1
|
Bezinge L, Shih CJ, Richards DA, deMello AJ. Electrochemical Paper-Based Microfluidics: Harnessing Capillary Flow for Advanced Diagnostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401148. [PMID: 38801400 DOI: 10.1002/smll.202401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Electrochemical paper-based microfluidics has attracted much attention due to the promise of transforming point-of-care diagnostics by facilitating quantitative analysis with low-cost and portable analyzers. Such devices harness capillary flow to transport samples and reagents, enabling bioassays to be executed passively. Despite exciting demonstrations of capillary-driven electrochemical tests, conventional methods for fabricating electrodes on paper impede capillary flow, limit fluidic pathways, and constrain accessible device architectures. This account reviews recent developments in paper-based electroanalytical devices and offers perspective by revisiting key milestones in lateral flow tests and paper-based microfluidics engineering. The study highlights the benefits associated with electrochemical sensing and discusses how the detection modality can be leveraged to unlock novel functionalities. Particular focus is given to electrofluidic platforms that embed electrodes into paper for enhanced biosensing applications. Together, these innovations pave the way for diagnostic technologies that offer portability, quantitative analysis, and seamless integration with digital healthcare, all without compromising the simplicity of commercially available rapid diagnostic tests.
Collapse
Affiliation(s)
- Léonard Bezinge
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Chih-Jen Shih
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Daniel A Richards
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Andrew J deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| |
Collapse
|
2
|
Behrent A, Borggraefe V, Baeumner AJ. Laser-induced graphene trending in biosensors: understanding electrode shelf-life of this highly porous material. Anal Bioanal Chem 2024; 416:2097-2106. [PMID: 38082134 PMCID: PMC10950954 DOI: 10.1007/s00216-023-05082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 03/21/2024]
Abstract
Laser-induced graphene (LIG) has received much attention in recent years as a possible transducer material for electroanalytical sensors. Its simplicity of fabrication and good electrochemical performance are typically highlighted. However, we found that unmodified and untreated LIG electrodes had a limited shelf-life for certain electroanalytical applications, likely due to the adsorption of adventitious hydrocarbons from the storage environment. Electrode responses did not change immediately after exposure to ambient conditions but over longer periods of time, probably due to the immense specific surface area of the LIG material. LIG shelf-life is seldomly discussed prominently in the literature, yet overall trends for solutions to this challenge can be identified. Such findings from the literature regarding the long-term storage stability of LIG electrodes, pure and modified, are discussed here along with explanations for likely protective mechanisms. Specifically, applying a protective coating on LIG electrodes after manufacture is possibly the easiest method to preserve electrode functionality and should be identified as a trend for well-performing LIG electrodes in the future. Furthermore, suggested influences of the accompanying LIG microstructure/morphology on electrode characteristics are evaluated.
Collapse
Affiliation(s)
- Arne Behrent
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Veronika Borggraefe
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
3
|
de Lima LF, Barbosa PP, Simeoni CL, de Paula RFDO, Proenca-Modena JL, de Araujo WR. Electrochemical Paper-Based Nanobiosensor for Rapid and Sensitive Detection of Monkeypox Virus. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58079-58091. [PMID: 38063784 DOI: 10.1021/acsami.3c10730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Monkeypox virus (MPXV) infection was classified as a public health emergency of international concern by the World Health Organization (WHO) in 2022, being transmitted between humans by large respiratory droplets, in contact with skin lesions, fomites, and sexually. Currently, there are no available accessible and simple-to-use diagnostic tests that accurately detect MPXV antigens for decentralized and frequent testing. Here, we report an electrochemical biosensor to detect MPXV antigens in saliva and plasma samples within 15 min using accessible materials. The electrochemical system was manufactured onto a paper substrate engraved by a CO2 laser machine, modified with gold nanostructures (AuNS) and a monoclonal antibody, enabling sensitive detection of A29 viral protein. The diagnostic test is based on the use of electrochemical impedance spectroscopy (EIS) and can be run by a miniaturized potentiostat connected to a smartphone. The impedimetric biosensing method presented excellent analytical parameters, enabling the detection of A29 glycoprotein in the concentration ranging from 1 × 10-14 to 1 × 10-7 g mL-1, with a limit of detection (LOD) of 3.0 × 10-16 g mL-1. Furthermore, it enabled the detection of MPXV antigens in the concentration ranging from 1 × 10-1 to 1 × 104 PFU mL-1, with an LOD of 7.8 × 10-3 PFU mL-1. Importantly, no cross-reactivity was observed when our device was tested in the presence of other poxvirus and nonpoxvirus strains, indicating the adequate selectivity of our nanobiosensor for MPXV detection. Collectively, the nanobiosensor presents high greenness metrics associated with the use of a reproducible and large-scale fabrication method, an accessible and sustainable paper substrate, and a low volume of sample (2.5 μL), which could facilitate frequent testing of MPXV at point-of-care (POC).
Collapse
Affiliation(s)
- Lucas F de Lima
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Priscilla P Barbosa
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, 13083-862 Campinas, SP, Brazil
- Experimental Medicine Research Cluster, State University of Campinas, Campinas, 13083-862 Campinas, SP, Brazil
| | - Camila L Simeoni
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, 13083-862 Campinas, SP, Brazil
- Experimental Medicine Research Cluster, State University of Campinas, Campinas, 13083-862 Campinas, SP, Brazil
| | - Rosemeire F de O de Paula
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, 13083-862 Campinas, SP, Brazil
| | - José Luiz Proenca-Modena
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, 13083-862 Campinas, SP, Brazil
- Experimental Medicine Research Cluster, State University of Campinas, Campinas, 13083-862 Campinas, SP, Brazil
| | - William R de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
4
|
M de Farias D, Pradela-Filho LA, Arantes IVS, Gongoni JLM, Veloso WB, Meloni GN, Paixão TRLC. Sulfanilamide Electrochemical Sensor Using Phenolic Substrates and CO 2 Laser Pyrolysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56424-56432. [PMID: 37982226 DOI: 10.1021/acsami.3c11462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The concentration of environmental pollutants needs to be monitored constantly by reliable analytical methods since they pose a public health risk. Developing simple and affordable sensors for such pollutants can allow for large-scale monitoring economically. Here, we develop a simple electrochemical sensor for sulfanilamide (SFD) quantification using a phenolic resin substrate and a CO2 laser to pyrolyze the sensor geometry over the substrate. The sensors are modified with carbon nanotubes via a simple drop-casting procedure. The carbon nanotube loading effect the electrochemical performance toward a redox probe and analytical performance for SFD detection is investigated, showing no net benefit beyond 1 mg L-1 of carbon nanotubes. The effects of the modification on the SFD oxidation are shown to be more than just an electrode area effect and possibly attributed to the fast electron transfer kinetics of the carbon nanotubes. SFD detection is performed at small solution volumes under static (800 μL) and hydrodynamic conditions (3 mL) in a fully integrated, miniaturized batch-injection analyses cell. Both methods have a similar linear range from 10.0 to 115.0 μmol L-1 and high selectivity for SFD determination. Both systems are used to quantify SFD in real samples as a proof of concept, showcasing the proposed device's applicability as a sensor for environmental and public health monitoring of SFD.
Collapse
Affiliation(s)
- Davi M de Farias
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Lauro A Pradela-Filho
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Iana V S Arantes
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Juliana L M Gongoni
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - William B Veloso
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Gabriel N Meloni
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Thiago R L C Paixão
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
5
|
González-Martínez E, Rekas A, Moran-Mirabal J. Simple and Inexpensive Fabrication of High Surface-Area Paper-Based Gold Electrodes for Electrochemical and Surface-Enhanced Raman Scattering Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55183-55192. [PMID: 37972391 DOI: 10.1021/acsami.3c15224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Paper has emerged as an excellent alternative to create environmentally benign disposable electrochemical sensing devices. The critical step to fabricating electrochemical sensors is making paper conductive. In this work, paper-based electrodes with a high electroactive surface area (ESA) were fabricated using a simple electroless deposition technique. The polymerization time of a polydopamine adhesion layer and the gold salt concentration during the electroless deposition step were optimized to obtain uniformly conductive paper-based electrodes. The optimization of these fabrication parameters was key to obtaining the highest ESA possible. Roughening factors (Rf) of 7.2 and 2.3 were obtained when cyclic voltammetry was done in sulfuric acid and potassium ferricyanide, respectively, demonstrating a surface prone to fast electron transfer. As a proof of concept, mercury detection was done through anodic stripping, achieving a limit of quantification (LOQ) of 0.9 ppb. By changing the metal deposition conditions, the roughness of the metalized papers could also be tuned for their use as surface-enhanced Raman scattering (SERS) sensors. Metallized papers with the highest SERS signal for thiophenol detection yielded a LOQ of 10 ppb. We anticipate that this method of fabricating nanostructured paper-based electrodes can accelerate the development of simple, cost-effective, and highly sensitive electrochemical and SERS sensing platforms.
