1
|
Rapp TL, Kopyeva I, Adhikari A, DeForest CA. Bioluminescence Resonance Energy Transfer (BRET)-Mediated Protein Release from Self-Illuminating Photoresponsive Biomaterials. J Am Chem Soc 2024; 146:25397-25402. [PMID: 39250821 DOI: 10.1021/jacs.4c03361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Phototriggered release of various cargos, including soluble protein factors and small molecules, has the potential to correct aberrant biological events by offering spatiotemporal control over local therapeutic levels. However, the poor penetration depth of light historically limits implementation to subdermal regions, necessitating alternative methods of light delivery to achieve the full potential of photodynamic therapeutic release. Here, we introduce a strategy exploiting bioluminescence resonance energy transfer (BRET)-an energy transfer process between light-emitting Nanoluciferase (NLuc) and a photosensitive acceptor molecule-to drive biomolecule release from hydrogel biomaterials. Through a facile, one-pot, and high-yielding synthesis (60-70%), we synthesized a heterobifunctional ruthenium cross-linker bearing an aldehyde and an azide (CHO-Ru-N3), a compound that we demonstrate undergoes predictable exchange of the azide-bearing ligand under blue-green light irradiation (>550 nm). Following site-specific conjugation to NLuc via sortase-tag enhanced protein ligation (STEPL), the modified protein was covalently attached to a poly(ethylene glycol) (PEG)-based hydrogel via strain-promoted azide-alkyne cycloaddition (SPAAC). Leveraging the high photosensitivity of Ru compounds, we demonstrate rapid and equivalent release of epidermal growth factor (EGF) via either direct illumination or via BRET-based bioluminolysis. As NLuc-originated luminescence can be controlled equivalently throughout the body, we anticipate that this unique protein release strategy will find use for locally triggered drug delivery following systemic administration of a small molecule.
Collapse
Affiliation(s)
- Teresa L Rapp
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
| | - Abhinav Adhikari
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Cole A DeForest
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
- Molecular Science and Engineering Institute, University of Washington, Seattle, Washington 98105, United States
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
- Institute for Protein Design, University of Washington, Seattle, Washington 98105, United States
| |
Collapse
|
2
|
Chang W, Chen L, Chen K. The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int J Biol Macromol 2024; 270:132454. [PMID: 38763255 DOI: 10.1016/j.ijbiomac.2024.132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
The multifaceted role of hyaluronic acid (HA) across diverse biomedical disciplines underscores its versatility in tissue regeneration and repair. HA hydrogels employ different crosslinking including chemical (chitosan, collagen), photo- initiation (riboflavin, LAP), enzymatic (HRP/H2O2), and physical interactions (hydrogen bonds, metal coordination). In biophysics and biochemistry, HA's signaling pathways, primarily through CD44 and RHAMM receptors, modulate cell behavior (cell migration; internalization of HA), inflammation, and wound healing. Particularly, smaller HA fragments stimulate inflammatory responses through toll-like receptors, impacting macrophages and cytokine expression. HA's implications in oncology highlight its involvement in tumor progression, metastasis, and treatment. Elevated HA in tumor stroma impacts apoptosis resistance and promotes tumor growth, presenting potential therapeutic targets to halt tumor progression. In orthopedics, HA's presence in synovial fluid aids in osteoarthritis management, as its supplementation alleviates pain, enhances synovial fluid's viscoelastic properties, and promotes cartilage integrity. In ophthalmology, HA's application in dry eye syndrome addresses symptoms by moisturizing the eyes, replenishing tear film deficiencies, and facilitating wound healing. Intravitreal injections and hydrogel-based systems offer versatile approaches for drug delivery and vitreous humor replacement. For skin regeneration and wound healing, HA hydrogel dressings exhibit exceptional properties by promoting moist wound healing and facilitating tissue repair. Integration of advanced regenerative tools like stem cells and solubilized amnion membranes into HA-based systems accelerates wound closure and tissue recovery. Overall, HA's unique properties and interactions render it a promising candidate across diverse biomedical domains, showcasing immense potentials in tissue regeneration and therapeutic interventions. Nevertheless, many detailed cellular and molecular mechanisms of HA and its applications remain unexplored and warrant further investigation.
Collapse
Affiliation(s)
- WeiTing Chang
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - LiRu Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei, Taiwan; Department of Mechanical Engineering, National YangMing ChiaoTung University, Hsinchu, Taiwan
| | - KuoHu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan; School of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
3
|
Tavakkoli Fard S, Thongrom B, Achazi K, Ma G, Haag R, Tzschucke CC. Photo-responsive hydrogels based on a ruthenium complex: synthesis and degradation. SOFT MATTER 2024; 20:1301-1308. [PMID: 38240363 DOI: 10.1039/d3sm01232h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
We report the synthesis of a photo responsive metallo-hydrogel based on a ruthenium(II) complex as a functional cross-linker. This metal complex contains reactive 4AAMP (= 4-(acrylamidomethyl)pyridine) ligands, which can be cleaved by light-induced ligand substitution. Ru[(bpy)2(4AAMP)2] cross-links 4-arm-PEG-SH macromonomers by thia-Michael-addition to the photocleavable 4AAMP ligand for the preparation of the hydrogel. Irradiation with green light at 529 nm leads to photodegradation of the metallo-hydrogel due to the ligand dissociation, which can be adjusted by adjusting the Ru[(bpy)2(4AAMP)2] concentration. The ligand substitution forming [Ru(bpy)2(L)2]2+ (L = H2O and CH3CN) can be monitored by 1H NMR spectroscopy and UV-visible absorption. The control of degradation by light irradiation plays a significant role in modulating the elasticity and stiffness of the light sensitive metallo-hydrogel network. The photo-responsive hydrogel is a viable substrate for cell cultures.
Collapse
Affiliation(s)
- Sara Tavakkoli Fard
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Boonya Thongrom
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Katharina Achazi
- Research Building SupraFAB, Freie Universität Berlin, 14195 Berlin, Germany
| | - Guoxin Ma
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - C Christoph Tzschucke
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| |
Collapse
|
4
|
Zhang R, Lai Z, Tian H, Wang M, Guo YY, Zhang M, Zhou J, Yao MS, Li Z. Polyurea-magnetic hierarchical porous composites for profiling of anionic metabolites. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 38044886 DOI: 10.1039/d3ay01718d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Combining powerful adsorption capacity, simple preparation, rapid separation as well as superior stability and recyclability, a polyurea-magnetic hierarchical porous composite has been prepared. It demonstrates efficient physisorption for anionic metabolites in less than one minute and is promising for application to the analysis of a broad range of anionic metabolites in complex matrices.
