1
|
Li G, Du Z, Wu C, Liu Y, Xu Y, Lavendomme R, Liang S, Gao EQ, Zhang D. Charge-transfer complexation of coordination cages for enhanced photochromism and photocatalysis. Nat Commun 2025; 16:546. [PMID: 39789017 PMCID: PMC11718061 DOI: 10.1038/s41467-025-55893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Intensified host-guest electronic interplay within stable metal-organic cages (MOCs) presents great opportunities for applications in stimuli response and photocatalysis. Zr-MOCs represent a type of robust discrete hosts for such a design, but their host-guest chemistry in solution is hampered by the limited solubility. Here, by using pyridinium-derived cationic ligands with tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (BArF-) as solubilizing counteranions, we report the preparation of soluble Zr-MOCs of different shapes (1-4) that are otherwise inaccessible through a conventional method. Enforced arrangement of the multiple electron-deficient pyridinium groups into one cage (1) leads to magnified positive electrostatic field and electron-accepting strength in favor of hosting electron-donating anions, including halides and tetraarylborates. The strong charge-transfer (CT) interactions activate guest-to-host photoinduced electron transfer (PET), leading to pronounced and regulable photochromisms. Both ground-state and radical structures of host and host-guest complexes have been unambiguously characterized by X-ray crystallography. The CT-enhanced PET also enables the use of 1 as an efficient photocatalyst for aerobic oxidation of tetraarylborates into biaryls and phenols. This work presents the solution assembly of soluble Zr-MOCs from cationic ligands with the assistance of solubilizing anions and highlights the great potential of harnessing host-guest CT for boosting PET-based functions and applications.
Collapse
Affiliation(s)
- Gen Li
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Zelin Du
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Chao Wu
- Department of Computer Science, Durham University, Durham, UK
| | - Yawei Liu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yan Xu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Roy Lavendomme
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Brussels, Belgium
- Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Shihang Liang
- State Key Laboratory of Petroleum Molecular & Process Engineering, SINOPEC Research Institute of Petroleum Processing, Beijing, PR China
| | - En-Qing Gao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
- Institute of Eco-Chongming, Shanghai, PR China.
| | - Dawei Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
- Institute of Eco-Chongming, Shanghai, PR China.
| |
Collapse
|
2
|
Ibáñez S, Mejuto C, Cerón K, Sanz Miguel PJ, Peris E. A corannulene-based metallobox for the encapsulation of fullerenes. Chem Sci 2024; 15:13415-13420. [PMID: 39183911 PMCID: PMC11339943 DOI: 10.1039/d4sc03661a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024] Open
Abstract
A corannulene-bis-N-imidazolium salt was used for the synthesis of two corannulene-bis-N-heterocyclic carbenes of dirhodium(i) complexes of formula (corannulene-di-NHC)[RhCl(COD)]2 and (corannulene-di-NHC)[RhCl(CO)2]2. Both complexes were characterized by spectroscopic techniques, and the electron-donating properties of the corannulene-di-NHC ligand were studied by means of infrared spectroscopy and cyclic voltammetry. The complex (corannulene-di-NHC)[RhCl(COD)]2 was used for the encapsulation of fullerenes C60 and C70, generating host-guest complexes with 2 : 1 stoichiometry, as evidenced by 1H NMR and ITC titrations. Then, a tetra-rhodium(i) metallo-rectangle supported by two corannulene-bis-imidazolylidene ligands and two cofacial 4,4'-bipyridine ligands was prepared and characterized. This metallobox is capable of quantitatively encapsulating fullerenes C60 and C70, forming complexes that are highly stable even at high temperatures. The molecular structure of the metallobox with encapsulated C60 reveals a perfect size and shape complementarity that benefits from the concave-convex π-π interaction between the polyaromatic surfaces of the host and the guest.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón E-12071 Spain
| | - Carmen Mejuto
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón E-12071 Spain
| | - Katherin Cerón
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón E-12071 Spain
| | - Pablo J Sanz Miguel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón E-12071 Spain
| |
Collapse
|
3
|
Zhang X, Zhang D, Wei C, Wang D, Lavendomme R, Qi S, Zhu Y, Zhang J, Zhang Y, Wang J, Xu L, Gao EQ, Yu W, Yang HB, He M. Coordination cages integrated into swelling poly(ionic liquid)s for guest encapsulation and separation. Nat Commun 2024; 15:3766. [PMID: 38704382 PMCID: PMC11069568 DOI: 10.1038/s41467-024-48135-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Coordination cages have been widely reported to bind a variety of guests, which are useful for chemical separation. Although the use of cages in the solid state benefits the recycling, the flexibility, dynamicity, and metal-ligand bond reversibility of solid-state cages are poor, preventing efficient guest encapsulation. Here we report a type of coordination cage-integrated solid materials that can be swelled into gel in water. The material is prepared through incorporation of an anionic FeII4L6 cage as the counterion of a cationic poly(ionic liquid) (MOC@PIL). The immobilized cages within MOC@PILs have been found to greatly affect the swelling ability of MOC@PILs and thus the mechanical properties. Importantly, upon swelling, the uptake of water provides an ideal microenvironment within the gels for the immobilized cages to dynamically move and flex that leads to excellent solution-level guest binding performances. This concept has enabled the use of MOC@PILs as efficient adsorbents for the removal of pollutants from water and for the purification of toluene and cyclohexane. Importantly, MOC@PILs can be regenerated through a deswelling strategy along with the recycling of the extracted guests.
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Dawei Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China.
| | - Chenyang Wei
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Dehua Wang
- State Key Laboratory of Petroleum Molecular and Process Engineering, SINOPEC Research Institute of Petroleum Processing, 100083, Beijing, PR China.
| | - Roy Lavendomme
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, B-1050, Brussels, Belgium
- Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/08, B-1050, Brussels, Belgium
| | - Shuo Qi
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yu Zhu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jingshun Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Yongya Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Jiachen Wang
- Physics Department, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, PR China
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - En-Qing Gao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China.
| | - Mingyuan He
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China.
| |
Collapse
|
4
|
Benavides PA, Gordillo MA, Thibodeaux E, Yadav A, Johnson E, Sachdeva R, Saha S. Rare Guest-Induced Electrical Conductivity of Zn-Porphyrin Metallacage Inclusion Complexes Featuring π-Donor/Acceptor/Donor Stacks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1234-1242. [PMID: 38108279 DOI: 10.1021/acsami.3c15959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Charge-transfer (CT) interactions between co-facially aligned π-donor/acceptor (π-D/A) arrays engender unique optical and electronic properties that could benefit (supra)molecular electronics and energy technologies. Herein, we demonstrate that a tetragonal prismatic metal-organic cage (MOC18+) having two parallel π-donor tetrakis(4-carboxyphenyl)-Zn-porphyrin (ZnTCPP) faces selectively intercalate planar π-acceptor guests, such as hexaazatriphenylene hexacarbonitrile (HATHCN), hexacyanotriphenylene (HCTP), and napthanelediimide (NDI) derivatives, forming 1:1 πA@MOC18+ inclusion complexes featuring supramolecular π-D/A/D triads. The π-acidity of intercalated π-acceptors (HATHCN ≫ HCTP ≈ NDIs) dictated the nature and strength of their interactions with the ZnTCPP faces, which in turn influenced the binding affinities (Ka) and optical and electronic properties of corresponding πA@MOC18+ inclusion complexes. Owing to its strongest CT interaction with ZnTCPP faces, the most π-acidic HATHCN guest enjoyed the largest Ka (5 × 106 M-1), competitively displaced weaker π-acceptors from the MOC18+ cavity, and generated the highest electrical conductivity (2.1 × 10-6 S/m) among the πA@MOC18+ inclusion complexes. This work demonstrates a unique through-space charge transport capability of πA@MOC18+ inclusion complexes featuring supramolecular π-D/A/D triads, which generated tunable electrical conductivity, which is a rare but much coveted electronic property of such supramolecular assemblies that could further expand their utility in future technologies.
