1
|
Martinelli E, Spiller M, Weck R, Llompart P, Minoletti C, Güssregen S, Sib A, Derdau V. Pegylated Phosphine Ligands in Iridium(I) Catalyzed Hydrogen Isotope Exchange Reactions in Aqueous Buffers. Chemistry 2024; 30:e202402038. [PMID: 38861127 DOI: 10.1002/chem.202402038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024]
Abstract
The synthesis of a water-soluble, phosphine-pegylated iridium(I) catalyst and its application in hydrogen isotope exchange (HIE) reactions in buffer is reported. The longer polyethylene glycol side chains on the phosphine increased the water solubility independently from the pH. HIE reactions of polar substrates in protic solvents were studied. DFT calculations gave further insights into the catalytic processes. The scope and limitation of the pegylated catalyst was studied in HIE reactions of several complex compounds in borax buffer at pH 9 and the best conditions were applied in a tritium experiment with the drug telmisartan.
Collapse
Affiliation(s)
- Elisa Martinelli
- Sanofi Germany, Integrated Drug Discovery, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Marie Spiller
- Sanofi Germany, Integrated Drug Discovery, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Remo Weck
- Sanofi Germany, Integrated Drug Discovery, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Pierre Llompart
- Sanofi France, Integrated Drug Discovery, 1 impasse des Ateliers, 94 400, Vitry-sur-Seine, France
| | - Claire Minoletti
- Sanofi France, Integrated Drug Discovery, 1 impasse des Ateliers, 94 400, Vitry-sur-Seine, France
| | - Stefan Güssregen
- Sanofi Germany, Integrated Drug Discovery, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Anna Sib
- Sanofi Germany, Integrated Drug Discovery, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Volker Derdau
- Sanofi Germany, Integrated Drug Discovery, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Ivanushkin G, Dusselier M. Engineering Lewis Acidity in Zeolite Catalysts by Electrochemical Release of Heteroatoms during Synthesis. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:5049-5058. [PMID: 37456595 PMCID: PMC10339459 DOI: 10.1021/acs.chemmater.3c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/08/2023] [Indexed: 07/18/2023]
Abstract
The creation of heteroatom nodes in zeolite frameworks is a challenging but rewarding pathway to superior materials for numerous catalytic applications. Here, we present a novel method for precise control over heteroatom incorporation by in situ anodic release of a desired metal during hydrothermal zeolite synthesis. The generic character of the technique and the applicability of the new synthesis reactor are shown across 3 zeolite structures crystallized and 4 electrode metals in two pH zones and by offering access to a new mixed-metal zeolite. The timed and voltage-controlled metal release offers a minimized interference between the metal precursor state and critical events in the zeolite's crystallization. A mechanistic study for Sn-MFI revealed the key importance of controlled release: while keeping its concentration lower than in batch, a lot more Sn can be incorporated into the framework. The method grants access to 10× increased framework Lewis acid site densities (vs batch controls) for the most relevant stannosilicates. As a proof, the electro-made materials demonstrate higher productivity than their classic counterparts in lactate catalysis. This innovative approach effectively expands the synthesis space of zeolites.
Collapse
|
3
|
Burkart L, Eith A, Hoffmann A, Herres-Pawlis S. Open Loop Recycling - Guanidine Iron(II) Polymerization Catalyst for the Depolymerization of Polylactide. Chem Asian J 2023; 18:e202201195. [PMID: 36577118 DOI: 10.1002/asia.202201195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
A previously reported non-toxic guanidine-iron catalyst active in the ring opening polymerization (ROP) of polylactide (PLA) under industrially relevant conditions was evaluated for its activity in the alcoholysis and aminolysis of PLA under mild conditions. Kinetic and thermodynamic parameters were determined for the methanolysis of PLA with [FeCl2 (TMG5NMe2 asme)] (C1) using 1 H NMR spectroscopy. A comparison with the Zn analog of C1 showed that the metal center has a large impact on the activity for the alcoholysis. Further, the influence of different nucleophiles was tested broadening the scope of products from PLA waste. C1 is the first discrete metal catalyst reported to be active in the selective aminolysis of PLA. Catalyst recycling, scale-up experiments and solvent-free alcoholysis were conducted successfully strengthening the industrial relevance and highlighting aspects of green chemistry. Moreover, the selective depolymerization of PLA in polymer blends was successful. C1 is a promising catalyst for a circular (bio)plastics economy.
Collapse
Affiliation(s)
- Lisa Burkart
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany
| | - Alexander Eith
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany
| | - Alexander Hoffmann
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany
| | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany
| |
Collapse
|
4
|
Xu Y, Yang L, Si C, Zhang S, Zhang Q, Zeng G, Jiang W. Direct Synthesis of Lactide from Lactic Acid by Sn-beta Zeolite: Crucial Role of the Open Sn Site. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yunlong Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Linlin Yang
- Kuang Yaming Honors School & Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Chunying Si
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuoqi Zhang
- Kuang Yaming Honors School & Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Quanxing Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guixiang Zeng
- Kuang Yaming Honors School & Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Wei Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Hador R, Shuster M, Venditto V, Kol M. Stereogradient Poly(Lactic Acid) from meso-Lactide/L-Lactide Mixtures. Angew Chem Int Ed Engl 2022; 61:e202207652. [PMID: 35789524 PMCID: PMC9796763 DOI: 10.1002/anie.202207652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 01/07/2023]
Abstract
The production of L-lactide from L-lactic acid involves a substantial formation of meso-lactide as an impurity, and, upon polymerization with the industrial catalyst tin octanoate, results in poly(L-lactic acid) of reduced crystallinity due to stereoerrors randomly distributed along the polymer chains. We describe a new approach wherein, instead of avoiding stereoerrors by removing the meso-lactide prior to polymerization, the stereoerrors in the polymer are tolerated, by crowding them in a stereogradient copolymer. A zirconium complex of an amine tris(phenolate) ligand is found to exhibit very high syndioselectivity in the ring opening polymerization catalysis of meso-lactide at room temperature, and gives rise to stereogradient copolymers in the polymerization of mixtures of meso-lactide/L-lactide in the melt at 180 °C. Relative to the stereo-random copolymers obtained with tin octanoate, the stereogradient copolymers exhibit enhanced crystallinities manifested in lower solubilities and higher melting temperatures and enthalpies.