Collapse
Affiliation(s)
| | - Adrianna Rekas
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Jose Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4M1, Canada
- Centre for Advanced Light Microscopy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
6
|
Rocha DS, Baldo TA, Silva-Neto HA, Duarte-Junior GF, Bazílio GS, Borges CL, Parente-Rocha JA, de Araujo WR, de Siervo A, Paixão TLRC, Coltro WKT. Disposable and eco-friendly electrochemical immunosensor for rapid detection of SARS-CoV-2. Talanta 2023; 268:125337. [PMID: 39491949 DOI: 10.1016/j.talanta.2023.125337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
This study describes the development of a simple, disposable, and eco-friendly electrochemical immunosensor for rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Electrochemical devices were manufactured by stencil-printing using low-cost materials such as polyester sheets, graphite flakes, and natural resin. The immunosensor comprises gold nanoparticles stabilized with cysteamine, glutaraldehyde, anti-SARS-CoV-2 S protein monoclonal antibody (Ab1) as the biological receptor, and bovine serum albumin as a protective layer. The COVID-19 diagnostic was based on rapid square wave voltammetry measurements (15 min) using [Fe(CN)6]3-/4- as a redox probe. The method presented a linear response in the concentration range from 250 pg mL-1 to 20 μg mL-1 S protein, with a limit of detection of 36.3 pg mL-1. The proposed immunosensor was stable for up to two weeks when stored at 4 °C and it demonstrated excellent clinical performance in diagnosing COVID-19 when applied to a panel of 44 undiluted swab samples collected from symptomatic patients. In comparison with results obtained through the quantitative reverse transcription polymerase chain reaction method, the proposed immunosensor offered 100 % accuracy, thus emerging as a powerful alternative candidate for routine and decentralized testing, which can be helpful in controlling the COVID-19 outbreak.
Collapse
Affiliation(s)
- Danielly S Rocha
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Thaísa A Baldo
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Habdias A Silva-Neto
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | | | - Gabriela S Bazílio
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Clayton L Borges
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Juliana A Parente-Rocha
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - William R de Araujo
- Departamento de Química Analítica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, 13083-970, Brazil
| | - Abner de Siervo
- Instituto de Física "Gleb Wataghin", Departamento de Física Aplicada, Universidade Estadual de Campinas, 13083-859, Campinas, SP, Brazil
| | - Thiago L R C Paixão
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|
7
|
Vaughan E, Santillo C, Imbrogno A, Gentile G, Quinn AJ, Kaciulis S, Lavorgna M, Iacopino D. Direct Laser Writing of Chitosan-Borax Composites: Toward Sustainable Electrochemical Sensors. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:13574-13583. [PMID: 37767083 PMCID: PMC10521144 DOI: 10.1021/acssuschemeng.3c02708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/14/2023] [Indexed: 09/29/2023]
Abstract
In this study, the laser-induced graphitization process of sustainable chitosan-based formulations was investigated. In particular, optimal lasing conditions were investigated alongside the effect of borax concentration in the chitosan matrix. In all cases, it was found that the obtained formulations were graphitizable with a CO2 laser. This process gave rise to the formation of high surface area, porous, and electrically conductive laser-induced graphene (LIG) structures. It was found that borax, as a cross-linker of chitosan, enabled the graphitization process when its content was ≥30 wt % in the chitosan matrix, allowing the formation of an LIG phase with a significant content of graphite-like structures. The graphitization process was investigated by thermogravimetric analysis (TGA), Raman, X-ray photoemission (XPS), and Fourier transform infrared (FTIR) spectroscopies. LIG electrodes obtained from CS/40B formulations displayed a sheet resistance as low as 110 Ω/sq. Electrochemical characterization was performed after a 10 min electrode activation by cycling in 1 M KCl. A heterogeneous electron transfer rate, k0, of 4 × 10-3 cm s-1 was determined, indicating rapid electron transfer rates at the electrode surface. These results show promise for the introduction of a new class of sustainable composites for LIG electrochemical sensing platforms.
Collapse
Affiliation(s)
- Eoghan Vaughan
- Tyndall
National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork T12R5CP, Ireland
| | - Chiara Santillo
- Institute
for Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, 80055 Portici, Italy
| | - Alessandra Imbrogno
- Tyndall
National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork T12R5CP, Ireland
| | - Gennaro Gentile
- Institute
for Polymers Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Aidan J. Quinn
- Tyndall
National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork T12R5CP, Ireland
| | - Saulius Kaciulis
- Institute
for the Study of Nanostructured Materials, National Research Council, Monterotondo Staz., 00015 Rome, Italy
| | - Marino Lavorgna
- Institute
for Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, 80055 Portici, Italy
| | - Daniela Iacopino
- Tyndall
National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork T12R5CP, Ireland
| |
Collapse
|
8
|
Faustino LC, Cunha JPC, Cantanhêde W, Kubota LT, Gerôncio ETS. 3D-printed holder for drawing highly reproducible pencil-on-paper electrochemical devices. Mikrochim Acta 2023; 190:338. [PMID: 37522993 DOI: 10.1007/s00604-023-05920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/15/2023] [Indexed: 08/01/2023]
Abstract
Pencil drawing is one of the simplest and most cost-effective ways of fabricating miniaturized electrodes on a paper substrate. However, it is limited by the lack of reproducibility regarding the electrode drawing process. A 3D-printed pencil holder (3DPH) is proposed here for simple, reproducible, and low-cost hand-drawn fabrication of paper-based electrochemical devices. 3DPH was designed to keep pressure and angulation of the graphite mine constant on the paper substrate using a micromechanical pencil regardless of the user/operator. This approach significantly improved the reproducibility and cost of making reliable pencil-drawn electrodes. The results showed high reproducibility and accuracy of the 3DPH-assisted electrodes prepared by 4 different operators in terms of sheet resistance and electrochemical behavior. Cyclic voltammetric (CV) curves in the presence of [Fe(CN)6]3-/4- redox probe showed only 3.9% variation for the anodic peak currents of different electrodes prepared by different operators when compared with electrodes prepared without the 3D-printed support. SEM analyses revealed a more uniform graphite deposition/design of the electrodes prepared with 3DPH, which corroborates the results obtained by CV. As a proof of concept, 3DPH-assisted pencil-drawn graphite electrodes were employed for dopamine detection in synthetic saliva, showing a proportional increase in anodic peak current at 0.12 V vs. carbon pRE with increasing dopamine (DA) concentration, with a detection limit of 0.39μmol L-1. Moreover recovery was in the range 93-104% of DA (4-7% RSD) in synthetic saliva for three different concentrations, demonstrating the reliability of the approach. Finally, we believe this approach can make pencil-drawn technology more robust, accessible, reliable, and inexpensive for real on-site applications, especially in hard-to-reach locations or research centers with little investment.
Collapse
Affiliation(s)
- Lucas C Faustino
- Department of Chemistry, Federal University of Piauí - UFPI, Teresina, PI, 64049-550, Brazil
| | - João P C Cunha
- Department of Chemistry, State University of Piauí - UESPI, Teresina, PI, 64002-150, Brazil
| | - Welter Cantanhêde
- Department of Chemistry, Federal University of Piauí - UFPI, Teresina, PI, 64049-550, Brazil
| | - Lauro T Kubota
- Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, SP, 13084-971, Brazil
| | - Everson T S Gerôncio
- Department of Chemistry, Federal University of Piauí - UFPI, Teresina, PI, 64049-550, Brazil.
- Department of Chemistry, State University of Piauí - UESPI, Teresina, PI, 64002-150, Brazil.
| |
Collapse
|
9
|
Musile G, Grazioli C, Fornasaro S, Dossi N, De Palo EF, Tagliaro F, Bortolotti F. Application of Paper-Based Microfluidic Analytical Devices (µPAD) in Forensic and Clinical Toxicology: A Review. BIOSENSORS 2023; 13:743. [PMID: 37504142 PMCID: PMC10377625 DOI: 10.3390/bios13070743] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
The need for providing rapid and, possibly, on-the-spot analytical results in the case of intoxication has prompted researchers to develop rapid, sensitive, and cost-effective methods and analytical devices suitable for use in nonspecialized laboratories and at the point of need (PON). In recent years, the technology of paper-based microfluidic analytical devices (μPADs) has undergone rapid development and now provides a feasible, low-cost alternative to traditional rapid tests for detecting harmful compounds. In fact, µPADs have been developed to detect toxic molecules (arsenic, cyanide, ethanol, and nitrite), drugs, and drugs of abuse (benzodiazepines, cathinones, cocaine, fentanyl, ketamine, MDMA, morphine, synthetic cannabinoids, tetrahydrocannabinol, and xylazine), and also psychoactive substances used for drug-facilitated crimes (flunitrazepam, gamma-hydroxybutyric acid (GHB), ketamine, metamizole, midazolam, and scopolamine). The present report critically evaluates the recent developments in paper-based devices, particularly in detection methods, and how these new analytical tools have been tested in forensic and clinical toxicology, also including future perspectives on their application, such as multisensing paper-based devices, microfluidic paper-based separation, and wearable paper-based sensors.