Collapse
Affiliation(s)
- Paola A Benavides
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Monica A Gordillo
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Evan Thibodeaux
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Ashok Yadav
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Evan Johnson
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Rakesh Sachdeva
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Sourav Saha
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| |
Collapse
|
5
|
Guan R, Huang J, Xin J, Chen M, Du P, Li Q, Tan YZ, Yang S, Xie SY. A stabilization rule for metal carbido cluster bearing μ 3-carbido single-atom-ligand encapsulated in carbon cage. Nat Commun 2024; 15:150. [PMID: 38167842 PMCID: PMC10761991 DOI: 10.1038/s41467-023-44567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Metal carbido complexes bearing single-carbon-atom ligand such as nitrogenase provide ideal models of adsorbed carbon atoms in heterogeneous catalysis. Trimetallic μ3-carbido clusterfullerenes found recently represent the simplest metal carbido complexes with the ligands being only carbon atoms, but only few are crystallographically characterized, and its formation prerequisite is unclear. Herein, we synthesize and isolate three vanadium-based μ3-CCFs featuring V = C double bonds and high valence state of V (+4), including VSc2C@Ih(7)-C80, VSc2C@D5h(6)-C80 and VSc2C@D3h(5)-C78. Based on a systematic theoretical study of all reported μ3-carbido clusterfullerenes, we further propose a supplemental Octet Rule, i.e., an eight-electron configuration of the μ3-carbido ligand is needed for stabilization of metal carbido clusters within μ3-carbido clusterfullerenes. Distinct from the classic Effective Atomic Number rule based on valence electron count of metal proposed in the 1920s, this rule counts the valence electrons of the single-carbon-atom ligand, and offers a general rule governing the stabilities of μ3-carbido clusterfullerenes.
Collapse
Affiliation(s)
- Runnan Guan
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Huang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China
| | - Jinpeng Xin
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Muqing Chen
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Pingwu Du
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qunxiang Li
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Yuan-Zhi Tan
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Shangfeng Yang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Su-Yuan Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
6
|
Yang SL, Zhang X, Wang Q, Wu C, Liu H, Jiang D, Lavendomme R, Zhang D, Gao EQ. Confinement inside MOFs Enables Guest-Modulated Spin Crossover of Otherwise Low-Spin Coordination Cages. JACS AU 2023; 3:2183-2191. [PMID: 37654592 PMCID: PMC10466325 DOI: 10.1021/jacsau.3c00243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023]
Abstract
Confinement of discrete coordination cages within nanoporous lattices is an intriguing strategy to gain unusual properties and functions. We demonstrate here that the confinement of coordination cages within metal-organic frameworks (MOFs) allows the spin state of the cages to be regulated through multilevel host-guest interactions. In particular, the confined in situ self-assembly of an anionic FeII4L6 nanocage within the mesoporous cationic framework of MIL-101 leads to the ionic MOF with an unusual hierarchical host-guest structure. While the nanocage in solution and in the solid state has been known to be invariantly diamagnetic with low-spin FeII, FeII4L6@MIL-101 exhibits spin-crossover (SCO) behavior in response to temperature and release/uptake of water guest within the MOF. The distinct color change concomitant with water-induced SCO enables the use of the material for highly selective colorimetric sensing of humidity. Moreover, the spin state and the SCO behavior can be modulated also by inclusion of a guest into the hydrophobic cavity of the confined cage. This is an essential demonstration of the phenomenon that the confinement within porous solids enables an SCO-inactive cage to show modulable SCO behaviors, opening perspectives for developing functional supramolecular materials through hierarchical host-guest structures.
Collapse
Affiliation(s)
- Shuai-Liang Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, P. R. China
| | - Xiang Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, P. R. China
| | - Qing Wang
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P. R. China
| | - Chao Wu
- Department
of EEE, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Haiming Liu
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P. R. China
| | - Dongmei Jiang
- Engineering
Research Center for Nanophotonics and Advanced Instrument, School
of Physics and Electronic Science, East
China Normal University, Shanghai 200241, P. R. China
| | - Roy Lavendomme
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Dawei Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, P. R. China
- Institute
of Eco-Chongming, Shanghai 202162, P. R. China
| | - En-Qing Gao
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, P. R. China
- Institute
of Eco-Chongming, Shanghai 202162, P. R. China
| |
Collapse
|
7
|
Liu HK, Ronson TK, Wu K, Luo D, Nitschke JR. Anionic Templates Drive Conversion between a Zn II9L 6 Tricapped Trigonal Prism and Zn II6L 4 Pseudo-Octahedra. J Am Chem Soc 2023. [PMID: 37440669 PMCID: PMC10375523 DOI: 10.1021/jacs.3c03981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
This work introduces the use of 8-aminoquinoline subcomponents to generate complex three-dimensional structures. Together with a tris(formylpyridine), 8-aminoquinoline condensed around ZnII templates to produce a tris(tridentate) ligand. This ligand is incorporated into either a tricapped trigonal prismatic ZnII9L6 structure or a pair of pseudo-octahedral ZnII6L4 diastereomers, with S4 and D2 symmetries. Introduction of a methyl group onto the aminoquinoline modulated the coordination sphere of ZnII, which favored the ZnII9L6 structure and disfavored the ZnII6L4 assembly. The tricapped trigonal prismatic ZnII9L6 architecture converted into a single ZnII6L4 cage diastereomer following the addition of a dianionic 4,4'-dinitrostilbene-2,2'-disulfonate guest. Four of these guests clustered tightly at the four windows of the ZnII6L4 cage, held in place through electrostatic interactions and hydrogen bonding, stabilize a single diastereomeric configuration with S4 symmetry.
Collapse
Affiliation(s)
- Hua-Kui Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Dong Luo
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
8
|
Liu Y, Yuan K, Li M, Zhao P, Zhao Y, Zhao X. Nanoscale Saturn Systems Based on C 60/70 Bucky Ball and a Newly Designed [4]Cyclopara-1,2-diphenylethylene Hoop: A Strategy for Fullerene Encapsulation Release and Selective Recognition for C 70. Inorg Chem 2023. [PMID: 37262348 DOI: 10.1021/acs.inorgchem.3c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A new carbonaceous nanohoop, [4]cyclopara-1,2-diphenylethylene ([4]CPDPE, composed by four 1,2-diphenylethylene units linked via the para of the phenyls), is designed together with two rational synthesis paths being proposed. The Saturn-like host-guest systems formed with the [4]CPDPE nanoring and fullerene C60/70 are explored using density functional theory calculations. The results evidence that the geometry mutual matching between [4]CPDPE and C60/70 is perfect, and the [4]CPDPE⊃C60/70 complexes could be formed spontaneously with high binding energies. Thermodynamic calculation results show that it essentially prefers to selectively recognize C70 over its smaller cousin C60. More interestingly, the [4]CPDPE nanoring could present the regular ring cylinder and the saddle shapes via configuration transformation between its all-trans form and all-cis form, so as to theoretically realize the fullerene encapsulation and release under photoirradiation. Furthermore, the 2:1 interaction structure ([4]CPDPE2⊃Dimer-C60) and properties are investigated. Additionally, the ultraviolet-visible (UV-vis) spectra are simulated, and host-guest noncovalent interaction (NCI) regions are investigated based on the electron density and reduced density gradient (RDG), which may be helpful for a deep understanding of the present designed systems in future.
Collapse
Affiliation(s)
- Yanzhi Liu
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Tianshui Normal University, Tianshui 741001, China
| | - Kun Yuan
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Tianshui Normal University, Tianshui 741001, China
| | - Mengyang Li
- School of Physics, Xidian University, Xi'an 710071, China
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Yaoxiao Zhao
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Xiang Zhao
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
9
|
Wu K, Ronson TK, Goh L, Xue W, Heard AW, Su P, Li X, Vinković M, Nitschke JR. A Diverse Array of Large Capsules Transform in Response to Stimuli. J Am Chem Soc 2023; 145:11356-11363. [PMID: 37191451 DOI: 10.1021/jacs.3c02491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The allosteric regulation of biomolecules, such as enzymes, enables them to adapt and alter their conformation to fit specific substrates, expressing different functionalities in response to stimuli. Different stimuli can also trigger synthetic coordination cages to change their shape, size, and nuclearity by reconfiguring the dynamic metal-ligand bonds that hold them together. Here we demonstrate an abiological system consisting of different organic subcomponents and ZnII metal ions, which can respond to simple stimuli in complex ways. A ZnII20L12 dodecahedron transforms to give a larger ZnII30L12 icosidodecahedron through subcomponent exchange, as an aldehyde that forms bidentate ligands is displaced in favor of one that forms tridentate ligands together with a penta-amine subcomponent. In the presence of a chiral template guest, the same system that produced the icosidodecahedron instead gives a ZnII15L6 truncated rhombohedral architecture through enantioselective self-assembly. Under specific crystallization conditions, a guest induces a further reconfiguration of either the ZnII30L12 or ZnII15L6 cages to yield an unprecedented ZnII20L8 pseudo-truncated octahedral structure. The transformation network of these cages shows how large synthetic hosts can undergo structural adaptation through the application of chemical stimuli, opening pathways to broader applications.