Collapse
Affiliation(s)
- Rami Hador
- School of ChemistryTel Aviv UniversityRamat AvivTel Aviv6997801Israel
| | | | - Vincenzo Venditto
- Department of Chemistry and Biology A. Zambelli, and INSTM Research UnitUniversity of SalernoVia Giovanni Paolo II 13284084Fisciano (SA)Italy
| | - Moshe Kol
- School of ChemistryTel Aviv UniversityRamat AvivTel Aviv6997801Israel
| |
Collapse
|
6
|
Cederholm L, Wohlert J, Olsén P, Hakkarainen M, Odelius K. "Like Recycles Like": Selective Ring-Closing Depolymerization of Poly(L-Lactic Acid) to L-Lactide. Angew Chem Int Ed Engl 2022; 61:e202204531. [PMID: 35582840 PMCID: PMC9541399 DOI: 10.1002/anie.202204531] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 12/27/2022]
Abstract
Chemical recycling of poly(L-lactic acid) to the cyclic monomer L-lactide is hampered by low selectivity and by epimerization and elimination reactions, impeding its use on a large scale. The high number of side reactions originates from the high ceiling temperature (Tc ) of L-lactide, which necessitates high temperatures or multistep reactions to achieve recycling to L-lactide. To circumvent this issue, we utilized the impact of solvent interactions on the monomer-polymer equilibrium to decrease the Tc of L-lactide. Analyzing the observed Tc in different solvents in relation to their Hildebrand solubility parameter revealed a "like recycles like" relationship. The decreased Tc , obtained by selecting solvents that interact strongly with the monomer (dimethyl formamide or the green solvent γ-valerolactone), allowed chemical recycling of high-molecular-weight poly(L-lactic acid) directly to L-lactide, within 1-4 h at 140 °C, with >95 % conversion and 98-99 % selectivity. Recycled L-lactide was isolated and repolymerized with high control over molecular weight and dispersity, closing the polymer loop.
Collapse
Affiliation(s)
- Linnea Cederholm
- Wallenberg Wood Science Center, WWSCDepartment of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyTeknikringen 56–58100 44StockholmSweden
| | - Jakob Wohlert
- Wallenberg Wood Science Center, WWSCDepartment of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyTeknikringen 56–58100 44StockholmSweden
| | - Peter Olsén
- Wallenberg Wood Science Center, WWSCDepartment of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyTeknikringen 56–58100 44StockholmSweden
| | - Minna Hakkarainen
- Wallenberg Wood Science Center, WWSCDepartment of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyTeknikringen 56–58100 44StockholmSweden
| | - Karin Odelius
- Wallenberg Wood Science Center, WWSCDepartment of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyTeknikringen 56–58100 44StockholmSweden
| |
Collapse
|
7
|
Kol M, Hador R, Shuster M, Venditto V. Stereogradient Poly(Lactic Acid) from meso‐Lactide / L‐Lactide Mixtures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Moshe Kol
- Tel Aviv University School of Chemistry Ramat Aviv 69978 Tel Aviv ISRAEL
| | | | | | | |
Collapse
|
8
|
Cederholm L, Wohlert J, Olsén P, Hakkarainen M, Odelius K. “Like Recycles Like”: Selective Ring‐Closing Depolymerization of Poly(L‐Lactic Acid) to L‐Lactide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Linnea Cederholm
- Wallenberg Wood Science Center, WWSC Department of Fibre and Polymer Technology KTH Royal Institute of Technology Teknikringen 56–58 100 44 Stockholm Sweden
| | - Jakob Wohlert
- Wallenberg Wood Science Center, WWSC Department of Fibre and Polymer Technology KTH Royal Institute of Technology Teknikringen 56–58 100 44 Stockholm Sweden
| | - Peter Olsén
- Wallenberg Wood Science Center, WWSC Department of Fibre and Polymer Technology KTH Royal Institute of Technology Teknikringen 56–58 100 44 Stockholm Sweden
| | - Minna Hakkarainen
- Wallenberg Wood Science Center, WWSC Department of Fibre and Polymer Technology KTH Royal Institute of Technology Teknikringen 56–58 100 44 Stockholm Sweden
| | - Karin Odelius
- Wallenberg Wood Science Center, WWSC Department of Fibre and Polymer Technology KTH Royal Institute of Technology Teknikringen 56–58 100 44 Stockholm Sweden
| |
Collapse
|
9
|
Lamberti FM, Román-Ramírez LA, Dove AP, Wood J. Methanolysis of Poly(lactic Acid) Using Catalyst Mixtures and the Kinetics of Methyl Lactate Production. Polymers (Basel) 2022; 14:polym14091763. [PMID: 35566932 PMCID: PMC9105383 DOI: 10.3390/polym14091763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Polylactic acid (PLA) is a leading bioplastic of which the market share is predicted to increase in the future; its growing production capacity means its end-of-life treatment is becoming increasingly important. One beneficial disposal route for PLA is its chemical recycling via alcoholysis. The alcoholysis of PLA leads to the generation of value-added products alkyl lactates; this route also has potential for a circular economy. In this work, PLA was chemically recycled via methanolysis to generate methyl lactate (MeLa). Four commercially available catalysts were investigated: zinc acetate dihydrate (Zn(OAc)2), magnesium acetate tetrahydrate (Mg(OAc)2), 4-(dimethylamino)pyridine (DMAP), and triazabicyclodecene (TBD). Dual catalyst experiments displayed an increase in reactivity when Zn(OAc)2 was paired with TBD or DMAP, or when Mg(OAc)2 was paired with TBD. Zn(OAc)2 coupled with TBD displayed the greatest reactivity. Out of the single catalyst reactions, Zn(OAc)2 exhibited the highest activity: a higher mol% was found to increase reaction rate but plateaued at 4 mol%, and a higher equivalent of methanol was found to increase the reaction rate, but plateaued at 17 equivalents. PLA methanolysis was modelled as a two-step reversible reaction; the activation energies were estimated at: Ea1 = 25.23 kJ∙mol−1, Ea2 = 34.16 kJ∙mol−1 and Ea-2 = 47.93 kJ∙mol−1.
