1
|
Davis V, Frielingsdorf S, Hu Q, Elsäßer P, Balzer BN, Lenz O, Zebger I, Fischer A. Ultrathin Film Antimony-Doped Tin Oxide Prevents [NiFe] Hydrogenase Inactivation at High Electrode Potentials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44802-44816. [PMID: 39160667 DOI: 10.1021/acsami.4c08218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
For hydrogenases to serve as effective electrocatalysts in hydrogen biotechnological devices, such as enzymatic fuel cells, it is imperative to design electrodes that facilitate stable and functional enzyme immobilization, efficient substrate accessibility, and effective interfacial electron transfer. Recent years have seen considerable advancements in this area, particularly concerning hydrogenases. However, a significant limitation remains: the inactivation of hydrogenases at high oxidative potentials across most developed electrodes. Addressing this issue necessitates a thorough understanding of the interactions between the enzyme and the electrode surface. In this study, we employ ATR-IR spectroscopy combined with electrochemistry in situ to investigate the interaction mechanisms, electrocatalytic behavior, and stability of the oxygen-tolerant membrane-bound [NiFe] hydrogenase from Cupriavidus necator (MBH), which features a His-tag on its small subunit C-terminus. Antimony-doped tin oxide (ATO) thin films were selected as electrodes due to their protein compatibility, suitable potential window, conductivity, and transparency, making them an ideal platform for spectroelectrochemical measurements. Our comprehensive examination of the physiological and electrochemical processes of [NiFe] MBH on ATO thin film electrodes demonstrates that by tuning the electron transport properties of the ATO thin film, we can prevent MBH inactivation at extended oxidative potentials while maintaining direct electron transfer between the enzyme and the electrode.
Collapse
Affiliation(s)
- Victoria Davis
- Institute of Inorganic and Analytical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- Freiburger Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
| | - Stefan Frielingsdorf
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135 & 124, 10623 Berlin, Germany
| | - Qiwei Hu
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Patrick Elsäßer
- Institute of Inorganic and Analytical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Bizan N Balzer
- Freiburger Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Oliver Lenz
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135 & 124, 10623 Berlin, Germany
| | - Ingo Zebger
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135 & 124, 10623 Berlin, Germany
| | - Anna Fischer
- Institute of Inorganic and Analytical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- Freiburger Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
2
|
Luo H, Li B, Ma JG, Cheng P. Molecular enhancement of Cu-based catalysts for CO 2 electroreduction. Chem Commun (Camb) 2024; 60:9298-9309. [PMID: 39104313 DOI: 10.1039/d4cc02619e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The electrochemical carbon dioxide reduction reaction (eCO2RR) represents an effective means of achieving renewable energy storage and a supply of carbon-based raw materials. However, there are still great challenges in selectively producing specific hydrocarbon compounds. The unique ability of the copper (Cu) catalyst to promote proton-coupled electron transfer processes offers clear advantages in generating value-added products. This review presents molecular enhancement strategies for Cu-based catalysts for CO2 electroreduction. We also elucidate the principles of each strategy for enhancing eCO2RR performance, discuss the structure-activity relationships, and propose some promising molecular enhancement strategies. This review will provide guidance for the development of organic-inorganic hybrid Cu-based catalysts as high-performance CO2 electroreduction catalysts.
Collapse
Affiliation(s)
- Haiqiang Luo
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Bo Li
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jian-Gong Ma
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Desmons S, Bonin J, Robert M, Bontemps S. Four-electron reduction of CO 2: from formaldehyde and acetal synthesis to complex transformations. Chem Sci 2024:d4sc02888k. [PMID: 39246334 PMCID: PMC11376136 DOI: 10.1039/d4sc02888k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
The expansive and dynamic field of the CO2 Reduction Reaction (CO2RR) seeks to harness CO2 as a sustainable carbon source or energy carrier. While significant progress has been made in two, six, and eight-electron reductions of CO2, the four-electron reduction remains understudied. This review fills this gap, comprehensively exploring CO2 reduction into formaldehyde (HCHO) or acetal-type compounds (EOCH2OE, with E = [Si], [B], [Zr], [U], [Y], [Nb], [Ta] or -R) using various CO2RR systems. These encompass (photo)electro-, bio-, and thermal reduction processes with diverse reductants. Formaldehyde, a versatile C1 product, is challenging to synthesize and isolate from the CO2RR. The review also discusses acetal compounds, emphasizing their significance as pathways to formaldehyde with distinct reactivity. Providing an overview of the state of four-electron CO2 reduction, this review highlights achievements, challenges, and the potential of the produced compounds - formaldehyde and acetals - as sustainable sources for valuable product synthesis, including chiral compounds.
Collapse
Affiliation(s)
- Sarah Desmons
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Julien Bonin
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
- Institut Universitaire de France (IUF) F-75005 Paris France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| |
Collapse
|
4
|
Bishara Robertson IL, Zhang H, Reisner E, Butt JN, Jeuken LJC. Engineering of bespoke photosensitiser-microbe interfaces for enhanced semi-artificial photosynthesis. Chem Sci 2024; 15:9893-9914. [PMID: 38966358 PMCID: PMC11220614 DOI: 10.1039/d4sc00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Biohybrid systems for solar fuel production integrate artificial light-harvesting materials with biological catalysts such as microbes. In this perspective, we discuss the rational design of the abiotic-biotic interface in biohybrid systems by reviewing microbes and synthetic light-harvesting materials, as well as presenting various approaches to coupling these two components together. To maximise performance and scalability of such semi-artificial systems, we emphasise that the interfacial design requires consideration of two important aspects: attachment and electron transfer. It is our perspective that rational design of this photosensitiser-microbe interface is required for scalable solar fuel production. The design and assembly of a biohybrid with a well-defined electron transfer pathway allows mechanistic characterisation and optimisation for maximum efficiency. Introduction of additional catalysts to the system can close the redox cycle, omitting the need for sacrificial electron donors. Studies that electronically couple light-harvesters to well-defined biological entities, such as emerging photosensitiser-enzyme hybrids, provide valuable knowledge for the strategic design of whole-cell biohybrids. Exploring the interactions between light-harvesters and redox proteins can guide coupling strategies when translated into larger, more complex microbial systems.
Collapse
Affiliation(s)
| | - Huijie Zhang
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Julea N Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| |
Collapse
|
5
|
Ju H, Cheng L, Li M, Mei K, He S, Jia C, Guo X. Single-Molecule Electrical Profiling of Peptides and Proteins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401877. [PMID: 38639403 PMCID: PMC11267281 DOI: 10.1002/advs.202401877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Indexed: 04/20/2024]
Abstract
In recent decades, there has been a significant increase in the application of single-molecule electrical analysis platforms in studying proteins and peptides. These advanced analysis methods have the potential for deep investigation of enzymatic working mechanisms and accurate monitoring of dynamic changes in protein configurations, which are often challenging to achieve in ensemble measurements. In this work, the prominent research progress in peptide and protein-related studies are surveyed using electronic devices with single-molecule/single-event sensitivity, including single-molecule junctions, single-molecule field-effect transistors, and nanopores. In particular, the successful commercial application of nanopores in DNA sequencing has made it one of the most promising techniques in protein sequencing at the single-molecule level. From single peptides to protein complexes, the correlation between their electrical characteristics, structures, and biological functions is gradually being established. This enables to distinguish different molecular configurations of these biomacromolecules through real-time electrical monitoring of their life activities, significantly improving the understanding of the mechanisms underlying various life processes.
Collapse
Affiliation(s)
- Hongyu Ju
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Li Cheng
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Mengmeng Li
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Kunrong Mei
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Suhang He
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Chuancheng Jia
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Xuefeng Guo
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
- Beijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
6
|
Lee D, Molani F, Choe MS, Lee HS, Wee KR, Hwang S, Kim CH, Cho AE, Son HJ. Photocatalytic Conversion of CO 2 to Formate/CO by an (η 6- para-Cymene)Ru(II) Half-Metallocene Catalyst: Influence of Additives and TiO 2 Immobilization on the Catalytic Mechanism and Product Selectivity. Inorg Chem 2024; 63:11506-11522. [PMID: 38856726 DOI: 10.1021/acs.inorgchem.3c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The catalytic efficacy of the monobipyridyl (η6-para-Cymene)Ru(II) half-metallocene, [(p-Cym)Ru(bpy)Cl]+ was evaluated in both mixed homogeneous (dye + catalyst) and heterogeneous hybrid systems (dye/TiO2/Catalyst) for photochemical CO2 reduction. A series of homogeneous photolysis experiments revealed that the (p-Cym)Ru(II) catalyst engages in two competitive routes for CO2 reduction (CO2 to formate conversion via RuII-hydride vs CO2 to CO conversion through a RuII-COOH intermediate). The conversion activity and product selectivity were notably impacted by the pKa value and the concentration of the proton source added. When a more acidic TEOA additive was introduced, the half-metallocene Ru(II) catalyst leaned toward producing formate through the RuII-H mechanism, with a formate selectivity of 86%. On the other hand, in homogeneous catalysis with TFE additive, the CO2-to-formate conversion through RuII-H was less effective, yielding a more efficient CO2-to-CO conversion with a selectivity of >80% (TONformate of 140 and TONCO of 626 over 48 h). The preference between the two pathways was elucidated through an electrochemical mechanistic study, monitoring the fate of the metal-hydride intermediate. Compared to the homogeneous system, the TiO2-heterogenized (p-Cym)Ru(II) catalyst demonstrated enhanced and enduring performance, attaining TONs of 1000 for CO2-to-CO and 665 for CO2-to-formate.