Collapse
Affiliation(s)
- Renjun Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Hongtao Tian
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Meng Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Yang-Yang Guo
- State Key Laboratory of Mesoscience and Engineering, State Key Laboratory of Multi-phase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Beijing, 100871, China.
| | - Ming-Shui Yao
- State Key Laboratory of Mesoscience and Engineering, State Key Laboratory of Multi-phase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
5
|
Qi W, Dong N, Wu L, Zhang X, Li H, Wu H, Ward N, Yu J, Liu H, Wang J, Deng X, Zhao RC. Promoting oral mucosal wound healing using a DCS-RuB2A2 hydrogel based on a photoreactive antibacterial and sustained release of BMSCs. Bioact Mater 2023; 23:53-68. [DOI: 10.1016/j.bioactmat.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
|
6
|
Li H, Yan Y, Chen J, Shi K, Song C, Ji Y, Jia L, Li J, Qiao Y, Lin Y. Artificial receptor-mediated phototransduction toward protocellular subcompartmentalization and signaling-encoded logic gates. SCIENCE ADVANCES 2023; 9:eade5853. [PMID: 36857444 PMCID: PMC9977178 DOI: 10.1126/sciadv.ade5853] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Engineering artificial cellular systems capable of perceiving and transmitting external signals across membranes to activate downstream targets and coordinate protocellular responses is key to build cell-cell communications and protolife. Here, we report a synthetic photoreceptor-mediated signaling pathway with the integration of light harvesting, photo-to-chemical energy conversion, signal transmission, and amplification in synthetic cells, which ultimately resulted in protocell subcompartmentalization. Key to our design is a ruthenium-bipyridine complex that acts as a membrane-anchored photoreceptor to convert visible light into chemical information and transduce signals across the lipid membrane via flip-flop motion. By coupling receptor-mediated phototransduction with biological recognition and enzymatic cascade reactions, we further develop protocell signaling-encoded Boolean logic gates. Our results illustrate a minimal cell model to mimic the photoreceptor cells that can transduce the energy of light into intracellular responses and pave the way to modular control over the flow of information for complex metabolic and signaling pathways.
Collapse
Affiliation(s)
- He Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ke Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuwen Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanglimin Ji
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianming Li
- Research Center of New Energy, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Supramolecular Polymers: Recent Advances Based on the Types of Underlying Interactions. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Lunzer M, Maryasin B, Zandrini T, Baudis S, Ovsianikov A, Liska R. A disulfide-based linker for thiol-norbornene conjugation: formation and cleavage of hydrogels by the use of light. Polym Chem 2022; 13:1158-1168. [PMID: 35341220 PMCID: PMC8886483 DOI: 10.1039/d1py00914a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022]
Abstract
Photolabile groups are the key components of photo-responsive polymers, dynamically tunable materials with multiple applications in materials and life sciences. They usually consist of a chromophore and a labile bond and are inherently light sensitive. An exception are disulfides, simple reversible linkages, which become photocleavable upon addition of a photoinitiator. Despite their practical features, disulfides are rarely utilized due to their impractical formation. Here, we report a disulfide-based linker series bearing norbornene terminals for facile crosslinking of thiol-functionalized macromers via light-triggered thiol-ene conjugation (TEC). Besides finding a highly reactive lead compound, we also identify an unexpected TEC-retardation, strongly dependent on the molecular linker structure and affecting hydrogel stability. Finally, we present a useful method for localized disulfide cleavage by two-photon irradiation permitting micropatterning of disulfide-crosslinked networks.
Collapse
Affiliation(s)
- Markus Lunzer
- Institute of Applied Synthetic Chemistry, Technische Universität Wien Getreidemarkt 9/E163 1060 Vienna Austria
- Institute of Materials Science and Technology, Technische Universität Wien Getreidemarkt 9/E308 1060 Vienna Austria
| | - Boris Maryasin
- Institute of Organic Chemistry, University of Vienna Währinger Strasse 38 1090 Vienna Austria
- Institute of Theoretical Chemistry, University of Vienna Währinger Strasse 17 1090 Vienna Austria
| | - Tommaso Zandrini
- Institute of Materials Science and Technology, Technische Universität Wien Getreidemarkt 9/E308 1060 Vienna Austria
| | - Stefan Baudis
- Institute of Applied Synthetic Chemistry, Technische Universität Wien Getreidemarkt 9/E163 1060 Vienna Austria
| | - Aleksandr Ovsianikov
- Institute of Materials Science and Technology, Technische Universität Wien Getreidemarkt 9/E308 1060 Vienna Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, Technische Universität Wien Getreidemarkt 9/E163 1060 Vienna Austria
| |
Collapse
|
9
|
Strasser P, Monkowius U, Teasdale I. Main group element and metal-containing polymers as photoresponsive soft materials. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Cao J, Zhang D, Zhou Y, Zhang Q, Wu S. Controlling Properties and Functions of Polymer Gels Using Photochemical Reactions. Macromol Rapid Commun 2022; 43:e2100703. [PMID: 35038195 DOI: 10.1002/marc.202100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/01/2021] [Indexed: 11/08/2022]
Abstract
Photoresponsive polymer gels have attracted increasing interest owing to their potential applications in healable materials, drug release systems, and extracellular matrices. Because polymer gels provide suitable environments for photochemical reactions, their properties and functions can be controlled with light with a high spatiotemporal resolution. Herein, the design of photoresponsive polymer gels based on different types of photochemical reactions is introduced. The mechanism and applications of irreversible photoreactions, such as photoinduced free-radical polymerization, photoinduced click reactions, and photolysis, as well as reversible photoreactions such as photoinduced reversible cycloadditions, reversible photosubstitution of metal complexes, and photoinduced metathesis are reviewed. The remaining challenges of photoresponsive polymer gels are also discussed.