Collapse
Affiliation(s)
- Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| | - Leonard Goh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| | - Weichao Xue
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| | - Andrew W Heard
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - Pingru Su
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Mladen Vinković
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| |
Collapse
|
10
|
Xue W, Wu K, Ouyang N, Brotin T, Nitschke JR. Allosterically Regulated Guest Binding Determines Framework Symmetry for an Fe II 4 L 4 Cage. Angew Chem Int Ed Engl 2023; 62:e202301319. [PMID: 36866857 PMCID: PMC10947561 DOI: 10.1002/anie.202301319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 03/04/2023]
Abstract
Self-assembly of a flexible tritopic aniline and 3-substituted 2-formylpyridine subcomponents around iron(II) templates gave rise to a low-spin FeII 4 L4 capsule, whereas a high-spin FeII 3 L2 sandwich species formed when a sterically hindered 6-methyl-2-formylpyridine was used. The FeII 4 L4 cage adopted a new structure type with S4 symmetry, having two mer-Δ and two mer-Ʌ metal vertices, as confirmed by NMR and X-ray crystallographic analysis. The flexibility of the face-capping ligand endows the resulting FeII 4 L4 framework with conformational plasticity, enabling it to adapt structurally from S4 to T or C3 symmetry upon guest binding. The cage also displayed negative allosteric cooperativity in simultaneously binding different guests within its cavity and at the apertures between its faces.
Collapse
Affiliation(s)
- Weichao Xue
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Kai Wu
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Nianfeng Ouyang
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Thierry Brotin
- Laboratoire de chimieUniversité LyonEns de Lyon, CNRS UMR 518269342LyonFrance
| | | |
Collapse
|
11
|
Lu S, Morrow DJ, Li Z, Guo C, Yu X, Wang H, Schultz JD, O'Connor JP, Jin N, Fang F, Wang W, Cui R, Chen O, Su C, Wasielewski MR, Ma X, Li X. Encapsulating Semiconductor Quantum Dots in Supramolecular Cages Enables Ultrafast Guest-Host Electron and Vibrational Energy Transfer. J Am Chem Soc 2023; 145:5191-5202. [PMID: 36745391 DOI: 10.1021/jacs.2c11981] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the field of supramolecular chemistry, host-guest systems have been extensively explored to encapsulate a wide range of substrates, owing to emerging functionalities in nanoconfined space that cannot be achieved in dilute solutions. However, host-guest chemistry is still limited to encapsulation of small guests. Herein, we construct a water-soluble metallo-supramolecular hexagonal prism with a large hydrophobic cavity by anchoring multiple polyethylene glycol chains onto the building blocks. Then, assembled prisms are able to encapsulate quantum dots (QDs) with diameters of less than 5.0 nm. Furthermore, we find that the supramolecular cage around each QD strongly modifies the photophysics of the QD by universally increasing the rates of QD relaxation processes via ultrafast electron and vibrational energy transfer. Taken together, these efforts expand the scope of substrates in host-guest systems and provide a new approach to tune the optical properties of QDs.
Collapse
Affiliation(s)
- Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Darien J Morrow
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - James P O'Connor
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Na Jin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Fang Fang
- Instrumental Analysis Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wu Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ran Cui
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Chenliang Su
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Center for Molecular Quantum Transduction, Northwestern-Argonne Institute of Science and Engineering, 2205 Tech Drive, Evanston, Illinois 60208, United States.,Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
12
|
Bera S, Das S, Melle‐Franco M, Mateo‐Alonso A. An Organic Molecular Nanobarrel that Hosts and Solubilizes C 60. Angew Chem Int Ed Engl 2023; 62:e202216540. [PMID: 36469042 PMCID: PMC10107786 DOI: 10.1002/anie.202216540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Organic cages have gained increasing attention in recent years as molecular hosts and porous materials. Among these, barrel-shaped cages or molecular nanobarrels are promising systems to encapsulate large hosts as they possess windows of the same size as their internal cavity. However, these systems have received little attention and remain practically unexplored despite their potential. Herein, we report the design and synthesis of a new trigonal prismatic organic nanobarrel with two large triangular windows with a diameter of 12.7 Å optimal for the encapsulation of C60 . Remarkably, this organic nanobarrel shows a high affinity for C60 in solvents in which C60 is virtually insoluble, providing stable solutions of C60 .
Collapse
Affiliation(s)
- Saibal Bera
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastiánSpain
| | - Satyajit Das
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastiánSpain
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of MaterialsDepartment of ChemistryUniversity of Aveiro3810-193AveiroPortugal
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastiánSpain
- IkerbasqueBasque Foundation for Science48009BilbaoSpain
| |
Collapse
|
13
|
Li Y, Biswas R, Kopcha WP, Dubroca T, Abella L, Sun Y, Crichton RA, Rathnam C, Yang L, Yeh Y, Kundu K, Rodríguez‐Fortea A, Poblet JM, Lee K, Hill S, Zhang J. Structurally Defined Water-Soluble Metallofullerene Derivatives towards Biomedical Applications. Angew Chem Int Ed Engl 2023; 62:e202211704. [PMID: 36349405 PMCID: PMC9983306 DOI: 10.1002/anie.202211704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 11/11/2022]
Abstract
Endohedral metallofullerenes (EMFs) are excellent carriers of rare-earth element (REE) ions in biomedical applications because they preclude the release of toxic metal ions. However, existing approaches to synthesize water-soluble EMF derivatives yield mixtures that inhibit precise drug design. Here we report the synthesis of metallobuckytrio (MBT), a three-buckyball system, as a modular platform to develop structurally defined water-soluble EMF derivatives with ligands by choice. Demonstrated with PEG ligands, the resulting water-soluble MBTs show superb biocompatibility. The Gd MBTs exhibit superior T1 relaxivity than typical Gd complexes, potentially superseding current clinical MRI contrast agents in both safety and efficiency. The Lu MBTs generated reactive oxygen species upon light irradiation, showing promise as photosensitizers. With their modular nature to incorporate other ligands, we anticipate the MBT platform to open new paths towards bio-specific REE drugs.
Collapse
Affiliation(s)
- Yanbang Li
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Rohin Biswas
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - William P. Kopcha
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Thierry Dubroca
- National High Magnetic Field Laboratory (NHMFL)Florida State University1800 E. Paul Dirac Dr.TallahasseeFL 32310USA
| | - Laura Abella
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliMarcel⋅lí Domingo 143007TarragonaSpain
| | - Yue Sun
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Ryan A. Crichton
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Letao Yang
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Yao‐Wen Yeh
- Department of Physics and Astronomy, RutgersThe State University of New Jersey136 Frelinghuysen RdPiscatawayNJ 08854USA
| | - Krishnendu Kundu
- National High Magnetic Field Laboratory (NHMFL)Florida State University1800 E. Paul Dirac Dr.TallahasseeFL 32310USA
| | - Antonio Rodríguez‐Fortea
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliMarcel⋅lí Domingo 143007TarragonaSpain
| | - Josep M. Poblet
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliMarcel⋅lí Domingo 143007TarragonaSpain
| | - Ki‐Bum Lee
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Stephen Hill
- National High Magnetic Field Laboratory (NHMFL)Florida State University1800 E. Paul Dirac Dr.TallahasseeFL 32310USA
- Department of PhysicsFlorida State UniversityTallahasseeFL 32306USA
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| |
Collapse
|
14
|
Self-driven carbon atom implantation into fullerene embedding metal-carbon cluster. Proc Natl Acad Sci U S A 2022; 119:e2202563119. [PMID: 36122234 PMCID: PMC9522327 DOI: 10.1073/pnas.2202563119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hundreds of members have been synthesized and versatile applications have been promised for endofullerenes (EFs) in the past 30 y. However, the formation mechanism of EFs is still a long-standing puzzle to chemists, especially the mechanism of embedding clusters into charged carbon cages. Here, based on synthesis and structures of two representative vanadium-scandium-carbido/carbide EFs, VSc2C@Ih (7)-C80 and VSc2C2@Ih (7)-C80, a reasonable mechanism-C1 implantation (a carbon atom is implanted into carbon cage)-is proposed to interpret the evolution from VSc2C carbido to VSc2C2 carbide cluster. Supported by theoretical calculations together with crystallographic characterization, the single electron on vanadium (V) in VSc2C@Ih (7)-C80 is proved to facilitate the C1 implantation. While the V=C double bond is identified for VSc2C@Ih (7)-C80, after C1 implantation the distance between V and C atoms in VSc2C2@Ih (7)-C80 falls into the range of single bond lengths as previously shown in typical V-based organometallic complexes. This work exemplifies in situ self-driven implantation of an outer carbon atom into a charged carbon cage, which is different from previous heterogeneous implantation of nonmetal atoms (Group-V or -VIII atoms) driven by high-energy ion bombardment or high-pressure offline, and the proposed C1 implantation mechanism represents a heretofore unknown metal-carbon cluster encapsulation mechanism and can be the fundamental basis for EF family genesis.