Collapse
Affiliation(s)
- Daehan Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Farzad Molani
- Department of Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Min Su Choe
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Hyun Seok Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Kyung-Ryang Wee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Seongpil Hwang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Art E Cho
- Department of Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
7
|
Cobb SJ, Rodríguez‐Jiménez S, Reisner E. Connecting Biological and Synthetic Approaches for Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202310547. [PMID: 37983571 PMCID: PMC11497245 DOI: 10.1002/anie.202310547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Electrocatalytic CO2 reduction has developed into a broad field, spanning fundamental studies of enzymatic 'model' catalysts to synthetic molecular catalysts and heterogeneous gas diffusion electrodes producing commercially relevant quantities of product. This diversification has resulted in apparent differences and a disconnect between seemingly related approaches when using different types of catalysts. Enzymes possess discrete and well understood active sites that can perform reactions with high selectivity and activities at their thermodynamic limit. Synthetic small molecule catalysts can be designed with desired active site composition but do not yet display enzyme-like performance. These properties of the biological and small molecule catalysts contrast with heterogeneous materials, which can contain multiple, often poorly understood active sites with distinct reactivity and therefore introducing significant complexity in understanding their activities. As these systems are being better understood and the continuously improving performance of their heterogeneous active sites closes the gap with enzymatic activity, this performance difference between heterogeneous and enzymatic systems begins to close. This convergence removes the barriers between using different types of catalysts and future challenges can be addressed without multiple efforts as a unified picture for the biological-synthetic catalyst spectrum emerges.
Collapse
Affiliation(s)
- Samuel J. Cobb
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
8
|
Oliveira AR, Mota C, Vilela-Alves G, Manuel RR, Pedrosa N, Fourmond V, Klymanska K, Léger C, Guigliarelli B, Romão MJ, Cardoso Pereira IA. An allosteric redox switch involved in oxygen protection in a CO 2 reductase. Nat Chem Biol 2024; 20:111-119. [PMID: 37985883 DOI: 10.1038/s41589-023-01484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Metal-dependent formate dehydrogenases reduce CO2 with high efficiency and selectivity, but are usually very oxygen sensitive. An exception is Desulfovibrio vulgaris W/Sec-FdhAB, which can be handled aerobically, but the basis for this oxygen tolerance was unknown. Here we show that FdhAB activity is controlled by a redox switch based on an allosteric disulfide bond. When this bond is closed, the enzyme is in an oxygen-tolerant resting state presenting almost no catalytic activity and very low formate affinity. Opening this bond triggers large conformational changes that propagate to the active site, resulting in high activity and high formate affinity, but also higher oxygen sensitivity. We present the structure of activated FdhAB and show that activity loss is associated with partial loss of the metal sulfido ligand. The redox switch mechanism is reversible in vivo and prevents enzyme reduction by physiological formate levels, conferring a fitness advantage during O2 exposure.
Collapse
Affiliation(s)
- Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristiano Mota
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Guilherme Vilela-Alves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Rita Rebelo Manuel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Neide Pedrosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Vincent Fourmond
- Laboratory of Bioenergetics and Protein Engineering, Aix Marseille University, CNRS, BIP, Marseille, France
| | - Kateryna Klymanska
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Christophe Léger
- Laboratory of Bioenergetics and Protein Engineering, Aix Marseille University, CNRS, BIP, Marseille, France
| | - Bruno Guigliarelli
- Laboratory of Bioenergetics and Protein Engineering, Aix Marseille University, CNRS, BIP, Marseille, France
| | - Maria João Romão
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal.
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal.
| | - Inês A Cardoso Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
9
|
Gul M, Yuksel B, Bulut H, DeMirci H. Structural analysis of wild-type and Val120Thr mutant Candida boidinii formate dehydrogenase by X-ray crystallography. Acta Crystallogr D Struct Biol 2023; 79:1010-1017. [PMID: 37860962 PMCID: PMC10619422 DOI: 10.1107/s2059798323008070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023] Open
Abstract
Candida boidinii NAD+-dependent formate dehydrogenase (CbFDH) has gained significant attention for its potential application in the production of biofuels and various industrial chemicals from inorganic carbon dioxide. The present study reports the atomic X-ray crystal structures of wild-type CbFDH at cryogenic and ambient temperatures, as well as that of the Val120Thr mutant at cryogenic temperature, determined at the Turkish Light Source `Turkish DeLight'. The structures reveal new hydrogen bonds between Thr120 and water molecules in the active site of the mutant CbFDH, suggesting increased stability of the active site and more efficient electron transfer during the reaction. Further experimental data is needed to test these hypotheses. Collectively, these findings provide invaluable insights into future protein-engineering efforts that could potentially enhance the efficiency and effectiveness of CbFDH.
Collapse
Affiliation(s)
- Mehmet Gul
- Department of Molecular Biology and Genetics, Koc University, 34450 Istanbul, Türkiye
| | - Busra Yuksel
- Department of Molecular Biology and Genetics, Koc University, 34450 Istanbul, Türkiye
- Max Planck Institute for Biophysics, 60438 Frankfurt am Main, Germany
| | - Huri Bulut
- Department of Medical Biochemistry, Faculty of Medicine, Istinye University, 34010 Istanbul, Türkiye
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Koc University, 34450 Istanbul, Türkiye
- Koc University Isbank Center for Infectious Diseases (KUISCID), Koc University, 34010 Istanbul, Türkiye
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
10
|
Zhong W, Li H, Wang Y. Design and Construction of Artificial Biological Systems for One-Carbon Utilization. BIODESIGN RESEARCH 2023; 5:0021. [PMID: 37915992 PMCID: PMC10616972 DOI: 10.34133/bdr.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
The third-generation (3G) biorefinery aims to use microbial cell factories or enzymatic systems to synthesize value-added chemicals from one-carbon (C1) sources, such as CO2, formate, and methanol, fueled by renewable energies like light and electricity. This promising technology represents an important step toward sustainable development, which can help address some of the most pressing environmental challenges faced by modern society. However, to establish processes competitive with the petroleum industry, it is crucial to determine the most viable pathways for C1 utilization and productivity and yield of the target products. In this review, we discuss the progresses that have been made in constructing artificial biological systems for 3G biorefineries in the last 10 years. Specifically, we highlight the representative works on the engineering of artificial autotrophic microorganisms, tandem enzymatic systems, and chemo-bio hybrid systems for C1 utilization. We also prospect the revolutionary impact of these developments on biotechnology. By harnessing the power of 3G biorefinery, scientists are establishing a new frontier that could potentially revolutionize our approach to industrial production and pave the way for a more sustainable future.
Collapse
Affiliation(s)
- Wei Zhong
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
| | - Hailong Li
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
- School of Materials Science and Engineering,
Zhejiang University, Zhejiang Province, Hangzhou 310000, PR China
| | - Yajie Wang
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
| |
Collapse
|
11
|
Li J, Shi J, Wang Y, Yao H, Meng L, Liu H. An elaborate biomolecular keypad lock based on electrochromism of viologen derivatives and bioelectrocatalytic reduction of CO 2 at supramolecular hydrogel film electrodes. Biosens Bioelectron 2023; 238:115560. [PMID: 37542980 DOI: 10.1016/j.bios.2023.115560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/01/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Herein, the short peptide N-fluorenemethoxycarbonyl diphenylalanine (Fmoc-FF) was used to immobilize both diallyl viologen (DAV) and the enzyme formate dehydrogenase (FDH) to form Fmoc-FF/DAV/FDH supramolecular hydrogel films on an electrode surface by a simple solvent-controlled self-assembly method. The DAV component in the films exhibited multiple properties, such as electrochromism and electrofluorochromism, and acted as an electrochemical mediator. A high efficiency of bioelectrocatalytic reduction of CO2 to formate (HCOO-) was obtained by the natural FDH enzyme and the artificial coenzyme factor DAV both immobilized in the same films. The supramolecular hydrogel films with CO2, voltage and light as stimulating factors and current, fluorescence and UV-vis extinction as responsive signals, were further applied for the construction of complex biomolecular logic systems and information encryption. A 3-input/7-output biomolecular logic gate and several logic devices, including an encoder/decoder, a parity checker, and a keypad lock, were constructed. Especially, the biomolecular keypad lock with 3 types of signals as outputs significantly enhanced the security level of information encryption. In this work, a supramolecular self-assembly interface was simply fabricated with complex biomolecular computational functions using immobilized molecules as the computational core, greatly broadening the application range of supramolecular hydrogel films and providing an idea for new designs of bioinformation encryption through the use of a simple film system.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Jiaqi Shi
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Yizhu Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Huiqin Yao
- School of Public Health, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Lingchen Meng
- School of Public Health, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Hongyun Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China.