Collapse
Affiliation(s)
- Jingning Cao
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dachuan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qijin Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
11
|
Tethering smartness to the metal containing polymers - recent trends in the stimuli-responsive metal containing polymers. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
De Keer L, Cavalli F, Estupiñán D, Krüger AJD, Rocha S, Van Steenberge PHM, Reyniers MF, De Laporte L, Hofkens J, Barner L, D’hooge DR. Synergy of Advanced Experimental and Modeling Tools to Underpin the Synthesis of Static Step-Growth-Based Networks Involving Polymeric Precursor Building Blocks. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01476] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lies De Keer
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
- School of Chemistry and Physics, and Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Federica Cavalli
- Soft Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Diego Estupiñán
- Soft Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Andreas J. D. Krüger
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), Polymeric Biomaterials, RWTH Aachen University, Worringerweg 2, 52072 Aachen, Germany
- Department of Advanced Materials for Biomedicine, Institute of Applied Medical Engineering (AME), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Susana Rocha
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | | | - Laura De Laporte
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), Polymeric Biomaterials, RWTH Aachen University, Worringerweg 2, 52072 Aachen, Germany
- Department of Advanced Materials for Biomedicine, Institute of Applied Medical Engineering (AME), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Leonie Barner
- School of Chemistry and Physics, and Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 70a, 9052 Gent, Belgium
| |
Collapse
|
13
|
Bauer TA, Eckrich J, Wiesmann N, Kuczelinis F, Sun W, Zeng X, Weber B, Wu S, Bings NH, Strieth S, Barz M. Photocleavable core cross-linked polymeric micelles of polypept(o)ides and ruthenium(II) complexes. J Mater Chem B 2021; 9:8211-8223. [PMID: 34373881 DOI: 10.1039/d1tb01336j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Core cross-linking of polymeric micelles has been demonstrated to contribute to enhanced stability that can improve the therapeutic efficacy. Photochemistry has the potential to provide spatial resolution and on-demand drug release. In this study, light-sensitive polypyridyl-ruthenium(ii) complexes were combined with polypept(o)ides for photocleavable core cross-linked polymeric micelles. Block copolymers of polysarcosine-block-poly(glutamic acid) were synthesized by ring-opening N-carboxyanhydride polymerization and modified with aromatic nitrile-groups on the glutamic acid side chain. The modified copolymers self-assembled into micelles and were cross-linked by cis-diaquabis(2,2'-bipyridine)-ruthenium(ii) ([Ru(bpy)2(H2O)2]2+) or cis-diaquabis(2,2'-biquinoline)-ruthenium(ii) ([Ru(biq)2(H2O)2]2+). Depending on the flexibility and hydrophobicity of the nitrile linker, either small spherical structures (Dh 45 nm, PDI 0.11) or worm-like micelles were obtained. The cross-linking reaction did not affect the overall size distribution but induced a change in the metal-to-ligand charge transfer peak from 482 to 420 nm and 592 to 548 nm. The cross-linked micelles displayed colloidal stability after incubation with human blood plasma and during gel permeation chromatography in hexafluoroisopropanol. Light-induced cleavage of [Ru(bpy)2(H2O)2]2+ was accomplished within 300 s, while [Ru(biq)2(H2O)2]2+ could not be completely released. Analysis in HuH-7 cells revealed increased cytotoxicity via micellar delivery of [Ru(bpy)2(H2O)2]2+ but mostly irradiation damage for [Ru(biq)2(H2O)2]2+. Further evaluation in ovo confirmed stable circulation pointing towards the future development of quick-release complexes.
Collapse
Affiliation(s)
- Tobias Alexander Bauer
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands. and Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jonas Eckrich
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany and Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Nadine Wiesmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Felix Kuczelinis
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Wen Sun
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiaolong Zeng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Benjamin Weber
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Si Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Nicolas Hubert Bings
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany and Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands. and Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
14
|
|
15
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
16
|
Dao HM, Pillai AR, Thakkar R, Parajuli S, Urena‐Benavides E, Jo S. Near infrared light‐induced disassembly of polymeric micelles based on methylene blue conjugated polyethylene glycol. J Appl Polym Sci 2021. [DOI: 10.1002/app.49665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Huy Minh Dao
- Department of Pharmaceutics and Drug Delivery University of Mississippi Oxford Mississippi USA
| | - Amit Raviraj Pillai
- Department of Pharmaceutics and Drug Delivery University of Mississippi Oxford Mississippi USA
| | - Rishi Thakkar
- Department of Pharmaceutics and Drug Delivery University of Mississippi Oxford Mississippi USA
| | - Sanjiv Parajuli
- Department of Chemical Engineering University of Mississippi Oxford Mississippi USA
| | | | - Seongbong Jo
- Department of Pharmaceutics and Drug Delivery University of Mississippi Oxford Mississippi USA
| |
Collapse
|
17
|
Strasser P, Russo M, Stadler P, Breiteneder P, Redhammer G, Himmelsbach M, Brüggemann O, Monkowius U, Klán P, Teasdale I. Green-light photocleavable meso-methyl BODIPY building blocks for macromolecular chemistry. Polym Chem 2021. [DOI: 10.1039/d1py01245b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the design of easily accessible, meso-methyl BODIPY monomers and their incorporation into photoclippable macromolecules.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, A-4040 Linz, Austria
| | - Marina Russo
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pauline Stadler
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, A-4040 Linz, Austria
| | - Patrick Breiteneder
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, A-4040 Linz, Austria
| | - Günther Redhammer
- Chemie und Physik der Materialien, Abteilung für Materialwissenschaften und Mineralogie, Paris-Lodron Universität Salzburg, Jakob-Haringerstr. 2A, 5020 Salzburg, Austria
| | - Markus Himmelsbach
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, A-4040 Linz, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, A-4040 Linz, Austria
| | - Uwe Monkowius
- Linz School of Education, Johannes Kepler University Linz, Altenberger Straße 69, A-4040 Linz, Austria
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, A-4040 Linz, Austria
| |
Collapse
|
18
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
19
|
Sumitani R, Mochida T. Reversible formation of soft coordination polymers from liquid mixtures of photoreactive organometallic ionic liquid and bridging molecules. SOFT MATTER 2020; 16:9946-9954. [PMID: 33030501 DOI: 10.1039/d0sm01567a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The reversible switching of bonding modes in coordination polymers through the application of external stimuli leads to versatile mechanical and electronic functions. However, the exploration of such a system remains a great challenge. In this study, we designed liquid mixtures comprising a photoreactive organometallic ionic liquid and a bridging ligand, which form intermolecular coordination bonds upon photoirradiation. The liquid mixture of an ionic liquid [Ru(C5H5){Ph(CH2)3CN}][(SO2F)2N] (1) and a tridentate ligand N(C2H4CN)3 was transformed into an elastomer of an amorphous coordination polymer upon ultraviolet photoirradiation. By contrast, the photoirradiation of the mixture of 1 and a bidentate ligand NC(CH2)4CN produced a highly viscous liquid comprising coordination-bonded oligomers. In these reactions, photoirradiation causes dissociation of the organometallic cation, followed by the formation of intermolecular coordination bonds via the bridging ligands. The photoproducts underwent reverse reactions thermally. Based on coordination transformation, the ionic conductivity and viscoelasticity of these materials were reversibly controlled by the application of light and heat.