Collapse
Affiliation(s)
- Fabio M. Lamberti
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Luis A. Román-Ramírez
- Division of Chemical and Energy Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, UK;
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Joseph Wood
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Correspondence:
| |
Collapse
|
10
|
Lactide: Production Routes, Properties, and Applications. Bioengineering (Basel) 2022; 9:bioengineering9040164. [PMID: 35447724 PMCID: PMC9032396 DOI: 10.3390/bioengineering9040164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Lactide dimer is an important monomer produced from lactic acid dehydration, followed by the prepolymer depolymerization process, and subsequent purification. As lactic acid is a chiral molecule, lactide can exist in three isomeric forms: L-, D-, and meso-lactide. Due to its time-consuming synthesis and the need for strict temperature and pressure control, catalyst use, low selectivity, high energy cost, and racemization, the value of a high purity lactide has a high cost in the market; moreover, little is found in scientific articles about the monomer synthesis. Lactide use is mainly for the synthesis of high molar mass poly(lactic acid) (PLA), applied as bio-based material for medical applications (e.g., prostheses and membranes), drug delivery, and hydrogels, or combined with other polymers for applications in packaging. This review elucidates the configurations and conditions of syntheses mapped for lactide production, the main properties of each of the isomeric forms, its industrial production, as well as the main applications in the market.
Collapse
|
11
|
Gao L, Du K, Yan T, Li H, Pan D, Zhang Y, Tang Y. One-pot two-step process directly converting biomass-derived carbohydrate to lactide. Chem Commun (Camb) 2022; 58:4627-4630. [PMID: 35311879 DOI: 10.1039/d2cc00093h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study proposed a strategy for the production of lactide from biomass-derived carbohydrate with excellent yield, involving sugar to racemic lactic acid conversion over Sn-containing Beta zeolite and racemic lactic acid to lactide conversion over H-Beta zeolite. Structural characteristics of the resulting lactide and extensive applicability for various substrates are also presented.
Collapse
Affiliation(s)
- Lou Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| | - Ke Du
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| | - Tianlan Yan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| | - He Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| | - Di Pan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| | - Yahong Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
12
|
Cui X, Meng X, Chen Y, Liu Y, Yu L. Preparation of L-Lactide with High Optical Purity via the Zinc-Doped Polypyrrole-Catalyzed Lactic Acid Condensation. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Meng X, Yu L, Cao Y, Zhang X, Zhang Y. Progresses in synthetic technology development for the production of L-lactide. Org Biomol Chem 2021; 19:10288-10295. [PMID: 34788779 DOI: 10.1039/d1ob01918j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
L-Lactide is an intermediate for the industrial production of polylactic acid (PLA). The chemical and optical purities of lactide determine the quality of the prepared PLA. It is of great challenge to synthesize L-lactide efficiently with high chemical and optical purities under the conditions applicable for industrial production. With the national plastic reduction order issued, developing biodegradable materials such as PLA has gradually become a hot topic, and the production of upstream lactide is the key technique for the whole industrial chain. This mini-review aims to summarize typical works on the related synthetic technology development in recent years.
Collapse
Affiliation(s)
- Xiangkun Meng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| | - Yitao Cao
- Royal Holloway, University of London, Egham, Surrey, TW20 0QR, UK
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| | - Yiyang Zhang
- Graduate School of System Informatics, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
14
|
Payne J, Jones MD. The Chemical Recycling of Polyesters for a Circular Plastics Economy: Challenges and Emerging Opportunities. CHEMSUSCHEM 2021; 14:4041-4070. [PMID: 33826253 PMCID: PMC8518041 DOI: 10.1002/cssc.202100400] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/01/2021] [Indexed: 05/05/2023]
Abstract
Whilst plastics have played an instrumental role in human development, growing environmental concerns have led to increasing public scrutiny and demands for outright bans. This has stimulated considerable research into renewable alternatives, and more recently, the development of alternative waste management strategies. Herein, the aim was to highlight recent developments in the catalytic chemical recycling of two commercial polyesters, namely poly(lactic acid) (PLA) and poly(ethylene terephthalate) (PET). The concept of chemical recycling is first introduced, and associated opportunities/challenges are discussed within the context of the governing depolymerisation thermodynamics. Chemical recycling methods for PLA and PET are then discussed, with a particular focus on upcycling and the use of metal-based catalysts. Finally, the attention shifts to the emergence of new materials with the potential to modernise the plastics economy. Emerging opportunities and challenges are discussed within the context of industrial feasibility.
