1
|
Elmi A, Bąk KM, Cockroft SL. Solvent Attenuation of London Dispersion in Polycyclic Aromatic Stacking. Angew Chem Int Ed Engl 2024; 63:e202412056. [PMID: 39041859 DOI: 10.1002/anie.202412056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/24/2024]
Abstract
Solvent competition for London dispersion attenuates its energetic significance in molecular recognition processes. By varying both the stacked contact area and the solvent, here we experimentally deconvolute solvent attenuation using molecular balances. Experimental stacking energies (phenyl to pyrene) correlated strongly with calculations only when dispersion was considered. Such calculations favoured stacking by up to -27 kJ mol-1 in the gas phase, but it was weakly disfavoured in our solution-phase experiments (+0.5 to +4.6 kJ mol-1). Nonetheless, the propensity for stacking increased with contact area and in solvents with lower bulk polarisabilities that compete less for dispersion. Experimental stacking energies per unit change in solvent accessible area ranged from -0.02 kJ mol-1 Å-2 in CS2, to -0.05 kJ mol-1 Å-2 in CD2Cl2, but were dwarfed by the calculated gas-phase energy of -0.6 kJ mol-1 Å-2. The results underscore the challenge facing the exploitation of dispersion in solution. Solvent competition strongly but imperfectly cancels dispersion at molecular recognition interfaces, making the energetic benefits difficult to realise.
Collapse
Affiliation(s)
- Alex Elmi
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, EH9 3FJ, U.K
| | - Krzysztof M Bąk
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, EH9 3FJ, U.K
| | - Scott L Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, EH9 3FJ, U.K
| |
Collapse
|
2
|
Fragkiadakis M, Thomaidi M, Stergiannakos T, Chatziorfanou E, Gaidatzi M, Michailidis Barakat A, Stoumpos C, Neochoritis CG. High Rotational Barrier Atropisomers. Chemistry 2024; 30:e202401461. [PMID: 38962895 DOI: 10.1002/chem.202401461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/05/2024]
Abstract
Atropisomers have attracted a great deal of attention lately due to their numerous applications in organic synthesis and to their employment in drug discovery. However, the synthetic arsenal at our disposal with which to access them remains limited. The research described herein is two-pronged; we both demonstrate the use of MCR chemistry as a synthetic strategy for the de novo synthesis of a class of atropisomers having high barriers to rotation with the simultaneous insertion of multiple chiral elements and we study these unprecedented molecular systems by employing a combination of crystallography, NMR and DFT calculations. By fully exploiting the synthetic capabilities of our chemistry, we have been able to monitor a range of different types of interaction, i. e. π-π, CH-π, heteroatom-π and CD-π, in order to conduct structure-property studies. The results could be applied both to atroposelective synthesis and in drug discovery.
Collapse
Affiliation(s)
| | - Maria Thomaidi
- Department of Chemistry, University of Crete, Voutes, Heraklion, 70013, Greece
| | | | | | - Maria Gaidatzi
- Department of Chemistry, University of Crete, Voutes, Heraklion, 70013, Greece
| | | | - Constantinos Stoumpos
- Department of Materials Science & Technology, University of Crete, Voutes, Heraklion, 70013, Greece
| | | |
Collapse
|
3
|
Rummel L, Schreiner PR. Advances and Prospects in Understanding London Dispersion Interactions in Molecular Chemistry. Angew Chem Int Ed Engl 2024; 63:e202316364. [PMID: 38051426 DOI: 10.1002/anie.202316364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
London dispersion (LD) interactions are the main contribution of the attractive part of the van der Waals potential. Even though LD effects are the driving force for molecular aggregation and recognition, the role of these omnipresent interactions in structure and reactivity had been largely underappreciated over decades. However, in the recent years considerable efforts have been made to thoroughly study LD interactions and their potential as a chemical design element for structures and catalysis. This was made possible through a fruitful interplay of theory and experiment. This review highlights recent results and advances in utilizing LD interactions as a structural motif to understand and utilize intra- and intermolecularly LD-stabilized systems. Additionally, we focus on the quantification of LD interactions and their fundamental role in chemical reactions.
Collapse
Affiliation(s)
- Lars Rummel
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
4
|
Fokin AA. Long but Strong C-C Single Bonds: Challenges for Theory. CHEM REC 2024; 24:e202300170. [PMID: 37358335 DOI: 10.1002/tcr.202300170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/02/2023] [Indexed: 06/27/2023]
Abstract
Theoretical challenges in describing molecules with anomalously long single C-C bonds are analyzed in terms of the relative contributions of stabilizing and destabilizing intramolecular interactions. Diamondoid dimers that are stable despite the presence of C-C bonds up to 1.7 Å long, as well as other bulky molecules stabilized due to intramolecular noncovalent interactions (London dispersions) are discussed. The unexpected stability of highly crowded molecules, such as diamondoid dimers and tert-butyl-substituted hexaphenylethanes, calls for reconsideration of the "steric effect" traditionally thought to destabilize the molecule. Alternatively, "steric attraction" helps to understand bonding in sterically overloaded molecules, whose structural and energetic analysis requires a proper theoretical description of noncovalent interactions.
Collapse
Affiliation(s)
- Andrey A Fokin
- Department of Organic Chemistry, Igor Sikorsky Kyiv Polytechnic Institute, Beresteiskyi Ave 37, Kyiv, Ukraine
| |
Collapse
|
5
|
Averdunk C, Hanke K, Schatz D, Wegner HA. Molecular Wind-Up Meter for the Quantification of London Dispersion Interactions. Acc Chem Res 2024; 57:257-266. [PMID: 38131644 DOI: 10.1021/acs.accounts.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
ConspectusThe experimental quantification of interactions on the molecular level provides the necessary basis for the design of functional materials and chemical processes. The interplay of multiple parameters and the small quantity of individual interactions pose a special challenge for such endeavors. The common method is the use of molecular balances, which can exist in two different states. Thereby, a stabilizing interaction can occur in one of the states, favoring its formation and thus affecting the thermodynamic equilibrium of the system. One challenge is determining the change in this equilibrium since various analytical methods could not be applied to fast-changing equilibria. A new and promising method for quantifying molecular interactions is the use of Molecular Wind-up Meters (MWM) in which the change in kinetics, rather than the effect on thermodynamics, is investigated. An MWM is transformed with an energy input (e.g. irradiation) into a metastable state. Then, the rate of thermal transformation back to the ground state is measured. The strength of interactions present in the metastable state controls the kinetics of the back reactions, allowing direct correlation. The advantage of this approach lies in the high sensitivity (energy differences can be larger by 1 order of magnitude) and, in general, allows the use of a broader range of solvents and analytical methods. An Azobenzene-based MWM has been established as a powerful tool to quantify London dispersion interactions. London dispersion (LD) represents the attractive part of the van der Waals potential. Although neglected in the past due to its weak character, it has been shown that the influence of LD on the structure, stability, and reactivity of matter can be decisive. Especially in larger molecules, its energy contribution increases overproportionately with the number of atoms, which has sparked increasing interest in the use of so-called dispersion energy donors (DED) as a new structural element. Application of the azobenzene-based MWM not only allowed the differentiation of bulkiness, but also systematically addressed the influence of the length of n-alkyl chains. Additionally, the solvent influence on LD was studied. Based on the azobenzene MWM, an increment system has been proposed, allowing a rough estimate of the effect of a specific DED.