| |
Collapse
|
12
|
Kalimuthu P, Hakopian S, Niks D, Hille R, Bernhardt PV. The Reversible Electrochemical Interconversion of Formate and CO 2 by Formate Dehydrogenase from Cupriavidus necator. J Phys Chem B 2023; 127:8382-8392. [PMID: 37728992 DOI: 10.1021/acs.jpcb.3c04652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The bacterial molybdenum (Mo)-containing formate dehydrogenase (FdsDABG) from Cupriavidus necator is a soluble NAD+-dependent enzyme belonging to the DMSO reductase family. The holoenzyme is complex and possesses nine redox-active cofactors including a bis(molybdopterin guanine dinucleotide) (bis-MGD) active site, seven iron-sulfur clusters, and 1 equiv of flavin mononucleotide (FMN). FdsDABG catalyzes the two-electron oxidation of HCOO- (formate) to CO2 and reversibly reduces CO2 to HCOO- under physiological conditions close to its thermodynamic redox potential. Here we develop an electrocatalytically active formate oxidation/CO2 reduction system by immobilizing FdsDABG on a glassy carbon electrode in the presence of coadsorbents such as chitosan and glutaraldehyde. The reversible enzymatic interconversion between HCOO- and CO2 by FdsDABG has been realized with cyclic voltammetry using a range of artificial electron transfer mediators, with methylene blue (MB) and phenazine methosulfate (PMS) being particularly effective as electron acceptors for FdsDABG in formate oxidation. Methyl viologen (MV) acts as both an electron acceptor (MV2+) in formate oxidation and an electron donor (MV+•) for CO2 reduction. The catalytic voltammetry was reproduced by electrochemical simulation across a range of sweep rates and concentrations of formate and mediators to provide new insights into the kinetics of the FdsDABG catalytic mechanism.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Sheron Hakopian
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Dimitri Niks
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Russ Hille
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
13
|
Xiong W, Dong Y, Pan A. Fabricating a type II heterojunction by growing lead-free perovskite Cs 2AgBiBr 6in situ on graphite-like g-C 3N 4 nanosheets for enhanced photocatalytic CO 2 reduction. NANOSCALE 2023; 15:15619-15625. [PMID: 37712856 DOI: 10.1039/d3nr04152b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Perovskite-based photocatalysts have received significant attention for converting CO2 into fuels, such as CO, CH4 or long alkyl chains. However, the use of these catalysts is plagued by several limitations, such as poor stability, lead toxicity, and inadequate conversion efficiency due to the rapid recombination of carriers. Herein, a g-C3N4@Cs2AgBiBr6 (CABB) type II heterojunction photocatalyst has been prepared by growing lead-free CABB nanocrystals (10-14 nm) on the graphite-like carbon nitride (g-C3N4) nanosheet using the in situ crystallization method. The resulting nanocomposite, g-C3N4@CABB, demonstrated an efficient charge transfer pathway via a typical type II heterojunction. With formation rates of 10.30 μmol g-1 h-1 for CO and 0.88 μmol g-1 h-1 for CH4 under visible light irradiation, the nanocomposite exhibited enhanced photocatalytic efficiency in CO2 reduction compared to CABB and g-C3N4. The improved photocatalytic performance of the g-C3N4@CABB nanocomposite was attributed to the fabricated type II heterojunction, which boosted the interfacial charge transfer from g-C3N4 to CABB. This work will inspire the design of heterojunction-based photocatalysts and increase the fundamental understanding of perovskite-based catalysts in the CO2 photoreduction process.
Collapse
Affiliation(s)
- Wei Xiong
- State Key Laboratory of Clean and Efficient Coal-Fired Power Generation and Pollution Control/China Energy and Technology Research Institute Co., Ltd, Nanjing 210023, China.
| | - Yuehong Dong
- State Key Laboratory of Clean and Efficient Coal-Fired Power Generation and Pollution Control/China Energy and Technology Research Institute Co., Ltd, Nanjing 210023, China.
| | - Aizhao Pan
- State Key Laboratory of Clean and Efficient Coal-Fired Power Generation and Pollution Control/China Energy and Technology Research Institute Co., Ltd, Nanjing 210023, China.
- School of Chemistry, Xi'an Jiaotong University, Xianning West Road, 28, Xi'an, 710049, China
| |
Collapse
|
14
|
Sapountzaki E, Rova U, Christakopoulos P, Antonopoulou I. Renewable Hydrogen Production and Storage Via Enzymatic Interconversion of CO 2 and Formate with Electrochemical Cofactor Regeneration. CHEMSUSCHEM 2023; 16:e202202312. [PMID: 37165995 DOI: 10.1002/cssc.202202312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
The urgent need to reduce CO2 emissions has motivated the development of CO2 capture and utilization technologies. An emerging application is CO2 transformation into storage chemicals for clean energy carriers. Formic acid (FA), a valuable product of CO2 reduction, is an excellent hydrogen carrier. CO2 conversion to FA, followed by H2 release from FA, are conventionally chemically catalyzed. Biocatalysts offer a highly specific and less energy-intensive alternative. CO2 conversion to formate is catalyzed by formate dehydrogenase (FDH), which usually requires a cofactor to function. Several FDHs have been incorporated in bioelectrochemical systems where formate is produced by the biocathode and the cofactor is electrochemically regenerated. H2 production from formate is also catalyzed by several microorganisms possessing either formate hydrogenlyase or hydrogen-dependent CO2 reductase complexes. Combination of these two processes can lead to a CO2 -recycling cycle for H2 production, storage, and release with potentially lower environmental impact than conventional methods.
Collapse
Affiliation(s)
- Eleftheria Sapountzaki
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| |
Collapse
|
15
|
Kader DA, Mohammed SJ. Emerging developments in dye-sensitized metal oxide photocatalysis: exploring the design, mechanisms, and organic synthesis applications. RSC Adv 2023; 13:26484-26508. [PMID: 37671346 PMCID: PMC10476557 DOI: 10.1039/d3ra05098j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
In the present day, the incorporation of environmentally conscious practices in the realm of photocatalysis holds a prominent position within the domain of organic synthesis. The imperative to tackle environmental issues linked to catalysts that cannot be recycled, generation of waste, byproducts, and challenges in achieving reaction selectivity during organic synthesis are more crucial than ever. One potential solution involves the integration of recyclable nanomaterials with light as a catalyst, offering the possibility of achieving sustainable and atom-efficient transformations in organic synthesis. Metal oxide nanoparticles exhibit activation capabilities under UV light, constituting a small percentage (4-8%) of sunlight. However, this method lacks sufficient environmental friendliness, and the issue of electron-hole recombination poses a significant hurdle. To tackle these challenges, multiple approaches have been proposed. This comprehensive review article focuses on the efficacy of dyes in enhancing the capabilities of heterogeneous photocatalysts, offering a promising avenue to overcome the constraints associated with metal oxides in their role as photocatalysts. The article delves into the intricate design aspects of dye-sensitized photocatalysts and sheds light on their mechanisms in facilitating organic transformations.
Collapse
Affiliation(s)
- Dana A Kader
- Department of Chemistry, College of Education, University of Sulaimani Old Campus 46001 Kurdistan Region Iraq
| | - Sewara J Mohammed
- Anesthesia Department, College of Health Sciences, Cihan University Sulaimaniya Sulaimani 46001 Kurdistan Region Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani 46002 Kurdistan Regional Government Iraq
| |
Collapse
|
16
|
Kobayashi A, Taketa M, Sowa K, Kano K, Higuchi Y, Ogata H. Structure and function relationship of formate dehydrogenases: an overview of recent progress. IUCRJ 2023; 10:544-554. [PMID: 37668215 PMCID: PMC10478512 DOI: 10.1107/s2052252523006437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/24/2023] [Indexed: 09/06/2023]
Abstract
Formate dehydrogenases (FDHs) catalyze the two-electron oxidation of formate to carbon dioxide. FDHs can be divided into several groups depending on their subunit composition and active-site metal ions. Metal-dependent (Mo- or W-containing) FDHs from prokaryotic organisms belong to the superfamily of molybdenum enzymes and are members of the dimethylsulfoxide reductase family. In this short review, recent progress in the structural analysis of FDHs together with their potential biotechnological applications are summarized.