Collapse
Affiliation(s)
- Jack Payne
- Centre for Sustainable and Circular TechnologiesUniversity of Bath Claverton DownBathBA2 7AYUK
| | - Matthew D. Jones
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUK
| |
Collapse
|
15
|
Xu Y, Fang Y, Cao J, Sun P, Min C, Qi Y, Jiang W, Zhang Q. Controlled Synthesis of l-Lactide Using Sn-Beta Zeolite Catalysts in a One-Step Route. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yunlong Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuanyuan Fang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jingjing Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ping Sun
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Cheng Min
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yunbiao Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Quanxing Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Faveere WH, Van Praet S, Vermeeren B, Dumoleijn KNR, Moonen K, Taarning E, Sels BF. Toward Replacing Ethylene Oxide in a Sustainable World: Glycolaldehyde as a Bio‐Based C
2
Platform Molecule. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- William H. Faveere
- Centre for Sustainable Catalysis and Engineering KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Sofie Van Praet
- Centre for Sustainable Catalysis and Engineering KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Benjamin Vermeeren
- Centre for Sustainable Catalysis and Engineering KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | | | - Kristof Moonen
- Eastman Chemical Company Pantserschipstraat 207 9000 Ghent Belgium
| | | | - Bert F. Sels
- Centre for Sustainable Catalysis and Engineering KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| |
Collapse
|
17
|
Synergistic Dual Catalytic System and Kinetics for the Alcoholysis of Poly(Lactic Acid). Processes (Basel) 2021. [DOI: 10.3390/pr9060921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Plastic pollution is a global issue that is approaching crisis levels as plastic production is projected to reach 1.1 GT annually by 2050. The bioplastic industry along with a circular production economy are solutions to this problem. One promising bioplastic polylactic acid (PLA) has mechanical properties comparable to polystyrene (PS), so it could replace PS in its applications as a more environmentally sustainable material. However, since the bioplastic PLA also suffers from long biodegradation times in the environment, to ensure that it does not add to the current pollution problem, it should instead be chemically recycled. In this work, PLA was chemically recycled via alcoholysis, using either methanol or ethanol to generate the value-added products methyl lactate and ethyl lactate respectively. Two catalysts, zinc acetate dihydrate (ZnAc) and 4-(dimethylamino)pyridine (DMAP), were tested both individually and in mixtures. A synergistic effect was exhibited on the reaction rate when both catalysts were used in an equal ratio. The methanolysis reaction was determined to be two-step, with the activation energy estimated to be 73 kJ mol−1 for the first step and 40.16 kJ mol−1 for the second step. Both catalysts are cheap and commercially available, their synergistic effect could be exploited for large-scale PLA recycling.
Collapse
|
18
|
Narmon AS, Dewaele A, Bruyninckx K, Sels BF, Van Puyvelde P, Dusselier M. Boosting PLA melt strength by controlling the chirality of co-monomer incorporation. Chem Sci 2021; 12:5672-5681. [PMID: 34163778 PMCID: PMC8179584 DOI: 10.1039/d1sc00040c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
Bio-based and degradable polymers such as poly(lactic acid) (PLA) have become prominent. In spite of encouraging features, PLA has a low melt strength and melt elasticity, resulting in processing and application limitations that diminish its substitution potential vis-a-vis classic plastics. Here, we demonstrate a large increase in zero shear viscosity, melt elasticity, elongational viscosity and melt strength by random co-polymerization of lactide with small amounts, viz. 0.4-10 mol%, of diethylglycolide of opposite chiral nature. These enantiomerically pure monomers can be synthesized using one-step zeolite catalysis. Screening of the ester linkages in the final PLA chains by the ethyl side groups is suggested to create an expanding effect on the polymer coils in molten state by weakening of chain-chain interactions. This effect is suspected to increase the radius of gyration, enabling more chain entanglements and consequently increasing the melt strength. A stronger melt could enable access to more cost-competitive and sustainable PLA-based biomaterials with a broader application window. Amongst others, blow molding of bottles, film blowing, fiber spinning and foaming could be facilitated by PLA materials exhibiting a higher melt strength.
Collapse
Affiliation(s)
- An Sofie Narmon
- Department of Microbial and Molecular Systems, Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium https://dusselier-lab.org/
| | - Annelies Dewaele
- Department of Microbial and Molecular Systems, Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium https://dusselier-lab.org/
| | - Kevin Bruyninckx
- Department of Microbial and Molecular Systems, Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium https://dusselier-lab.org/
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium https://dusselier-lab.org/
| | - Peter Van Puyvelde
- Department of Chemical Engineering, Soft Matter, Rheology and Technology, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Michiel Dusselier
- Department of Microbial and Molecular Systems, Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium https://dusselier-lab.org/
| |
Collapse
|
19
|
Nduko JM, Taguchi S. Microbial Production of Biodegradable Lactate-Based Polymers and Oligomeric Building Blocks From Renewable and Waste Resources. Front Bioeng Biotechnol 2021; 8:618077. [PMID: 33614605 PMCID: PMC7889595 DOI: 10.3389/fbioe.2020.618077] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are naturally occurring biopolymers produced by microorganisms. PHAs have become attractive research biomaterials in the past few decades owing to their extensive potential industrial applications, especially as sustainable alternatives to the fossil fuel feedstock-derived products such as plastics. Among the biopolymers are the bioplastics and oligomers produced from the fermentation of renewable plant biomass. Bioplastics are intracellularly accumulated by microorganisms as carbon and energy reserves. The bioplastics, however, can also be produced through a biochemistry process that combines fermentative secretory production of monomers and/or oligomers and chemical synthesis to generate a repertoire of biopolymers. PHAs are particularly biodegradable and biocompatible, making them a part of today's commercial polymer industry. Their physicochemical properties that are similar to those of petrochemical-based plastics render them potential renewable plastic replacements. The design of efficient tractable processes using renewable biomass holds key to enhance their usage and adoption. In 2008, a lactate-polymerizing enzyme was developed to create new category of polyester, lactic acid (LA)-based polymer and related polymers. This review aims to introduce different strategies including metabolic and enzyme engineering to produce LA-based biopolymers and related oligomers that can act as precursors for catalytic synthesis of polylactic acid. As the cost of PHA production is prohibitive, the review emphasizes attempts to use the inexpensive plant biomass as substrates for LA-based polymer and oligomer production. Future prospects and challenges in LA-based polymer and oligomer production are also highlighted.
Collapse
Affiliation(s)
- John Masani Nduko
- Department of Dairy and Food Science and Technology, Faculty of Agriculture, Egerton University, Egerton, Kenya
| | - Seiichi Taguchi
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
20
|
The Application of Copper-Gold Catalysts in the Selective Oxidation of Glycerol at Acid and Basic Conditions. Catalysts 2021. [DOI: 10.3390/catal11010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The crude glycerol is produced during the transesterification of animal fats and vegetable oils, but it is a by-product of this process. Currently, its elimination is a problem in the chemical industry. The main goal of this work was the preparation, characterization and application of mesoporous cerium-zirconium oxide as supports for copper and gold species and the comparison of selected factors on the properties of catalysts in glycerol oxidation in the liquid phase. The samples were characterized using adsorption and desorption of nitrogen, XRD, UV-vis, XPS, TEM, SEM, and STEM-EDXS. The obtained results of glycerol oxidation show that the bimetallic copper-gold catalysts are more active and selective to glyceric acid in this reaction than analogous monometallic gold catalysts. Additionally, bimetallic catalysts are also characterized by the catalytic stability, and their application leads to the increase of selectivity to glyceric acid during their reusing in glycerol oxidation in alkali media. In this work, the influence of selected factors, e.g., oxygen source and its pressure, solution pH, and base content on the catalytic activity of bimetallic catalysts is discussed.