Collapse
Affiliation(s)
- Conrad Averdunk
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center of Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Kai Hanke
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center of Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Dominic Schatz
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center of Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center of Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| |
Collapse
|
6
|
Liu H, Shimizu KD. Contributions of London Dispersion Forces to Solution-Phase Association Processes. Acc Chem Res 2023; 56:3572-3580. [PMID: 38009964 DOI: 10.1021/acs.accounts.3c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ConspectusDespite their ubiquity and early discovery, London dispersion forces are often overlooked. This is due, in part, to the difficulty in assessing their contributions to molecular and polymeric structure, stability, properties, and reactivities. However, recent advances in modeling have revealed that dispersion interactions play an important role in many important chemical and biological processes. Experimental confirmation of their impact in solution has been challenging, leading to controversies about their relative importance.In the course of studying noncovalent interactions using molecular devices, our understanding and appreciation for the importance of dispersion interactions have evolved. This Account follows this intellectual journey by using examples from the literature. The goals are twofold: to describe recent advances in understanding the interaction and to provide guidance to researchers studying weak noncovalent interactions. However, first, the experimental methods for measuring the effects of dispersion interactions and the strategies for isolating their influence are described. These include the design of molecular devices to measure these weak noncovalent interactions and the strategies to disentangle the solvation, solvophobic, and dispersion components of the resulting equilibria.The literature examples are organized around five fundamental questions. (1) Do dispersion interactions have a measurable effect on solution equilibria? (2) To what extent do solvents attenuate or compensate for dispersion interactions? (3) To what extent do the solvation and solvophobic terms influence the dispersion equilibria? (4) Can we predict whether a system will form attractive dispersion or repulsive steric interactions? (5) Can the dispersion term be isolated and interrogated? We were often surprised by the answers to these questions. In each case, we describe how the systems were designed to address these questions and discuss possible interpretations of the results.While dispersion interactions in solution were weak (usually <1 kcal/mol), their influence on complexation and conformational equilibria can be observed and measured. This underscores the significance of these interactions in molecular recognition, coordination chemistry, reaction design, and catalysis. The solvent components of the dispersion equilibria can also be significant. Therefore, the isolation of the dispersion contributions from the solvation and solvophobic effects represents an ongoing challenge. The experimental studies also provide important benchmarks and offer valuable insights to help refine the next generation of computational solvent models.
Collapse
Affiliation(s)
- Hao Liu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ken D Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
7
|
Albrecht M. The Monomer-Dimer Equilibrium of Triscatechol Titanium(IV)-Based Hierarchical Helicates as a Tool for the Development of Molecular Balances and Molecular Switches. Acc Chem Res 2023; 56:3271-3281. [PMID: 37955356 DOI: 10.1021/acs.accounts.3c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
ConspectusHierarchical helicates are formed by noncovalent connection of two or more monomeric metal complex units, e.g., by bridging metal cations. A unique kind of hierarchical helicate is obtained from 3-carbonyl substituted catechol ligands with titanium(IV) ions in the presence of lithium cations. This kind of supramolecular complex shows in solution a "monomer-dimer" equilibrium. There are different possibilities (solvent, countercation, substituents at carbonyl unit, etc.) to shift this equilibrium to either the monomer or the dimer side. Thus, the lithium-bridged catecholate-based hierarchical helicates resemble a molecular switch. In this Account, different aspects are discussed of how this unique behavior of the dimeric titanium catecholates can be used for application.Thorough investigation of the energetics of the monomer-dimer equilibrium leads to a deeper understanding of the thermodynamic and kinetic effects of the dimerization (or dissociation) process. In this context, even weak interaction of substituents in the periphery of the complexes can be observed. Hereby on the one hand, solvent effects have an important influence and can be easily evaluated. The thorough understanding of the behavior of the monomer-dimer equilibrium allows one to develop some novel applications. In this respect, the use of the hierarchical helicate-based switch as a platform for reaction control and catalysis is described. Decent enantioselectivities up to ee = 58% can be found in Diels-Alder reactions in the periphery of the dimers, while switching to the monomer as a reaction platform still allows the cycloaddition reaction but turns the selectivity off. Additionally, it is described that catalytically important units can be introduced and hydrogenation reactions as well as Michael-type reactions are catalyzed at the helicates.Covalent connection of two catechol ester units leads to classical helicates. Depending on the alkaline metal cation, those can be switched from a compressed to an expanded form or vice versa. Hereby the monomer-dimer equilibrium is transformed into a structural switch. The switching process can be initiated by removal or addition of lithium cations (e.g., by addition of [2.1.1]cryptand). Alternative switching possibilities are based in the case of glycol bridged helicates on cation translocation isomerism and with thioester derivatives it occurs spontaneously in DMSO. Introduction of chiral tethers results in a three state switch allowing expansion/compression as well as switching of the helicity.
Collapse
Affiliation(s)
- Markus Albrecht
- Institut für Organische Chemie, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
8
|
West AML, Dominelli‐Whiteley N, Smolyar IV, Nichol GS, Cockroft SL. Experimental Quantification of Halogen⋅⋅⋅Arene van der Waals Contacts. Angew Chem Int Ed Engl 2023; 62:e202309682. [PMID: 37470309 PMCID: PMC10953438 DOI: 10.1002/anie.202309682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Crystallographic and computational studies suggest the occurrence of favourable interactions between polarizable arenes and halogen atoms. However, the systematic experimental quantification of halogen⋅⋅⋅arene interactions in solution has been hindered by the large variance in the steric demands of the halogens. Here we have synthesized molecular balances to quantify halogen⋅⋅⋅arene contacts in 17 solvents and solvent mixtures using 1 H NMR spectroscopy. Calculations indicate that favourable halogen⋅⋅⋅arene interactions arise from London dispersion in the gas phase. In contrast, comparison of our experimental measurements with partitioned SAPT0 energies indicate that dispersion is sufficiently attenuated by the solvent that the halogen⋅⋅⋅arene interaction trend was instead aligned with increasing exchange repulsion as the halogen increased in size (ΔGX ⋅⋅⋅Ph =0 to +1.5 kJ mol-1 ). Halogen⋅⋅⋅arene contacts were slightly less disfavoured in solvents with higher solvophobicities and lower polarizabilities, but strikingly, were always less favoured than CH3 ⋅⋅⋅arene contacts (ΔGMe ⋅⋅⋅Ph =0 to -1.4 kJ mol-1 ).
Collapse
Affiliation(s)
- Andrew M. L. West
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Nicholas Dominelli‐Whiteley
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Ivan V. Smolyar
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Gary S. Nichol
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Scott L. Cockroft
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| |
Collapse
|
9
|
Adhav V, Saikrishnan K. The Realm of Unconventional Noncovalent Interactions in Proteins: Their Significance in Structure and Function. ACS OMEGA 2023; 8:22268-22284. [PMID: 37396257 PMCID: PMC10308531 DOI: 10.1021/acsomega.3c00205] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Proteins and their assemblies are fundamental for living cells to function. Their complex three-dimensional architecture and its stability are attributed to the combined effect of various noncovalent interactions. It is critical to scrutinize these noncovalent interactions to understand their role in the energy landscape in folding, catalysis, and molecular recognition. This Review presents a comprehensive summary of unconventional noncovalent interactions, beyond conventional hydrogen bonds and hydrophobic interactions, which have gained prominence over the past decade. The noncovalent interactions discussed include low-barrier hydrogen bonds, C5 hydrogen bonds, C-H···π interactions, sulfur-mediated hydrogen bonds, n → π* interactions, London dispersion interactions, halogen bonds, chalcogen bonds, and tetrel bonds. This Review focuses on their chemical nature, interaction strength, and geometrical parameters obtained from X-ray crystallography, spectroscopy, bioinformatics, and computational chemistry. Also highlighted are their occurrence in proteins or their complexes and recent advances made toward understanding their role in biomolecular structure and function. Probing the chemical diversity of these interactions, we determined that the variable frequency of occurrence in proteins and the ability to synergize with one another are important not only for ab initio structure prediction but also to design proteins with new functionalities. A better understanding of these interactions will promote their utilization in designing and engineering ligands with potential therapeutic value.