Collapse
Affiliation(s)
- Ami Kobayashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Midori Taketa
- Graduate School of Science, University of Hyogo, Koto 3-2-1 Kamigori, Ako, Hyogo 678-1297, Japan
| | - Keisei Sowa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kenji Kano
- Office of Society Academia Collaboration for Innovation, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Yoshiki Higuchi
- Graduate School of Science, University of Hyogo, Koto 3-2-1 Kamigori, Ako, Hyogo 678-1297, Japan
| | - Hideaki Ogata
- Graduate School of Science, University of Hyogo, Koto 3-2-1 Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
17
|
Cobb SJ, Dharani AM, Oliveira AR, Pereira IAC, Reisner E. Carboxysome-Inspired Electrocatalysis using Enzymes for the Reduction of CO 2 at Low Concentrations. Angew Chem Int Ed Engl 2023; 62:e202218782. [PMID: 37078435 DOI: 10.1002/anie.202218782] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/21/2023]
Abstract
The electrolysis of dilute CO2 streams suffers from low concentrations of dissolved substrate and its rapid depletion at the electrolyte-electrocatalyst interface. These limitations require first energy-intensive CO2 capture and concentration, before electrolyzers can achieve acceptable performances. For direct electrocatalytic CO2 reduction from low-concentration sources, we introduce a strategy that mimics the carboxysome in cyanobacteria by utilizing microcompartments with nanoconfined enzymes in a porous electrode. A carbonic anhydrase accelerates CO2 hydration kinetics and minimizes substrate depletion by making all dissolved carbon available for utilization, while a highly efficient formate dehydrogenase reduces CO2 cleanly to formate; down to even atmospheric concentrations of CO2 . This bio-inspired concept demonstrates that the carboxysome provides a viable blueprint for the reduction of low-concentration CO2 streams to chemicals by using all forms of dissolved carbon.
Collapse
Affiliation(s)
- Samuel J Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Azim M Dharani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
18
|
Xing X, Liu Y, Lin RD, Zhang Y, Wu ZL, Yu XQ, Li K, Wang N. Development of an Integrated System for Highly Selective Photoenzymatic Synthesis of Formic Acid from CO 2. CHEMSUSCHEM 2023; 16:e202201956. [PMID: 36482031 DOI: 10.1002/cssc.202201956] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Herein, a Zr-based dual-ligand MOFs with pre-installed Rh complex was employed for NADH regeneration in situ and also used for immobilization of formic acid dehydrogenase (FDH) in order to realize a highly efficient CO2 fixation system. Then, based on the detailed investigations into the photochemical and electrochemical properties, it is demonstrated that the introduction of the photosensitive meso-tetra(4-carboxyphenyl) porphin (TCPP) ligands increased the catalytic active sites and improved photoelectric properties. Furthermore, the electron mediator Rh complex, anchored on the zirconium-based dual-ligand MOFs, enhanced the efficiency of electron transfer efficiency and facilitated the separation of photogenerated electrons and holes. Compared with UiO-66-NH2 , Rh-H2 TCPP-UiO-66-NH2 exhibits an optimized valence band structure and significantly improved photocatalytic activity for NAD+ reduction, resulting the synthesis of formic acid from CO2 increased from 150 μg mL-1 (UiO-66-NH2 ) to 254 μg mL-1 (Rh-H2 TCPP-UiO-66-NH2 ). Moreover, the assembled photocatalyst-enzyme coupled system also allows facile recycling of expensive electron mediator, enzyme, and photocatalyst.
Collapse
Affiliation(s)
- Xiu Xing
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Yan Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, P. R. China
| | - Ru-De Lin
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Yang Zhang
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Zhong-Liu Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Na Wang
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| |
Collapse
|
19
|
The Mechanism of Metal-Containing Formate Dehydrogenases Revisited: The Formation of Bicarbonate as Product Intermediate Provides Evidence for an Oxygen Atom Transfer Mechanism. Molecules 2023; 28:molecules28041537. [PMID: 36838526 PMCID: PMC9962302 DOI: 10.3390/molecules28041537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Mo/W-containing formate dehydrogenases (FDH) catalyzed the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active sites. While in the reaction of formate oxidation, the product is CO2, which exits the active site via a hydrophobic channel; bicarbonate is formed as the first intermediate during the reaction at the active site. Other than what has been previously reported, bicarbonate is formed after an oxygen atom transfer reaction, transferring the oxygen from water to formate and a subsequent proton-coupled electron transfer or hydride transfer reaction involving the sulfido ligand as acceptor.
Collapse
|
20
|
Meneghello M, Uzel A, Broc M, Manuel RR, Magalon A, Léger C, Pereira IAC, Walburger A, Fourmond V. Electrochemical Kinetics Support a Second Coordination Sphere Mechanism in Metal-Based Formate Dehydrogenase. Angew Chem Int Ed Engl 2023; 62:e202212224. [PMID: 36465058 PMCID: PMC10107981 DOI: 10.1002/anie.202212224] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/28/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022]
Abstract
Metal-based formate dehydrogenases are molybdenum or tungsten-dependent enzymes that catalyze the interconversion between formate and CO2 . According to the current consensus, the metal ion of the catalytic center in its active form is coordinated by 6 S (or 5 S and 1 Se) atoms, leaving no free coordination sites to which formate could bind to the metal. Some authors have proposed that one of the active site ligands decoordinates during turnover to allow formate binding. Another proposal is that the oxidation of formate takes place in the second coordination sphere of the metal. Here, we have used electrochemical steady-state kinetics to elucidate the order of the steps in the catalytic cycle of two formate dehydrogenases. Our results strongly support the "second coordination sphere" hypothesis.
Collapse
Affiliation(s)
- Marta Meneghello
- CNRSAix Marseille UniversitéBIPIMMIM2B31 Chemin J. Aiguier13009MarseilleFrance
| | - Alexandre Uzel
- CNRSAix Marseille UniversitéBIPIMMIM2B31 Chemin J. Aiguier13009MarseilleFrance
- Aix Marseille UniversitéCNRSLaboratoire de Chimie Bactérienne (UMR7283)IMMIM2B31 Chemin J. Aiguier13009MarseilleFrance
| | - Marianne Broc
- Aix Marseille UniversitéCNRSLaboratoire de Chimie Bactérienne (UMR7283)IMMIM2B31 Chemin J. Aiguier13009MarseilleFrance
| | - Rita R. Manuel
- Instituto de Tecnologia Quimica e Biologica Antonio Xavier (ITQB NOVA)Universidade Nova de LisboaOeirasPortugal
| | - Axel Magalon
- Aix Marseille UniversitéCNRSLaboratoire de Chimie Bactérienne (UMR7283)IMMIM2B31 Chemin J. Aiguier13009MarseilleFrance
| | - Christophe Léger
- CNRSAix Marseille UniversitéBIPIMMIM2B31 Chemin J. Aiguier13009MarseilleFrance
| | - Inês A. C. Pereira
- Instituto de Tecnologia Quimica e Biologica Antonio Xavier (ITQB NOVA)Universidade Nova de LisboaOeirasPortugal
| | - Anne Walburger
- Aix Marseille UniversitéCNRSLaboratoire de Chimie Bactérienne (UMR7283)IMMIM2B31 Chemin J. Aiguier13009MarseilleFrance
| | - Vincent Fourmond
- CNRSAix Marseille UniversitéBIPIMMIM2B31 Chemin J. Aiguier13009MarseilleFrance
| |
Collapse
|
21
|
Liang Y, Zhao J, Yang Y, Hung SF, Li J, Zhang S, Zhao Y, Zhang A, Wang C, Appadoo D, Zhang L, Geng Z, Li F, Zeng J. Stabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling. Nat Commun 2023; 14:474. [PMID: 36710270 PMCID: PMC9884666 DOI: 10.1038/s41467-023-35993-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
Electroreduction of carbon dioxide with renewable electricity holds promise for achieving net-zero carbon emissions. Single-site catalysts have been reported to catalyze carbon-carbon (C-C) coupling-the indispensable step for more valuable multi-carbon (C2+) products-but were proven to be transformed in situ to metallic agglomerations under working conditions. Here, we report a stable single-site copper coordination polymer (Cu(OH)BTA) with periodic neighboring coppers and it exhibits 1.5 times increase of C2H4 selectivity compared to its metallic counterpart at 500 mA cm-2. In-situ/operando X-ray absorption, Raman, and infrared spectroscopies reveal that the catalyst remains structurally stable and does not undergo a dynamic transformation during reaction. Electrochemical and kinetic isotope effect analyses together with computational calculations show that neighboring Cu in the polymer provides suitably-distanced dual sites that enable the energetically favorable formation of an *OCCHO intermediate post a rate-determining step of CO hydrogenation. Accommodation of this intermediate imposes little changes of conformational energy to the catalyst structure during the C-C coupling. We stably operate full-device CO2 electrolysis at an industry-relevant current of one ampere for 67 h in a membrane electrode assembly. The coordination polymers provide a perspective on designing molecularly stable, single-site catalysts for electrochemical CO2 conversion.