Collapse
Affiliation(s)
- Giacomo Musile
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro 10, 37134 Verona, Italy
| | - Cristian Grazioli
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Cotonificio 108, 33100 Udine, Italy
| | - Stefano Fornasaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgeri 1, 34127 Trieste, Italy
| | - Nicolò Dossi
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Cotonificio 108, 33100 Udine, Italy
| | - Elio Franco De Palo
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro 10, 37134 Verona, Italy
| | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro 10, 37134 Verona, Italy
- Laboratory of Pharmacokinetics and Metabolomics Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street, 119991 Moscow, Russia
| | - Federica Bortolotti
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro 10, 37134 Verona, Italy
| |
Collapse
|
10
|
Ataide VN, Pradela-Filho LA, Ameku WA, Negahdary M, Oliveira TG, Santos BG, Paixão TRLC, Angnes L. Paper-based electrochemical biosensors for the diagnosis of viral diseases. Mikrochim Acta 2023; 190:276. [PMID: 37368054 DOI: 10.1007/s00604-023-05856-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Paper-based electrochemical analytical devices (ePADs) have gained significant interest as promising analytical units in recent years because they can be fabricated in simple ways, are low-cost, portable, and disposable platforms that can be applied in various fields. In this sense, paper-based electrochemical biosensors are attractive analytical devices since they can promote diagnose several diseases and potentially allow decentralized analysis. Electrochemical biosensors are versatile, as the measured signal can be improved by using mainly molecular technologies and nanomaterials to attach biomolecules, resulting in an increase in their sensitivity and selectivity. Additionally, they can be implemented in microfluidic devices that drive and control the flow without external pumping and store reagents, and improve the mass transport of analytes, increasing sensor sensitivity. In this review, we focus on the recent developments in electrochemical paper-based devices for viruses' detection, including COVID-19, Dengue, Zika, Hepatitis, Ebola, AIDS, and Influenza, among others, which have caused impacts on people's health, especially in places with scarce resources. Also, we discuss the advantages and disadvantages of the main electrode's fabrication methods, device designs, and biomolecule immobilization strategies. Finally, the perspectives and challenges that need to be overcome to further advance paper-based electrochemical biosensors' applications are critically presented.
Collapse
Affiliation(s)
- Vanessa N Ataide
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil.
| | - Lauro A Pradela-Filho
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Wilson A Ameku
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Thawan G Oliveira
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Berlane G Santos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Thiago R L C Paixão
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
11
|
Qureshi A, Niazi JH. Graphene-interfaced flexible and stretchable micro-nano electrodes: from fabrication to sweat glucose detection. MATERIALS HORIZONS 2023; 10:1580-1607. [PMID: 36880340 DOI: 10.1039/d2mh01517j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Flexible and stretchable wearable electronic devices have received tremendous attention for their non-invasive and personal health monitoring applications. These devices have been fabricated by integrating flexible substrates and graphene nanostructures for non-invasive detection of physiological risk biomarkers from human bodily fluids, such as sweat, and monitoring of human physical motion tracking parameters. The extraordinary properties of graphene nanostructures in fully integrated wearable devices have enabled improved sensitivity, electronic readouts, signal conditioning and communication, energy harvesting from power sources through electrode design and patterning, and graphene surface modification or treatment. This review explores advances made toward the fabrication of graphene-interfaced wearable sensors, flexible and stretchable conductive graphene electrodes, as well as their potential applications in electrochemical sensors and field-effect-transistors (FETs) with special emphasis on monitoring sweat biomarkers, mainly in glucose-sensing applications. The review emphasizes flexible wearable sweat sensors and provides various approaches thus far employed for the fabrication of graphene-enabled conductive and stretchable micro-nano electrodes, such as photolithography, electron-beam evaporation, laser-induced graphene designing, ink printing, chemical-synthesis and graphene surface modification. It further explores existing graphene-interfaced flexible wearable electronic devices utilized for sweat glucose sensing, and their technological potential for non-invasive health monitoring applications.
Collapse
Affiliation(s)
- Anjum Qureshi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey.
| | - Javed H Niazi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey.
| |
Collapse
|
12
|
Korotcenkov G. Paper-Based Humidity Sensors as Promising Flexible Devices: State of the Art: Part 1. General Consideration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061110. [PMID: 36986004 PMCID: PMC10059663 DOI: 10.3390/nano13061110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/14/2023]
Abstract
In the first part of the review article "General considerations" we give information about conventional flexible platforms and consider the advantages and disadvantages of paper when used in humidity sensors, both as a substrate and as a humidity-sensitive material. This consideration shows that paper, especially nanopaper, is a very promising material for the development of low-cost flexible humidity sensors suitable for a wide range of applications. Various humidity-sensitive materials suitable for use in paper-based sensors are analyzed and the humidity-sensitive characteristics of paper and other humidity-sensitive materials are compared. Various configurations of humidity sensors that can be developed on the basis of paper are considered, and a description of the mechanisms of their operation is given. Next, we discuss the manufacturing features of paper-based humidity sensors. The main attention is paid to the consideration of such problems as patterning and electrode formation. It is shown that printing technologies are the most suitable for mass production of paper-based flexible humidity sensors. At the same time, these technologies are effective both in the formation of a humidity-sensitive layer and in the manufacture of electrodes.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova
| |
Collapse
|
13
|
Holman JB, Shi Z, Fadahunsi AA, Li C, Ding W. Advances on microfluidic paper-based electroanalytical devices. Biotechnol Adv 2023; 63:108093. [PMID: 36603801 DOI: 10.1016/j.biotechadv.2022.108093] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Since the inception of the first electrochemical devices on paper substrates, many different reports of microfluidic paper-based electroanalytical devices (μPEDs), innovative hydrophobic barriers and electrode fabrication processes have allowed the incorporation of diverse materials, resulting in different applications and a boost in performance. These advancements have led to the creation of paper-based devices with comparable performance to many standard conventional devices, with the added benefits of pumpless fluidic transport, component separation and reagent storage that can be exploited to automate and handle sample preprocessing. Herein, we review μPEDs, summarize the characteristics and functionalities of μPEDs, such as separation, fluid flow control and storage, and outline the conventional and emerging fabrication and modification approaches for μPEDs. We also examine the recent application of μPEDs in biomedicine, the environment, and food and water safety, as well as some limitations and challenges that must be addressed.
Collapse
Affiliation(s)
- Joseph Benjamin Holman
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhengdi Shi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Adeola A Fadahunsi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
14
|
Modulating the Electrochemical Response of Eco‐Friendly Laser‐Pyrolyzed Paper Sensors Applied to Nitrite Determination. ChemElectroChem 2022. [DOI: 10.1002/celc.202201018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Goel S, Amreen K. Laser induced graphanized microfluidic devices. BIOMICROFLUIDICS 2022; 16:061505. [PMID: 36483020 PMCID: PMC9726225 DOI: 10.1063/5.0111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
With the advent of cyber-physical system-based automation and intelligence, the development of flexible and wearable devices has dramatically enhanced. Evidently, this has led to the thrust to realize standalone and sufficiently-self-powered miniaturized devices for a variety of sensing and monitoring applications. To this end, a range of aspects needs to be carefully and synergistically optimized. These include the choice of material, micro-reservoir to suitably place the analytes, integrable electrodes, detection mechanism, microprocessor/microcontroller architecture, signal-processing, software, etc. In this context, several researchers are working toward developing novel flexible devices having a micro-reservoir, both in flow-through and stationary phases, integrated with graphanized zones created by simple benchtop lasers. Various substrates, like different kinds of cloths, papers, and polymers, have been harnessed to develop laser-ablated graphene regions along with a micro-reservoir to aptly place various analytes to be sensed/monitored. Likewise, similar substrates have been utilized for energy harvesting by fuel cell or solar routes and supercapacitor-based energy storage. Overall, realization of a prototype is envisioned by integrating various sub-systems, including sensory, energy harvesting, energy storage, and IoT sub-systems, on a single mini-platform. In this work, the diversified work toward developing such prototypes will be showcased and current and future commercialization potential will be projected.
Collapse
Affiliation(s)
- Sanket Goel
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Khairunnisa Amreen
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
16
|
de Lima LF, de Araujo WR. Laser-scribed graphene on polyetherimide substrate: an electrochemical sensor platform for forensic determination of xylazine in urine and beverage samples. Mikrochim Acta 2022; 189:465. [DOI: 10.1007/s00604-022-05566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022]
|
17
|
Bossard B, Grothe RA, Martins AB, Lobato A, Tasić N, Paixão TRLC, Gonçalves LM. Nanographene laser-pyrolyzed paper electrodes for the impedimetric detection of d-glucose via a molecularly imprinted polymer. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Shao Z, Chang Y, Venton BJ. Carbon microelectrodes with customized shapes for neurotransmitter detection: A review. Anal Chim Acta 2022; 1223:340165. [PMID: 35998998 PMCID: PMC9867599 DOI: 10.1016/j.aca.2022.340165] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 01/26/2023]
Abstract
Carbon is a popular electrode material for neurotransmitter detection due to its good electrochemical properties, high biocompatibility, and inert chemistry. Traditional carbon electrodes, such as carbon fibers, have smooth surfaces and fixed shapes. However, newer studies customize the shape and nanostructure the surface to enhance electrochemistry for different applications. In this review, we show how changing the structure of carbon electrodes with methods such as chemical vapor deposition (CVD), wet-etching, direct laser writing (DLW), and 3D printing leads to different electrochemical properties. The customized shapes include nanotips, complex 3D structures, porous structures, arrays, and flexible sensors with patterns. Nanostructuring enhances sensitivity and selectivity, depending on the carbon nanomaterial used. Carbon nanoparticle modifications enhance electron transfer kinetics and prevent fouling for neurochemicals that are easily polymerized. Porous electrodes trap analyte momentarily on the scale of an electrochemistry experiment, leading to thin layer electrochemical behavior that enhances secondary peaks from chemical reactions. Similar thin layer cell behavior is observed at cavity carbon nanopipette electrodes. Nanotip electrodes facilitate implantation closer to the synapse with reduced tissue damage. Carbon electrode arrays are used to measure from multiple neurotransmitter release sites simultaneously. Custom-shaped carbon electrodes are enabling new applications in neuroscience, such as distinguishing different catecholamines by secondary peaks, detection of vesicular release in single cells, and multi-region measurements in vivo.