Collapse
|
21
|
Botvin V, Karaseva S, Salikova D, Dusselier M. Syntheses and chemical transformations of glycolide and lactide as monomers for biodegradable polymers. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Sivo A, Galaverna RDS, Gomes GR, Pastre JC, Vilé G. From circular synthesis to material manufacturing: advances, challenges, and future steps for using flow chemistry in novel application area. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00411a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We review the emerging use of flow technologies for circular chemistry and material manufacturing, highlighting advances, challenges, and future directions.
Collapse
Affiliation(s)
- Alessandra Sivo
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- IT-20131 Milano
- Italy
| | | | | | | | - Gianvito Vilé
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- IT-20131 Milano
- Italy
| |
Collapse
|
23
|
Faveere WH, Van Praet S, Vermeeren B, Dumoleijn KNR, Moonen K, Taarning E, Sels BF. Toward Replacing Ethylene Oxide in a Sustainable World: Glycolaldehyde as a Bio-Based C 2 Platform Molecule. Angew Chem Int Ed Engl 2020; 60:12204-12223. [PMID: 32833281 DOI: 10.1002/anie.202009811] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 11/11/2022]
Abstract
Fossil-based platform molecules such as ethylene and ethylene oxide currently serve as the primary feedstock for the C2 -based chemical industry. However, in the search for a more sustainable chemical industry, fossil-based resources may preferentially be replaced by renewable alternatives, provided there is realistic economic feasibility. This Review compares and critically discusses several production routes toward bio-based structural analogues of ethylene oxide and the required adaptations for their implementation in state-of-the-art C2 -based chemical processes. For example, glycolaldehyde, a structural analogue obtainable from carbohydrates by atom-economic retro-aldol reactions, may replace ethylene oxide's leading role. This alternative chemical route may not only allow the carbon footprint of conventional chemicals production to be lowered, but the introduction of a bio-based pathway may also contribute to safer production processes. Where possible, challenges, drawbacks, and prospects are highlighted.
Collapse
Affiliation(s)
- William H Faveere
- Centre for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
| | - Sofie Van Praet
- Centre for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
| | - Benjamin Vermeeren
- Centre for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
| | - Kim N R Dumoleijn
- Eastman Chemical Company, Pantserschipstraat 207, 9000, Ghent, Belgium
| | - Kristof Moonen
- Eastman Chemical Company, Pantserschipstraat 207, 9000, Ghent, Belgium
| | - Esben Taarning
- Haldor Topsøe A/S, Nymøllevej 55, 2800 Kgs, Lyngby, Denmark
| | - Bert F Sels
- Centre for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
| |
Collapse
|
24
|
Alberti C, Enthaler S. Depolymerization of End‐of‐Life Poly(lactide) to Lactide via Zinc‐Catalysis. ChemistrySelect 2020. [DOI: 10.1002/slct.202003979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christoph Alberti
- Universität Hamburg Institut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| | - Stephan Enthaler
- Universität Hamburg Institut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| |
Collapse
|
25
|
Cheung E, Alberti C, Enthaler S. Chemical Recycling of End-of-Life Poly(lactide) via Zinc-Catalyzed Depolymerization and Polymerization. ChemistryOpen 2020; 9:1224-1228. [PMID: 33304737 PMCID: PMC7705614 DOI: 10.1002/open.202000243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/12/2020] [Indexed: 01/08/2023] Open
Abstract
The chemical recycling of poly(lactide) was investigated based on depolymerization and polymerization processes. Using methanol as depolymerization reagent and zinc salts as catalyst, poly(lactide) was depolymerized to methyl lactate applying microwave heating. An excellent performance was observed for zinc(II) acetate with turnover frequencies of up to 45000 h-1. In a second step the monomer methyl lactate was converted to (pre)poly(lactide) in the presence of catalytic amounts of zinc salts. Here zinc(II) triflate revealed excellent performance for the polymerization process (yield: 91 %, Mn ∼8970 g/mol). Moreover, the (pre)poly(lactide) was depolymerized to lactide, the industrial relevant molecule for accessing high molecular weight poly(lactide), using zinc(II) acetate as catalyst.