Collapse
Affiliation(s)
- Yongxiang Liang
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 P. R. China
| | - Jiankang Zhao
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 P. R. China
| | - Yu Yang
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering and The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006 Australia
| | - Sung-Fu Hung
- grid.260539.b0000 0001 2059 7017Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300 Taiwan
| | - Jun Li
- grid.16821.3c0000 0004 0368 8293Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shuzhen Zhang
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering and The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006 Australia
| | - Yong Zhao
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering and The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006 Australia
| | - An Zhang
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 P. R. China
| | - Cheng Wang
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 P. R. China
| | - Dominique Appadoo
- grid.248753.f0000 0004 0562 0567Australian Synchrotron, Clayton, VIC 3168 Australia
| | - Lei Zhang
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 P. R. China
| | - Zhigang Geng
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 P. R. China
| | - Fengwang Li
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering and The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006 Australia
| | - Jie Zeng
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 P. R. China
| |
Collapse
|
22
|
Yu W, Pavliuk MV, Liu A, Zeng Y, Xia S, Huang Y, Bai H, Lv F, Tian H, Wang S. Photosynthetic Polymer Dots-Bacteria Biohybrid System Based on Transmembrane Electron Transport for Fixing CO 2 into Poly-3-hydroxybutyrate. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2183-2191. [PMID: 36563111 DOI: 10.1021/acsami.2c18831] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organic semiconductor-microbial photosynthetic biohybrid systems show great potential in light-driven biosynthesis. In such a system, an organic semiconductor is used to harvest solar energy and generate electrons, which can be further transported to microorganisms with a wide range of metabolic pathways for final biosynthesis. However, the lack of direct electron transport proteins in existing microorganisms hinders the hybrid system of photosynthesis. In this work, we have designed a photosynthetic biohybrid system based on transmembrane electron transport that can effectively deliver the electrons from organic semiconductor across the cell wall to the microbe. Biocompatible organic semiconductor polymer dots (Pdots) are used as photosensitizers to construct a ternary synergistic biochemical factory in collaboration with Ralstonia eutropha H16 (RH16) and electron shuttle neutral red (NR). Photogenerated electrons from Pdots promote the proportion of nicotinamide adenine dinucleotide phosphate (NADPH) through NR, driving the Calvin cycle of RH16 to convert CO2 into poly-3-hydroxybutyrate (PHB), with a yield of 21.3 ± 3.78 mg/L, almost 3 times higher than that of original RH16. This work provides a concept of an integrated photoactive biological factory based on organic semiconductor polymer dots/bacteria for valuable chemical production only using solar energy as the energy input.
Collapse
Affiliation(s)
- Wen Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mariia V Pavliuk
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, Uppsala 75120, Sweden
| | - Aijie Liu
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, Uppsala 75120, Sweden
| | - Yue Zeng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shengpeng Xia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haining Tian
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, Uppsala 75120, Sweden
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
23
|
Li S, Shi J, Liu S, Li W, Chen Y, Shan H, Cheng Y, Wu H, Jiang Z. Molecule-electron-proton transfer in enzyme-photo-coupled catalytic system. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
24
|
Promotion of CO2 reduction in a nanophotocatalyst by hydrogen peroxide. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Collaborative catalysis for solar biosynthesis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Zhou Z, Liu X, Ma JG, Cheng P. MOF-Incorporated Binuclear N-Heterocyclic Carbene-Cobalt Catalyst for Efficient Conversion of CO 2 to Formamides. CHEMSUSCHEM 2022; 15:e202201386. [PMID: 35959848 DOI: 10.1002/cssc.202201386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Environmental problem caused by carbon emission is of widespread concern. Involving CO2 as C1 resource into chemical synthesis is one of the most attractive ways for carbon recycling. Herein, the first example of host-guest composites featuring metal-organic framework (MOF)-encapsulated binuclear N-heterocyclic carbene (NHC) complex, Co2 @MIL101, was developed with the molecularly dispersed [Co(IPr)Br]2 (μ-Br)2 (Co2 ) loading in the cage of MIL-101(Cr) via a "ligand-in-dimer-trap" strategy, which was comprehensively investigated through various techniques including synchrotron X-ray absorption, electron microscopy, X-ray diffraction, solid-state nuclear magnetic resonance spectroscopy, and others. The noble-metal-free double-sites catalyst Co2 @MIL101 exhibited promising stability, activity, efficiency, reusability, and substrate adaptability for converting CO2 into various formamides with amines and hydrosilanes and achieved the best performance for one of the most useful formamides, N-methyl-N-phenylformamide (MFA), among the recyclable catalysts at ambient conditions, providing a reliable approach to successfully unify the advantages of both homo- and heterogeneous catalysts. Density functional theory calculations were applied to illustrate the superior activity of the binuclear NHC complex center as double-sites catalyst toward the activation of CO2 .
Collapse
Affiliation(s)
- Zhenzhen Zhou
- Department of Chemistry and Key Laboratory of Advanced, Energy Material Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiao Liu
- Department of Chemistry and Key Laboratory of Advanced, Energy Material Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jian-Gong Ma
- Department of Chemistry and Key Laboratory of Advanced, Energy Material Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Cheng
- Department of Chemistry and Key Laboratory of Advanced, Energy Material Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
27
|
Zhang Y, Liu J. Bioinspired Photocatalytic NADH Regeneration by Covalently Metalated Carbon Nitride for Enhanced CO 2 Reduction. Chemistry 2022; 28:e202201430. [PMID: 35758216 DOI: 10.1002/chem.202201430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 12/29/2022]
Abstract
Natural photosynthesis is a highly unified biocatalytic system, which coupled cofactor (NAD(P)H) regeneration and enzymatic CO2 reduction efficiently for solar energy conversion. Mimicking nature, a novel system with Rh complex covalently grafted onto NH2 -functionalized polymeric carbon nitride (NH2 -PCN) was constructed. The integrated connection of the light-harvesting and electron mediation modules as Rhm3 -N-PCN could promote the efficient NAD+ reduction to NADH. As a result, the integrated system exhibited a conversion of ∼66 % within 20 minutes. By further coupling in situ generated NADH with formate dehydrogenase (FDH), a photoenzymatic production of formic acid (HCOOH) from CO2 was accomplished. Moreover, by immobilizing FDH onto a hydrophobic membrane, an enhanced HCOOH production of ∼5.0 mM can be obtained due to the concentrated CO2 on the gas-liquid-solid three-phase interface. Our work herein provides an integrated strategy for coupling the anchored electron mediator with immobilized enzyme for enhanced artificial photosynthesis.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China) E-mail: l.qust.edu.cn.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101, P. R. China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China) E-mail: l.qust.edu.cn.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101, P. R. China
| |
Collapse
|
28
|
Laun K, Duffus BR, Wahlefeld S, Katz S, Belger D, Hildebrandt P, Mroginski MA, Leimkühler S, Zebger I. Infrared Spectroscopy Elucidates the Inhibitor Binding Sites in a Metal-Dependent Formate Dehydrogenase. Chemistry 2022; 28:e202201091. [PMID: 35662280 PMCID: PMC9804402 DOI: 10.1002/chem.202201091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Indexed: 01/05/2023]
Abstract
Biological carbon dioxide (CO2 ) reduction is an important step by which organisms form valuable energy-richer molecules required for further metabolic processes. The Mo-dependent formate dehydrogenase (FDH) from Rhodobacter capsulatus catalyzes reversible formate oxidation to CO2 at a bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor. To elucidate potential substrate binding sites relevant for the mechanism, we studied herein the interaction with the inhibitory molecules azide and cyanate, which are isoelectronic to CO2 and charged as formate. We employed infrared (IR) spectroscopy in combination with density functional theory (DFT) and inhibition kinetics. One distinct inhibitory molecule was found to bind to either a non-competitive or a competitive binding site in the secondary coordination sphere of the active site. Site-directed mutagenesis of key amino acid residues in the vicinity of the bis-MGD cofactor revealed changes in both non-competitive and competitive binding, whereby the inhibitor is in case of the latter interaction presumably bound between the cofactor and the adjacent Arg587.
Collapse
Affiliation(s)
- Konstantin Laun
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Benjamin R. Duffus
- Institut für Biochemie und BiologieMolekulare EnzymologieUniversität PotsdamKarl-Liebknecht-Strasse 24–2514476PotsdamGermany
| | - Stefan Wahlefeld
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
- Institut für Technische BiokatalyseTechnische Universität HamburgDenickestr. 1521073HamburgGermany
| | - Sagie Katz
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Dennis Belger
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Peter Hildebrandt
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Maria Andrea Mroginski
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Silke Leimkühler
- Institut für Biochemie und BiologieMolekulare EnzymologieUniversität PotsdamKarl-Liebknecht-Strasse 24–2514476PotsdamGermany
| | - Ingo Zebger
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| |
Collapse
|
29
|
Bio-inspired CO2 reduction reaction catalysis using soft-oxometalates. J Inorg Biochem 2022; 234:111903. [DOI: 10.1016/j.jinorgbio.2022.111903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
|
30
|
Badiani VM, Casadevall C, Miller M, Cobb SJ, Manuel RR, Pereira IAC, Reisner E. Engineering Electro- and Photocatalytic Carbon Materials for CO 2 Reduction by Formate Dehydrogenase. J Am Chem Soc 2022; 144:14207-14216. [PMID: 35900819 PMCID: PMC9376922 DOI: 10.1021/jacs.2c04529] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Semiartificial approaches to renewable fuel synthesis exploit the integration of enzymes with synthetic materials for kinetically efficient fuel production. Here, a CO2 reductase, formate dehydrogenase (FDH) from Desulfovibrio vulgaris Hildenborough, is interfaced with carbon nanotubes (CNTs) and amorphous carbon dots (a-CDs). Each carbon substrate, tailored for electro- and photocatalysis, is functionalized with positive (-NHMe2+) and negative (-COO-) chemical surface groups to understand and optimize the electrostatic effect of protein association and orientation on CO2 reduction. Immobilization of FDH on positively charged CNT electrodes results in efficient and reversible electrochemical CO2 reduction via direct electron transfer with >90% Faradaic efficiency and -250 μA cm-2 at -0.6 V vs SHE (pH 6.7 and 25 °C) for formate production. In contrast, negatively charged CNTs only result in marginal currents with immobilized FDH. Quartz crystal microbalance analysis and attenuated total reflection infrared spectroscopy confirm the high binding affinity of active FDH to CNTs. FDH has subsequently been coupled to a-CDs, where the benefits of the positive charge (-NHMe2+-terminated a-CDs) were translated to a functional CD-FDH hybrid photocatalyst. High rates of photocatalytic CO2 reduction (turnover frequency: 3.5 × 103 h-1; AM 1.5G) with dl-dithiothreitol as the sacrificial electron donor were obtained after 6 h, providing benchmark rates for homogeneous photocatalytic CO2 reduction with metal-free light absorbers. This work provides a rational basis to understand interfacial surface/enzyme interactions at electrodes and photosensitizers to guide improvements with catalytic biohybrid materials.