Collapse
Affiliation(s)
- Zijun Shao
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| | - Yuanyu Chang
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| | - B Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA.
| |
Collapse
|
19
|
Zhai J, Luo B, Li A, Dong H, Jin X, Wang X. Unlocking All-Solid Ion Selective Electrodes: Prospects in Crop Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:5541. [PMID: 35898054 PMCID: PMC9331676 DOI: 10.3390/s22155541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
This paper reviews the development of all-solid-state ion-selective electrodes (ASSISEs) for agricultural crop detection. Both nutrient ions and heavy metal ions inside and outside the plant have a significant influence on crop growth. This review begins with the detection principle of ASSISEs. The second section introduces the key characteristics of ASSISE and demonstrates its feasibility in crop detection based on previous research. The third section considers the development of ASSISEs in the detection of corps internally and externally (e.g., crop nutrition, heavy metal pollution, soil salinization, N enrichment, and sensor miniaturization, etc.) and discusses the interference of the test environment. The suggestions and conclusions discussed in this paper may provide the foundation for additional research into ion detection for crops.
Collapse
Affiliation(s)
- Jiawei Zhai
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Bin Luo
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Aixue Li
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Hongtu Dong
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaotong Jin
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaodong Wang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| |
Collapse
|
20
|
Deroco PB, Wachholz Junior D, Kubota LT. Paper‐based Wearable Electrochemical Sensors: a New Generation of Analytical Devices. ELECTROANAL 2022. [DOI: 10.1002/elan.202200177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Patricia Batista Deroco
- Institute of Chemistry University of Campinas – UNICAMP Campinas 13083-970 Brazil
- National Institute of Science and Technology in Bioanalytic (INCTBio) Brazil
| | - Dagwin Wachholz Junior
- Institute of Chemistry University of Campinas – UNICAMP Campinas 13083-970 Brazil
- National Institute of Science and Technology in Bioanalytic (INCTBio) Brazil
| | - Lauro Tatsuo Kubota
- Institute of Chemistry University of Campinas – UNICAMP Campinas 13083-970 Brazil
- National Institute of Science and Technology in Bioanalytic (INCTBio) Brazil
| |
Collapse
|
21
|
Ameku WA, Provance DW, Morel CM, De-Simone SG. Rapid Detection of Anti-SARS-CoV-2 Antibodies with a Screen-Printed Electrode Modified with a Spike Glycoprotein Epitope. BIOSENSORS 2022; 12:272. [PMID: 35624573 PMCID: PMC9139057 DOI: 10.3390/bios12050272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND The coronavirus disease of 2019 (COVID-19) is caused by an infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was recognized in late 2019 and has since spread worldwide, leading to a pandemic with unprecedented health and financial consequences. There remains an enormous demand for new diagnostic methods that can deliver fast, low-cost, and easy-to-use confirmation of a SARS-CoV-2 infection. We have developed an affordable electrochemical biosensor for the rapid detection of serological immunoglobulin G (IgG) antibody in sera against the spike protein. MATERIALS AND METHODS A previously identified linear B-cell epitope (EP) specific to the SARS-CoV-2 spike glycoprotein and recognized by IgG in patient sera was selected for the target molecule. After synthesis, the EP was immobilized onto the surface of the working electrode of a commercially available screen-printed electrode (SPE). The capture of SARS-CoV-2-specific IgGs allowed the formation of an immunocomplex that was measured by square-wave voltammetry from its generation of hydroquinone (HQ). RESULTS An evaluation of the performance of the EP-based biosensor presented a selectivity and specificity for COVID-19 of 93% and 100%, respectively. No cross-reaction was observed to antibodies against other diseases that included Chagas disease, Chikungunya, Leishmaniosis, and Dengue. Differentiation of infected and non-infected individuals was possible even at a high dilution factor that decreased the required sample volumes to a few microliters. CONCLUSION The final device proved suitable for diagnosing COVID-19 by assaying actual serum samples, and the results displayed good agreement with the molecular biology diagnoses. The flexibility to conjugate other EPs to SPEs suggests that this technology could be rapidly adapted to diagnose new variants of SARS-CoV-2 or other pathogens.
Collapse
Affiliation(s)
- Wilson A. Ameku
- Oswaldo Cruz Foundation (FIOCRUZ), Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Populations Diseases (INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil; (W.A.A.); (D.W.P.); (C.M.M.)
- Laboratory of Epidemiology and Molecualr Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - David W. Provance
- Oswaldo Cruz Foundation (FIOCRUZ), Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Populations Diseases (INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil; (W.A.A.); (D.W.P.); (C.M.M.)
- Laboratory of Epidemiology and Molecualr Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Carlos M. Morel
- Oswaldo Cruz Foundation (FIOCRUZ), Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Populations Diseases (INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil; (W.A.A.); (D.W.P.); (C.M.M.)
| | - Salvatore G. De-Simone
- Oswaldo Cruz Foundation (FIOCRUZ), Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Populations Diseases (INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil; (W.A.A.); (D.W.P.); (C.M.M.)
- Laboratory of Epidemiology and Molecualr Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
- Cellular and Molecular Department, Biology Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil
| |
Collapse
|
22
|
Nasraoui S, Ameur S, Al-Hamry A, Ben Ali M, Kanoun O. Development of an Efficient Voltammetric Sensor for the Monitoring of 4-Aminophenol Based on Flexible Laser Induced Graphene Electrodes Modified with MWCNT-PANI. SENSORS (BASEL, SWITZERLAND) 2022; 22:833. [PMID: 35161578 PMCID: PMC8840637 DOI: 10.3390/s22030833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023]
Abstract
Sensitive electrodes are of a great importance for the realization of highly performant electrochemical sensors for field application. In the present work, a laser-induced carbon (LIC) electrode is proposed for 4-Aminophenol (4-AP) electrochemical sensors. The electrode is patterned on a commercial low-cost polyimide (Kapton) sheet and functionalized with a multi-walled carbon nanotubes polyaniline (MWCNT-PANI) composite, realized by an in-situ-polymerization in an acidic medium. The LIC electrode modified with MWCNT-PAPNI nanocomposite was investigated by SEM, AFM, and electrochemically in the presence of ferri-ferrocyanide [Fe(CN)6]3-/4- by cyclic voltammetry and impedance spectroscopy. The results show a significant improvement of the electron transfer rate after the electrode functionalization in the presence of the redox mediators [Fe(CN)6]3-/4-, related directly to the active surface, which itself increased by about 18.13% compared with the bare LIG. The novel electrode shows a good reproducibility and a stability for 20 cycles and more. It has a significantly enhanced electro-catalytic activity towards electrooxidation reaction of 4-AP inferring positive synergistic effects between carbon nanotubes and polyaniline PANI. The presented electrode combination LIC/MWCNT-PANI exhibits a detection limit of 0.006 μM for the determination of 4-AP at concentrations ranging from 0.1 μM to 55 μM and was successfully applied for the monitoring in real samples with good recoveries.
Collapse
Affiliation(s)
- Salem Nasraoui
- Professorship of Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany;
- Centre for Research on Microelectronics and Nanotechnology of Sousse, Tunisia and NANOMISENE Lab, LR16CRMN01, University of Sousse Sahloul, Sousse 4003, Tunisia; (S.A.); (M.B.A.)
| | - Sami Ameur
- Centre for Research on Microelectronics and Nanotechnology of Sousse, Tunisia and NANOMISENE Lab, LR16CRMN01, University of Sousse Sahloul, Sousse 4003, Tunisia; (S.A.); (M.B.A.)
- Higher Agronomic Institute of Chott-Mariem, University of Sousse, Sousse 4034, Tunisia
| | - Ammar Al-Hamry
- Professorship of Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany;
| | - Mounir Ben Ali
- Centre for Research on Microelectronics and Nanotechnology of Sousse, Tunisia and NANOMISENE Lab, LR16CRMN01, University of Sousse Sahloul, Sousse 4003, Tunisia; (S.A.); (M.B.A.)
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, Sousse 4003, Tunisia
| | - Olfa Kanoun
- Professorship of Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany;
| |
Collapse
|
23
|
Nicoliche CYN, Pascon AM, Bezerra ÍRS, de Castro ACH, Martos GR, Bettini J, Alves WA, Santhiago M, Lima RS. In Situ Nanocoating on Porous Pyrolyzed Paper Enables Antibiofouling and Sensitive Electrochemical Analyses in Biological Fluids. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2522-2533. [PMID: 34990106 DOI: 10.1021/acsami.1c18778] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Electrochemical detection in complex biofluids is a long-standing challenge as electrode biofouling hampers its sensing performance and commercial translation. To overcome this drawback, pyrolyzed paper as porous electrode coupled with the drop casting of an off-the-shelf polysorbate, that is, Tween 20 (T20), is described here by taking advantage of the in situ formation of a hydrophilic nanocoating (2 nm layer of T20). The latter prevents biofouling while providing the capillarity of samples through paper pores, leveraging redox reactions across both only partially fouled and fresh electrodic surfaces with increasing detection areas. The nanometric thickness of this blocking layer is also essential by not significantly impairing the electron-transfer kinetics. These phenomena behave synergistically to enhance the sensibility that further increases over long-term exposures (4 h) in biological fluids. While the state-of-the-art antibiofouling strategies compromise the sensibility, this approach leads to peak currents that are up to 12.5-fold higher than the original currents after 1 h exposure to unprocessed human plasma. Label-free impedimetric immunoassays through modular bioconjugation by directly anchoring spike protein on gold nanoparticles are also allowed, as demonstrated for the COVID-19 screening of patient sera. The scalability and simplicity of the platform combined with its unique ability to operate in biofluids with enhanced sensibility provide the generation of promising biosensing technologies toward real-world applications in point-of-care diagnostics, mass testing, and in-home monitoring of chronic diseases.