Collapse
Affiliation(s)
- Vishal
Annasaheb Adhav
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
10
|
Wilming FM, Marazzi B, Debes PP, Becker J, Schreiner PR. Probing the Size Limit of Dispersion Energy Donors with a Bifluorenylidene Balance: Magic Cyclohexyl. J Org Chem 2023; 88:1024-1035. [PMID: 36576961 DOI: 10.1021/acs.joc.2c02444] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report the synthesis of 14 2,2'-disubstituted 9,9'-bifluorenylidenes as molecular balances for the quantification of London dispersion interactions between various dispersion energy donors. For all balances, we measured ΔGZ/E at 333 K using 1H NMR in seven organic solvents. For various alkyl and aryl substituents, we generally observe a preference for the "folded" Z-isomer due to attractive London dispersion interactions. The cyclohexyl-substituted system shows the largest Z-preference in this study with ΔGZ/E = -0.6 ± 0.05 kcal mol-1 in all solvents, owing to the rotational freedom of cyclohexyl groups paired with their large polarizability that maximizes London dispersion interactions. On the other hand, rigid and sterically more demanding substituents like tert-butyl unexpectedly favor the unfolded E-isomer. This is a result of the close relative position in which the functional groups are positioned in this molecular balance. This close proximity is the reason for the increase of Pauli repulsion in the Z-isomers with large rigid substituents (tert-butyl, adamantyl, and diamantyl) which leads to an equilibrium shift toward the unfolded E-form. While we were able to reproduce most of our experimental trends qualitatively using contemporary computational chemistry methods, quantitative accuracy of the employed methods still needs further improvement.
Collapse
Affiliation(s)
- Finn M Wilming
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.,Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Benito Marazzi
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.,Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Paul P Debes
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.,Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.,Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| |
Collapse
|
11
|
Yuan X, Hu C, Wang Z. The migration and degradation of N‐(1,3‐dimethylbutyl)‐N′‐phenyl‐p‐phenylenediamine from rubber hoses in milk lines. INT J DAIRY TECHNOL 2023. [DOI: 10.1111/1471-0307.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaoyu Yuan
- Packaging Engineering Institute Jinan University Zhuhai Guangdong 519070 China
- College of Food Science and Technology Henan Agricultural University Agricultural Road No. 63 Zhengzhou 450002 China
| | - Chang‐Ying Hu
- Department of Food Science and Engineering Jinan University Huangpu West Avenue 601 Guangzhou Guangdong 510632 China
- Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes Jinan University Zhuhai Guangdong 519070 China
| | - Zhi‐Wei Wang
- Packaging Engineering Institute Jinan University Zhuhai Guangdong 519070 China
- Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes Jinan University Zhuhai Guangdong 519070 China
| |
Collapse
|
12
|
Song D, Ji X, Li Y, Wu S, Zhang Y, Wang X, Sun Y, Gao E, Zhu M. Two novel zinc-based MOFs as luminescence sensors to detect phenylglyoxylic acid. Dalton Trans 2022; 51:16266-16273. [PMID: 36218122 DOI: 10.1039/d2dt02406c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Automobile exhaust gases, plastic pollutants, smoking, and other harmful substances can cause serious harm to human beings and the environment. Styrene, as a common airborne toxin, enters the human body through breathing or the skin and is discharged in the form of phenylglyoxylic acid (PGA). Therefore, specific, sensitive and trace detection of PGA is particularly important. Here, two zinc-based metal-organic frameworks {[Zn2L1(DMF)2H2O](DMF)2H2O}n, {[Zn4(L2)2(DMF)2(H2O)3](DMF)8}n (L1 = 2,5-bis((3-carboxylphenyl)amino)terephthalic acid, L2 = 2,5-bis((4-carboxyphenyl)amino)terephthalic acid) have been reported as 1 and 2, respectively. Both 1 and 2 present 3D structures, which can both be simplified as 4,4,4-c net topology. It is worth mentioning that 2 has two different kinds of Zn SBUs as connecting nodes in the structure. Besides, compared with the other materials for the detection of PGA, 1 and 2 exhibit relatively low detection limits (LODs), both in water and in urine (where the LODs for 1 in water and urine were 0.33 μM and 0.43 μM in the range of 0-0.39 mM, and those for 2 were 0.28 μM and 0.49 μM in the range of 0-0.59 mM, respectively). In addition, the sensors have excellent anti-interference ability, high stability, rapid response, and can easily distinguish between different concentrations of PGA with the naked eye. The developed paper probes were suitable for practical sensing applications for portable detection of PGA in urine.
Collapse
Affiliation(s)
- Dongxue Song
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, PR China.
| | - Xiaoxi Ji
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, PR China.
| | - Yong Li
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, PR China.
| | - Shuangyan Wu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, PR China.
| | - Ying Zhang
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, PR China.
| | - Xiaofeng Wang
- China College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Yaguang Sun
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, PR China. .,Key Laboratory of Resource Chemical Technology and Materials, (Ministry of Education), Shenyang University Chemical Technology, Shenyang, 110142, PR China
| | - Enjun Gao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, PR China. .,Key Laboratory of Resource Chemical Technology and Materials, (Ministry of Education), Shenyang University Chemical Technology, Shenyang, 110142, PR China
| |
Collapse
|
13
|
Rummel L, König HF, Hausmann H, Schreiner PR. Silyl Groups Are Strong Dispersion Energy Donors. J Org Chem 2022; 87:13168-13177. [PMID: 36166406 DOI: 10.1021/acs.joc.2c01633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an experimental and computational study to investigate noncovalent interactions between silyl groups that are often employed as "innocent" protecting groups. We chose an extended cyclooctatetraene (COT)-based molecular balance comprising unfolded (1,4-disubstituted) and folded (1,6-disubstituted) valance bond isomers that typically display remote and close silyl group contacts, respectively. The thermodynamic equilibria were determined using nuclear magnetic resonance measurements. Additionally, we utilized Boltzmann weighted symmetry-adapted perturbation theory (SAPT) at the sSAPT0/aug-cc-pVDZ level of theory to dissect and quantify noncovalent interactions. Apart from the extremely bulky tris(trimethylsilyl)silyl "supersilyl" group, there is a preference for the folded 1,6-COT valence isomer, with London dispersion interactions being the main stabilizing factor. This makes silyl groups excellent dispersion energy donors, a finding that needs to be taken into account in synthesis planning.
Collapse
Affiliation(s)
- Lars Rummel
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Henrik F König
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Heike Hausmann
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
14
|
Rummel L, Domanski MHJ, Hausmann H, Becker J, Schreiner PR. London Dispersion Favors Sterically Hindered Diarylthiourea Conformers in Solution. Angew Chem Int Ed Engl 2022; 61:e202204393. [PMID: 35544611 PMCID: PMC9401023 DOI: 10.1002/anie.202204393] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 12/12/2022]
Abstract
We present an experimental and computational study on the conformers of N,N'-diphenylthiourea substituted with different dispersion energy donor (DED) groups. While the unfolded anti-anti conformer is the most relevant for thiourea catalysis, intramolecular noncovalent interactions counterintuitively favor the folded syn-syn conformer, as evident from a combination of low-temperature nuclear magnetic resonance measurements and computations. In order to quantify the noncovalent interactions, we utilized local energy decomposition analysis and symmetry-adapted perturbation theory at the DLPNO-CCSD(T)/def2-TZVPP and sSAPT0/6-311G(d,p) levels of theory. Additionally, we applied a double-mutant cycle to experimentally study the effects of bulky substituents on the equilibria. We determined London dispersion as the key interaction that shifts the equilibria towards the syn-syn conformers. This preference is likely a factor why such thiourea derivatives can be poor catalysts.
