Universidad Autónoma de Madrid; Institute for Advanced Research in Chemical Sciences (IAdChem); Campus de Cantoblanco 28049 Madrid Spain
| | - M. Teresa Quirós-López
- Department of Organic Chemistry; Facultad de Ciencias; Universidad Autónoma de Madrid; Institute for Advanced Research in Chemical Sciences (IAdChem); Campus de Cantoblanco 28049 Madrid Spain
| | - Elena Buñuel
- Department of Organic Chemistry; Facultad de Ciencias; Universidad Autónoma de Madrid; Institute for Advanced Research in Chemical Sciences (IAdChem); Campus de Cantoblanco 28049 Madrid Spain
| | - Diego J. Cárdenas
- Department of Organic Chemistry; Facultad de Ciencias; Universidad Autónoma de Madrid; Institute for Advanced Research in Chemical Sciences (IAdChem); Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
49
|
Wu P, Jia M, Lin W, Ma S. Matched Coupling of Propargylic Carbonates with Cyclopropanols. Org Lett 2018; 20:554-557. [DOI: 10.1021/acs.orglett.7b03637] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Penglin Wu
- Research
Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Minqiang Jia
- Research
Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Weilong Lin
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Shengming Ma
- Research
Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
50
|
Zhu B, Yan LK, Yao LS, Ren H, Li RH, Guan W, Su ZM. Orthogonal reactivity of Ni(i)/Pd(0) dual catalysts for Ullmann C–C cross-coupling: theoretical insight. Chem Commun (Camb) 2018; 54:7959-7962. [DOI: 10.1039/c8cc04127j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The orthogonal reactivity of nickel(i)/palladium(0) has been illuminated to be the precondition and foundation of achieving Ullmann C–C cross-coupling.
Collapse
Affiliation(s)
- Bo Zhu
- Faculty of Chemistry
- National & Local United Engineering Lab for Power Battery
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Northeast Normal University
- Changchun 130024
| | - Li-Kai Yan
- Faculty of Chemistry
- National & Local United Engineering Lab for Power Battery
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Northeast Normal University
- Changchun 130024
| | - Li-Shuang Yao
- State Key Laboratory of Applied Optics
- Changchun Institute of Optics
- Fine Mechanics and Physics
- Chinese Academy of Sciences
- Changchun 130033
| | - Hang Ren
- Faculty of Chemistry
- National & Local United Engineering Lab for Power Battery
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Northeast Normal University
- Changchun 130024
| | - Run-Han Li
- Faculty of Chemistry
- National & Local United Engineering Lab for Power Battery
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Northeast Normal University
- Changchun 130024
| | - Wei Guan
- Faculty of Chemistry
- National & Local United Engineering Lab for Power Battery
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Northeast Normal University
- Changchun 130024
| | - Zhong-Min Su
- Faculty of Chemistry
- National & Local United Engineering Lab for Power Battery
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Northeast Normal University
- Changchun 130024
| |
Collapse
|