Collapse
Affiliation(s)
- Even Cheung
- Universität HamburgInstitut für Anorganische und Angewandte ChemieMartin-Luther-King-Platz 6D-20146HamburgGermany
| | - Christoph Alberti
- Universität HamburgInstitut für Anorganische und Angewandte ChemieMartin-Luther-King-Platz 6D-20146HamburgGermany
| | - Stephan Enthaler
- Universität HamburgInstitut für Anorganische und Angewandte ChemieMartin-Luther-King-Platz 6D-20146HamburgGermany
| |
Collapse
|
26
|
Alberti C, Kricheldorf HR, Enthaler S. Application of Bismuth Catalysts for the Methanolysis of End‐of‐Life Poly(lactide). ChemistrySelect 2020. [DOI: 10.1002/slct.202003389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christoph Alberti
- Universität Hamburg Institut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| | - Hans Rytger Kricheldorf
- Universität Hamburg Institut für Technische und Makromolekulare Chemie Bundesstr. 45 D-20146 Hamburg Germany
| | - Stephan Enthaler
- Universität Hamburg Institut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| |
Collapse
|
27
|
Cordon MJ, Vega‐Vila JC, Casper A, Huang Z, Gounder R. Tighter Confinement Increases Selectivity of
d
‐Glucose Isomerization Toward
l
‐Sorbose in Titanium Zeolites. Angew Chem Int Ed Engl 2020; 59:19102-19107. [PMID: 32602991 DOI: 10.1002/anie.202005207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Michael J. Cordon
- Charles D. Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
- Current address: Energy and Transportation Sciences Oak Ridge National Laboratory Oak Ridge TN 37830 USA
| | - Juan Carlos Vega‐Vila
- Charles D. Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
| | - Alyssa Casper
- Charles D. Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
| | - Zige Huang
- Charles D. Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
28
|
Tighter Confinement Increases Selectivity of
d
‐Glucose Isomerization Toward
l
‐Sorbose in Titanium Zeolites. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Sudarsanam P, Li H, Sagar TV. TiO2-Based Water-Tolerant Acid Catalysis for Biomass-Based Fuels and Chemicals. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01680] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Putla Sudarsanam
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Engineering Lab for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Tatiparthi Vikram Sagar
- Laboratory for Environmental Sciences and Engineering, Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
30
|
Gérardy R, Debecker DP, Estager J, Luis P, Monbaliu JCM. Continuous Flow Upgrading of Selected C 2-C 6 Platform Chemicals Derived from Biomass. Chem Rev 2020; 120:7219-7347. [PMID: 32667196 DOI: 10.1021/acs.chemrev.9b00846] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ever increasing industrial production of commodity and specialty chemicals inexorably depletes the finite primary fossil resources available on Earth. The forecast of population growth over the next 3 decades is a very strong incentive for the identification of alternative primary resources other than petro-based ones. In contrast with fossil resources, renewable biomass is a virtually inexhaustible reservoir of chemical building blocks. Shifting the current industrial paradigm from almost exclusively petro-based resources to alternative bio-based raw materials requires more than vibrant political messages; it requires a profound revision of the concepts and technologies on which industrial chemical processes rely. Only a small fraction of molecules extracted from biomass bears significant chemical and commercial potentials to be considered as ubiquitous chemical platforms upon which a new, bio-based industry can thrive. Owing to its inherent assets in terms of unique process experience, scalability, and reduced environmental footprint, flow chemistry arguably has a major role to play in this context. This review covers a selection of C2 to C6 bio-based chemical platforms with existing commercial markets including polyols (ethylene glycol, 1,2-propanediol, 1,3-propanediol, glycerol, 1,4-butanediol, xylitol, and sorbitol), furanoids (furfural and 5-hydroxymethylfurfural) and carboxylic acids (lactic acid, succinic acid, fumaric acid, malic acid, itaconic acid, and levulinic acid). The aim of this review is to illustrate the various aspects of upgrading bio-based platform molecules toward commodity or specialty chemicals using new process concepts that fall under the umbrella of continuous flow technology and that could change the future perspectives of biorefineries.
Collapse
Affiliation(s)
- Romaric Gérardy
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
| | - Julien Estager
- Certech, Rue Jules Bordet 45, Zone Industrielle C, B-7180 Seneffe, Belgium
| | - Patricia Luis
- Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Materials & Process Engineering (iMMC-IMAP), UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| |
Collapse
|
31
|
Abstract
Alkyl lactates are green solvents that are successfully employed in several industries such as pharmaceutical, food and agricultural. They are considered prospective renewable substitutes for petroleum-derived solvents and the opportunity exists to obtain these valuable chemicals from the chemical recycling of waste poly(lactic acid). Alkyl lactates (ethyl lactate, propyl lactate and butyl lactate) were obtained from the catalysed alcoholysis reaction of poly(lactic acid) with the corresponding linear alcohol. Reactions were catalysed by a Zn complex synthesised from an ethylenediamine Schiff base. The reactions were studied in the 50–130 °C range depending on the alcohol, at autogenous pressure. Arrhenius temperature-dependent parameters (activation energies and pre-exponential factors) were estimated for the formation of the lactates. The activation energies (Ea1, Ea2 and Ea−2) for alcoholysis in ethanol were 62.58, 55.61 and 54.11 kJ/mol, respectively. Alcoholysis proceeded fastest in ethanol in comparison to propanol and butanol and reasonable rates can be achieved in temperatures as low as 50 °C. This is a promising reaction that could be used to recycle end-of-life poly(lactic acid) and could help create a circular production economy.
Collapse
|
32
|
Román-Ramírez LA, McKeown P, Shah C, Abraham J, Jones MD, Wood J. Chemical Degradation of End-of-Life Poly(lactic acid) into Methyl Lactate by a Zn(II) Complex. Ind Eng Chem Res 2020; 59:11149-11156. [PMID: 32581423 PMCID: PMC7304880 DOI: 10.1021/acs.iecr.0c01122] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/08/2023]
Abstract
The catalyzed methanolysis of end-of-life poly(lactic acid) (PLA) products by an ethylenediamine Zn(II) complex to form biodegradable methyl lactate was studied experimentally at 70, 90, and 110 °C. The PLA samples consisted of typical consumer waste materials, including a cup, a toy, and a three-dimensional (3D) printing material. High selectivities and yields (>94%) were possible depending on temperature and reaction time. Additionally, and to develop a predictive kinetic model, kinetic parameters (pre-exponential factor and activation energies) of the PLA transesterification reaction were first obtained from virgin PLA. These parameters were subsequently used to estimate the conversion of PLA, selectivity, and yield of methyl lactate after 1 and 4 h of the reaction, and the results were compared with the experimental values of the end-of-life PLA. Despite the presence of unknown additives in the PLA waste material and uncontrolled particle size, the model was able to predict the overall conversion, selectivity, and yield to an average deviation of 5, 7, and 12%, respectively. A greater agreement between the model and experimental values is observed for the higher temperatures and the longer reaction time. Larger deviations were observed for the PLA toy, which we attribute to the presence of additives, since despite its lower molecular weight, it possessed a higher structural strength.