Collapse
Affiliation(s)
- Lars Rummel
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Marvin H. J. Domanski
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Heike Hausmann
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Jonathan Becker
- Institute of Inorganic and Analytical ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Peter R. Schreiner
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| |
Collapse
|
15
|
London Dispersion Favors Sterically Hindered Diarylthiourea Conformers in Solution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
König HF, Rummel L, Hausmann H, Becker J, Schümann JM, Schreiner PR. Gauging the Steric Effects of Silyl Groups with a Molecular Balance. J Org Chem 2022; 87:4670-4679. [PMID: 35293748 DOI: 10.1021/acs.joc.1c03103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We present an experimental and computational study of a cyclooctatetraene (COT)-based molecular balance disubstituted with commonly used silyl groups. Such groups often serve as protecting groups and are typically considered innocent bystanders. Our motivation here is to determine the actual steric effects of such groups by employing a molecular balance. While in the unfolded 1,4-valence isomer the silyl groups are far apart (dσ-σ ≥ 5.15 Å), the folded 1,6-isomer is affected greatly by noncovalent interactions due to close σ-σ contacts (dσ-σ ≤ 2.58 Å). In order to investigate the thermodynamic equilibrium between the 1,6- and 1,4-valence isomers, we employed temperature-dependent nuclear magnetic resonance measurements. Additionally, we assessed the nature of attractive and repulsive interactions in 1,6-disilyl-COT derivatives via a combination of local energy decomposition analysis (LED) and symmetry-adapted perturbation theory (SAPT) at the DLPNO-CCSD(T)/def2-TZVP and sSAPT0/aug-cc-pVDZ levels of theory. We identified London dispersion interactions as the main contributor to the molecular stability of the folded states, whereas Pauli exchange repulsion and a resulting internal strain favor the unfolded diastereomer.
Collapse
Affiliation(s)
- Henrik F König
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Lars Rummel
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Heike Hausmann
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Jan M Schümann
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
17
|
Maley SM, Steagall R, Lief GR, Buck RM, Yang Q, Sydora OL, Bischof SM, Ess DH. Computational Evaluation and Design of Polyethylene Zirconocene Catalysts with Noncovalent Dispersion Interactions. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Steven M. Maley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Robert Steagall
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Graham R. Lief
- Research and Technology, Chevron Phillips Chemical Company LP, Highways 60 & 123, Bartlesville, Oklahoma 74003, United States
| | - Richard M. Buck
- Research and Technology, Chevron Phillips Chemical Company LP, Highways 60 & 123, Bartlesville, Oklahoma 74003, United States
| | - Qing Yang
- Research and Technology, Chevron Phillips Chemical Company LP, Highways 60 & 123, Bartlesville, Oklahoma 74003, United States
| | - Orson L. Sydora
- Research and Technology, Chevron Phillips Chemical Company LP, 1862, Kingwood Drive, Kingwood, Texas 77339, United States
| | - Steven M. Bischof
- Research and Technology, Chevron Phillips Chemical Company LP, 1862, Kingwood Drive, Kingwood, Texas 77339, United States
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
18
|
Xun S, Li H, Sini G, Bredas JL. Impact of Imine Bond Orientations on the Geometric and Electronic Structures of Imine-based Covalent Organic Frameworks. Chem Asian J 2021; 16:3781-3789. [PMID: 34624932 DOI: 10.1002/asia.202101011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/05/2021] [Indexed: 11/05/2022]
Abstract
Many efforts are currently devoted to improving the stability and crystallinity of imine-based two-dimensional (2D) covalent organic frameworks (COFs) given their wide range of potential applications. The variation in the relative orientations of the imine bonds has been found to be a critical factor that impacts the stacking of the 2D COF layers, leads to the formation of isomer structures, and influences the crystallinity of the final product. Most investigations to date have focused only on the structural properties, while the role of the imine orientations on the electronic properties has not been studied systematically. Here, we explore this effect by examining how the electronic band structures, electronic couplings, and effective masses evolve when considering four isomeric structures of an imine-linked tetraphenyl-pyrene naphthalene-diimide COF. Our results provide an understanding of the impact of the imine orientations and how they need to be controlled to realize COF inter-layer stackings that can lead to efficient cross-plane electron transport. They can be used to guide the design and synthesis of imine-based COFs for applications where charge transport needs to be optimized.
Collapse
Affiliation(s)
- Sangni Xun
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China.,School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Hong Li
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0008, USA
| | - Gjergji Sini
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0008, USA.,Laboratoire de Physicochimie des Polymères et des Interfaces, CY Cergy Paris Université, Cergy-Pontoise Cedex, 95031, France
| | - Jean-Luc Bredas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0008, USA
| |
Collapse
|
19
|
Zhan YY, Hiraoka S. Molecular “Hozo”: Thermally Stable Yet Conformationally Flexible Self-Assemblies Driven by Tight Molecular Meshing. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yi-Yang Zhan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
20
|
Schümann JM, Wagner JP, Eckhardt AK, Quanz H, Schreiner PR. Intramolecular London Dispersion Interactions Do Not Cancel in Solution. J Am Chem Soc 2021; 143:41-45. [PMID: 33320651 DOI: 10.1021/jacs.0c09597] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We present a comprehensive experimental study of a di-t-butyl-substituted cyclooctatetraene-based molecular balance to measure the effect of 16 different solvents on the equilibrium of folded versus unfolded isomers. In the folded 1,6-isomer, the two t-butyl groups are in close proximity (H···H distance ≈ 2.5 Å), but they are far apart in the unfolded 1,4-isomer (H···H distance ≈ 7 Å). We determined the relative strengths of these noncovalent intramolecular σ-σ interactions via temperature-dependent nuclear magnetic resonance measurements. The origins of the interactions were elucidated with energy decomposition analysis at the density functional and ab initio levels of theory, pinpointing the predominance of London dispersion interactions enthalpically favoring the folded state in any solvent measured.
Collapse
Affiliation(s)
- Jan M Schümann
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - J Philipp Wagner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - André K Eckhardt
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Henrik Quanz
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
21
|
Affiliation(s)
- Marcel A. Strauss
- Institut für Organische Chemie Justus-Liebig Universität Gießen Heinrich-Buff-Ring 17 35392 Gießen Deutschland
- Zentrum für Materialforschung (LaMa) Justus-Liebig Universität Gießen Heinrich-Buff-Ring 16 35392 Gießen Deutschland
| | - Hermann A. Wegner
- Institut für Organische Chemie Justus-Liebig Universität Gießen Heinrich-Buff-Ring 17 35392 Gießen Deutschland
- Zentrum für Materialforschung (LaMa) Justus-Liebig Universität Gießen Heinrich-Buff-Ring 16 35392 Gießen Deutschland
| |
Collapse
|
22
|
Abstract
The importance of London dispersion interactions in solution is an ongoing debate. Although the significance of dispersion for structure and stability is widely accepted, the degree of its attenuation in solution is still not properly understood. Quantitative evaluations are derived mostly from computations. Experimental data provide guidelines to include London dispersion in solution phase design. Herein, dispersive interactions were examined with an azobenzene probe. Alkyl substituents in meta positions of the azobenzene core were systematically varied and the effect on the half-lives for the thermally induced Z to E isomerization in several alkane solvents was determined. The results show that intramolecular dispersion is only marginally influenced. In solvents with low surface tension, reduced destabilizing solvent-solvent interactions increase the half-life up to 20 %. Specific individual interactions between alkyl chains on the azobenzene and those of the solvent lead to additional fluctuations of the half-lives. These presumably result from structural changes of the conformer ensemble.