Collapse
Affiliation(s)
- Caroline Y N Nicoliche
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Aline M Pascon
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Ítalo R S Bezerra
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Ana C H de Castro
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Gabriel R Martos
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Faculty of Chemistry, Pontifical Catholic University of Campinas, Campinas, São Paulo 13087-571, Brazil
| | - Jefferson Bettini
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
| | - Wendel A Alves
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Renato S Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
24
|
Kang M, Lee S. Graphene for Nanobiosensors and Nanobiochips. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:203-232. [DOI: 10.1007/978-981-16-4923-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Kongkaew S, Meng L, Limbut W, Kanatharana P, Thavarungkul P, Mak WC. Evaluation on the Intrinsic Physicoelectrochemical Attributes and Engineering of Micro-, Nano-, and 2D-Structured Allotropic Carbon-Based Papers for Flexible Electronics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14302-14313. [PMID: 34859679 PMCID: PMC8675137 DOI: 10.1021/acs.langmuir.1c02121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/18/2021] [Indexed: 05/14/2023]
Abstract
Flexible electronics have gained more attention for emerging electronic devices such as sensors, biosensors, and batteries with advantageous properties including being thin, lightweight, flexible, and low-cost. The development of various forms of allotropic carbon papers provided a new dry-manufacturing route for the fabrication of flexible and wearable electronics, while the electrochemical performance and the bending stability are largely influenced by the bulk morphology and the micro-/nanostructured domains of the carbon papers. Here, we evaluate systematically the intrinsic physicoelectrochemical properties of allotropic carbon-based conducting papers as flexible electrodes including carbon-nanotubes-paper (CNTs-paper), graphene-paper (GR-paper), and carbon-fiber-paper (CF-paper), followed by functionalization of the allotropic carbon papers for the fabrication of flexible electrodes. The morphology, chemical structure, and defects originating from the allotropic nanostructured carbon materials were characterized by scanning electron microscopy (SEM) and Raman spectroscopy, followed by evaluating the electrochemical performance of the corresponding flexible electrodes by cyclic voltammetry and electrochemical impedance spectroscopy. The electron-transfer rate constants of the CNTs-paper and GR-paper electrodes were ∼14 times higher compared with the CF-paper electrode. The CNTs-paper and GR-paper electrodes composed of nanostructured carbon showed significantly higher bending stabilities of 5.61 and 4.96 times compared with the CF-paper. The carbon-paper flexible electrodes were further functionalized with an inorganic catalyst, Prussian blue (PB), forming the PB-carbon-paper catalytic electrode and an organic conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), forming the PEDOT-carbon-paper capacitive electrode. The intrinsic attribute of different allotropic carbon electrodes affects the deposition of PB and PEDOT, leading to different electrocatalytic and capacitive performances. These findings are insightful for the future development and fabrication of advanced flexible electronics with allotropic carbon papers.
Collapse
Affiliation(s)
- Supatinee Kongkaew
- Biosensors
and Bioelectronics Centre, Division of Sensor and Actuator Systems,
Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Lingyin Meng
- Biosensors
and Bioelectronics Centre, Division of Sensor and Actuator Systems,
Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Warakorn Limbut
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division
of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Proespichaya Kanatharana
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Panote Thavarungkul
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wing Cheung Mak
- Biosensors
and Bioelectronics Centre, Division of Sensor and Actuator Systems,
Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
26
|
Liu J, Liu X, Zhang L, Zhu L, Mei X, Wei J, Li Y. Hand-Held and Integrated Tubular Tip-like Sensing Platform Series: Point-of-care Device for Semi-automated Multiplexed Assay. Anal Chem 2021; 93:15534-15542. [PMID: 34747608 DOI: 10.1021/acs.analchem.1c03717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently, most of the electrochemical sensors were prepared based on the planar electrode (PE) and utilized in open circumstance. The accompanying issues include fixed and limited sensing area of PE, insufficient usage of the testing sample, tedious operation, and susceptibility to external environment. Herein, a novel tubular tip-like sensor (TTLS) platform was proposed, where a small tip accommodates all electrodes with a curved surface and also acts as a closed detection chamber. Teaming up with a commercial pipette and potentiostat, the TTLS is able to accomplish the whole assay procedure including sampling, detection, rinsing, and regeneration with a single hand. The electrochemical interface area can be easily tuned to adapting for different scenarios with varied sensitivity request. Moreover, two TTLS-based array systems were derived: one integrates multiple working electrodes in one tip for multicomponent quantification and the other assembles eight independent TTLSs for high-throughput analysis. The admirable sensing performance of the TTLS was fully proved by detecting several liver-related biomarkers in 5 μL of the serum sample. The proposed tubular sensor platform is superior to the traditional electrochemical sensor in the aspects of unique sensing surface, fast and simple operation, good portability, and great compatibility. The TTLS could be used as an ideal analytical tool in point-of-care testing and other fields.
Collapse
Affiliation(s)
- Jiang Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China.,Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Xiaoxue Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Lu Zhang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Liang Zhu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Xuecui Mei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Yingchun Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| |
Collapse
|
27
|
Yu Z, Gong H, Li Y, Xu J, Zhang J, Zeng Y, Liu X, Tang D. Chemiluminescence-Derived Self-Powered Photoelectrochemical Immunoassay for Detecting a Low-Abundance Disease-Related Protein. Anal Chem 2021; 93:13389-13397. [PMID: 34554727 DOI: 10.1021/acs.analchem.1c03344] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early diagnosis of cancers relies on the sensitive detection of specific biomarkers, but most of the current testing methods are inaccessible to home healthcare due to cumbersome steps, prolonged testing time, and utilization of toxic and hazardous substances. Herein, we developed a portable self-powered photoelectrochemical (PEC) sensing platform for rapid detection of prostate-specific antigen (PSA, as a model disease-related protein) by integrating a self-powered photoelectric signal output system catalyzed with chemiluminescence-functionalized Au nanoparticles (AuNPs) and a phosphomolybdic acid (PMA)-based photochromic visualization platform. TiO2-g-C3N4-PMA photosensitive materials were first synthesized and functionalized on a sensor chip. The sensor consisted of filter paper modified with a photocatalytic material and a regional laser-etched FTO electrode as an alternative to a conventional PEC sensor with a glass-based electrode. The targeting system involved a monoclonal anti-PSA capture antibody-functionalized Fe3O4 magnetic bead (mAb1-MB) and a polyclonal anti-PSA antibody (pAb2)-N-(4-aminobutyl)-N-ethylisoluminol-AuNP (ABEI-AuNP). Based on the signal intensity of the chemiluminescent system, the photochromic device color changed from light yellow to heteropoly blue through the PMA photoelectric materials integrated into the electrode for visualization of the signal output. In addition, the electrical signal in the PEC system was amplified by a sandwich-type capacitor and readout on a handheld digital multimeter. Under optimum conditions, the sensor exhibited high sensitivity relative to PSA in the range of 0.01-50 ng mL-1 with a low detection limit of 6.25 pg mL-1. The flow-through chemiluminescence reactor with a semiautomatic injection device and magnetic separation was avoid of unstable light source intensity inherent in the chemiluminescence process. Therefore, our strategy provides a new horizon for point-of-care analysis and rapid cost-effective clinical diagnosis.
Collapse
Affiliation(s)
- Zhichao Yu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Hexiang Gong
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yuxuan Li
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jianhui Xu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jin Zhang
- Chongqing Vocational Institute of Engineering, Chongqing 402260, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.,Chongqing Vocational Institute of Engineering, Chongqing 402260, People's Republic of China
| |
Collapse
|
28
|
Rocha DS, Duarte LC, Silva-Neto HA, Chagas CL, Santana MH, Antoniosi Filho NR, Coltro WK. Sandpaper-based electrochemical devices assembled on a reusable 3D-printed holder to detect date rape drug in beverages. Talanta 2021; 232:122408. [DOI: 10.1016/j.talanta.2021.122408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
|
29
|
Jafari S, Guercetti J, Geballa-Koukoula A, Tsagkaris AS, Nelis JLD, Marco MP, Salvador JP, Gerssen A, Hajslova J, Elliott C, Campbell K, Migliorelli D, Burr L, Generelli S, Nielen MWF, Sturla SJ. ASSURED Point-of-Need Food Safety Screening: A Critical Assessment of Portable Food Analyzers. Foods 2021; 10:1399. [PMID: 34204284 PMCID: PMC8235511 DOI: 10.3390/foods10061399] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 12/19/2022] Open
Abstract
Standard methods for chemical food safety testing in official laboratories rely largely on liquid or gas chromatography coupled with mass spectrometry. Although these methods are considered the gold standard for quantitative confirmatory analysis, they require sampling, transferring the samples to a central laboratory to be tested by highly trained personnel, and the use of expensive equipment. Therefore, there is an increasing demand for portable and handheld devices to provide rapid, efficient, and on-site screening of food contaminants. Recent technological advancements in the field include smartphone-based, microfluidic chip-based, and paper-based devices integrated with electrochemical and optical biosensing platforms. Furthermore, the potential application of portable mass spectrometers in food testing might bring the confirmatory analysis from the laboratory to the field in the future. Although such systems open new promising possibilities for portable food testing, few of these devices are commercially available. To understand why barriers remain, portable food analyzers reported in the literature over the last ten years were reviewed. To this end, the analytical performance of these devices and the extent they match the World Health Organization benchmark for diagnostic tests, i.e., the Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable to end-users (ASSURED) criteria, was evaluated critically. A five-star scoring system was used to assess their potential to be implemented as food safety testing systems. The main findings highlight the need for concentrated efforts towards combining the best features of different technologies, to bridge technological gaps and meet commercialization requirements.