Collapse
Affiliation(s)
- Vivek M Badiani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.,Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, U.K
| | - Carla Casadevall
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Melanie Miller
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Samuel J Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Rita R Manuel
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| |
Collapse
|
31
|
Liao Q, Liu W, Meng Z. Strategies for overcoming the limitations of enzymatic carbon dioxide reduction. Biotechnol Adv 2022; 60:108024. [PMID: 35907470 DOI: 10.1016/j.biotechadv.2022.108024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
The overexploitation of fossil fuels has led to a significant increase in atmospheric carbon dioxide (CO2) concentrations, thereby causing problems, such as the greenhouse effect. Rapid global climate change has caused researchers to focus on utilizing CO2 in a green and efficient manner. One of the ways to achieve this is by converting CO2 into valuable chemicals via chemical, photochemical, electrochemical, or enzymatic methods. Among these, the enzymatic method is advantageous because of its high specificity and selectivity as well as the mild reaction conditions required. The reduction of CO2 to formate, formaldehyde, and methanol using formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), and alcohol dehydrogenase (ADH) are attractive routes, respectively. In this review, strategies for overcoming the common limitations of enzymatic CO2 reduction are discussed. First, we present a brief background on the importance of minimizing of CO2 emissions and introduce the three bottlenecks limiting enzymatic CO2 reduction. Thereafter, we explore the different strategies for enzyme immobilization on various support materials. To solve the problem of cofactor consumption, different state-of-the-art cofactor regeneration strategies as well as research on the development of cofactor substitutes and cofactor-free systems are extensively discussed. Moreover, aiming at improving CO2 solubility, biological, physical, and engineering measures are reviewed. Finally, conclusions and future perspectives are presented.
Collapse
Affiliation(s)
- Qiyong Liao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China
| | - Wenfang Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China.
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China
| |
Collapse
|
32
|
Oliveira AR, Mota C, Klymanska K, Biaso F, Romão MJ, Guigliarelli B, Pereira IC. Spectroscopic and Structural Characterization of Reduced Desulfovibrio vulgaris Hildenborough W-FdhAB Reveals Stable Metal Coordination during Catalysis. ACS Chem Biol 2022; 17:1901-1909. [PMID: 35766974 PMCID: PMC9774666 DOI: 10.1021/acschembio.2c00336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal-dependent formate dehydrogenases are important enzymes due to their activity of CO2 reduction to formate. The tungsten-containing FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough is a good example displaying high activity, simple composition, and a notable structural and catalytic robustness. Here, we report the first spectroscopic redox characterization of FdhAB metal centers by EPR. Titration with dithionite or formate leads to reduction of three [4Fe-4S]1+ clusters, and full reduction requires Ti(III)-citrate. The redox potentials of the four [4Fe-4S]1+ centers range between -250 and -530 mV. Two distinct WV signals were detected, WDV and WFV, which differ in only the g2-value. This difference can be explained by small variations in the twist angle of the two pyranopterins, as determined through DFT calculations of model compounds. The redox potential of WVI/V was determined to be -370 mV when reduced by dithionite and -340 mV when reduced by formate. The crystal structure of dithionite-reduced FdhAB was determined at high resolution (1.5 Å), revealing the same structural alterations as reported for the formate-reduced structure. These results corroborate a stable six-ligand W coordination in the catalytic intermediate WV state of FdhAB.
Collapse
Affiliation(s)
- Ana Rita Oliveira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cristiano Mota
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Kateryna Klymanska
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Frédéric Biaso
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, Aix Marseille Univ, CNRS, BIP, Marseille 13402, France
| | - Maria João Romão
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,
| | - Bruno Guigliarelli
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, Aix Marseille Univ, CNRS, BIP, Marseille 13402, France,
| | - Inês Cardoso Pereira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal,
| |
Collapse
|
33
|
Bachar O, Meirovich MM, Zeibaq Y, Yehezkeli O. Protein‐Mediated Biosynthesis of Semiconductor Nanocrystals for Photocatalytic NAD(P)H Regeneration and Chiral Amine Production. Angew Chem Int Ed Engl 2022; 61:e202202457. [DOI: 10.1002/anie.202202457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Oren Bachar
- Faculty of Biotechnology and Food Engineering Technion, Israel Institute of Technology 3200003 Haifa Israel
| | - Matan M. Meirovich
- Faculty of Biotechnology and Food Engineering Technion, Israel Institute of Technology 3200003 Haifa Israel
| | - Yara Zeibaq
- Faculty of Biotechnology and Food Engineering Technion, Israel Institute of Technology 3200003 Haifa Israel
| | - Omer Yehezkeli
- Faculty of Biotechnology and Food Engineering Technion, Israel Institute of Technology 3200003 Haifa Israel
- Russell Berrie Nanotechnology Institute Technion, Israel Institute of Technology 3200003 Haifa Israel
- The Nancy and Stephen Grand Technion Energy Program Technion, Israel Institute of Technology 3200003 Haifa Israel
| |
Collapse
|
34
|
Tan X, Nielsen J. The integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon dioxide. Chem Soc Rev 2022; 51:4763-4785. [PMID: 35584360 DOI: 10.1039/d2cs00309k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dependence on fossil fuels has caused excessive emissions of greenhouse gases (GHGs), leading to climate changes and global warming. Even though the expansion of electricity generation will enable a wider use of electric vehicles, biotechnology represents an attractive route for producing high-density liquid transportation fuels that can reduce GHG emissions from jets, long-haul trucks and ships. Furthermore, to achieve immediate alleviation of the current environmental situation, besides reducing carbon footprint it is urgent to develop technologies that transform atmospheric CO2 into fossil fuel replacements. The integration of bio-catalysis and electrocatalysis (bio-electrocatalysis) provides such a promising avenue to convert CO2 into fuels and chemicals with high-chain lengths. Following an overview of different mechanisms that can be used for CO2 fixation, we will discuss crucial factors for electrocatalysis with a special highlight on the improvement of electron-transfer kinetics, multi-dimensional electrocatalysts and their hybrids, electrolyser configurations, and the integration of electrocatalysis and bio-catalysis. Finally, we prospect key advantages and challenges of bio-electrocatalysis, and end with a discussion of future research directions.
Collapse
Affiliation(s)
- Xinyi Tan
- Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden. .,BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark
| |
Collapse
|
35
|
Bachar O, Meirovich MM, Zeibaq Y, Yehezkeli O. Protein‐Mediated Biosynthesis of Semiconductor Nanocrystals for Photocatalytic NAD(P)H Regeneration and Chiral Amine Production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Oren Bachar
- Faculty of Biotechnology and Food Engineering Technion, Israel Institute of Technology 3200003 Haifa Israel
| | - Matan M. Meirovich
- Faculty of Biotechnology and Food Engineering Technion, Israel Institute of Technology 3200003 Haifa Israel
| | - Yara Zeibaq
- Faculty of Biotechnology and Food Engineering Technion, Israel Institute of Technology 3200003 Haifa Israel
| | - Omer Yehezkeli
- Faculty of Biotechnology and Food Engineering Technion, Israel Institute of Technology 3200003 Haifa Israel
- Russell Berrie Nanotechnology Institute Technion, Israel Institute of Technology 3200003 Haifa Israel
- The Nancy and Stephen Grand Technion Energy Program Technion, Israel Institute of Technology 3200003 Haifa Israel
| |
Collapse
|
36
|
Cobb SJ, Badiani VM, Dharani AM, Wagner A, Zacarias S, Oliveira AR, Pereira IAC, Reisner E. Fast CO 2 hydration kinetics impair heterogeneous but improve enzymatic CO 2 reduction catalysis. Nat Chem 2022; 14:417-424. [PMID: 35228690 PMCID: PMC7612589 DOI: 10.1038/s41557-021-00880-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
The performance of heterogeneous catalysts for electrocatalytic CO2 reduction (CO2R) suffers from unwanted side reactions and kinetic inefficiencies at the required large overpotential. However, immobilised CO2R enzymes — such as formate dehydrogenase — can operate with high turnover and selectivity at a minimal overpotential and are therefore ‘ideal’ model catalysts. Here, through the co-immobilisation of carbonic anhydrase, we study the effect of CO2 hydration on the local environment and performance of a range of disparate CO2R systems from enzymatic (formate dehydrogenase) to heterogeneous systems. We show that the co-immobilisation of carbonic anhydrase increases the kinetics of CO2 hydration at the electrode. This benefits enzymatic CO2 reduction — despite the decrease in CO2 concentration — due to a reduction in local pH change, whereas it is detrimental to heterogeneous catalysis (on Au), because the system is unable to suppress the H2 evolution side reaction. Understanding the role of CO2 hydration kinetics within the local environment on the performance of electrocatalyst systems provides important insights for the development of next generation synthetic CO2R catalysts.