Collapse
Affiliation(s)
- Marcel A. Strauss
- Institute of Organic ChemistryJustus Liebig University GiessenHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Materials Research (LaMa)Justus Liebig University GiessenHeinrich-Buff-Ring 1635392GiessenGermany
| | - Hermann A. Wegner
- Institute of Organic ChemistryJustus Liebig University GiessenHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Materials Research (LaMa)Justus Liebig University GiessenHeinrich-Buff-Ring 1635392GiessenGermany
| |
Collapse
|
23
|
Elmi A, Cockroft SL. Quantifying Interactions and Solvent Effects Using Molecular Balances and Model Complexes. Acc Chem Res 2021; 54:92-103. [PMID: 33315374 DOI: 10.1021/acs.accounts.0c00545] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Where the basic units of molecular chemistry are the bonds within molecules, supramolecular chemistry is based on the interactions that occur between molecules. Understanding the "how" and "why" of the processes that govern molecular self-assembly remains an open challenge to the supramolecular community. While many interactions are readily examined in silico through electronic structure calculations, such insights may not be directly applicable to experimentalists. The practical limitations of computationally accounting for solvation is perhaps the largest bottleneck in this regard, with implicit solvation models failing to comprehensively account for the specific nature of solvent effects and explicit models incurring a prohibitively high computational cost. Since molecular recognition processes usually occur in solution, insight into the nature and effect of solvation is imperative not only for understanding these phenomena but also for the rational design of systems that exploit them.Molecular balances and supramolecular complexes have emerged as useful tools for the experimental dissection of the physicochemical basis of various noncovalent interactions, but they have historically been underexploited as a platform for the evaluation of solvent effects. Contrasting with large biological complexes, smaller synthetic model systems enable combined experimental and computational analyses, often facilitating theoretical analyses that can work in concert with experiment.Our research has focused on the development of supramolecular systems to evaluate the role of solvents in molecular recognition, and further characterize the underlying mechanisms by which molecules associate. In particular, the use of molecular balances has provided a framework to measure the magnitude of solvent effects and to examine the accuracy of solvent models. Such approaches have revealed how solvation can modulate the electronic landscape of a molecule and how competitive solvation and solvent cohesion can provide thermodynamic driving forces for association. Moreover, the use of simple model systems facilitates the interrogation and further dissection of the physicochemical origins of molecular recognition. This tandem experimental/computational approach has married less common computational techniques, like symmetry adapted perturbation theory (SAPT) and natural bonding orbital (NBO) analysis, with experimental observations to elucidate the influence of effects that are difficult to resolve experimentally (e.g., London dispersion and electron delocalization).
Collapse
Affiliation(s)
- Alex Elmi
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Scott L. Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
24
|
Li P, Vik EC, Shimizu KD. N-Arylimide Molecular Balances: A Comprehensive Platform for Studying Aromatic Interactions in Solution. Acc Chem Res 2020; 53:2705-2714. [PMID: 33152232 DOI: 10.1021/acs.accounts.0c00519] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Noncovalent interactions of aromatic surfaces play a key role in many biological processes and in determining the properties and utility of synthetic materials, sensors, and catalysts. However, the study of aromatic interactions has been challenging because these interactions are usually very weak and their trends are modulated by many factors such as structural, electronic, steric, and solvent effects. Recently, N-arylimide molecular balances have emerged as highly versatile and effective platforms for studying aromatic interactions in solution. These molecular balances can accurately measure weak noncovalent interactions in solution via their influence on the folded-unfolded conformational equilibrium. The structure (i.e., size, shape, π-conjugation, and substitution) and nature (i.e., element, charge, and polarity) of the π-surfaces and interacting groups can be readily varied, enabling the study of a wide range of aromatic interactions. These include aromatic stacking, heterocyclic aromatic stacking, and alkyl-π, chalcogen-π, silver-π, halogen-π, substituent-π, and solvent-π interactions. The ability to measure a diverse array of aromatic interactions within a single model system provides a unique perspective and insights as the interaction energies, stability trends, and solvent effects for different types of interactions can be directly compared. Some broad conclusions that have emerged from this comprehensive analysis include: (1) The strongest aromatic interactions involve groups with positive charges such as pyridinium and metal ions which interact with the electrostatically negative π-face of the aromatic surface via cation-π or metal-π interactions. Attractive electrostatic interactions can also form between aromatic surfaces and groups with partial positive charges. (2) Electrostatic interactions involving aromatic surfaces can be switched from repulsive to attractive using electron-withdrawing substituents or heterocycles. These electrostatic trends appear to span many types of aromatic interactions involving a polar group interacting with a π-surface such as halogen-π, chalcogen-π, and carbonyl-π. (3) Nonpolar groups form weak but measurable stabilizing interactions with aromatic surfaces in organic solvents due to favorable dispersion and/or solvophobic effects. A good predictor of the interaction strength is provided by the change in solvent-accessible surface area. (4) Solvent effects modulate the aromatic interactions in the forms of solvophobic effects and competitive solvation, which can be modeled using solvent cohesion density and specific solvent-solute interactions.
Collapse
Affiliation(s)
- Ping Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Erik C. Vik
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Ken D. Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
25
|
Tanaka D, Tsutsui Y, Konishi A, Nakaoka K, Nakajima H, Baba A, Chiba K, Yasuda M. Selective Activation of Aromatic Aldehydes Promoted by Dispersion Interactions: Steric and Electronic Factors of a π-Pocket within Cage-Shaped Borates for Molecular Recognition. Chemistry 2020; 26:15023-15034. [PMID: 32870540 DOI: 10.1002/chem.202003594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Selective bond formations are one of the most important reactions in organic synthesis. In the Lewis acid mediated electrophile reactions of carbonyls, the selective formation of a carbonyl-acid complex plays a critical role in determining selectivity, which is based on the difference in the coordinative interaction between the carbonyl and Lewis acid center. Although this strategy has attained progress in selective bond formations, the discrimination between similarly sized aromatic and aliphatic carbonyls that have no functional anchors to strongly interact with the metal center still remains a challenging issue. Herein, this work focuses on molecular recognition driven by dispersion interactions within some aromatic moieties. A Lewis acid catalyst with a π-space cavity, which is referred to as a π-pocket, as the recognition site for aromatic carbonyls is designed. Cage-shaped borates 1B with various π-pockets demonstrated significant chemoselectivity for aromatic aldehydes 3 b-f over that of aliphatic 3 a in competitive hetero-Diels-Alder reactions. The effectiveness of our catalysts was also evidenced by intramolecular recognition of the aromatic carbonyl within a dicarbonyl substrate. Mechanistic and theoretical studies demonstrated that the selective activation of aromatic substrates was driven by the preorganization step with a larger dispersion interaction, rather than the rate-determining step of the C-C bond formation, and this was likely to contribute to the preferred activation of aromatic substrates over that of aliphatic ones.
Collapse
Affiliation(s)
- Daiki Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Yuya Tsutsui
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan.,Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Koichi Nakaoka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Hideto Nakajima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Akio Baba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Kouji Chiba
- Material Science Division, MOLSIS Inc., 1-28-38 Shinkawa, Chuo-ku, Tokyo, 1040033, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| |
Collapse
|
26
|
Giese M, Albrecht M. Alkyl-Alkyl Interactions in the Periphery of Supramolecular Entities: From the Evaluation of Weak Forces to Applications. Chempluschem 2020; 85:715-724. [PMID: 32286742 DOI: 10.1002/cplu.202000077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/25/2020] [Indexed: 12/30/2022]
Abstract
Supramolecular chemistry is based on weak intermolecular forces which nevertheless are of importance for chemical processes. In this report the relevance of alkyl-alkyl interactions in supramolecular assemblies is discussed. We show how hierarchically formed helicates can be used to evaluate weak interactions of alkyl groups based on solvent-supported London dispersion. In addition, the role of nano-segregation of alkyl groups in the periphery of supramolecular assemblies is described, as well as how this can be used to improve the properties of liquid-crystalline materials by controlling the alkyl-chain-mediated aggregation process.
Collapse
Affiliation(s)
- Michael Giese
- Organic Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany
| | - Markus Albrecht
- Institut für Organische Chemie, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
27
|
Schlottmann M, Van Craen D, Baums J, Funes-Ardoiz I, Wiederhold C, Oppel IM, Albrecht M. Stability of Hierarchically Formed Titanium(IV) Tris(catecholate ester) Helicates with Cyclohexyl Substituents in DMSO. Inorg Chem 2020; 59:1758-1762. [PMID: 31967799 DOI: 10.1021/acs.inorgchem.9b02988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A cyclohexyl substituent strongly prefers the chair conformation with large substituents in equatorial positions, while other cycloalkyls are structurally more flexible. In hierarchically formed dimeric titanium(IV) tris(catecholates) equatorial versus axial connection of the cyclohexane to the ester results in either a more compact (axial) or more expanded (equatorial) structure. In DMSO solution the axial position results in a compact structure which minimizes solvophobic effects, leading to higher stability. However, computational investigations indicate that additionally intramolecular London dispersion interactions significantly contribute to the stability of the dimer. Thus, weak side-chain-side-chain interactions are responsible for the high stability of cyclohexyl ester derivatives with axial compared to equatorial ester connection.