Collapse
Affiliation(s)
- Safiye Jafari
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland;
- CSEM SA, Center Landquart, Bahnhofstrasse 1, 7302 Landquart, Switzerland; (D.M.); (L.B.)
| | - Julian Guercetti
- Nanobiotechnology for Diagnostics (Nb4D), Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (J.G.); (M.-P.M.); (J.-P.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ariadni Geballa-Koukoula
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; (A.G.-K.); (A.G.); (M.W.N.F.)
| | - Aristeidis S. Tsagkaris
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, Dejvice, 166 28 Prague 6, Czech Republic; (A.S.T.); (J.H.)
| | - Joost L. D. Nelis
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (J.L.D.N.); (C.E.); (K.C.)
| | - M.-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (J.G.); (M.-P.M.); (J.-P.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - J.-Pablo Salvador
- Nanobiotechnology for Diagnostics (Nb4D), Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (J.G.); (M.-P.M.); (J.-P.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Arjen Gerssen
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; (A.G.-K.); (A.G.); (M.W.N.F.)
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, Dejvice, 166 28 Prague 6, Czech Republic; (A.S.T.); (J.H.)
| | - Chris Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (J.L.D.N.); (C.E.); (K.C.)
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (J.L.D.N.); (C.E.); (K.C.)
| | - Davide Migliorelli
- CSEM SA, Center Landquart, Bahnhofstrasse 1, 7302 Landquart, Switzerland; (D.M.); (L.B.)
| | - Loïc Burr
- CSEM SA, Center Landquart, Bahnhofstrasse 1, 7302 Landquart, Switzerland; (D.M.); (L.B.)
| | - Silvia Generelli
- CSEM SA, Center Landquart, Bahnhofstrasse 1, 7302 Landquart, Switzerland; (D.M.); (L.B.)
| | - Michel W. F. Nielen
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; (A.G.-K.); (A.G.); (M.W.N.F.)
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Shana J. Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland;
| |
Collapse
|
30
|
Fonseca WT, Castro KR, Oliveira TR, Faria RC. Disposable and Flexible Electrochemical Paper‐based Analytical Devices Using Low‐cost Conductive Ink. ELECTROANAL 2021. [DOI: 10.1002/elan.202060564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wilson Tiago Fonseca
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís km 235 – SP-310 São Carlos SP 13565–905 Brazil
| | - Karla Ribeiro Castro
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís km 235 – SP-310 São Carlos SP 13565–905 Brazil
| | - Tássia Regina Oliveira
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís km 235 – SP-310 São Carlos SP 13565–905 Brazil
| | - Ronaldo Censi Faria
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís km 235 – SP-310 São Carlos SP 13565–905 Brazil
| |
Collapse
|
31
|
Kulyk B, Silva BFR, Carvalho AF, Silvestre S, Fernandes AJS, Martins R, Fortunato E, Costa FM. Laser-Induced Graphene from Paper for Mechanical Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10210-10221. [PMID: 33619955 DOI: 10.1021/acsami.0c20270] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ability to synthesize laser-induced graphene (LIG) on cellulosic materials such as paper opens the door to a wide range of potential applications, from consumer electronics to biomonitoring. In this work, strain and bending sensors fabricated by irradiation of regular filter paper with a CO2 laser are presented. A systematic study of the influence of the different process parameters on the conversion of cellulose fibers into LIG is undertaken, by analyzing the resulting morphology, structure, conductivity, and surface chemistry. The obtained material is characterized by porous electrically conductive weblike structures with sheet resistances reaching as low as 32 Ω sq-1. The functionality of both strain (gauge factor of ≈42) and bending sensors is demonstrated for different sensing configurations, emphasizing the versatility and potential of this material for low-cost, sustainable, and environmentally friendly mechanical sensing.
Collapse
Affiliation(s)
- Bohdan Kulyk
- i3N, Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Beatriz F R Silva
- i3N, Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Alexandre F Carvalho
- i3N, Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sara Silvestre
- i3N/CENIMAT, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - António J S Fernandes
- i3N, Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rodrigo Martins
- i3N/CENIMAT, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- i3N/CENIMAT, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Florinda M Costa
- i3N, Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
32
|
Ameku W, Gonçalves JM, Ataide VN, Ferreira Santos MS, Gutz IGR, Araki K, Paixão TRLC. Combined Colorimetric and Electrochemical Measurement Paper-Based Device for Chemometric Proof-of-Concept Analysis of Cocaine Samples. ACS OMEGA 2021; 6:594-605. [PMID: 33458511 PMCID: PMC7807801 DOI: 10.1021/acsomega.0c05077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/22/2020] [Indexed: 05/26/2023]
Abstract
Cocaine (COC) is one of the most widely consumed illegal drugs around the world. Street COC is commonly adulterated with pharmaceutical compounds that mimic or intensify the COC's sensory effect. Adulteration is performed to increase the profit of criminal organizations and each one has their own way of doing it. Therefore, determining the composition of seized COC samples (chemical profile) provides evidence for the police to track criminal organization networks and their activity patterns. Using filter paper as a substrate, we developed a multiple detection paper-based analytical device (PAD) that combines colorimetric and electrochemical measurements to discriminate COC samples according to adulterant's content. A regular graphite lead modified with a gold film made from Au leaf (graphite/Au) to improve electron transfer was used as a working electrode. Silver and Ag/AgCl were used as auxiliary and reference electrodes, respectively. The colorimetric device was patterned using a laser cutter and coupled to the electrochemical device using a double-sided tape, allowing simultaneous analysis to gather more analytical information about COC samples. Graphite/Au was characterized by scanning and transmission electron microscopies and electrochemical assays. The simultaneous colorimetric and electrochemical analyses combined to principal component analysis improved the analytical characterization of COC trial samples and provided a fast discrimination based on the assembled database.
Collapse
Affiliation(s)
- Wilson
A. Ameku
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Josué M. Gonçalves
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Vanessa N. Ataide
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Mauro S. Ferreira Santos
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Ivano G. R. Gutz
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Koiti Araki
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Thiago R. L. C. Paixão
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, São Paulo 13084-971, Brazil
| |
Collapse
|
33
|
Ataide VN, Ameku WA, Bacil RP, Angnes L, de Araujo WR, Paixão TRLC. Enhanced performance of pencil-drawn paper-based electrodes by laser-scribing treatment. RSC Adv 2021; 11:1644-1653. [PMID: 35424136 PMCID: PMC8693669 DOI: 10.1039/d0ra08874a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/28/2020] [Indexed: 01/14/2023] Open
Abstract
Electrochemical Paper-based Analytical Devices (ePADs) are an alternative to traditional portable analytical techniques due to features such as low-cost, easy surface modification with different materials, and high sensitivity. A fast and simple method to fabricate enhanced ePADs using pencil-drawing which involves the CO2 laser treatment of the carbon surface deposited on paper is described. The electrochemical performances of the devices were evaluated using cyclic voltammetry (CV) with different redox probes and electrochemical impedance spectroscopy (EIS). The electrochemical results show that a treated surface presents a lower resistance to charge transfer and changes the approach of the probe and the overlap of its orbitals with the electrode. To investigate the effects of the laser treatment process, chemical and structural characteristics were evaluated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. These results indicated that laser treatment promoted the restoration of carbon-carbon double bonds and removed a thin layer of nanodebris present in commercial pencils, resulting in an improvement of the electrochemical kinetics. As a proof-of-concept, the Pencil-Drawing Electrode (PDE) was used for the detection and quantification of furosemide (FUR) in a sample of synthetic urine, exhibiting a limit of detection (LOD) of 2.4 × 10-7 mol L-1. The percentages of recovery of the FUR added to the samples A and B were 95% and 110%, respectively. The analysis using CO2 laser-treated PDE resulted in a fast, simple, and reliable method for this doping agent.
Collapse
Affiliation(s)
- Vanessa N Ataide
- Department of Fundamental Chemistry, Institute of Chemistry, São Paulo University-USP São Paulo SP 05508-900 Brazil
| | - Wilson A Ameku
- Department of Fundamental Chemistry, Institute of Chemistry, São Paulo University-USP São Paulo SP 05508-900 Brazil
| | - Raphael P Bacil
- Department of Fundamental Chemistry, Institute of Chemistry, São Paulo University-USP São Paulo SP 05508-900 Brazil
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, São Paulo University-USP São Paulo SP 05508-900 Brazil
| | - William R de Araujo
- Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas-UNICAMP Campinas SP 13083-970 Brazil
| | - Thiago R L C Paixão
- Department of Fundamental Chemistry, Institute of Chemistry, São Paulo University-USP São Paulo SP 05508-900 Brazil
| |
Collapse
|
34
|
Silva-Neto HA, Cardoso TMG, McMahon CJ, Sgobbi LF, Henry CS, Coltro WKT. Plug-and-play assembly of paper-based colorimetric and electrochemical devices for multiplexed detection of metals. Analyst 2021; 146:3463-3473. [DOI: 10.1039/d1an00176k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We propose a “plug-and-play” (PnP) assembly for coupling paper-based colorimetric and electrochemical devices for multiplexed detection of metals.