Collapse
|
15
|
Wang G, Yang Y, Liu H, Chen M, Jiang Z, Bai Q, Yuan J, Jiang Z, Li Y, Wang P. Modular Construction of a Tessellated Octahedron, its Hierarchical Spherical Aggregate Behavior, and Electrocatalytic CO
2
Reduction Activity. Angew Chem Int Ed Engl 2022; 61:e202205851. [DOI: 10.1002/anie.202205851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Guotao Wang
- School of Metallurgy and Environment Central South University Changsha Hunan 410083 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution Changsha Hunan 410083 China
| | - Yunna Yang
- School of Metallurgy and Environment Central South University Changsha Hunan 410083 China
| | - Hui Liu
- School of Metallurgy and Environment Central South University Changsha Hunan 410083 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution Changsha Hunan 410083 China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 China
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry Hunan Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 China
| | - Yiming Li
- Department of Organic and Polymer Chemistry Hunan Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry Hunan Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 China
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution Changsha Hunan 410083 China
| |
Collapse
|
16
|
Bobylev EO, Poole DA, de Bruin B, Reek JNH. M 6L 12 Nanospheres with Multiple C 70 Binding Sites for 1O 2 Formation in Organic and Aqueous Media. J Am Chem Soc 2022; 144:15633-15642. [PMID: 35977385 PMCID: PMC9437924 DOI: 10.1021/jacs.2c05507] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Singlet oxygen is a potent oxidant with major applications
in organic
synthesis and medicinal treatment. An efficient way to produce singlet
oxygen is the photochemical generation by fullerenes which exhibit
ideal thermal and photochemical stability. In this contribution we
describe readily accessible M6L12 nanospheres
with unique binding sites for fullerenes located at the windows of
the nanospheres. Up to four C70 can be associated with
a single nanosphere, presenting an efficient method for fullerene
extraction and application. Depending on the functionality located
on the outside of the sphere, they act as vehicles for 1O2 generation in organic or in aqueous media using white
LED light. Excellent productivity in 1O2 generation
and consecutive oxidation of 1O2 acceptors using
C70⊂[Pd6L12], C60⊂[Pd6L12] or fullerene soot extract
was observed. The methodological design principles allow preparation
and application of highly effective multifullerene binding spheres.
Collapse
Affiliation(s)
- Eduard O Bobylev
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam The Netherlands
| | - David A Poole
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam The Netherlands
| | - Bas de Bruin
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam The Netherlands
| | - Joost N H Reek
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam The Netherlands
| |
Collapse
|
17
|
Wang G, Yang Y, liu H, Chen M, Jiang Z, Bai Q, Yuan J, jiang Z, Li Y, Wang P. Modular Construction of a Tessellated Octahedron and its Hierarchical Spherical Aggregate Behavior. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guotao Wang
- Central South University School of Metallurgy and Environment CHINA
| | - Yunna Yang
- Central South University School of Metallurgy and Environment CHINA
| | - Hui liu
- Central South University School of Metallurgy and Environment CHINA
| | - Mingzhao Chen
- Guangzhou University Institute of Environmental Research at Greater Bay Area CHINA
| | - Zhiyuan Jiang
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Qixia Bai
- Guangzhou University Institute of Environmental Research at Greater Bay Area CHINA
| | - Jie Yuan
- Henan Normal University School of Chemistry and Chemical Engineering CHINA
| | - Zhilong jiang
- Guangzhou University Institute of Environmental Research at Greater Bay Area CHINA
| | - Yiming Li
- Central South University College of Chemistry and Chemical Engineering CHINA
| | - Pingshan Wang
- Central South University College of Chemistry and Chemical Engineering 932 S. Lushan Rd. 410083 Changsha CHINA
| |
Collapse
|
18
|
Ubasart E, Mustieles Marin I, Asensio JM, Mencia G, López-Vinasco ÁM, García-Simón C, Del Rosal I, Poteau R, Chaudret B, Ribas X. Supramolecular nanocapsules as two-fold stabilizers of outer-cavity sub-nanometric Ru NPs and inner-cavity ultra-small Ru clusters. NANOSCALE HORIZONS 2022; 7:607-615. [PMID: 35389405 DOI: 10.1039/d1nh00677k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The synthesis of metallic nanoparticles (MNP) with high surface area and controlled shape is of paramount importance to increase their catalytic performance. The detailed growing process of NP is mostly unknown and understanding the specific steps would pave the way for a rational synthesis of the desired MNP. Here we take advantage of the stabilization properties exerted by the tetragonal prismatic supramolecular nanocapsule 8·(BArF)8 to develop a synthetic methodology for sub-nanometric RuNP (0.6-0.7 nm). The catalytic properties of these sub-nanometric nanoparticles were tested on the hydrogenation of styrene, obtaining excellent selectivity for the hydrogenation of the alkene moiety. In addition, the encapsulation of [Ru5] clusters inside the nanocapsule is strikingly observed in most of the experimental conditions, as ascertained by HR-MS. Moreover, a thorough DFT study enlightens the nature of the [Ru5] clusters as tb-Ru5H2(η6-PhH)2(η6-pyz)3 (2) trapped by two arene moieties of the clip, or as tb-Ru5H2(η1-pyz)6(η6-pyz)3 (3) trapped between the two Zn-porphyrin units of the nanocapsule. Both options fulfill the Wade-Mingos counting rules, i.e. 72 CVEs for the closotb. The trapped [Ru5] metallic clusters are proposed to be the first-grown seeds of subsequent formation of the subnanometric RuNP. Moreover, the double role of the nanocapsule in stabilising ∼0.7 nm NPs and also in hosting ultra-small Ru clusters, is unprecedented and may pave the way towards the synthesis of ultra-small metallic clusters for catalytic purposes.
Collapse
Affiliation(s)
- Ernest Ubasart
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, E-17003 Girona, Catalonia, Spain.
| | - Irene Mustieles Marin
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Juan Manuel Asensio
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Gabriel Mencia
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Ángela M López-Vinasco
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Cristina García-Simón
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, E-17003 Girona, Catalonia, Spain.
| | - Iker Del Rosal
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Romuald Poteau
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, E-17003 Girona, Catalonia, Spain.
| |
Collapse
|
19
|
Benavides PA, Gordillo MA, Yadav A, Joaqui-Joaqui MA, Saha S. Pt(ii)-coordinated tricomponent self-assemblies of tetrapyridyl porphyrin and dicarboxylate ligands: are they 3D prisms or 2D bow-ties? Chem Sci 2022; 13:4070-4081. [PMID: 35440981 PMCID: PMC8985580 DOI: 10.1039/d1sc06533e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/22/2022] [Indexed: 12/24/2022] Open
Abstract
Thermodynamically favored simultaneous coordination of Pt(ii) corners with aza- and carboxylate ligands yields tricomponent coordination complexes with sophisticated structures and functions, which require careful structural characterization to paint accurate depiction of their structure-function relationships. Previous reports claimed that heteroleptic coordination of cis-(Et3P)2PtII with tetrapyridyl porphyrins (M'TPP, M' = Zn or H2) and dicarboxylate ligands (XDC) yielded 3D tetragonal prisms containing two horizontal M'TPP faces and four vertical XDC pillars connected by eight Pt(ii) corners, even though such structures were not supported by their 1H NMR data. Through extensive X-ray crystallographic and NMR studies, herein, we demonstrate that self-assembly of cis-(Et3P)2PtII, M'TPP, and four different XDC linkers having varied lengths and rigidities actually yields bow-tie (⋈)-shaped 2D [{cis-(Et3P)2Pt}4(M'TPP) (XDC)2]4+ complexes featuring a M'TPP core and two parallel XDC linkers connected by four heteroleptic PtII corners instead of 3D prisms. This happened because (i) irrespective of their length (∼7-11 Å) and rigidity, the XDC linkers intramolecularly bridged two adjacent pyridyl-N atoms of a M'TPP core via PtII corners instead of connecting two cofacial M'TPP ligands and (ii) bow-tie complexes are entropically favored over prisms. The electron-rich ZnTPP core of a representative bow-tie complex selectively formed a charge-transfer complex with highly π-acidic 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,10,11-heaxacarbonitrile but not with a π-donor such as pyrene. Thus, this work not only produced novel M'TPP-based bow-tie complexes and demonstrated their selective π-acid recognition capability, but also underscored the importance of proper structural characterization of supramolecular assemblies to ensure accurate depiction of their structure-property relationships.