Collapse
Affiliation(s)
- Marcel Schlottmann
- Institut für Organische Chemie , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| | - David Van Craen
- Institut für Organische Chemie , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| | - Julia Baums
- Institut für Organische Chemie , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| | - Ignacio Funes-Ardoiz
- Institut für Organische Chemie , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| | - Constanze Wiederhold
- Institut für Anorganische Chemie , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| | - Iris M Oppel
- Institut für Anorganische Chemie , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| | - Markus Albrecht
- Institut für Organische Chemie , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| |
Collapse
|
28
|
Kwamen ACN, Schlottmann M, Van Craen D, Isaak E, Baums J, Shen L, Massomi A, Räuber C, Joseph BP, Raabe G, Göb C, Oppel IM, Puttreddy R, Ward JS, Rissanen K, Fröhlich R, Albrecht M. Shedding Light on the Interactions of Hydrocarbon Ester Substituents upon Formation of Dimeric Titanium(IV) Triscatecholates in DMSO Solution. Chemistry 2020; 26:1396-1405. [PMID: 31737953 PMCID: PMC7027801 DOI: 10.1002/chem.201904639] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Indexed: 01/27/2023]
Abstract
The dissociation of hierarchically formed dimeric triple lithium bridged triscatecholate titanium(IV) helicates with hydrocarbyl esters as side groups is systematically investigated in DMSO. Primary alkyl, alkenyl, alkynyl as well as benzyl esters are studied in order to minimize steric effects close to the helicate core. The 1 H NMR dimerization constants for the monomer-dimer equilibrium show some solvent dependent influence of the side chains on the dimer stability. In the dimer, the ability of the hydrocarbyl ester groups to aggregate minimizes their contacts with the solvent molecules. Due to this, most solvophobic alkyl groups show the highest dimerization tendency followed by alkenyls, alkynyls and finally benzyls. Furthermore, trends within the different groups of compounds can be observed. For example, the dimer is destabilized by internal double or triple bonds due to π-π repulsion. A strong indication for solvent supported London dispersion interaction between the ester side groups is found by observation of an even/odd alternation of dimerization constants within the series of n-alkyls, n-Ω-alkenyls or n-Ω-alkynyls. This corresponds to the interaction of the parent hydrocarbons, as documented by an even/odd melting point alternation.
Collapse
Affiliation(s)
- A. Carel N. Kwamen
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Marcel Schlottmann
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - David Van Craen
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Elisabeth Isaak
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Julia Baums
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Li Shen
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Ali Massomi
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Christoph Räuber
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Benjamin P. Joseph
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Gerhard Raabe
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Christian Göb
- Institut für Anorganische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Iris M. Oppel
- Institut für Anorganische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Rakesh Puttreddy
- University of JyväskyläDepartment of ChemistryP.O. Box 35Jyväskylä40014Finland
| | - Jas S. Ward
- University of JyväskyläDepartment of ChemistryP.O. Box 35Jyväskylä40014Finland
| | - Kari Rissanen
- University of JyväskyläDepartment of ChemistryP.O. Box 35Jyväskylä40014Finland
| | - Roland Fröhlich
- Organisch-Chemisches InstitutUniversität MünsterCorrensstrasse 4048149MünsterGermany
| | - Markus Albrecht
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
29
|
Strauss MA, Wegner HA. Exploring London Dispersion and Solvent Interactions at Alkyl-Alkyl Interfaces Using Azobenzene Switches. Angew Chem Int Ed Engl 2019; 58:18552-18556. [PMID: 31556224 PMCID: PMC6916273 DOI: 10.1002/anie.201910734] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Indexed: 12/18/2022]
Abstract
Interactions on the molecular level control structure as well as function. Especially interfaces between innocent alkyl groups are hardly studied although they are of great importance in larger systems. Herein, London dispersion in conjunction with solvent interactions between linear alkyl chains was examined with an azobenzene-based experimental setup. Alkyl chains in all meta positions of the azobenzene core were systematically elongated, and the change in rate for the thermally induced Z→E isomerization in n-decane was determined. The stability of the Z-isomer increased with longer chains and reached a maximum for n-butyl groups. Further elongation led to faster isomerization. The origin of the intramolecular interactions was elaborated by various techniques, including 1 H NOESY NMR spectroscopy. The results indicate that there are additional long-range interactions between n-alkyl chains with the opposite phenyl core in the Z-state. These interactions are most likely dominated by attractive London dispersion. This work provides rare insight into the stabilizing contributions of highly flexible groups in an intra- as well as an intermolecular setting.
Collapse
Affiliation(s)
- Marcel A. Strauss
- Institute of Organic ChemistryJustus-Liebig University GiessenHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Materials Research (LaMa)Justus-Liebig University GiessenHeinrich-Buff-Ring 1635392GiessenGermany
| | - Hermann A. Wegner
- Institute of Organic ChemistryJustus-Liebig University GiessenHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Materials Research (LaMa)Justus-Liebig University GiessenHeinrich-Buff-Ring 1635392GiessenGermany
| |
Collapse
|
30
|
Zhan YY, Jiang QC, Ishii K, Koide T, Kobayashi O, Kojima T, Takahashi S, Tachikawa M, Uchiyama S, Hiraoka S. Polarizability and isotope effects on dispersion interactions in water. Commun Chem 2019. [DOI: 10.1038/s42004-019-0242-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractTrue understanding of dispersion interaction in solution remains elusive because of difficulty in the precise evaluation of its interaction energy. Here, the effect of substituents with different polarizability on dispersion interactions in water is discussed based on the thermodynamic parameters determined by isothermal titration calorimetry for the formation of discrete aggregates from gear-shaped amphiphiles (GSAs). The substituents with higher polarizability enthalpically more stabilize the nanocube, which is due to stronger dispersion interactions and to the hydrophobic effect. The differences in the thermodynamic parameters for the nanocubes from the GSAs with CH3 and CD3 groups are also discussed to lead to the conclusion that the H/D isotope effect on dispersion interactions is negligibly small, which is due to almost perfect entropy-enthalpy compensation between the two isotopomers.