Collapse
Affiliation(s)
- Luis A Román-Ramírez
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Paul McKeown
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Chanak Shah
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Joshua Abraham
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Matthew D Jones
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Joseph Wood
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
33
|
Román-Ramírez LA, McKeown P, Jones MD, Wood J. Kinetics of Methyl Lactate Formation from the Transesterification of Polylactic Acid Catalyzed by Zn(II) Complexes. ACS OMEGA 2020; 5:5556-5564. [PMID: 32201849 PMCID: PMC7081642 DOI: 10.1021/acsomega.0c00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 05/21/2023]
Abstract
The kinetics of the transesterification of polylactic acid (PLA) with methanol to form methyl lactate catalyzed by Zn(II) complexes was studied experimentally and numerically. The complexes, Zn(1 Et )2 and Zn(2 Pr )2, were synthesized from ethylenediamine and propylenediamine Schiff bases, respectively. The temperature range covered was 313.2-383.2 K. An increase in the reaction rate with the increase in temperature was observed for the Zn(1 Et )2-catalyzed reaction. The temperature relationship of the rate coefficients can be explained by a linear Arrhenius dependency with constant activation energy. The kinetics of Zn(2 Pr )2, on the other hand, is only explained by non-Arrhenius kinetics with convex variable activation energy, resulting in faster methyl lactate production rates at 323.2 and 343.2 K. The formation of a new catalyst species, likely through reaction with protic reagents, appears to promote the formation of intermediate complexes, resulting in the nonlinear behavior. Stirring speed induced the stability of the intermediate complexes. Contrary to Zn(1 Et )2, Zn(2 Pr )2 was susceptible to the presence of air/moisture in solution. The kinetic parameters were obtained by fitting the experimental data to the mass and energy balance of a consecutive second step reversible reaction taking place in a jacketed stirred batch reactor. For the case of Zn(2 Pr )2, the activation energy was fitted to a four-parameter equation. The kinetic parameters presented in this work are valuable for the design of processes involving the chemical recycling of PLA into green solvents.
Collapse
Affiliation(s)
- Luis A. Román-Ramírez
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Paul McKeown
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Matthew D. Jones
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
- E-mail: . Phone: +44 (0)1225 384908. Fax: +44 (0)1225
386231 (M.D.J.)
| | - Joseph Wood
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- E-mail: . Phone: +44 (0) 121
414 5295. Fax: +44 (0) 121
414 5324 (J.W.)
| |
Collapse
|
34
|
Hofmann M, Alberti C, Scheliga F, Meißner RRR, Enthaler S. Tin(ii) 2-ethylhexanoate catalysed methanolysis of end-of-life poly(lactide). Polym Chem 2020. [DOI: 10.1039/d0py00292e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The depolymerisation of end-of-life poly(lactide) (PLA) goods was studied as part of the chemical recycling of PLA.
Collapse
Affiliation(s)
- Melanie Hofmann
- Universität Hamburg
- Institut für Anorganische und Angewandte Chemie
- D-20146 Hamburg
- Germany
| | - Christoph Alberti
- Universität Hamburg
- Institut für Anorganische und Angewandte Chemie
- D-20146 Hamburg
- Germany
| | - Felix Scheliga
- Universität Hamburg
- Institut für Technische und Makromolekulare Chemie
- Universität Hamburg
- D-20146 Hamburg
- Germany
| | - Roderich R. R. Meißner
- Universität Hamburg
- Institut für Anorganische und Angewandte Chemie
- D-20146 Hamburg
- Germany
| | - Stephan Enthaler
- Universität Hamburg
- Institut für Anorganische und Angewandte Chemie
- D-20146 Hamburg
- Germany
| |
Collapse
|
35
|
Wang Y, Furukawa S, Song S, He Q, Asakura H, Yan N. Catalytic Production of Alanine from Waste Glycerol. Angew Chem Int Ed Engl 2019; 59:2289-2293. [PMID: 31773819 DOI: 10.1002/anie.201912580] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/12/2019] [Indexed: 12/17/2022]
Abstract
Chemical synthesis of amino acids directly from biomass feedstock is rare. Reported here is a one-step protocol to convert crude glycerol, from the biodiesel industry, into 43 % alanine over a Ru1 Ni7 /MgO catalyst. The multifunctional catalytic system promotes glycerol conversion into lactic acid, and then into alanine. X-ray absorption spectroscopy and scanning transmission electron microscopy revealed the existence of bimetallic RuNi species, whereas density-functional theory calculations suggested Ni-doped Ru substantially decreased the Ea of C-H bond dissociation of lactate alkoxide to form pyruvate, which is the rate-determining step. The catalytic route established in this work creates new opportunities for glycerol utilization and enriches the substrate scope of renewable feedstock to access value-added amino acids.
Collapse
Affiliation(s)
- Yunzhu Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan.,Elements Strategy Initiative for Catalysis and Battery, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Song Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qian He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Hiroyuki Asakura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Elements Strategy Initiative for Catalysis and Battery, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
36
|
Wang Y, Furukawa S, Song S, He Q, Asakura H, Yan N. Catalytic Production of Alanine from Waste Glycerol. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yunzhu Wang
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Shinya Furukawa
- Institute for CatalysisHokkaido University N-21, W-10 Sapporo 001-0021 Japan
- Elements Strategy Initiative for Catalysis and BatteryKyoto University Kyoto Daigaku Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Song Song
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Qian He
- Department of Materials Science and EngineeringNational University of Singapore 9 Engineering Drive 1 Singapore 117575 Singapore
| | - Hiroyuki Asakura
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Kyotodaigaku Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- Elements Strategy Initiative for Catalysis and BatteryKyoto University Kyoto Daigaku Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Ning Yan
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
37
|
Egiazaryan TA, Makarov VM, Moskalev MV, Razborov DA, Fedushkin IL. Synthesis of lactide from alkyl lactates catalyzed by lanthanide salts. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Stadler BM, Wulf C, Werner T, Tin S, de Vries JG. Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01665] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard M. Stadler
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Christoph Wulf
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Thomas Werner
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Johannes G. de Vries
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
39
|
Alberti C, Damps N, Meißner RRR, Enthaler S. Depolymerization of End‐of‐Life Poly(lactide) via 4‐Dimethylaminopyridine‐Catalyzed Methanolysis. ChemistrySelect 2019. [DOI: 10.1002/slct.201901316] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Christoph Alberti
- Institut für Anorganische und Angewandte ChemieUniversität Hamburg Martin-Luther-King-Platz 6, D– 20146 Hamburg Germany
| | - Nicole Damps
- Institut für Anorganische und Angewandte ChemieUniversität Hamburg Martin-Luther-King-Platz 6, D– 20146 Hamburg Germany
| | - Roderich R. R. Meißner
- Institut für Anorganische und Angewandte ChemieUniversität Hamburg Martin-Luther-King-Platz 6, D– 20146 Hamburg Germany
| | - Stephan Enthaler
- Institut für Anorganische und Angewandte ChemieUniversität Hamburg Martin-Luther-King-Platz 6, D– 20146 Hamburg Germany
| |
Collapse
|
40
|
Sudarsanam P, Peeters E, Makshina EV, Parvulescu VI, Sels BF. Advances in porous and nanoscale catalysts for viable biomass conversion. Chem Soc Rev 2019; 48:2366-2421. [DOI: 10.1039/c8cs00452h] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Solid catalysts with unique porosity and nanoscale properties play a promising role for efficient valorization of biomass into sustainable advanced fuels and chemicals.