Collapse
Affiliation(s)
- Ryo Sumitani
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan.
| | - Tomoyuki Mochida
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan. and Center for Membrane Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
20
|
Hu Y, Tresback J, Pérez-Mercader J. Preparation of ruthenium-functionalized microgels through the intermolecular crosslinking of two functionalized polymers within droplets and study of their chemical/ photo-active behaviors. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Lee M, Rizzo R, Surman F, Zenobi-Wong M. Guiding Lights: Tissue Bioprinting Using Photoactivated Materials. Chem Rev 2020; 120:10950-11027. [DOI: 10.1021/acs.chemrev.0c00077] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mihyun Lee
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
22
|
Salinas Y, Brüggemann O, Monkowius U, Teasdale I. Visible Light Photocleavable Ruthenium-Based Molecular Gates to Reversibly Control Release from Mesoporous Silica Nanoparticles. NANOMATERIALS 2020; 10:nano10061030. [PMID: 32481603 PMCID: PMC7352806 DOI: 10.3390/nano10061030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022]
Abstract
Herein we present hybrid mesoporous silica nanomaterials (MSN) with visible light-sensitive ruthenium complexes acting as gates. Two different [Ru(bpy)2L1L2]2+ complexes were investigated by grafting [Ru(bpy)2(4AMP)2](PF6)2 (RC1) and [Ru(bpy)2(PPh3)Cl]Cl (RC2) via two or one ligands onto the surface of mesoporous silica nanoparticles (MSNs), to give MSN1-RC1 and MSN2-RC2, respectively. The pores were previously loaded with a common dye, safranin O, and release studies were conducted. The number and position of the ligands were shown to influence the photocages behavior and thus the release of the cargo. Release studies from MSN1-RC1 in acetonitrile showed that in the dark the amount of dye released was minimal after 300 min, whereas a significant increase was measured upon visible light irradiation (ca. 90%). While successful as a photochemically-controlled gated system, RC1 was restricted to organic solvents since it required cleavage of two ligands in order to be cleaved from the surface, and in water only one is cleaved. Release studies from the second nanomaterial MSN2-RC2, where the complex RC2 was bound to the MSN via only one ligand, showed stability under darkness and in aqueous solution up to 180 min and, rapid release of the dye when irradiated with visible light. Furthermore, this system was demonstrated to be reversible, since, upon heating to 80 °C, the system could effectively re-close the pores and re-open it again upon visible light irradiation. This work, thus, demonstrates the potential reversible gate mechanism of the ruthenium-gated nanomaterials upon visible light irradiation, and could be envisioned as a future design of photochemically-driven drug delivery nanosystems or on/off switches for nanorelease systems.
Collapse
Affiliation(s)
- Yolanda Salinas
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (O.B.); (I.T.)
- Correspondence: ; Tel.: +43-732-2468-9075
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (O.B.); (I.T.)
| | - Uwe Monkowius
- Linz School of Education, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria;
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (O.B.); (I.T.)
| |
Collapse
|
23
|
Lim KS, Galarraga JH, Cui X, Lindberg GCJ, Burdick JA, Woodfield TBF. Fundamentals and Applications of Photo-Cross-Linking in Bioprinting. Chem Rev 2020; 120:10662-10694. [DOI: 10.1021/acs.chemrev.9b00812] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Khoon S. Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| | - Jonathan H. Galarraga
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| | - Gabriella C. J. Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tim B. F. Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| |
Collapse
|
24
|
Rapp TL, DeForest CA. Visible Light-Responsive Dynamic Biomaterials: Going Deeper and Triggering More. Adv Healthc Mater 2020; 9:e1901553. [PMID: 32100475 DOI: 10.1002/adhm.201901553] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/06/2020] [Indexed: 12/17/2022]
Abstract
Photoresponsive materials have been widely used in vitro for controlled therapeutic delivery and to direct 4D cell fate. Extension of the approaches into a bodily setting requires use of low-energy, long-wavelength light that penetrates deeper into and through complex tissue. This review details recent reports of photoactive small molecules and proteins that absorb visible and/or near-infrared light, opening the door to exciting new applications in multiplexed and in vivo regulation.
Collapse
Affiliation(s)
- Teresa L. Rapp
- Department of Chemical Engineering University of Washington 3781 Okanogan Lane NE Seattle WA 98195 USA
| | - Cole A. DeForest
- Department of Chemical Engineering University of Washington 3781 Okanogan Lane NE Seattle WA 98195 USA
- Department of Bioengineering University of Washington 3720 15th Ave NE Seattle WA 98105 USA
- Institute for Stem Cell & Regenerative Medicine University of Washington 850 Republican Street Seattle WA 98109 USA
- Molecular Engineering & Sciences Institute University of Washington 3946 W Stevens Way NE Seattle WA 98195 USA
| |
Collapse
|
25
|
March AM, Doumy G, Andersen A, Al Haddad A, Kumagai Y, Tu MF, Bang J, Bostedt C, Uhlig J, Nascimento DR, Assefa TA, Németh Z, Vankó G, Gawelda W, Govind N, Young L. Elucidation of the photoaquation reaction mechanism in ferrous hexacyanide using synchrotron x-rays with sub-pulse-duration sensitivity. J Chem Phys 2019; 151:144306. [PMID: 31615248 DOI: 10.1063/1.5117318] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ligand substitution reactions are common in solvated transition metal complexes, and harnessing them through initiation with light promises interesting practical applications, driving interest in new means of probing their mechanisms. Using a combination of time-resolved x-ray absorption spectroscopy and hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations and x-ray absorption near-edge spectroscopy calculations, we elucidate the mechanism of photoaquation in the model system iron(ii) hexacyanide, where UV excitation results in the exchange of a CN- ligand with a water molecule from the solvent. We take advantage of the high flux and stability of synchrotron x-rays to capture high precision x-ray absorption spectra that allow us to overcome the usual limitation of the relatively long x-ray pulses and extract the spectrum of the short-lived intermediate pentacoordinated species. Additionally, we determine its lifetime to be 19 (±5) ps. The QM/MM simulations support our experimental findings and explain the ∼20 ps time scale for aquation as involving interconversion between the square pyramidal (SP) and trigonal bipyramidal pentacoordinated geometries, with aquation being only active in the SP configuration.