Collapse
|
31
|
The association of π–π stacking and hydrogen bonding interactions in substituted Rebek imide with 2,6-di(isobutyramido)pyridine rings: theoretical insight into X-Rebek imide||pyr complexes. Struct Chem 2019. [DOI: 10.1007/s11224-019-01450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Strauss MA, Wegner HA. Evaluierung von London‐Dispersions‐ und Lösungsmittel‐Interaktionen an Alkyl‐Alkyl‐Grenzflächen mittels Azobenzolschaltern. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Marcel A. Strauss
- Institut für Organische ChemieJustus-Liebig-Universität Giessen Heinrich-Buff-Ring 17 35392 Giessen Deutschland
- Zentrum für Materialforschung (LaMa)Justus-Liebig-Universität Giessen Heinrich-Buff-Ring 16 35392 Giessen Deutschland
| | - Hermann A. Wegner
- Institut für Organische ChemieJustus-Liebig-Universität Giessen Heinrich-Buff-Ring 17 35392 Giessen Deutschland
- Zentrum für Materialforschung (LaMa)Justus-Liebig-Universität Giessen Heinrich-Buff-Ring 16 35392 Giessen Deutschland
| |
Collapse
|
33
|
Pollice R, Fleckenstein F, Shenderovich I, Chen P. Compensation of London Dispersion in the Gas Phase and in Aprotic Solvents. Angew Chem Int Ed Engl 2019; 58:14281-14288. [DOI: 10.1002/anie.201905436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/17/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Robert Pollice
- ETH Zürich Laboratorium für Organische Chemie Vladimir-Prelog-Weg 2, HCI G207/ETH Zürich Zürich 8093 Switzerland
| | - Felix Fleckenstein
- ETH Zürich Laboratorium für Organische Chemie Vladimir-Prelog-Weg 2, HCI G207/ETH Zürich Zürich 8093 Switzerland
| | - Ilya Shenderovich
- Universität Regensburg Fakultät für Chemie und Pharmazie Universitätsstraße 31 Regensburg 93040 Germany
| | - Peter Chen
- ETH Zürich Laboratorium für Organische Chemie Vladimir-Prelog-Weg 2, HCI G207/ETH Zürich Zürich 8093 Switzerland
| |
Collapse
|
34
|
Pollice R, Fleckenstein F, Shenderovich I, Chen P. Compensation of London Dispersion in the Gas Phase and in Aprotic Solvents. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Robert Pollice
- ETH Zürich Laboratorium für Organische Chemie Vladimir-Prelog-Weg 2, HCI G207/ETH Zürich Zürich 8093 Switzerland
| | - Felix Fleckenstein
- ETH Zürich Laboratorium für Organische Chemie Vladimir-Prelog-Weg 2, HCI G207/ETH Zürich Zürich 8093 Switzerland
| | - Ilya Shenderovich
- Universität Regensburg Fakultät für Chemie und Pharmazie Universitätsstraße 31 Regensburg 93040 Germany
| | - Peter Chen
- ETH Zürich Laboratorium für Organische Chemie Vladimir-Prelog-Weg 2, HCI G207/ETH Zürich Zürich 8093 Switzerland
| |
Collapse
|
35
|
Li P, Vik EC, Maier JM, Karki I, Strickland SMS, Umana JM, Smith MD, Pellechia PJ, Shimizu KD. Electrostatically Driven CO−π Aromatic Interactions. J Am Chem Soc 2019; 141:12513-12517. [DOI: 10.1021/jacs.9b06363] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ping Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Erik C. Vik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Josef M. Maier
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ishwor Karki
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sharon M. S. Strickland
- Department of Biology, Chemistry, and Physics, Converse College, Spartanburg, South Carolina 29302, United States
| | - Jessica M. Umana
- Department of Biology, Chemistry, and Physics, Converse College, Spartanburg, South Carolina 29302, United States
| | - Mark D. Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Perry J. Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ken D. Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
36
|
Aliev AE, Motherwell WB. Some Recent Advances in the Design and Use of Molecular Balances for the Experimental Quantification of Intramolecular Noncovalent Interactions of π Systems. Chemistry 2019; 25:10516-10530. [DOI: 10.1002/chem.201900854] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/09/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Abil E. Aliev
- Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | - William B. Motherwell
- Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
37
|
Bravin C, Licini G, Hunter CA, Zonta C. Supramolecular cage encapsulation as a versatile tool for the experimental quantification of aromatic stacking interactions. Chem Sci 2019; 10:1466-1471. [PMID: 30809364 PMCID: PMC6354842 DOI: 10.1039/c8sc04406f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
The widespread presence of aromatic stacking interactions in chemical and biological systems, combined with their relatively small energetic contribution, have led to a plethora of theoretical and experimental studies for their quantification and rationalization. Typically, π-π aromatic interactions are studied as a function of substituents to gather information about the interaction mechanism. While experiments suggest that aromatic interactions are dominated by local electrostatic contacts between π-electron density and CH groups, theoretical work has raised the possibility that direct electrostatic interactions between local dipoles of the substituents may play a role. We describe a supramolecular cage that binds two aromatic carboxylates in a stacked geometry such that the aromatic substituents are remote in space. Chemical Double Mutant Cycles (DMCs) were used to measure fifteen different aromatic stacking interactions as a function of substituent (NMe2, OMe, Me, Cl and NO2). When both aromatic rings have electron-withdrawing nitro substituents, the interaction is attractive (-2.8 kJ mol-1) due to reduced π-electron repulsion. When both aromatic rings have electron-donating di-methylamino substituents, the interaction is repulsive (+2.0 kJ mol-1) due to increased π-electron repulsion. The results show that aromatic stacking interactions are dominated by short range electrostatic contacts rather than substituent dipole interactions.
Collapse
Affiliation(s)
- Carlo Bravin
- Department of Chemical Sciences , University of Padova , Via Marzolo 1 , 35131 Padova , Italy .
| | - Giulia Licini
- Department of Chemical Sciences , University of Padova , Via Marzolo 1 , 35131 Padova , Italy .
| | - Christopher A Hunter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK
| | - Cristiano Zonta
- Department of Chemical Sciences , University of Padova , Via Marzolo 1 , 35131 Padova , Italy .
| |
Collapse
|
38
|
Martin MM, Dill M, Langer J, Jux N. Porphyrin-Hexaphenylbenzene Conjugates via Mixed Cyclotrimerization Reactions. J Org Chem 2019; 84:1489-1499. [PMID: 30596243 DOI: 10.1021/acs.joc.8b02907] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mixed cyclotrimerization reactions of diarylacetylenes (tolans) were applied to generate a library of multiple porphyrin-hexaphenylbenzene (HPB) architectures. Successful reactions, which could be influenced by the ratio of tolan starting materials, were conducted using dicobaltoctacarbonyl as a catalyst. Separation of the reaction products was performed by chromatographic and crystallization techniques. The physical properties were investigated with respect to the number of porphyrins per HPB and their substitution pattern.
Collapse
Affiliation(s)
- Max M Martin
- Department Chemie und Pharmazie & Interdisciplinary Center for Molecular Materials (ICMM) , Friedrich-Alexander-Universität Erlangen-Nürnberg , Nikolaus-Fiebiger-Strasse 10 , 91058 Erlangen , Germany
| | - Maximilian Dill
- Department Chemie und Pharmazie & Interdisciplinary Center for Molecular Materials (ICMM) , Friedrich-Alexander-Universität Erlangen-Nürnberg , Nikolaus-Fiebiger-Strasse 10 , 91058 Erlangen , Germany
| | - Jens Langer
- Inorganic and Organometallic Chemistry , Egerlandstrasse 1 , 91058 Erlangen , Germany
| | - Norbert Jux
- Department Chemie und Pharmazie & Interdisciplinary Center for Molecular Materials (ICMM) , Friedrich-Alexander-Universität Erlangen-Nürnberg , Nikolaus-Fiebiger-Strasse 10 , 91058 Erlangen , Germany
| |
Collapse
|
39
|
Hwang J, Li P, Vik EC, Karki I, Shimizu KD. Study of through-space substituent–π interactions using N-phenylimide molecular balances. Org Chem Front 2019. [DOI: 10.1039/c9qo00195f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Substituent–π interactions associated with aromatic stacking interactions were experimentally measured using a small N-phenylimide molecular balance model system.
Collapse
Affiliation(s)
- Jungwun Hwang
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Ping Li
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Erik C. Vik
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Ishwor Karki
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Ken D. Shimizu
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| |
Collapse
|
40
|
Abstract
Quantification of noncovalent interactions is the key for the understanding of binding mechanisms, of biological systems, for the design of drugs, their delivery and for the design of receptors for separations, sensors, actuators, or smart materials.