Collapse
Affiliation(s)
- Samuel J Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Vivek M Badiani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Azim M Dharani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Andreas Wagner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sónia Zacarias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
37
|
Badiani VM, Cobb SJ, Wagner A, Oliveira AR, Zacarias S, Pereira IAC, Reisner E. Elucidating Film Loss and the Role of Hydrogen Bonding of Adsorbed Redox Enzymes by Electrochemical Quartz Crystal Microbalance Analysis. ACS Catal 2022; 12:1886-1897. [PMID: 35573129 PMCID: PMC9097293 DOI: 10.1021/acscatal.1c04317] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/13/2021] [Indexed: 12/17/2022]
Abstract
![]()
The immobilization of redox enzymes
on electrodes enables the efficient
and selective electrocatalysis of useful reactions such as the reversible
interconversion of dihydrogen (H2) to protons (H+) and formate to carbon dioxide (CO2) with hydrogenase
(H2ase) and formate dehydrogenase (FDH), respectively.
However, their immobilization on electrodes to produce electroactive
protein films for direct electron transfer (DET) at the protein–electrode
interface is not well understood, and the reasons for their activity
loss remain vague, limiting their performance often to hour timescales.
Here, we report the immobilization of [NiFeSe]-H2ase and
[W]-FDH from Desulfovibrio vulgaris Hildenborough on a range of charged and neutral self-assembled monolayer
(SAM)-modified gold electrodes with varying hydrogen bond (H-bond)
donor capabilities. The key factors dominating the activity and stability
of the immobilized enzymes are determined using protein film voltammetry
(PFV), chronoamperometry (CA), and electrochemical quartz crystal
microbalance (E-QCM) analysis. Electrostatic and H-bonding interactions
are resolved, with electrostatic interactions responsible for enzyme
orientation while enzyme desorption is strongly limited when H-bonding
is present at the enzyme–electrode interface. Conversely, enzyme
stability is drastically reduced in the absence of H-bonding, and
desorptive enzyme loss is confirmed as the main reason for activity
decay by E-QCM during CA. This study provides insights into the possible
reasons for the reduced activity of immobilized redox enzymes and
the role of film loss, particularly H-bonding, in stabilizing bioelectrode
performance, promoting avenues for future improvements in bioelectrocatalysis.
Collapse
Affiliation(s)
- Vivek M. Badiani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Samuel J. Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Andreas Wagner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sónia Zacarias
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
38
|
Verma P, Singh A, Rahimi FA, Sarkar P, Nath S, Pati SK, Maji TK. Charge-transfer regulated visible light driven photocatalytic H 2 production and CO 2 reduction in tetrathiafulvalene based coordination polymer gel. Nat Commun 2021; 12:7313. [PMID: 34916503 PMCID: PMC8677803 DOI: 10.1038/s41467-021-27457-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/23/2021] [Indexed: 02/08/2023] Open
Abstract
The much-needed renewable alternatives to fossil fuel can be achieved efficiently and sustainably by converting solar energy to fuels via hydrogen generation from water or CO2 reduction. Herein, a soft processable metal-organic hybrid material is developed and studied for photocatalytic activity towards H2 production and CO2 reduction to CO and CH4 under visible light as well as direct sunlight irradiation. A tetrapodal low molecular weight gelator (LMWG) is synthesized by integrating tetrathiafulvalene (TTF) and terpyridine (TPY) derivatives through amide linkages and results in TPY-TTF LMWG. The TPY-TTF LMWG acts as a linker, and self-assembly of this gelator molecules with ZnII ions results in a coordination polymer gel (CPG); Zn-TPY-TTF. The Zn-TPY-TTF CPG shows high photocatalytic activity towards H2 production (530 μmol g-1h-1) and CO2 reduction to CO (438 μmol g-1h-1, selectivity > 99%) regulated by charge-transfer interactions. Furthermore, in situ stabilization of Pt nanoparticles on CPG (Pt@Zn-TPY-TTF) enhances H2 evolution (14727 μmol g-1h-1). Importantly, Pt@Zn-TPY-TTF CPG produces CH4 (292 μmol g-1h-1, selectivity > 97%) as CO2 reduction product instead of CO. The real-time CO2 reduction reaction is monitored by in situ DRIFT study, and the plausible mechanism is derived computationally.
Collapse
Affiliation(s)
- Parul Verma
- grid.419636.f0000 0004 0501 0005Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064 India
| | - Ashish Singh
- grid.419636.f0000 0004 0501 0005Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064 India
| | - Faruk Ahamed Rahimi
- grid.419636.f0000 0004 0501 0005Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064 India
| | - Pallavi Sarkar
- grid.419636.f0000 0004 0501 0005Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064 India
| | - Sukhendu Nath
- grid.418304.a0000 0001 0674 4228Ultrafast Spectroscopy Section, Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
| | - Swapan Kumar Pati
- grid.419636.f0000 0004 0501 0005Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064 India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064, India.
| |
Collapse
|
39
|
Meneghello M, Léger C, Fourmond V. Electrochemical Studies of CO 2 -Reducing Metalloenzymes. Chemistry 2021; 27:17542-17553. [PMID: 34506631 DOI: 10.1002/chem.202102702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 11/07/2022]
Abstract
Only two enzymes are capable of directly reducing CO2 : CO dehydrogenase, which produces CO at a [NiFe4 S4 ] active site, and formate dehydrogenase, which produces formate at a mononuclear W or Mo active site. Both metalloenzymes are very rapid, energy-efficient and specific in terms of product. They have been connected to electrodes with two different objectives. A series of studies used protein film electrochemistry to learn about different aspects of the mechanism of these enzymes (reactivity with substrates, inhibitors…). Another series focused on taking advantage of the catalytic performance of these enzymes to build biotechnological devices, from CO2 -reducing electrodes to full photochemical devices performing artificial photosynthesis. Here, we review all these works.
Collapse
Affiliation(s)
- Marta Meneghello
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, and, Institut Microbiologie, Bioénergies et Biotechnologie, 31 chemin J. Aiguier, 13402, Marseille Cedex 20, France
| | - Christophe Léger
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, and, Institut Microbiologie, Bioénergies et Biotechnologie, 31 chemin J. Aiguier, 13402, Marseille Cedex 20, France
| | - Vincent Fourmond
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, and, Institut Microbiologie, Bioénergies et Biotechnologie, 31 chemin J. Aiguier, 13402, Marseille Cedex 20, France
| |
Collapse
|
40
|
Edwardes Moore E, Andrei V, Oliveira AR, Coito AM, Pereira IAC, Reisner E. A Semi‐artificial Photoelectrochemical Tandem Leaf with a CO
2
‐to‐Formate Efficiency Approaching 1 %. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Esther Edwardes Moore
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Virgil Andrei
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da Republica 2780-157 Oeiras Portugal
| | - Ana Margarida Coito
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da Republica 2780-157 Oeiras Portugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da Republica 2780-157 Oeiras Portugal
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
41
|
Affiliation(s)
- Brandon L. Greene
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
42
|
Lam E, Reisner E. A TiO 2 -Co(terpyridine) 2 Photocatalyst for the Selective Oxidation of Cellulose to Formate Coupled to the Reduction of CO 2 to Syngas. Angew Chem Int Ed Engl 2021; 60:23306-23312. [PMID: 34464003 DOI: 10.1002/anie.202108492] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 11/12/2022]
Abstract
Immobilization of a phosphonated cobalt bis(terpyridine) catalyst on TiO2 nanoparticles generates a photocatalyst that allows coupling aqueous CO2 -to-syngas (CO and H2 ) reduction to selective oxidation of biomass-derived oxygenates or cellulose to formate. An enzymatic saccharification pre-treatment process is employed that enables the use of insoluble cellulose as an electron-donating substrate under benign aqueous conditions suitable for photocatalytic CO2 conversion. The hybrid photocatalyst consists of solely earth-abundant components, and its heterogeneous nature allows for reuse and operation in aqueous solution for several days at 25 °C, reaching a cellulose-to-formate conversion yield of 17 %. Thus, the proof-of-concept for valorizing two waste streams (CO2 and biomass) simultaneously into value-added chemicals through solar-driven catalysis is demonstrated.