Collapse
Affiliation(s)
- Anne Marie March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Amity Andersen
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Andre Al Haddad
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Yoshiaki Kumagai
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Ming-Feng Tu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Joohee Bang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Christoph Bostedt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Jens Uhlig
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Daniel R Nascimento
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
| | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
| | | | - Niranjan Govind
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
26
|
Teasdale I, Theis S, Iturmendi A, Strobel M, Hild S, Jacak J, Mayrhofer P, Monkowius U. Dynamic Supramolecular Ruthenium-Based Gels Responsive to Visible/NIR Light and Heat. Chemistry 2019; 25:9851-9855. [PMID: 31199024 PMCID: PMC6771519 DOI: 10.1002/chem.201902088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/13/2019] [Indexed: 11/12/2022]
Abstract
A simple supramolecular crosslinked gel is reported with a photosensitive ruthenium bipyridine complex functioning as a crosslinker and poly(4-vinylpyridine) (P4VP) as a macromolecular ligand. Irradiation of the organogels in H2 O/MeOH with visible and NIR light (in a multiphoton process) leads to cleavage of pyridine moieties from the ruthenium complex breaking the cross-links and causing degelation and hence solubilization of the P4VP chains. Real-time (RT) photorheology experiments of thin films showed a rapid degelation in several seconds, whereas larger bulk samples could also be photocleaved. Furthermore, the gels could be reformed or healed by simple heating of the system and restoration of the metal-ligand crosslinks. The relatively simple dynamic system with a high sensitivity towards light in the visible and NIR region make them interesting positive photoresists for nano/micropatterning applications, as was demonstrated by writing, erasing, and rewriting of the gels by single- and multiphoton lithography.
Collapse
Affiliation(s)
- Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| | - Sabrina Theis
- Institute of Inorganic ChemistryJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| | - Aitziber Iturmendi
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| | - Moritz Strobel
- Institute of Polymer ScienceJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| | - Sabine Hild
- Institute of Polymer ScienceJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| | - Jaroslaw Jacak
- School of Medical Engineering and Applied Social SciencesUniversity of Applied Sciences Upper AustriaGarnisonstraße 214020LinzAustria
| | - Philipp Mayrhofer
- School of Medical Engineering and Applied Social SciencesUniversity of Applied Sciences Upper AustriaGarnisonstraße 214020LinzAustria
| | - Uwe Monkowius
- School of EducationJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| |
Collapse
|
27
|
Metallo-Supramolecular Hydrogels from the Copolymers of Acrylic Acid and 4-(2,2':6',2″-terpyridin-4'-yl)styrene. Polymers (Basel) 2019; 11:polym11071152. [PMID: 31284459 PMCID: PMC6680927 DOI: 10.3390/polym11071152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/20/2019] [Accepted: 07/03/2019] [Indexed: 11/22/2022] Open
Abstract
Hydrophilic copolymers containing 2,2′:6′,2″-terpyridine moieties and acrylic acid (AA) units poly (acrylic acid-co-4-(2,2′:6′,2″-terpyridin-4′-yl)styrene) (P(AA-co-TPY)) were synthesized and characterized. Coordinated with different transition metal ions, the dilute aqueous solution of the copolymers exhibited red-shifted UV-vis absorption peaks of π-π* transition from 317 to 340 nm. Further, interacting with iron ions, the copolymer showed new absorption peaks at a longer wavelength region (570 nm) and the absorption intensity enhanced with increase of the ion concentration. When enough ions were added to coordinate with the 2,2′:6′,2″-terpyridine moieties, novel metallo-supramolecular hydrogels were obtained due to the formation of metal coordination bonds between polymer back bones and transition metal ions (Ni2+, Zn2+, Cd2+, Fe2+ and Cu2+), which acted as self-assembly crosslinking structures. The mechanical strength and morphology of the resulting metallo-supramolecular hydrogels have been investigated.
Collapse
|
28
|
Construction of optical active metallo-supramolecular polymers from enantiopure bis-pybox ligands. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Gai G, Liu L, Li C, Bose RK, Li D, Guo N, Kong B. A Tough Metal‐Coordinated Elastomer: A Fatigue‐Resistant, Notch‐Insensitive Material with an Excellent Self‐Healing Capacity. Chempluschem 2019; 84:432-440. [DOI: 10.1002/cplu.201900095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/02/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Guangjie Gai
- Institute of Advanced Energy Materials and Chemistry School of Chemistry and Pharmaceutical Engineering State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Libin Liu
- Institute of Advanced Energy Materials and Chemistry School of Chemistry and Pharmaceutical Engineering State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Cheng‐Hui Li
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 P. R. China
| | - Ranjita K. Bose
- Engineering and Technology Institute Groningen (ENTEG)University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Dong Li
- Institute of Advanced Energy Materials and Chemistry School of Chemistry and Pharmaceutical Engineering State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Ning Guo
- Institute of Advanced Energy Materials and Chemistry School of Chemistry and Pharmaceutical Engineering State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Biao Kong
- Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative MaterialsiChEMFudan University Shanghai 200433 P. R. China
| |
Collapse
|
30
|
Lai L, Luo D, Liu T, Zheng W, Chen T, Li D. Self-Assembly of Copper Polypyridyl Supramolecular Metallopolymers to Achieve Enhanced Anticancer Efficacy. ChemistryOpen 2019; 8:434-437. [PMID: 30984487 PMCID: PMC6445060 DOI: 10.1002/open.201900036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Indexed: 11/10/2022] Open
Abstract
Self‐assembled functional supramolecular metallopolymers have demonstrated application potential in cancer therapy. Herein, a copper polypyridyl complex was found able to self‐assemble into a supramolecular metallopolymer driven by the intermolecular interactions, which could enhance the uptake in cancer cells through endocytosis, and thus effectively inhibiting tumor growth in vivo without damaging to the major organs. This study provides a facile way to achieve enhanced anticancer efficacy by using self‐assembled metallopolymers.