Collapse
|
41
|
Strauss MA, Wegner HA. Molecular Systems for the Quantification of London Dispersion Interactions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800970] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marcel A. Strauss
- Institute of Organic Chemistry; Justus-Liebig University Giessen; Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Hermann A. Wegner
- Institute of Organic Chemistry; Justus-Liebig University Giessen; Heinrich-Buff-Ring 17 35392 Giessen Germany
| |
Collapse
|
42
|
Hwang J, Li P, Smith MD, Warden CE, Sirianni DA, Vik EC, Maier JM, Yehl CJ, Sherrill CD, Shimizu KD. Tipping the Balance between S-π and O-π Interactions. J Am Chem Soc 2018; 140:13301-13307. [PMID: 30251855 DOI: 10.1021/jacs.8b07617] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A comprehensive experimental survey consisting of 36 molecular balances was conducted to compare 18 pairs of S-π versus O-π interactions over a wide range of structural, geometric, and solvent parameters. A strong linear correlation was observed between the folding energies of the sulfur and oxygen balances across the entire library of balance pairs. The more stable interaction systematically switched from the O-π to S-π interaction. Computational studies of bimolecular PhSCH3-arene and PhOCH3-arene complexes were able to replicate the experimental trends in the molecular balances. The change in preference for the O-π to S-π interaction was due to the interplay of stabilizing (dispersion and solvophobic) and destabilizing (exchange-repulsion) terms arising from the differences in size and polarizability of the oxygen and sulfur atoms.
Collapse
Affiliation(s)
- Jungwun Hwang
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Ping Li
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | | | | | - Erik C Vik
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Josef M Maier
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Christopher J Yehl
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | | | - Ken D Shimizu
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| |
Collapse
|
43
|
Lungerich D, Hitzenberger JF, Hampel F, Drewello T, Jux N. Superbenzene-Porphyrin Gas-Phase Architectures Derived from Intermolecular Dispersion Interactions. Chemistry 2018; 24:15818-15824. [DOI: 10.1002/chem.201803684] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Dominik Lungerich
- Department of Chemistry and Pharmacy & Interdisciplinary, Center for Molecular Materials (ICMM), Organic Chemistry II; Friedrich-Alexander-University Erlangen-Nuernberg; Nikolaus-Fiebiger-Str. 10 90458 Erlangen Germany
- Department of Chemistry & Molecular Technology Innovation Chair; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Jakob F. Hitzenberger
- Department of Chemistry and Pharmacy; Physical Chemistry I; Friedrich-Alexander-University Erlangen-Nuernberg; Egerlandstr. 3 90458 Erlangen Germany
| | - Frank Hampel
- Department of Chemistry and Pharmacy & Interdisciplinary, Center for Molecular Materials (ICMM), Organic Chemistry II; Friedrich-Alexander-University Erlangen-Nuernberg; Nikolaus-Fiebiger-Str. 10 90458 Erlangen Germany
| | - Thomas Drewello
- Department of Chemistry and Pharmacy; Physical Chemistry I; Friedrich-Alexander-University Erlangen-Nuernberg; Egerlandstr. 3 90458 Erlangen Germany
| | - Norbert Jux
- Department of Chemistry and Pharmacy & Interdisciplinary, Center for Molecular Materials (ICMM), Organic Chemistry II; Friedrich-Alexander-University Erlangen-Nuernberg; Nikolaus-Fiebiger-Str. 10 90458 Erlangen Germany
| |
Collapse
|
44
|
Cavitation energies can outperform dispersion interactions. Nat Chem 2018; 10:1252-1257. [DOI: 10.1038/s41557-018-0146-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 08/24/2018] [Indexed: 01/07/2023]
|
45
|
Gholipour A, Abolhassanzadeh Parizi M, Sadat Neyband R. The effect of π-π stacking interaction on hydrogen bonding in a molecular seesaw balance: A NMR study. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Marin-Luna M, Pölloth B, Zott F, Zipse H. Size-dependent rate acceleration in the silylation of secondary alcohols: the bigger the faster. Chem Sci 2018; 9:6509-6515. [PMID: 30310581 PMCID: PMC6115683 DOI: 10.1039/c8sc01889h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/27/2018] [Indexed: 01/25/2023] Open
Abstract
Relative rates for the reaction of secondary alcohols carrying large aromatic moieties with silyl chlorides carrying equally large substituents have been determined in organic solvents. Introducing thoroughly matching pairs of big dispersion energy donor (DED) groups enhanced rate constants up to four times, notably depending on the hydrogen bond donor ability of the solvent. A linear correlation between computed dispersion energy contributions to the stability of the silyl ether products and experimental relative rate constants was found. These results indicate a cooperation between solvophobic effects and DED-groups in the kinetic control of silylation reactions.
Collapse
Affiliation(s)
- Marta Marin-Luna
- Department of Chemistry , LMU München , Butenandtstrasse 5-13 , 81377 , München , Germany .
| | - Benjamin Pölloth
- Department of Chemistry , LMU München , Butenandtstrasse 5-13 , 81377 , München , Germany .
| | - Fabian Zott
- Department of Chemistry , LMU München , Butenandtstrasse 5-13 , 81377 , München , Germany .
| | - Hendrik Zipse
- Department of Chemistry , LMU München , Butenandtstrasse 5-13 , 81377 , München , Germany .
| |
Collapse
|
47
|
Hiraoka S. Unresolved Issues that Remain in Molecular Self-Assembly. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180008] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
48
|
Sun X, Li M, Sun M, Li X, Xi BJ, Wu Y, Yao J, Zhan Z, Bai X, Xi N. Studies on structural requirements for atropisomerism in N -phenyl γ-lactams. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Zhan YY, Tanaka N, Ozawa Y, Kojima T, Mashiko T, Nagashima U, Tachikawa M, Hiraoka S. Importance of Molecular Meshing for the Stabilization of Solvophobic Assemblies. J Org Chem 2018; 83:5132-5137. [PMID: 29644858 DOI: 10.1021/acs.joc.8b00495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of the methyl groups in neutral gear-shaped amphiphiles (GSAs) on the stability of nanocubes was investigated using a novel C2 v-symmetric GSA, which was synthesized using selective alternate trilithiation of a pentabrominated hexaphenylbenzene derivative. The lack of only one methyl group in the GSA decreased the association constant for the assembly of the nanocube by 3 orders of magnitude. A surface analysis recently developed by the authors (SAVPR: surface analysis with varying probe radii) was carried out for characteristic isomers of the nanocube consisting of C2 v-symmetric GSAs. It was found that the methyl groups near the equator of the nanocube play a significant role in the stabilization of the nanocubes.
Collapse
Affiliation(s)
- Yi-Yang Zhan
- Department of Basic Science, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku , Tokyo 153-8902 , Japan
| | - Naru Tanaka
- Department of Basic Science, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku , Tokyo 153-8902 , Japan
| | - Yuka Ozawa
- Department of Basic Science, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku , Tokyo 153-8902 , Japan
| | - Tatsuo Kojima
- Department of Basic Science, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku , Tokyo 153-8902 , Japan
| | - Takako Mashiko
- Quantum Chemistry Division, Graduate School of Science , Yokohama City University , 22-2 Seto , Kanazawa-ku, Yokohama-city , Kanagawa 236-0027 , Japan
| | - Umpei Nagashima
- Foundation for Computational Science (FOCUS) , 7-1-28, Minatojimaminamimachi , Chuo-ku , Kobe 650-0047 , Japan
| | - Masanori Tachikawa
- Quantum Chemistry Division, Graduate School of Science , Yokohama City University , 22-2 Seto , Kanazawa-ku, Yokohama-city , Kanagawa 236-0027 , Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku , Tokyo 153-8902 , Japan
| |
Collapse
|
50
|
Rushton GT, Vik EC, Burns WG, Rasberry RD, Shimizu KD. Guest control of a hydrogen bond-catalysed molecular rotor. Chem Commun (Camb) 2018; 53:12469-12472. [PMID: 29105705 DOI: 10.1039/c7cc07672j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Herein, the control of a molecular rotor using hydrogen bonding guests is demonstrated. With a properly positioned phenol substituent, the N-arylimide rotors can form an intramolecular hydrogen bond that catalyses the rotational isomerization process. The addition of the guests disrupts the hydrogen bond and raises the rotational barrier, slowing the rotation by two orders of magnitude.
Collapse
Affiliation(s)
- Gregory T Rushton
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|