Collapse
Affiliation(s)
- Paola A Benavides
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| | - Monica A Gordillo
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| | - Ashok Yadav
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| | | | - Sourav Saha
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| |
Collapse
|
20
|
Zhang D, Gan Q, Plajer AJ, Lavendomme R, Ronson TK, Lu Z, Jensen JD, Laursen BW, Nitschke JR. Templation and Concentration Drive Conversion Between a Fe II12L 12 Pseudoicosahedron, a Fe II4L 4 Tetrahedron, and a Fe II2L 3 Helicate. J Am Chem Soc 2022; 144:1106-1112. [PMID: 35014803 PMCID: PMC9097479 DOI: 10.1021/jacs.1c11536] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/30/2022]
Abstract
We report the construction of three structurally distinct self-assembled architectures: FeII12L12 pseudoicosahedron 1, FeII2L3 helicate 2, and FeII4L4 tetrahedron 3, formed from a single triazatriangulenium subcomponent A under different reaction conditions. Pseudoicosahedral capsule 1 is the largest formed through subcomponent self-assembly to date, with an outer-sphere diameter of 5.4 nm and a cavity volume of 15 nm3. The outcome of self-assembly depended upon concentration, where the formation of pseudoicosahedron 1 was favored at higher concentrations, while helicate 2 exclusively formed at lower concentrations. The conversion of pseudoicosahedron 1 or helicate 2 into tetrahedron 3 occurred following the addition of a CB11H12- or B12F122- template.
Collapse
Affiliation(s)
- Dawei Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, People’s Republic
of China
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Quan Gan
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
- Hubei Key
Laboratory of Bioinorganic Chemistry & Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Alex J. Plajer
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
- Oxford Chemistry, Chemical Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Roy Lavendomme
- COMOC—Center
for Ordered Materials, Organometallics and Catalysis, Department of
Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Tanya K. Ronson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Zifei Lu
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Jesper D. Jensen
- Department
of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Bo W. Laursen
- Department
of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Jonathan R. Nitschke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| |
Collapse
|
21
|
Jiang Y, Li Z, Wu Y, Wang Z. Ln3@C80+ (Ln = lanthanide): a new class of stable metallofullerene cations with multicenter metal-metal bonding in sub-nanometer confined space. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00051b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among the large number of members in the metallofullerene family, the nitride clusterfullerene M3N@C80 (M = trivalent metal) is a special one with unordinary high stability. It is generally thought...
Collapse
|
22
|
Chen M, Zhao Y, Jin F, Li M, Guan R, Xin J, Yao YR, Zhao X, Wang GW, Zhang Q, Xie SY, Yang S. Decisive role of non-rare earth metals in high-regioselectivity addition of μ 3-carbido clusterfullerene. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01442d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of μ3-CCF Dy2TiC@Ih-C80 with AdN2 affords only one [6,6]-open monoadduct along with the addition sites adjacent to the Ti4+ ion instead of the two Dy3+ ions, revealing the decisive role of the non-rare earth metal Ti(IV).
Collapse
Affiliation(s)
- Muqing Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yaoxiao Zhao
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
- School of materials science and chemical engineering, Xi'an Technological University, Xi'an 710021, China
| | - Fei Jin
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Mengyang Li
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Runnan Guan
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jinpeng Xin
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Rong Yao
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiang Zhao
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guan-Wu Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qianyan Zhang
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Su-Yuan Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
23
|
Poyac L, Rose C, Wahiduzzaman M, Lebrun A, Cazals G, Devillers CH, Yot PG, Clément S, Richeter S. Synthesis, Characterization, and Encapsulation Properties of Rigid and Flexible Porphyrin Cages Assembled from N-Heterocyclic Carbene-Metal Bonds. Inorg Chem 2021; 60:19009-19021. [PMID: 34878781 DOI: 10.1021/acs.inorgchem.1c02868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four porphyrins equipped with imidazolium rings on the para positions of their meso aryl groups were prepared and used as tetrakis(N-heterocyclic carbene) (NHC) precursors for the synthesis of porphyrin cages assembled from eight NHC-M bonds (M = Ag+ or Au+). The conformation of the obtained porphyrin cages in solution and their encapsulation properties strongly depend on the structure of the spacer -(CH2)n- (n = 0 or 1) between meso aryl groups and peripheral NHC ligands. In the absence of methylene groups (n = 0), porphyrin cages are rather rigid and the short porphyrin-porphyrin distance prevents the encapsulation of guest molecules like 1,4-diazabicyclo[2.2.2]octane (DABCO). By contrast, the presence of methylene functions (n = 1) between meso aryl groups and peripheral NHCs offers additional flexibility to the system, allowing the inner space between the two porphyrins to expand enough to encapsulate guest molecules like water molecules or DABCO. The peripheral NHC-wingtip groups also play a significant role in the encapsulation properties of the porphyrin cages.
Collapse
Affiliation(s)
- Ludivine Poyac
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | - Clémence Rose
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | | | | | | | - Charles H Devillers
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, 9 avenue Alain Savary, Dijon 21078, France
| | - Pascal G Yot
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | | | | |
Collapse
|
24
|
Abstract
Carbide complexes remain a rare class of molecules. Their paucity does not reflect exceptional instability but is rather due to the generally narrow scope of synthetic procedures for constructing carbide complexes. The preparation of carbide complexes typically revolves around generating LnM-CEx fragments, followed by cleavage of the C-E bonds of the coordinated carbon-based ligands (the alternative being direct C atom transfer). Prime examples involve deoxygenation of carbonyl ligands and deprotonation of methyl ligands, but several other p-block fragments can be cleaved off to afford carbide ligands. This Review outlines synthetic strategies toward terminal carbide complexes, bridging carbide complexes, as well as carbide-carbonyl cluster complexes. It then surveys the reactivity of carbide complexes, covering stoichiometric reactions where the carbide ligands act as C1 reagents, engage in cross-coupling reactions, and enact Fischer-Tropsch-like chemistry; in addition, we discuss carbide complexes in the context of catalysis. Finally, we examine spectroscopic features of carbide complexes, which helps to establish the presence of the carbide functionality and address its electronic structure.
Collapse
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
25
|
Wang X, Zhou J, Zhang Z, Li J, Zhang H. Synthesis of PAO NFs and the adsorption for uranium (VI) in alkaline solution. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-08083-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Nguyen BN, Thoburn JD, Grommet AB, Howe DJ, Ronson TK, Ryan HP, Bolliger JL, Nitschke JR. Coordination Cages Selectively Transport Molecular Cargoes Across Liquid Membranes. J Am Chem Soc 2021; 143:12175-12180. [PMID: 34337947 PMCID: PMC8397303 DOI: 10.1021/jacs.1c04799] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/27/2022]
Abstract
Chemical purifications are critical processes across many industries, requiring 10-15% of humanity's global energy budget. Coordination cages are able to catch and release guest molecules based upon their size and shape, providing a new technological basis for achieving chemical separation. Here, we show that aqueous solutions of FeII4L6 and CoII4L4 cages can be used as liquid membranes. Selective transport of complex hydrocarbons across these membranes enabled the separation of target compounds from mixtures under ambient conditions. The kinetics of cage-mediated cargo transport are governed by guest binding affinity. Using sequential transport across two consecutive membranes, target compounds were isolated from a mixture in a size-selective fashion. The selectivities of both cages thus enabled a two-stage separation process to isolate a single compound from a mixture of physicochemically similar molecules.
Collapse
Affiliation(s)
| | - John D. Thoburn
- Randolph-Macon
College, Department of Chemistry, Ashland, Virginia 23005, United States
| | - Angela B. Grommet
- University
of Cambridge, Department of Chemistry, Cambridge CB2 1EW, U.K.
| | - Duncan J. Howe
- University
of Cambridge, Department of Chemistry, Cambridge CB2 1EW, U.K.
| | - Tanya K. Ronson
- University
of Cambridge, Department of Chemistry, Cambridge CB2 1EW, U.K.
| | - Hugh P. Ryan
- University
of Cambridge, Department of Chemistry, Cambridge CB2 1EW, U.K.
| | - Jeanne L. Bolliger
- University
of Cambridge, Department of Chemistry, Cambridge CB2 1EW, U.K.
| | | |
Collapse
|
27
|
A curved host and second guest cooperatively inhibit the dynamic motion of corannulene. Nat Commun 2021; 12:4079. [PMID: 34215736 PMCID: PMC8253762 DOI: 10.1038/s41467-021-24344-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 11/08/2022] Open
Abstract
Biomolecular systems show how host-guest binding can induce changes in molecular behavior, which in turn impact the functions of the system. Here we report an artificial host-guest system where dynamic adaptation during guest binding alters both host conformation and guest dynamics. The self-assembled cage host employed here possesses concave walls and a chirotopic cavity. Complementarity between the curved surfaces of fullerenes and the inner surface of the host cavity leads the host to reconfigure stereochemically in order to bind these guests optimally. The curved molecule corannulene undergoes rapid bowl-to-bowl inversion at room temperature. Its inversion barrier is increased upon binding, however, and increased further upon formation of a ternary complex, where corannulene and a cycloalkane are both bound together. The chiral nature of the host also leads to clear differences in the NMR spectra of ternary complexes involving corannulene and one or the other enantiomer of a chiral guest, which enables the determination of enantiomeric excess by NMR.