Collapse
Affiliation(s)
- Lanhai Lai
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| | - Dong Luo
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| | - Ting Liu
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| | - Wenjie Zheng
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| | - Tianfeng Chen
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| | - Dan Li
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| |
Collapse
|
31
|
|
32
|
Lunzer M, Shi L, Andriotis OG, Gruber P, Markovic M, Thurner PJ, Ossipov D, Liska R, Ovsianikov A. A Modular Approach to Sensitized Two-Photon Patterning of Photodegradable Hydrogels. Angew Chem Int Ed Engl 2018; 57:15122-15127. [PMID: 30191643 PMCID: PMC6391948 DOI: 10.1002/anie.201808908] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 11/09/2022]
Abstract
Photodegradable hydrogels have emerged as useful platforms for research on cell function, tissue engineering, and cell delivery as their physical and chemical properties can be dynamically controlled by the use of light. The photo-induced degradation of such hydrogel systems is commonly based on the integration of photolabile o-nitrobenzyl derivatives to the hydrogel backbone, because such linkers can be cleaved by means of one- and two-photon absorption. Herein we describe a cytocompatible click-based hydrogel containing o-nitrobenzyl ester linkages between a hyaluronic acid backbone, which is photodegradable in the presence of cells. It is demonstrated for the first time that by using a cyclic benzylidene ketone-based small molecule as photosensitizer the efficiency of the two-photon degradation process can be improved significantly. Biocompatibility of both the improved two-photon micropatterning process as well as the hydrogel itself is confirmed by cell culture studies.
Collapse
Affiliation(s)
- Markus Lunzer
- Institute of Materials Science and TechnologyTU WienGetreidemarkt 9/3081060ViennaAustria
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-MC1060ViennaAustria
- Austrian Cluster for Tissue RegenerationAustria
| | - Liyang Shi
- Department of Chemistry-Ångström LaboratoryUppsala UniversityLägerhyddsvägen 1751 21UppsalaSweden
| | - Orestis G. Andriotis
- Institute of Lightweight Design and Structural BiomechanicsTU WienGetreidemarkt 9/3171060ViennaAustria
- Austrian Cluster for Tissue RegenerationAustria
| | - Peter Gruber
- Institute of Materials Science and TechnologyTU WienGetreidemarkt 9/3081060ViennaAustria
- Austrian Cluster for Tissue RegenerationAustria
| | - Marica Markovic
- Institute of Materials Science and TechnologyTU WienGetreidemarkt 9/3081060ViennaAustria
- Austrian Cluster for Tissue RegenerationAustria
| | - Philipp J. Thurner
- Institute of Lightweight Design and Structural BiomechanicsTU WienGetreidemarkt 9/3171060ViennaAustria
- Austrian Cluster for Tissue RegenerationAustria
| | - Dmitri Ossipov
- Department of Chemistry-Ångström LaboratoryUppsala UniversityLägerhyddsvägen 1751 21UppsalaSweden
- Department of Biosciences and NutritionKarolinska InstitutetNovum, 141 83 HuddingeStockholmSweden
| | - Robert Liska
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-MC1060ViennaAustria
- Austrian Cluster for Tissue RegenerationAustria
| | - Aleksandr Ovsianikov
- Institute of Materials Science and TechnologyTU WienGetreidemarkt 9/3081060ViennaAustria
- Austrian Cluster for Tissue RegenerationAustria
| |
Collapse
|
33
|
Bentz KC, Cohen SM. Supramolekulare Metallopolymere: Von linearen Materialien zu infiniten Netzwerken. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kyle C. Bentz
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla California 92093 USA
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla California 92093 USA
| |
Collapse
|
34
|
Bentz KC, Cohen SM. Supramolecular Metallopolymers: From Linear Materials to Infinite Networks. Angew Chem Int Ed Engl 2018; 57:14992-15001. [DOI: 10.1002/anie.201806912] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Kyle C. Bentz
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla California 92093 USA
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla California 92093 USA
| |
Collapse
|
35
|
Lunzer M, Shi L, Andriotis OG, Gruber P, Markovic M, Thurner PJ, Ossipov D, Liska R, Ovsianikov A. A Modular Approach to Sensitized Two‐Photon Patterning of Photodegradable Hydrogels. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Markus Lunzer
- Institute of Materials Science and TechnologyTU Wien Getreidemarkt 9/308 1060 Vienna Austria
- Institute of Applied Synthetic ChemistryTU Wien Getreidemarkt 9/163-MC 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Liyang Shi
- Department of Chemistry-Ångström LaboratoryUppsala University Lägerhyddsvägen 1 751 21 Uppsala Sweden
| | - Orestis G. Andriotis
- Institute of Lightweight Design and Structural BiomechanicsTU Wien Getreidemarkt 9/317 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Peter Gruber
- Institute of Materials Science and TechnologyTU Wien Getreidemarkt 9/308 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Marica Markovic
- Institute of Materials Science and TechnologyTU Wien Getreidemarkt 9/308 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Philipp J. Thurner
- Institute of Lightweight Design and Structural BiomechanicsTU Wien Getreidemarkt 9/317 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Dmitri Ossipov
- Department of Chemistry-Ångström LaboratoryUppsala University Lägerhyddsvägen 1 751 21 Uppsala Sweden
- Department of Biosciences and NutritionKarolinska Institutet Novum, 141 83 Huddinge Stockholm Sweden
| | - Robert Liska
- Institute of Applied Synthetic ChemistryTU Wien Getreidemarkt 9/163-MC 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Aleksandr Ovsianikov
- Institute of Materials Science and TechnologyTU Wien Getreidemarkt 9/308 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| |
Collapse
|
36
|
Xie C, Sun W, Lu H, Kretzschmann A, Liu J, Wagner M, Butt HJ, Deng X, Wu S. Reconfiguring surface functions using visible-light-controlled metal-ligand coordination. Nat Commun 2018; 9:3842. [PMID: 30242263 PMCID: PMC6154962 DOI: 10.1038/s41467-018-06180-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022] Open
Abstract
Most surfaces are either static or switchable only between “on” and “off” states for a specific application. It is a challenge to develop reconfigurable surfaces that can adapt to rapidly changing environments or applications. Here, we demonstrate fabrication of surfaces that can be reconfigured for user-defined functions using visible-light-controlled Ru–thioether coordination chemistry. We modify substrates with Ru complex Ru-H2O. To endow a Ru-H2O-modified substrate with a certain function, a functional thioether ligand is immobilized on the substrate via Ru–thioether coordination. To change the surface function, the immobilized thioether ligand is cleaved from the substrate by visible-light-induced ligand dissociation, and then another thioether ligand with a distinct function is immobilized on the substrate. Different thioethers endow the surface with different functions. Based on this strategy, we rewrite surface patterns, manipulate protein adsorption, and control surface wettability. This strategy enables the fabrication of reconfigurable surfaces with customizable functions on demand. Configuring surfaces on-demand for desired functionalities is an ongoing challenge. Here, diverse and tailorable modifications of quartz and porous silica surfaces that are rapidly and reversibly switchable by the use of visible light are achieved via ruthenium-thioether coordination.