Collapse
Affiliation(s)
| | | | | | - Lívia F. Sgobbi
- Instituto de Química
- Universidade Federal de Goiás
- Goiânia
- Brazil
| | | | - Wendell K. T. Coltro
- Instituto de Química
- Universidade Federal de Goiás
- Goiânia
- Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica
| |
Collapse
|
35
|
Tasić N, Bezerra Martins A, Yifei X, Sousa Góes M, Martín-Yerga D, Mao L, Paixão TR, Moreira Gonçalves L. Insights into electrochemical behavior in laser-scribed electrochemical paper-based analytical devices. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
36
|
Qiao Y, Li X, Jian J, Wu Q, Wei Y, Shuai H, Hirtz T, Zhi Y, Deng G, Wang Y, Gou G, Xu J, Cui T, Tian H, Yang Y, Ren TL. Substrate-Free Multilayer Graphene Electronic Skin for Intelligent Diagnosis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49945-49956. [PMID: 33090758 DOI: 10.1021/acsami.0c12440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Current wearable sensors are fabricated with substrates, which limits the comfort, flexibility, stretchability, and induces interface mismatch. In addition, the substrate prevents the evaporation of sweat and is harmful to skin health. In this work, we have enabled the substrate-free laser scribed graphene (SFG) electronic skin (e-skin) with multifunctions. Compared with the e-skin with the substrate, the SFG has good gas permeability, low impedance, and flexibility. Only assisted using water, the SFG can be transferred to almost any objects including silicon and human skin and it can even be suspended. Many through-holes like stomas in leaf can be formed in the SFG, which make it breathable. After designing the pattern, the gauge factor (GF) of graphene electronic skin (GES) can be designed as the strain sensor. Physiological signals such as respiration, human motion, and electrocardiogram (ECG) can be detected. Moreover, the suspended SFG detect vibrations with high sensitivity. Due to the substrate-free structure, the impedance between SFG e-skin and the human body decreases greatly. Finally, an ECG detecting system has been designed based on the GES, which can monitor the body condition in real time. To analyze the ECG signals automatically, a convolutional neural network (CNN) was built and trained successfully. This work has high potential in the field of health telemonitoring.
Collapse
Affiliation(s)
- Yancong Qiao
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xiaoshi Li
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jinming Jian
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Qi Wu
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yuhong Wei
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Hua Shuai
- Department of Physics, Engineering Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Thomas Hirtz
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yao Zhi
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Ge Deng
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yunfan Wang
- Institute of Electronics, Tsinghua University, Beijing 100084, China
| | - Guangyang Gou
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jiandong Xu
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tianrui Cui
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - He Tian
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi Yang
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Pandhi T, Cornwell C, Fujimoto K, Barnes P, Cox J, Xiong H, Davis PH, Subbaraman H, Koehne JE, Estrada D. Fully inkjet-printed multilayered graphene-based flexible electrodes for repeatable electrochemical response. RSC Adv 2020; 10:38205-38219. [PMID: 35517530 PMCID: PMC9057201 DOI: 10.1039/d0ra04786d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
Graphene has proven to be useful in biosensing applications. However, one of the main hurdles with printed graphene-based electrodes is achieving repeatable electrochemical performance from one printed electrode to another. We have developed a consistent fabrication process to control the sheet resistance of inkjet-printed graphene electrodes, thereby accomplishing repeatable electrochemical performance. Herein, we investigated the electrochemical properties of multilayered graphene (MLG) electrodes fully inkjet-printed (IJP) on flexible Kapton substrates. The electrodes were fabricated by inkjet printing three materials – (1) a conductive silver ink for electrical contact, (2) an insulating dielectric ink, and (3) MLG ink as the sensing material. The selected materials and fabrication methods provided great control over the ink rheology and material deposition, which enabled stable and repeatable electrochemical response: bending tests revealed the electrochemical behavior of these sensors remained consistent over 1000 bend cycles. Due to the abundance of structural defects (e.g., edge defects) present in the exfoliated graphene platelets, cyclic voltammetry (CV) of the graphene electrodes showed good electron transfer (k = 1.125 × 10−2 cm s−1) with a detection limit (0.01 mM) for the ferric/ferrocyanide redox couple, [Fe(CN)6]−3/−4, which is comparable or superior to modified graphene or graphene oxide-based sensors. Additionally, the potentiometric response of the electrodes displayed good sensitivity over the pH range of 4–10. Moreover, a fully IJP three-electrode device (MLG, platinum, and Ag/AgCl) also showed quasi-reversibility compared to a single IJP MLG electrode device. These findings demonstrate significant promise for scalable fabrication of a flexible, low cost, and fully-IJP wearable sensor system needed for space, military, and commercial biosensing applications. A fully inkjet printed and flexible multilayer graphene based three electrode device showed electrochemical reversibility.![]()
Collapse
Affiliation(s)
- Twinkle Pandhi
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA
| | - Casey Cornwell
- Department of Chemistry, Northwest Nazarene University Nampa ID 83686 USA
| | - Kiyo Fujimoto
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA
| | - Pete Barnes
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA
| | - Jasmine Cox
- Department of Electrical and Computer Engineering, Boise State University Boise ID 83725-2075 USA
| | - Hui Xiong
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA
| | - Paul H Davis
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA
| | - Harish Subbaraman
- Department of Electrical and Computer Engineering, Boise State University Boise ID 83725-2075 USA
| | | | - David Estrada
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA .,Center for Advanced Energy Studies, Boise State University Boise ID 83725-1012 USA
| |
Collapse
|
38
|
Sustainable materials for the design of forefront printed (bio)sensors applied in agrifood sector. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115909] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Mazurkiewicz W, Podrażka M, Jarosińska E, Kappalakandy Valapil K, Wiloch M, Jönsson‐Niedziółka M, Witkowska Nery E. Paper‐Based Electrochemical Sensors and How to Make Them (Work). ChemElectroChem 2020. [DOI: 10.1002/celc.202000512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wojciech Mazurkiewicz
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Marta Podrażka
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Elżbieta Jarosińska
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | | | - Magdalena Wiloch
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | | | - Emilia Witkowska Nery
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
40
|
Li H, Guo C, Liu C, Ge L, Li F. Laser-induced graphene hybrid photoelectrode for enhanced photoelectrochemical detection of glucose. Analyst 2020; 145:4041-4049. [PMID: 32367085 DOI: 10.1039/d0an00252f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The combination of an electrocatalyst with a semiconductor light absorber is of great importance to increase the efficiency of photoelectrochemical (PEC) glucose detection. Here, in situ and synchronous fabrication of a Ni-based electrocatalyst (NiEC) and CdS semiconductor in laser-induced graphene (LIG) on indium-tin oxide glass is demonstrated via a one-step laser-induced solid phase transition. A series of component and structural characterization experiments suggest that the laser-induced NiEC uniformly disperses in the hybrid nanocomposite and exists mainly in the Ni0 and NiO states. Moreover, both electrochemical and PEC investigations confirm that the as-prepared hybrid photoelectrode exhibits excellent photoelectrocatalytic ability towards glucose, which is not only attributed to the strong synergistic interaction between CdS and NiEC, but also benefited from the high conductivity as well as 3D macroporous configuration of the simultaneously formed LIG, providing the key factor to achieve sensitive non-enzymatic PEC glucose sensors. Therefore, the laser-induced hybrid photoelectrode is then applied to the PEC detection of glucose, and a low detection limit of 0.4 μM is obtained with good stability, reproducibility, and selectivity. This study provides a promising paradigm for the facile and binder-free fabrication of an electrocatalyst-semiconductor-graphene hybrid photoelectrode, which will find potential applications in sensitive PEC biosensing for a broad range of analytes.
Collapse
Affiliation(s)
- Hui Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| | | | | | | | | |
Collapse
|
41
|
Qiao Y, Gou G, Wu F, Jian J, Li X, Hirtz T, Zhao Y, Zhi Y, Wang F, Tian H, Yang Y, Ren TL. Graphene-Based Thermoacoustic Sound Source. ACS NANO 2020; 14:3779-3804. [PMID: 32186849 DOI: 10.1021/acsnano.9b10020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thermoacoustic (TA) effect has been discovered for more than 130 years. However, limited by the material characteristics, the performance of a TA sound source could not be compared with magnetoelectric and piezoelectric loudspeakers. Recently, graphene, a two-dimensional material with the lowest heat capacity per unit area, was discovered to have a good TA performance. Compared with a traditional sound source, graphene TA sound sources (GTASSs) have many advantages, such as small volume, no diaphragm vibration, wide frequency range, high transparency, good flexibility, and high sound pressure level (SPL). Therefore, graphene has a great potential as a next-generation sound source. Photoacoustic (PA) imaging can also be applied to the diagnosis and treatment of diseases using the photothermo-acoustic (PTA) effect. Therefore, in this review, we will introduce the history of TA devices. Then, the theory and simulation model of TA will be analyzed in detail. After that, we will talk about the graphene synthesis method. To improve the performance of GTASSs, many strategies such as lowering the thickness and using porous or suspended structures will be introduced. With a good PTA effect and large specific area, graphene PA imaging and drug delivery is a promising prospect in cancer treatment. Finally, the challenges and prospects of GTASSs will be discussed.