Collapse
|
28
|
Yang L, Li B, Gu X, Niu K, Jin P. Discovery of Non-Isolated-Pentagon-Rule Fullerenes from Computational Characterization of U 2O@C 72. Inorg Chem 2021; 60:6492-6502. [PMID: 33881859 DOI: 10.1021/acs.inorgchem.1c00229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reported actinide-based endohedral clusterfullerenes (ECFs) are rather scarce thus far. Though several members have been detected in mass spectra, their exact structures and properties mostly remain unclear. Herein, density functional theory calculations revealed that the U2O@C72 observed in recent experiments should be U2O@D2(10611)-C72, U2O@C1(10610)-C72, or U2O@Cs(10616)-C72. Featuring two pairs of fused pentagons, their outer cages all break the well-known isolated pentagon rule. U2O@D2(10611)-C72 is the first clusterfullerene based on the D2(10611)-C72 cage, which only encapsulated dimetals (Sc2, La2, Ce2, Pr2) before. It is also the first time to reveal that C1(10610)-C72 and Cs(10616)-C72 can serve as the parent cage of an endohedral fullerene. Interestingly, the three isomers could interconvert with each other via Stone-Wales transformation with one internal U atom dynamically changing its orientation according to the position of pentagon adjacencies. A common electronic structure of (U4+)2(O)2-@C726- can be formally assigned to the three ECFs but with obvious covalent character for both U-O and U-C bonds. Their spatially extended U-5f orbitals substantially enhance the metal-cage interactions. Their various spectra were also simulated to assist future experiments. Moreover, our work shows that the careful choice of exchange-correlation functionals is rather critical for the structural characterization of ECFs.
Collapse
Affiliation(s)
- Le Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Bo Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaojiao Gu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Kai Niu
- School of Sciences, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Peng Jin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
29
|
Ubasart E, Borodin O, Fuertes-Espinosa C, Xu Y, García-Simón C, Gómez L, Juanhuix J, Gándara F, Imaz I, Maspoch D, von Delius M, Ribas X. A three-shell supramolecular complex enables the symmetry-mismatched chemo- and regioselective bis-functionalization of C 60. Nat Chem 2021; 13:420-427. [PMID: 33859394 DOI: 10.1038/s41557-021-00658-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 02/05/2021] [Indexed: 02/02/2023]
Abstract
Molecular Russian dolls (matryoshkas) have proven useful for testing the limits of preparative supramolecular chemistry but applications of these architectures to problems in other fields are elusive. Here we report a three-shell, matryoshka-like complex-in which C60 sits inside a cycloparaphenylene nanohoop, which in turn is encapsulated inside a self-assembled nanocapsule-that can be used to address a long-standing challenge in fullerene chemistry, namely the selective formation of a particular fullerene bis-adduct. Spectroscopic evidence indicates that the ternary complex is sufficiently stable in solution for the two outer shells to affect the addition chemistry of the fullerene guest. When the complex is subjected to Bingel cyclopropanation conditions, the exclusive formation of a single trans-3 fullerene bis-adduct was observed in a reaction that typically yields more than a dozen products. The selectivity facilitated by this matryoshka-like approach appears to be a general phenomenon and could be useful for applications where regioisomerically pure C60 bis-adducts have been shown to have superior properties compared with isomer mixtures.
Collapse
Affiliation(s)
- Ernest Ubasart
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain
| | - Oleg Borodin
- Institute of Organic Chemistry, Ulm University, Ulm, Germany
| | - Carles Fuertes-Espinosa
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain
| | - Youzhi Xu
- Institute of Organic Chemistry, Ulm University, Ulm, Germany
| | - Cristina García-Simón
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain
| | - Laura Gómez
- Serveis Tècnics de Recerca, Universitat de Girona, Girona, Spain
| | | | - Felipe Gándara
- Materials Science Institute of Madrid, Spanish National Research Council, Madrid, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Ulm, Germany.
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain.
| |
Collapse
|
30
|
Zhang D, Ronson TK, Zou YQ, Nitschke JR. Metal–organic cages for molecular separations. Nat Rev Chem 2021; 5:168-182. [PMID: 37117530 DOI: 10.1038/s41570-020-00246-1] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022]
Abstract
Separation technology is central to industries as diverse as petroleum, pharmaceuticals, mining and life sciences. Metal-organic cages, a class of molecular containers formed via coordination-driven self-assembly, show great promise as separation agents. Precise control of the shape, size and functionalization of cage cavities enables them to selectively bind and distinguish a wide scope of physicochemically similar substances in solution. Extensive research has, thus, been performed involving separations of high-value targets using coordination cages, ranging from gases and liquids to compounds dissolved in solution. Enantiopure capsules also show great potential for the separation of chiral molecules. The use of crystalline cages as absorbents, or the incorporation of cages into polymer membranes, could increase the selectivity and efficiency of separation processes. This Review covers recent progress in using metal-organic cages to achieve separations, with discussion of the many methods of using them in this context. Challenges and potential future developments are also discussed.
Collapse
|
31
|
Zhang Y, Guan R, Chen M, Shen Y, Pan Q, Lian Y, Yang S. Favorite Orientation of the Carbon Cage and a Unique Two-Dimensional-Layered Packing Model in the Cocrystals of Nd@C82(I,II) Isomers with Decapyrrylcorannulene. Inorg Chem 2021; 60:1462-1471. [DOI: 10.1021/acs.inorgchem.0c02744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, and Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Runnan Guan
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, and Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, and Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Yongpeng Shen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Qingjiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yongfu Lian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, and Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
32
|
Ubasart E, García-Simón C, Pujals M, Asad K, Chronakis N, Parella T, Ribas X. Straightforward supramolecular purification of C 84 from a fullerene extract. Org Chem Front 2021. [DOI: 10.1039/d1qo00597a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient, one-step protocol for the enrichment of C84 (up to 86%) directly from a fullerene extract is reported, by utilizing a tetragonal prismatic nanocapsule with a suitable size and shape for selective encapsulation.
Collapse
Affiliation(s)
- Ernest Ubasart
- QBIS-CAT group
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química
- Universitat de Girona
- Girona E-17003
- Spain
| | - Cristina García-Simón
- QBIS-CAT group
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química
- Universitat de Girona
- Girona E-17003
- Spain
| | - Míriam Pujals
- QBIS-CAT group
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química
- Universitat de Girona
- Girona E-17003
- Spain
| | - Karam Asad
- Department of Chemistry
- University of Cyprus
- 2109 Aglantzia
- Cyprus
| | - Nikos Chronakis
- Department of Chemistry
- University of Cyprus
- 2109 Aglantzia
- Cyprus
| | - Teodor Parella
- Servei de RMN and Departament de Química
- Facultat de Ciències
- Universitat Autònoma de Barcelona (UAB)
- Campus UAB
- 08193 Bellaterra
| | - Xavi Ribas
- QBIS-CAT group
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química
- Universitat de Girona
- Girona E-17003
- Spain
| |
Collapse
|
33
|
Fuertes-Espinosa C, Pujals M, Ribas X. Supramolecular Purification and Regioselective Functionalization of Fullerenes and Endohedral Metallofullerenes. Chem 2020. [DOI: 10.1016/j.chempr.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
García-Simón C, Colomban C, Çetin YA, Gimeno A, Pujals M, Ubasart E, Fuertes-Espinosa C, Asad K, Chronakis N, Costas M, Jiménez-Barbero J, Feixas F, Ribas X. Complete Dynamic Reconstruction of C60, C70, and (C59N)2 Encapsulation into an Adaptable Supramolecular Nanocapsule. J Am Chem Soc 2020; 142:16051-16063. [DOI: 10.1021/jacs.0c07591] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cristina García-Simón
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Cédric Colomban
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Yarkin Aybars Çetin
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Ana Gimeno
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170 Derio, Spain
| | - Míriam Pujals
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Ernest Ubasart
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Carles Fuertes-Espinosa
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Karam Asad
- Department of Chemistry, University of Cyprus, University str. 1, Building No. 13, 2109 Aglantzia, Nicosia, Cyprus
| | - Nikos Chronakis
- Department of Chemistry, University of Cyprus, University str. 1, Building No. 13, 2109 Aglantzia, Nicosia, Cyprus