Collapse
Affiliation(s)
- Chaoming Xie
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China.,Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Wen Sun
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Hao Lu
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | | | - Jiahui Liu
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| | - Si Wu
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany. .,Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Innovation Centre of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
37
|
Hupp B, Nitsch J, Schmitt T, Bertermann R, Edkins K, Hirsch F, Fischer I, Auth M, Sperlich A, Steffen A. Stimulus-induzierte Anion-Kation-Exciplexbildung in Kupfer(I)-Komplexen als Mechanismus für mechanochrome Phosphoreszenz. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Benjamin Hupp
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Jörn Nitsch
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Tanja Schmitt
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Rüdiger Bertermann
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Katharina Edkins
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Florian Hirsch
- Institut für Physikalische und Theoretische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Ingo Fischer
- Institut für Physikalische und Theoretische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Michael Auth
- Physikalisches Institut; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Andreas Sperlich
- Physikalisches Institut; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Andreas Steffen
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
38
|
Hupp B, Nitsch J, Schmitt T, Bertermann R, Edkins K, Hirsch F, Fischer I, Auth M, Sperlich A, Steffen A. Stimulus-Triggered Formation of an Anion-Cation Exciplex in Copper(I) Complexes as a Mechanism for Mechanochromic Phosphorescence. Angew Chem Int Ed Engl 2018; 57:13671-13675. [PMID: 30048568 DOI: 10.1002/anie.201807768] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 12/12/2022]
Abstract
The investigation of the mechanisms of mechanochromic luminescence is of fundamental importance for the development of materials for photonic sensors, data storage, and luminescence switches. The structural origin of this phenomenon in phosphorescent molecular systems is rarely known and thus the formulation of structure-property relationships remains challenging. Changes in the M-M interactions have been proposed as the main mechanism with d10 coinage metal compounds. Herein, we describe a new mechanism-a mechanically induced reversible formation of a cation-anion exciplex based on Cu-F interactions-that leads to highly efficient mechanochromic phosphorescence and unusual large emission shifts from UV-blue to yellow for CuI complexes. The low-energy luminescence is thermo- and vaporesponsive, thus allowing the generation of white light as well as for recovering the original UV-blue emission.
Collapse
Affiliation(s)
- Benjamin Hupp
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jörn Nitsch
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Tanja Schmitt
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Rüdiger Bertermann
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Katharina Edkins
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Florian Hirsch
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ingo Fischer
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Michael Auth
- Physikalisches Institut, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andreas Sperlich
- Physikalisches Institut, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andreas Steffen
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
39
|
Zhou H, Chen M, Liu Y, Wu S. Stimuli-Responsive Ruthenium-Containing Polymers. Macromol Rapid Commun 2018; 39:e1800372. [DOI: 10.1002/marc.201800372] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/21/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Hongwei Zhou
- School of Materials and Chemical Engineering; Xi’an Technological University; Xi’an 710021 P. R. China
| | - Mingsen Chen
- Max Planck Institute for Polymer Research; Ackermannweg 10, 55128 Mainz Germany
- College of Materials Science and Engineering; Guilin University of Technology; Guilin 541004 China
| | - Yuanli Liu
- College of Materials Science and Engineering; Guilin University of Technology; Guilin 541004 China
| | - Si Wu
- Max Planck Institute for Polymer Research; Ackermannweg 10, 55128 Mainz Germany
- Hefei National Laboratory for Physical Sciences at the Microscale; CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei 230026 China
| |
Collapse
|
40
|
Accardo JV, Kalow JA. Reversibly tuning hydrogel stiffness through photocontrolled dynamic covalent crosslinks. Chem Sci 2018; 9:5987-5993. [PMID: 30079213 PMCID: PMC6050525 DOI: 10.1039/c8sc02093k] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/15/2018] [Indexed: 11/25/2022] Open
Abstract
Controlling the physical properties of soft materials with external stimuli enables researchers to mimic and study dynamic systems. Of particular interest are hydrogels, polymer networks swollen by water with broad applicability to biomedicine. To control hydrogel mechanics with light, researchers have relied on a limited number of photochemical reactions. Here we introduce an approach to reversibly tune hydrogel mechanics with light by manipulating the stability of dynamic covalent crosslinks at the molecular level. The equilibrium between a boronic acid and diol to form a boronic ester can be altered by the configuration of an adjacent azobenzene photoswitch. By irradiating branched polymers bearing azobenzene-boronic acid and diol end groups with two different wavelengths of light, we can stiffen or soften the resulting hydrogel. Alternating irradiation induces reversible mechanical changes. Rheological characterization reveals that the hydrogels are viscoelastic, exhibiting stress relaxation on the order of seconds, and the stiffness is tuned independently of the crossover frequency. We have also demonstrated that this approach can be extended to use visible light for both softening and stiffening. These photocontrolled dynamic covalent crosslinks provide a versatile platform for tunable dynamic materials.
Collapse
Affiliation(s)
- Joseph V Accardo
- Department of Chemistry , Northwestern University , 2145 Sheridan Rd. , Evanston , IL 60208 , USA .
| | - Julia A Kalow
- Department of Chemistry , Northwestern University , 2145 Sheridan Rd. , Evanston , IL 60208 , USA .
| |
Collapse
|
41
|
Zeng X, Zhou X, Wu S. Red and Near-Infrared Light-Cleavable Polymers. Macromol Rapid Commun 2018; 39:e1800034. [PMID: 29682838 DOI: 10.1002/marc.201800034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/12/2018] [Indexed: 12/20/2022]
Abstract
Photocleavable polymers have attracted much attention in drug delivery, photopatterning, and controlling cell behavior. Photolysis is usually induced by UV light. However, UV light cannot penetrate deeply into biological tissue and may damage biological components. Therefore, conventional UV-light-cleavable polymers are problematic for deep-tissue biomedical applications. In this feature article, red and near-infrared light-cleavable polymers are reviewed, and their potential applications are highlighted. The remaining challenges in the field of photocleavable polymers are discussed.