Collapse
Affiliation(s)
- Yancong Qiao
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Guangyang Gou
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Fan Wu
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jinming Jian
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xiaoshi Li
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Thomas Hirtz
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yunfei Zhao
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yao Zhi
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Fangwei Wang
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - He Tian
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi Yang
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Sassa F, Biswas GC, Suzuki H. Microfabricated electrochemical sensing devices. LAB ON A CHIP 2020; 20:1358-1389. [PMID: 32129358 DOI: 10.1039/c9lc01112a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemistry provides possibilities to realize smart microdevices of the next generation with high functionalities. Electrodes, which constitute major components of electrochemical devices, can be formed by various microfabrication techniques, and integration of the same (or different) components for that purpose is not difficult. Merging this technique with microfluidics can further expand the areas of application of the resultant devices. To augment the development of next generation devices, it will be beneficial to review recent technological trends in this field and clarify the directions required for moving forward. Even when limiting the discussion to electrochemical microdevices, a variety of useful techniques should be considered. Therefore, in this review, we attempted to provide an overview of all relevant techniques in this context in the hope that it can provide useful comprehensive information.
Collapse
Affiliation(s)
- Fumihiro Sassa
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | | | | |
Collapse
|
43
|
He Y, Jia F, Guan J, Fu Y, Li Y. Electrochemical Conversion of Magnetic Nanoparticles Using Disposable Working Electrode in a 3D‐Printed Electrochemical Cell. ELECTROANAL 2020. [DOI: 10.1002/elan.202000035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yawen He
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou 310058 China
| | - Fei Jia
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou 310058 China
| | - Junfei Guan
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou 310058 China
| | - Yingchun Fu
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou 310058 China
| | - Yanbin Li
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou 310058 China
- Department of Biological and Agricultural EngineeringUniversity of Arkansas Fayetteville AR 72701 USA
| |
Collapse
|
44
|
Dossi N, Toniolo R, Terzi F, Grazioli C, Svigelj R, Gobbi F, Bontempelli G. A Simple Strategy for Easily Assembling 3D Printed Miniaturized Cells Suitable for Simultaneous Electrochemical and Spectrophotometric Analyses. ELECTROANAL 2020. [DOI: 10.1002/elan.201900461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nicolò Dossi
- Department of Agrifood, Environmental and Animal ScienceUniversity of Udine via Cotonificio 108 I-33100 Udine Italy
| | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal ScienceUniversity of Udine via Cotonificio 108 I-33100 Udine Italy
| | - Fabio Terzi
- Department of Chemical and Geological ScienceUniversity of Modena and Reggio Emilia via Campi 183 I-41125 Modena Italy
| | - Cristian Grazioli
- Department of Agrifood, Environmental and Animal ScienceUniversity of Udine via Cotonificio 108 I-33100 Udine Italy
| | - Rossella Svigelj
- Department of Agrifood, Environmental and Animal ScienceUniversity of Udine via Cotonificio 108 I-33100 Udine Italy
| | - Filippo Gobbi
- Department of Agrifood, Environmental and Animal ScienceUniversity of Udine via Cotonificio 108 I-33100 Udine Italy
| | - Gino Bontempelli
- Department of Agrifood, Environmental and Animal ScienceUniversity of Udine via Cotonificio 108 I-33100 Udine Italy
| |
Collapse
|
45
|
Zhang Y, Xu J, Zhou S, Zhu L, Lv X, Zhang J, Zhang L, Zhu P, Yu J. DNAzyme-Triggered Visual and Ratiometric Electrochemiluminescence Dual-Readout Assay for Pb(II) Based on an Assembled Paper Device. Anal Chem 2020; 92:3874-3881. [DOI: 10.1021/acs.analchem.9b05343] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Jinmeng Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Shuang Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P.R. China
| | - Lin Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Xue Lv
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, P. R. China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| |
Collapse
|
46
|
Noviana E, McCord CP, Clark KM, Jang I, Henry CS. Electrochemical paper-based devices: sensing approaches and progress toward practical applications. LAB ON A CHIP 2020; 20:9-34. [PMID: 31620764 DOI: 10.1039/c9lc00903e] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Paper-based sensors offer an affordable yet powerful platform for field and point-of-care (POC) testing due to their self-pumping ability and utility for many different analytical measurements. When combined with electrochemical detection using small and portable electronics, sensitivity and selectivity of the paper devices can be improved over naked eye detection without sacrificing portability. Herein, we review how the field of electrochemical paper-based analytical devices (ePADs) has grown since it was introduced a decade ago. We start by reviewing fabrication methods relevant to ePADs with more focus given to the electrode fabrication, which is fundamental for electrochemical sensing. Multiple sensing approaches applicable to ePADs are then discussed and evaluated to present applicability, advantages and challenges associated with each approach. Recent applications of ePADs in the fields of clinical diagnostics, environmental testing, and food analysis are also presented. Finally, we discuss how the current ePAD technologies have progressed to meet the analytical and practical specifications required for field and/or POC applications, as well as challenges and outlook.
Collapse
Affiliation(s)
- Eka Noviana
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA. and Department of Pharmaceutical Chemistry, School of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Cynthia P McCord
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Kaylee M Clark
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ilhoon Jang
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA. and Institute of Nano Science and Technology, Hanyang University, Seoul, South Korea
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
47
|
Ju K, Gao Y, Xiao T, Yu C, Tan J, Xuan F. Laser direct writing of carbonaceous sensors on cardboard for human health and indoor environment monitoring. RSC Adv 2020; 10:18694-18703. [PMID: 35518308 PMCID: PMC9053907 DOI: 10.1039/d0ra02217a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/05/2020] [Indexed: 11/21/2022] Open
Abstract
Carbonaceous sensors on cardboard can be used for human health and indoor environment monitoring.
Collapse
Affiliation(s)
- Kuan Ju
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yang Gao
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Ting Xiao
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Cunjiang Yu
- Department of Mechanical Engineering
- University of Houston
- Houston
- USA
| | - Jianpin Tan
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Fuzhen Xuan
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
48
|
Liu Z, Ji H, Yuan Q, Ma X, Feng H, Zhao W, Wei J, Xu C, Li M. Nano oxide intermediate layer assisted room temperature sintering of ink-jet printed silver nanoparticles pattern. NANOTECHNOLOGY 2019; 30:495302. [PMID: 31480026 DOI: 10.1088/1361-6528/ab40db] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sintering of metallic nanoparticles (NPs) at low temperature is highly wanted in the manufacturing of flexible electronics. And for ink-jet printing, the metallic NPs after printing usually need thermal or chemical post-treatment to remove stabilizing agents and achieve conductivity. Here, we reported a facile method to realize one-step printed sintering of silver nanoparticle (AgNP) ink at room temperature by using intermediate coated layers composed of oxide NPs and polyvinyl alcohol (PVA) mixture. We found that the detachment of the stabilizer (citrate) from the AgNPs was caused by hydroxyl groups on the surface of the oxide NPs, which enabled the coalescence and sintering of the AgNPs. With the aid of SiO2 NPs based intermediate layer, the patterns showed resistivity as low as 3.45 μΩ cm after sintering. Moreover, the mixed PVA could ensure the forming quality of patterns owing to its adsorption of ink and the high adhesiveness of PVA with substrates. So, we envision that this approach could serve as an adaptive method for sintering of AgNPs based conductive patterns on various substrates at room temperature and promote the manufacture of printed electronics.
Collapse
Affiliation(s)
- Zhongyang Liu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Smartphone‐coupled Electrochemical Analysis of Cellular Superoxide Anions Based on Mn
x
(PO
4
)
y
Monolayer Modified Porous Carbon. ELECTROANAL 2019. [DOI: 10.1002/elan.201900623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Qiao Y, Li X, Hirtz T, Deng G, Wei Y, Li M, Ji S, Wu Q, Jian J, Wu F, Shen Y, Tian H, Yang Y, Ren TL. Graphene-based wearable sensors. NANOSCALE 2019; 11:18923-18945. [PMID: 31532436 DOI: 10.1039/c9nr05532k] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human body is a "delicate machine" full of sensors such as the fingers, nose, and mouth. In addition, numerous physiological signals are being created every moment, which can reflect the condition of the body. The quality and the quantity of the physiological signals are important for diagnoses and the execution of therapies. Due to the incompact interface between the sensors and the skin, the signals obtained by commercial rigid sensors do not bond well with the body; this decreases the quality of the signal. To increase the quantity of the data, it is important to detect physiological signals in real time during daily life. In recent years, there has been an obvious trend of applying graphene devices with excellent performance (flexibility, biocompatibility, and electronic characters) in wearable systems. In this review, we will first provide an introduction about the different methods of synthesis of graphene, and then techniques for graphene patterning will be outlined. Moreover, wearable graphene sensors to detect mechanical, electrophysiological, fluid, and gas signals will be introduced. Finally, the challenges and prospects of wearable graphene devices will be discussed. Wearable graphene sensors can improve the quality and quantity of the physiological signals and have great potential for health-care and telemedicine in the future.
Collapse
Affiliation(s)
- Yancong Qiao
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Xiaoshi Li
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Thomas Hirtz
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Ge Deng
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Yuhong Wei
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Mingrui Li
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Shourui Ji
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China. and School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Qi Wu
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Jinming Jian
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Fan Wu
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Yang Shen
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - He Tian
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Yi Yang
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Tian-Ling Ren
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| |
Collapse
|