Collapse
Affiliation(s)
- Putla Sudarsanam
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| | - Elise Peeters
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| | - Ekaterina V. Makshina
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| | - Vasile I. Parvulescu
- University of Bucharest
- Department of Organic Chemistry
- Biochemistry and Catalysis
- Bucharest 030016
- Romania
| | - Bert F. Sels
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| |
Collapse
|
41
|
Mouarrawis V, Plessius R, van der Vlugt JI, Reek JNH. Confinement Effects in Catalysis Using Well-Defined Materials and Cages. Front Chem 2018; 6:623. [PMID: 30622940 PMCID: PMC6308152 DOI: 10.3389/fchem.2018.00623] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/30/2018] [Indexed: 11/28/2022] Open
Abstract
This review focuses on the effects that confinement of molecular and heterogeneous catalysts with well-defined structure has on the selectivity and activity of these systems. A general introduction about catalysis and how the working principles of enzymes can be used as a source of inspiration for the preparation of catalysts with enhanced performance is provided. Subsequently, relevant studies demonstrate the importance of second coordination sphere effects in a broad sense (in homogeneous and heterogeneous catalysis). Firstly, we discuss examples involving zeolites, MOFs and COFs as heterogeneous catalysts with well-defined structures where confinement influences catalytic performance. Then, specific cases of homogeneous catalysts where non-covalent interactions determine the selectivity and activity are treated in detail. This includes examples based on cyclodextrins, calix[n]arenes, cucurbit[n]urils, and self-assembled container molecules. Throughout the review, the impact of confined spaces is emphasized and put into context, in order to get a better understanding of the effects of confinement on catalyst performance. In addition, this analysis intends to showcase the similarities between homogeneous and heterogeneous catalysts, which may aid the development of novel strategies.
Collapse
Affiliation(s)
| | | | - Jarl Ivar van der Vlugt
- Homogeneous, Supramolecular and Bio-Inspired Catalysis (HomKat) Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis (HomKat) Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
42
|
Makshina EV, Canadell J, van Krieken J, Peeters E, Dusselier M, Sels BF. Bio‐Acrylates Production: Recent Catalytic Advances and Perspectives of the Use of Lactic Acid and Their Derivates. ChemCatChem 2018. [DOI: 10.1002/cctc.201801494] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ekaterina V. Makshina
- Centre for Surface Chemistry and Catalysis, KU Leuven Celestijnenlaan 200F Heverlee 3001 Belgium
| | - Judit Canadell
- Central R&D Corbion Arkelsedijk 46 Gorinchem 4206 AC The Netherlands
| | - Jan van Krieken
- Central R&D Corbion Arkelsedijk 46 Gorinchem 4206 AC The Netherlands
| | - Elise Peeters
- Centre for Surface Chemistry and Catalysis, KU Leuven Celestijnenlaan 200F Heverlee 3001 Belgium
| | - Michiel Dusselier
- Centre for Surface Chemistry and Catalysis, KU Leuven Celestijnenlaan 200F Heverlee 3001 Belgium
| | - Bert F. Sels
- Centre for Surface Chemistry and Catalysis, KU Leuven Celestijnenlaan 200F Heverlee 3001 Belgium
| |
Collapse
|
43
|
De Clercq R, Makshina E, Sels BF, Dusselier M. Catalytic Gas-Phase Cyclization of Glycolate Esters: A Novel Route Toward Glycolide-Based Bioplastics. ChemCatChem 2018. [DOI: 10.1002/cctc.201801469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rik De Clercq
- Centre for Surface Chemistry and Catalysis; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Ekaterina Makshina
- Centre for Surface Chemistry and Catalysis; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Bert F. Sels
- Centre for Surface Chemistry and Catalysis; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Michiel Dusselier
- Centre for Surface Chemistry and Catalysis; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| |
Collapse
|
44
|
Gérardy R, Morodo R, Estager J, Luis P, Debecker DP, Monbaliu JCM. Sustaining the Transition from a Petrobased to a Biobased Chemical Industry with Flow Chemistry. Top Curr Chem (Cham) 2018; 377:1. [DOI: 10.1007/s41061-018-0222-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/27/2018] [Indexed: 12/16/2022]
|
45
|
De Clercq R, Dusselier M, Poleunis C, Debecker DP, Giebeler L, Oswald S, Makshina E, Sels BF. Titania-Silica Catalysts for Lactide Production from Renewable Alkyl Lactates: Structure–Activity Relations. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02216] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rik De Clercq
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Michiel Dusselier
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Claude Poleunis
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Damien P. Debecker
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Lars Giebeler
- Leibniz-Institute for Solid State and Materials Research (IFW) Dresden e.V., Helmholtzstraße 20, D-01069 Dresden, Germany
| | - Steffen Oswald
- Leibniz-Institute for Solid State and Materials Research (IFW) Dresden e.V., Helmholtzstraße 20, D-01069 Dresden, Germany
| | - Ekaterina Makshina
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bert F. Sels
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|