Collapse
Affiliation(s)
- Xiaolong Zeng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Si Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,CAS Key Laboratory of Soft Matter Chemistry, Key Laboratory of Optoelectronic Science and Technology, Innovation Centre of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
42
|
Wang H, Liu Q, Hu Y, Liu M, Huang X, Gao W, Wu H. A Multiple Stimuli-Sensitive Low-Molecular-Weight Gel with an Aggregate-Induced Emission Effect for Sol-Gel Transition Detection. ChemistryOpen 2018; 7:457-462. [PMID: 29938158 PMCID: PMC6010791 DOI: 10.1002/open.201800063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Indexed: 01/22/2023] Open
Abstract
A low-molecular-weight gel (LMWG) with a hydrazone moiety and an aggregate-induced emission (AIE) unit was fabricated; the self-assembly and disassembly of the LMWG under different stimuli conditions were studied. The LMWG exhibited multiple stimuli sensitivity with temperature, light, ions, and ionic strength. The hydrazone was integrated into the gelator to act as ion sensing sites and hydrogen bond donor groups to fulfil the task of ion recognition of Ni2+, BH4-, and OH-, as well as ion-controlled reversible sol-gel recovery by adding H+ for deprotonation; it also broke under UV irradiation to evoke light-sensitivity. In addition, the sol-gel transition of the gel was detected by the AIE effect. The research provided an effective strategy in fabricating multiple stimuli-sensitive LMWGs for potential biomedical applications.
Collapse
Affiliation(s)
- Hao Wang
- College of Chemistry and Materials EngineeringWenzhou University, Chashan Town325000Wenzhou CityZhejiang ProvinceP. R. China
| | - Qihong Liu
- College of Chemistry and Materials EngineeringWenzhou University, Chashan Town325000Wenzhou CityZhejiang ProvinceP. R. China
| | - Yalong Hu
- College of Chemistry and Materials EngineeringWenzhou University, Chashan Town325000Wenzhou CityZhejiang ProvinceP. R. China
| | - Miaochang Liu
- College of Chemistry and Materials EngineeringWenzhou University, Chashan Town325000Wenzhou CityZhejiang ProvinceP. R. China
| | - Xiaobo Huang
- College of Chemistry and Materials EngineeringWenzhou University, Chashan Town325000Wenzhou CityZhejiang ProvinceP. R. China
| | - Wenxia Gao
- College of Chemistry and Materials EngineeringWenzhou University, Chashan Town325000Wenzhou CityZhejiang ProvinceP. R. China
| | - Huayue Wu
- College of Chemistry and Materials EngineeringWenzhou University, Chashan Town325000Wenzhou CityZhejiang ProvinceP. R. China
| |
Collapse
|
43
|
Uflyand IE, Dzhardimalieva GI. Molecular design of supramolecular polymers with chelated units and their application as functional materials. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1465567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Igor E. Uflyand
- Department of Chemistry, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, Chernogolovka, Russian Federation
| |
Collapse
|
44
|
Estupiñán D, Barner‐Kowollik C, Barner L. Bestimmung der Verknüpfungspunkte in fluoreszenten Polymernetzwerken. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Diego Estupiñán
- Institut für Biologische Grenzflächen (IBG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Christopher Barner‐Kowollik
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australien
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) Engesserstraße 18 76128 Karlsruhe Deutschland
| | - Leonie Barner
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australien
- Institut für Biologische Grenzflächen (IBG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
45
|
Estupiñán D, Barner‐Kowollik C, Barner L. Counting the Clicks in Fluorescent Polymer Networks. Angew Chem Int Ed Engl 2018; 57:5925-5929. [DOI: 10.1002/anie.201713388] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/31/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Diego Estupiñán
- Institut für Biologische Grenzflächen (IBG) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christopher Barner‐Kowollik
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76128 Karlsruhe Germany
| | - Leonie Barner
- School of Chemistry, Physics and Mechanical Engineering, Institute for Future Environments Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
- Institut für Biologische Grenzflächen (IBG) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
46
|
Theis S, Iturmendi A, Gorsche C, Orthofer M, Lunzer M, Baudis S, Ovsianikov A, Liska R, Monkowius U, Teasdale I. Metallo-Supramolecular Gels that are Photocleavable with Visible and Near-Infrared Irradiation. Angew Chem Int Ed Engl 2017; 56:15857-15860. [PMID: 28941025 PMCID: PMC5725706 DOI: 10.1002/anie.201707321] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 12/16/2022]
Abstract
A photolabile ruthenium-based complex, [Ru(bpy)2 (4AMP)2 ](PF6 )2 , (4AMP=4-(aminomethyl)pyridine) is incorporated into polyurea organo- and hydrogels via the reactive amine moieties on the photocleavable 4AMP ligands. While showing long-term stability in the dark, cleavage of the pyridine-ruthenium bond upon irradiation with visible or near-infrared irradiation (in a two-photon process) leads to rapid de-gelation of the supramolecular gels, thus enabling spatiotemporal micropatterning by photomasking or pulsed NIR-laser irradiation.
Collapse
Affiliation(s)
- Sabrina Theis
- Institute of Inorganic ChemistryJohannes Kepler University LinzAltenberger Strasse 694040LinzAustria
| | - Aitziber Iturmendi
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenberger Strasse 694040LinzAustria
| | - Christian Gorsche
- Institute of Applied Synthetic ChemistryTechnische Universität WienAustria
- Austrian Cluster for Tissue RegenerationAustria
| | - Marco Orthofer
- Institute of Inorganic ChemistryJohannes Kepler University LinzAltenberger Strasse 694040LinzAustria
| | - Markus Lunzer
- Institute of Applied Synthetic ChemistryTechnische Universität WienAustria
- Institute of Materials Science and TechnologyTechnische Universität WienAustria
- Austrian Cluster for Tissue RegenerationAustria
| | - Stefan Baudis
- Institute of Applied Synthetic ChemistryTechnische Universität WienAustria
- Austrian Cluster for Tissue RegenerationAustria
| | - Aleksandr Ovsianikov
- Institute of Materials Science and TechnologyTechnische Universität WienAustria
- Austrian Cluster for Tissue RegenerationAustria
| | - Robert Liska
- Institute of Applied Synthetic ChemistryTechnische Universität WienAustria
- Austrian Cluster for Tissue RegenerationAustria
| | - Uwe Monkowius
- Institute of Inorganic ChemistryJohannes Kepler University LinzAltenberger Strasse 694040LinzAustria
- Linz School of EducationJohannes Kepler Universität LinzAustria
| | - Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenberger Strasse 694040LinzAustria
| |
Collapse
|