| | - Miquel Costas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170 Derio, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940 Leioa, Spain
| | - Ferran Feixas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Xavi Ribas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| |
Collapse
|
35
|
Leonhardt V, Fimmel S, Krause AM, Beuerle F. A covalent organic cage compound acting as a supramolecular shadow mask for the regioselective functionalization of C 60. Chem Sci 2020; 11:8409-8415. [PMID: 34123100 PMCID: PMC8163405 DOI: 10.1039/d0sc03131c] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A trigonal-bipyramidal covalent organic cage compound serves as an efficient host to form stable 1 : 1-complexes with C60 and C70. Fullerene encapsulation has been comprehensively studied by NMR and UV/Vis spectroscopy, mass spectrometry as well as single-crystal X-ray diffraction. Exohedral functionalization of encapsulated C60via threefold Prato reaction revealed high selectivity for the symmetry-matched all-trans-3 addition pattern. The taming of the Prato reaction: a covalent organic cage compound serves as a supramolecular template for the regioselective functionalization of C60.![]()
Collapse
Affiliation(s)
- Viktoria Leonhardt
- Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany .,Universität Würzburg, Center for Nanosystems Chemistry (CNC), Bavarian Polymer Institute (BPI) Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Stefanie Fimmel
- Universität Würzburg, Center for Nanosystems Chemistry (CNC), Bavarian Polymer Institute (BPI) Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Ana-Maria Krause
- Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany .,Universität Würzburg, Center for Nanosystems Chemistry (CNC), Bavarian Polymer Institute (BPI) Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Florian Beuerle
- Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany .,Universität Würzburg, Center for Nanosystems Chemistry (CNC), Bavarian Polymer Institute (BPI) Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
36
|
Hao D, Yang L, Wei Z, Hou Q, Li L, Jin P. U 2O@C 76: Non-Isolated-Pentagon-Rule Cages Prevail with the U 2O Configuration Determined by Cage Shape and Dominated by Multicenter Bonds. Inorg Chem 2020; 59:7039-7048. [PMID: 32343133 DOI: 10.1021/acs.inorgchem.0c00518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endohedral clusterfullerenes (ECFs) are fullerene cages with various metallic clusters trapped inside. So far, the actinide-based ECFs are rather scarce with their possible structures and chemistry remaining largely unexplored. Herein, density functional theory calculations characterized that the recently synthesized U2O@C76 could be U2O@Cs(17 490)-C76 or U2O@C2v(19 138)-C76, whose cages have two or one pentagon adjacencies (PAs) and thus both violate the isolated pentagon rule (IPR). It is noteworthy that they are the first actinide-based ECFs bearing non-IPR outer cages. They are also the first Cs(17 490)- and C2v(19 138)-C76-based oxide ECFs. Moreover, U2O@C2v(19 138)-C76 is the first example of a hexavalent metal cluster within the C2v(19 138)-C76 cage. Interestingly, although trapped by the two same-sized cages, the U2O unit exhibits a bent and a perfect linear configuration, respectively, indicative of the crucial role of cage shape in steering the internal cluster configuration. Their electronic structures can be formally described as (U2O)6+@C766- with primary electrostatic attractions and secondary covalent interactions between cluster and cage. Significantly, bonding analyses reveal that the encaged U2O moiety may only features two three-center, two-electron (3c-2e) U-O-U bonds with completely absent common two-center bonds.
Collapse
Affiliation(s)
- Debo Hao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Le Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zhan Wei
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Qinghua Hou
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Peng Jin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
37
|
Shen W, Hu S, Lu X. Endohedral Metallofullerenes: New Structures and Unseen Phenomena. Chemistry 2020; 26:5748-5757. [PMID: 31886563 DOI: 10.1002/chem.201905306] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/27/2019] [Indexed: 02/06/2023]
Abstract
Endohedral metallofullerenes (EMFs), namely fullerenes with metallic species encapsulated inside, represent an ideal platform to investigate metal-metal or metal-carbon interactions at the sub-nanometer scale by means of single-crystal X-ray diffraction (XRD) crystallography. Herein, recent progress in the identification of new structures and unprecedented properties are discussed according to the categories of monometallofullerenes, dimetallofullerenes, carbide clusterfullerenes, and nitride clusterfullerenes. In particular, the dimerization and the cage-isomer dependent oxidation state of the inner metal atom are summarized in terms of pristine monometallofullerenes. Metal-metal bonds involving lanthanide-lanthanides or actinide-actinides are discussed based on both experimental and theoretical studies. The cluster-cage matching and/or mutual selections, as well as the rarely seen M=C double bonds, are discovered in M2 C2 @C2n , U2 C@C80 , M2 TiC@C80 , and Ti3 C3 @C80 . Subsequently, the geometries of different M3 N clusters in various cages are discussed, revealing size-matching between the internal M3 N cluster and the outer cage induced by the planarity of the cluster. Finally, an outlook regarding the future developments of the molecular structures and applications of EMFs is presented.
Collapse
Affiliation(s)
- Wangqiang Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Shuaifeng Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
38
|
Shi Q, Zhou X, Yuan W, Su X, Neniškis A, Wei X, Taujenis L, Snarskis G, Ward JS, Rissanen K, de Mendoza J, Orentas E. Selective Formation of S4- and T-Symmetric Supramolecular Tetrahedral Cages and Helicates in Polar Media Assembled via Cooperative Action of Coordination and Hydrogen Bonds. J Am Chem Soc 2020; 142:3658-3670. [PMID: 31983204 DOI: 10.1021/jacs.0c00722] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report on the synthesis and self-assembly study of novel supramolecular monomers encompassing quadruple hydrogen-bonding motifs and metal-coordinating 2,2'-bipyridine units. When mixed with metal ions such as Fe2+ or Zn2+, the tetrahedron cage complexes are formed in quantitative yields and full diastereoselectivity, even in highly polar acetonitrile or methanol solvents. The symmetry of the complexes obtained has been shown to depend critically on the flexibility of the ligand. Restriction of the rotation of the hydrogen-bonding unit with respect to the metal-coordinating site results in a T-symmetric cage, whereas introducing flexibility either through a methylene linker or rotating benzene ring allows the formation of S4-symmetric cages with self-filled interior. In addition, the possibility to select between tetrahedral cages or helicates and to control the dimensions of the aggregate has been demonstrated with a three-component assembly using external hydrogen-bonding molecular inserts or by varying the radius of the metal ion (Hg2+ vs Fe2+). Self-sorting studies of individual Fe2+ complexes with ligands of different sizes revealed their inertness toward ligand scrambling.
Collapse
Affiliation(s)
- Qixun Shi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China.,State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Xiaohong Zhou
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Wei Yuan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Xiaoshi Su
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Algirdas Neniškis
- Department of Organic Chemistry , Vilnius University , Naugarduko 24 , LT-03225 Vilnius , Lithuania
| | - Xin Wei
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Lukas Taujenis
- Thermo Fisher Scientific Baltics , V. A. Graičiu̅no 8, LT-02241 Vilnius , Lithuania
| | - Gustautas Snarskis
- Department of Organic Chemistry , Vilnius University , Naugarduko 24 , LT-03225 Vilnius , Lithuania
| | - Jas S Ward
- Department of Chemistry , University of Jyvaskyla , P.O. Box 35 , 40014 Jyväskylä , Finland
| | - Kari Rissanen
- Department of Chemistry , University of Jyvaskyla , P.O. Box 35 , 40014 Jyväskylä , Finland
| | - Javier de Mendoza
- Institute of Chemical Research of Catalonia (ICIQ) , AV. Països Catalans, 16 , 43007 Tarragona , Spain
| | - Edvinas Orentas
- Department of Organic Chemistry , Vilnius University , Naugarduko 24 , LT-03225 Vilnius , Lithuania
| |
Collapse
|
39
|
Cyclic metalloporphyrin dimers: Conformational flexibility, applications and future prospects. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Hasegawa S, Clever GH. Metallo-supramolecular Shell Enables Regioselective Multi-functionalization of Fullerenes. Chem 2020. [DOI: 10.1016/j.chempr.2019.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Li X, Yao YR, Yang W, Zhuang J, Echegoyen L, Chen N. Crystallographic and spectroscopic characterization of a mixed actinide–lanthanide carbide cluster stabilized inside an Ih(7)-C80 fullerene cage. Chem Commun (Camb) 2020; 56:3867-3870. [DOI: 10.1039/d0cc00133c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For the first time, crystallographic and spectroscopic analyses identified that a mixed actinide–lanthanide carbide cluster Sc2UC, with a very short UC bond, is stabilized inside an Ih(7)-C80 cage.
Collapse
Affiliation(s)
- Xiaomeng Li
- Laboratory of Advanced Optoelectronic Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Yang-Rong Yao
- Department of Chemistry
- University of Texas at El Paso
- El Paso
- USA
| | - Wei Yang
- Laboratory of Advanced Optoelectronic Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Jiaxin Zhuang
- Laboratory of Advanced Optoelectronic Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Luis Echegoyen
- Department of Chemistry
- University of Texas at El Paso
- El Paso
- USA
| | - Ning Chen
- Laboratory of Advanced Optoelectronic Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|
42
|
Yamashita K, Kuramochi N, Pham Qui Van H, Furutani K, Ogawa T, Sugiura K. Efficient Synthesis of Arylenedioxy‐Bridged Porphyrin Dimers through Catalyst‐Free Nucleophilic Aromatic Substitution. Chempluschem 2020. [DOI: 10.1002/cplu.201900670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ken‐ichi Yamashita
- Department of Chemistry Graduate School of Science and Engineering Tokyo Metropolitan University Minami-Osawa, Hachioji Tokyo 192-0397 Japan
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Narumi Kuramochi
- Department of Chemistry Graduate School of Science and Engineering Tokyo Metropolitan University Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| | - Hang Pham Qui Van
- Department of Chemistry Graduate School of Science and Engineering Tokyo Metropolitan University Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| | - Kazuhiro Furutani
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Takuji Ogawa
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Ken‐ichi Sugiura
- Department of Chemistry Graduate School of Science and Engineering Tokyo Metropolitan University Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| |
Collapse
|
43
|
Fuertes-Espinosa C, Murillo J, Soto ME, Ceron MR, Morales-Martínez R, Rodríguez-Fortea A, Poblet JM, Echegoyen L, Ribas X. Highly selective encapsulation and purification of U-based C 78-EMFs within a supramolecular nanocapsule. NANOSCALE 2019; 11:23035-23041. [PMID: 31774082 DOI: 10.1039/c9nr07660c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ability of the tetragonal prismatic nanocapsule 1·(BArF)8 to selectively encapsulate U-based C78 EMFs from a soot mixture is reported, showing enhanced affinity for C78-based EMFs over C80-based EMFs. Molecular recognition driven by the electrostatic interactions between the host and guest is at the basis of the high selectivity observed for ellipsoidal C78-based EMFs compared to spherical C80-based EMFs. In addition, DFT analysis points towards an enhanced breathing adaptability of nanocapsule 1·(BArF)8 to C78-based EMFs to further explain the selectivity observed when the host is used in the solid phase.
Collapse
Affiliation(s)
- Carles Fuertes-Espinosa
- QBIS-CAT group, IQCC and Dept. Química, Universitat de Girona, Campus de Montilivi, E-17003, Girona, Catalonia, Spain.
| | - Jesse Murillo
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, USA.
| | - Marco E Soto
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, USA.
| | - Maira R Ceron
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, USA.
| | - Roser Morales-Martínez
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Antonio Rodríguez-Fortea
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Josep M Poblet
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Luis Echegoyen
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, USA.
| | - Xavi Ribas
- QBIS-CAT group, IQCC and Dept. Química, Universitat de Girona, Campus de Montilivi, E-17003, Girona, Catalonia, Spain.
| |
Collapse
|
44
|
Xu Y, Gsänger S, Minameyer MB, Imaz I, Maspoch D, Shyshov O, Schwer F, Ribas X, Drewello T, Meyer B, von Delius M. Highly Strained, Radially π-Conjugated Porphyrinylene Nanohoops. J Am Chem Soc 2019; 141:18500-18507. [DOI: 10.1021/jacs.9b08584] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Youzhi Xu
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sebastian Gsänger
- Interdisciplinary Center for Molecular Materials (ICMM) and Computer-Chemistry-Center (CCC), Friedrich-Alexander University Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Martin B. Minameyer
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Oleksandr Shyshov
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Fabian Schwer
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Thomas Drewello
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Bernd Meyer
- Interdisciplinary Center for Molecular Materials (ICMM) and Computer-Chemistry-Center (CCC), Friedrich-Alexander University Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Max von Delius
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
45
|
Edelmann FT, Farnaby JH, Jaroschik F, Wilson B. Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Zhao YX, Li MY, Zhao P, Ehara M, Zhao X. New Insight into U@C80: Missing U@D3(31921)-C80 and Nuanced Enantiomers of U@C1(28324)-C80. Inorg Chem 2019; 58:14159-14166. [DOI: 10.1021/acs.inorgchem.9b02196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yao-Xiao Zhao
- Institute for Chemical Physics & Department of Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| | - Meng-Yang Li
- Institute for Chemical Physics & Department of Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| | - Pei Zhao
- Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Masahiro Ehara
- Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Xiang Zhao
- Institute for Chemical Physics & Department of Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
47
|
Zhao S, Yuan Y, Yu Q, Niu B, Liao J, Guo Z, Wang N. A Dual‐Surface Amidoximated Halloysite Nanotube for High‐Efficiency Economical Uranium Extraction from Seawater. Angew Chem Int Ed Engl 2019; 58:14979-14985. [DOI: 10.1002/anie.201908762] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/13/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Shilei Zhao
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| | - Qiuhan Yu
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| | - Biye Niu
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| | - Jianhe Liao
- College of Materials Science and Engineering Hainan University Haikou 570228 P. R. China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL) Department of Chemical & Biomolecular Engineering University of Tennessee Knoxville TN 37996 USA
- National Engineering Research Center for, Advanced Polymer Processing Technology Zhengzhou University Zhengzhou 450001 P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| |
Collapse
|
48
|
Zhao S, Yuan Y, Yu Q, Niu B, Liao J, Guo Z, Wang N. A Dual‐Surface Amidoximated Halloysite Nanotube for High‐Efficiency Economical Uranium Extraction from Seawater. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908762] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shilei Zhao
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| | - Qiuhan Yu
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| | - Biye Niu
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| | - Jianhe Liao
- College of Materials Science and Engineering Hainan University Haikou 570228 P. R. China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL) Department of Chemical & Biomolecular Engineering University of Tennessee Knoxville TN 37996 USA
- National Engineering Research Center for, Advanced Polymer Processing Technology Zhengzhou University Zhengzhou 450001 P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in, South China Sea Hainan University Haikou 570228 P. R. China
| |
Collapse
|
49
|
Li Y, Yang L, Li Z, Hou Q, Li L, Jin P. U 2C Unit in Fullerenes: Robust Multicenter Bonds with a Cluster Shape Controlled by Cage Size and Charge Transfer. Inorg Chem 2019; 58:10648-10655. [PMID: 31348657 DOI: 10.1021/acs.inorgchem.9b00238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stimulated by the recent successful synthesis and crystallographic characterization of the first diuranium carbide endohedral metallofullerene (EMF) U2C@Ih(7)-C80 ( Zhang et al. Nat. Commun. ; 2018 ), density functional theory calculations were performed for a series of U2C@C2n (2n = 60, 68, 72, 78, 80, 88, 96, and 104) analogues. The internal UCU bond angle increases from 96.9° in Ih-C60 to 180.0° in D3d-C104, exhibiting cage-size-dependent cluster configuration. However, further evidence suggests that the U2C shape may be also affected by the amount of charge transferred from the cluster to the outer cage with 6e and 4e favoring bent and linear, respectively. The change of the bond angle closely correlates with the charge and hybrid state of the internal atom. Significantly, besides the covalent two-center two-electron (2c-2e) U-C bonds, the U2C unit always features two 3c-2e bonds regardless of its size, shape, and charge state. Furthermore, for the cluster-cage interactions, besides the dominated electrostatic attractions, all these EMFs show an obvious covalent character with the substantial participation of U 5f valence orbitals.
Collapse
Affiliation(s)
- Ying Li
- School of Materials Science and Engineering , Hebei University of Technology , Tianjin 300130 , China
| | - Le Yang
- School of Materials Science and Engineering , Hebei University of Technology , Tianjin 300130 , China
| | - Zhengxiang Li
- School of Materials Science and Engineering , Hebei University of Technology , Tianjin 300130 , China
| | - Qinghua Hou
- School of Materials Science and Engineering , Hebei University of Technology , Tianjin 300130 , China
| | - Lanlan Li
- School of Materials Science and Engineering , Hebei University of Technology , Tianjin 300130 , China
| | - Peng Jin
- School of Materials Science and Engineering , Hebei University of Technology , Tianjin 300130 , China
| |
Collapse
|
50
|
Zhao YX, Yuan K, Li MY, Ehara M, Zhao X. In-Depth Theoretical Probe into Novel Mixed-Metal Uranium-Based Endohedral Clusterfullerenes Sc2UX@Ih(31924)-C80 (X = C, N). Inorg Chem 2019; 58:10769-10777. [DOI: 10.1021/acs.inorgchem.9b00996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yao-Xiao Zhao
- Institute for Chemical Physics & Department of Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an710049, People’s Republic of China
| | - Kun Yuan
- Institute for Chemical Physics & Department of Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an710049, People’s Republic of China
| | - Meng-Yang Li
- Institute for Chemical Physics & Department of Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an710049, People’s Republic of China
| | - Masahiro Ehara
- Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Xiang Zhao
- Institute for Chemical Physics & Department of Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an710049, People’s Republic of China
| |
Collapse
|