Collapse
Affiliation(s)
- Erwin Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| |
Collapse
|
43
|
A TiO
2
‐Co(terpyridine)
2
Photocatalyst for the Selective Oxidation of Cellulose to Formate Coupled to the Reduction of CO
2
to Syngas. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Fang Z, Zhou J, Zhou X, Koffas MAG. Abiotic-biotic hybrid for CO 2 biomethanation: From electrochemical to photochemical process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148288. [PMID: 34118677 DOI: 10.1016/j.scitotenv.2021.148288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Converting CO2 into sustainable fuels (e.g., CH4) has great significance to solve carbon emission and energy crisis. Generally, CO2 methanation needs abundant of energy input to overcome the eight-electron-transfer barrier. Abiotic-biotic hybrid system represents one of the cutting-edge technologies that use renewable electric/solar energy to realize eight-electron-transfer CO2 biomethanation. However, the incompatible abiotic-biotic hybrid can result in low efficiency of electron transfer and CO2 biomethanation. Herein, we present the comprehensive review to highlight how to design abiotic-biotic hybrid for electric/solar-driven CO2 biomethanation. We primarily introduce the CO2 biomethanation mechanism, and further summarize state-of-the-art electrochemical and photochemical CO2 biomethanation in hybrid systems. We also propose excellent synthetic biology strategies, which are useful to design tunable methanogenic microorganisms or enzymes when cooperating with electrode/semiconductor in hybrid systems. This review provides theoretical guidance of abiotic-biotic hybrid and also shows the bright future of sustainable fuel production in the form of CO2 biomethanation.
Collapse
Affiliation(s)
- Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiangtong Zhou
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mattheos A G Koffas
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
45
|
Edwardes Moore E, Andrei V, Oliveira AR, Coito AM, Pereira IAC, Reisner E. A Semi-artificial Photoelectrochemical Tandem Leaf with a CO 2 -to-Formate Efficiency Approaching 1 . Angew Chem Int Ed Engl 2021; 60:26303-26307. [PMID: 34472692 DOI: 10.1002/anie.202110867] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 11/06/2022]
Abstract
Semi-artificial photoelectrochemistry can combine state-of-the-art photovoltaic light-absorbers with enzymes evolved for selective fuel-forming reactions such as CO2 reduction, but the overall performance of such hybrid systems has been limited to date. Here, the electrolyte constituents were first tuned to establish an optimal local environment for a W-formate dehydrogenase to perform electrocatalysis. The CO2 reductase was then interfaced with a triple cation lead mixed-halide perovskite through a hierarchically structured porous TiO2 scaffold to produce an integrated photocathode achieving a photocurrent density of -5 mA cm-2 at 0.4 V vs. the reversible hydrogen electrode during simulated solar light irradiation. Finally, the combination with a water-oxidizing BiVO4 photoanode produced a bias-free integrated biophotoelectrochemical tandem device (semi-artificial leaf) with a solar CO2 -to-formate energy conversion efficiency of 0.8 %.
Collapse
Affiliation(s)
- Esther Edwardes Moore
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Virgil Andrei
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Republica, 2780-157, Oeiras, Portugal
| | - Ana Margarida Coito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Republica, 2780-157, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Republica, 2780-157, Oeiras, Portugal
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
46
|
Ye J, Hu A, Ren G, Chen M, Zhou S, He Z. Biophotoelectrochemistry for renewable energy and environmental applications. iScience 2021; 24:102828. [PMID: 34368649 PMCID: PMC8326206 DOI: 10.1016/j.isci.2021.102828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Biophotoelectrochemistry (BPEC) is an interdisciplinary research field and combines bioelectrochemistry and photoelectrochemistry through the utilization of the catalytic abilities of biomachineries and light harvesters to accomplish the production of energy or chemicals driven by solar energy. The BPEC process may act as a new approach for sustainable green chemistry and waste minimization. This review provides the state-of-the-art introduction of BPEC basics and systems, with a focus on light harvesters and biocatalysts, configurations, photoelectron transfer mechanisms, and the potential applications in energy and environment. Several examples of BPEC applications are discussed including H2 production, CO2 reduction, chemical synthesis, pollution control, and biogeochemical cycle of elements. The challenges about BPEC systems are identified and potential solutions are proposed. The review aims to encourage further research of BPEC toward development of practical BPEC systems for energy and environmental applications.
Collapse
Affiliation(s)
- Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Andong Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Man Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
47
|
Arena F, Giuffredi G, Perego A, Donini S, Guzmán H, Hernández S, Stancanelli E, Cosentino C, Parisini E, Di Fonzo F. Hierarchical TiN‐Supported TsFDH Nanobiocatalyst for CO
2
Reduction to Formate. ChemElectroChem 2021. [DOI: 10.1002/celc.202100480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Federica Arena
- Center for Nano Science and Technology – Istituto Italiano di Tecnologia (IIT@Polimi) Via Pascoli 70/3 20063 Milano Italy
- Politecnico di Milano – Department of Energy Via Lambruschini 4 Milano Italy
| | - Giorgio Giuffredi
- Center for Nano Science and Technology – Istituto Italiano di Tecnologia (IIT@Polimi) Via Pascoli 70/3 20063 Milano Italy
- Politecnico di Milano – Department of Energy Via Lambruschini 4 Milano Italy
| | - Andrea Perego
- Center for Nano Science and Technology – Istituto Italiano di Tecnologia (IIT@Polimi) Via Pascoli 70/3 20063 Milano Italy
| | - Stefano Donini
- Center for Nano Science and Technology – Istituto Italiano di Tecnologia (IIT@Polimi) Via Pascoli 70/3 20063 Milano Italy
| | - Hilmar Guzmán
- Politecnico di Torino – Department of Applied Science and Technology Corso Duca degli Abruzzi 24 Torino Italy
| | - Simelys Hernández
- Politecnico di Torino – Department of Applied Science and Technology Corso Duca degli Abruzzi 24 Torino Italy
| | - Eduardo Stancanelli
- Ronzoni Institute for Chemical and Biochemical Research Via Colombo 81 Milano Italy
| | - Cesare Cosentino
- Ronzoni Institute for Chemical and Biochemical Research Via Colombo 81 Milano Italy
| | - Emilio Parisini
- Center for Nano Science and Technology – Istituto Italiano di Tecnologia (IIT@Polimi) Via Pascoli 70/3 20063 Milano Italy
| | - Fabio Di Fonzo
- Center for Nano Science and Technology – Istituto Italiano di Tecnologia (IIT@Polimi) Via Pascoli 70/3 20063 Milano Italy
| |
Collapse
|
48
|
Sun Y, Li W, Wang Z, Shi J, Jiang Z. General framework for enzyme-photo-coupled catalytic system toward carbon dioxide conversion. Curr Opin Biotechnol 2021; 73:67-73. [PMID: 34333444 DOI: 10.1016/j.copbio.2021.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022]
Abstract
High emission of carbon dioxide (CO2) has aroused global concern due to the 'greenhouse effect'. The conversion of CO2 to valuable chemicals/materials is an indispensable route toward 'carbon neutrality'. Enzyme-photo-coupled catalytic systems (EPCCSs), integrating synthetic library of semiconductor photocatalyst and natural database of enzyme, have emerged as a green and powerful platform toward CO2 conversion. Herein, we discuss the recent progress in design and application of EPCCSs for CO2 conversion from the perspective of pathway engineering, reaction engineering and system engineering. We firstly summarize the explored pathways of EPCCSs for converting CO2 to C1 and C2+ products. Secondly, we discuss the matching of kinetics between photocatalytic and enzymatic reactions in EPCCSs. Thirdly, we unveil the complex interplay between photocatalytic and enzymatic modules, and further demonstrate the strategy of compartmentalization to eliminate the negative interactions. Lastly, we conclude with the perspective on the opportunities and challenges of EPCCSs for CO2 conversion.
Collapse
Affiliation(s)
- Yiying Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Wenping Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Zhuo Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Jiafu Shi
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, PR China.
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, PR China.
| |
Collapse
|
49
|
Yang N, Tian Y, Zhang M, Peng X, Li F, Li J, Li Y, Fan B, Wang F, Song H. Photocatalyst-enzyme hybrid systems for light-driven biotransformation. Biotechnol Adv 2021; 54:107808. [PMID: 34324993 DOI: 10.1016/j.biotechadv.2021.107808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/26/2021] [Accepted: 07/21/2021] [Indexed: 11/02/2022]
Abstract
Enzymes catalyse target reactions under mild conditions with high efficiency, as well as excellent regional-, stereo-, and enantiomeric selectivity. Photocatalysis utilises sustainable and environment-friendly light power to realise efficient chemical conversion. By combining the interdisciplinary advantages of photo- and enzymatic catalysis, the photocatalyst-enzyme hybrid systems have proceeded various light-driven biotransformation with high efficiency under environmentally benign conditions, thus, attracting unparalleled focus during the last decades. It has also been regarded as a promising pathway towards green chemistry utilising ubiquitous solar energy. This systematic review gives insight into this research field by classifying the existing photocatalyst-enzyme hybrid systems into three sections based on different hybridizing modes between photo- and enzymatic catalysis. Furthermore, existing challenges and proposed strategies are discussed within this context. The first system summarised is the cofactor-mediated hybrid system, in which natural/artificial cofactors act as reducing equivalents that connect photocatalysts with enzymes for light-driven enzymatic biotransformation. Second, the direct contact-based photocatalyst-enzyme hybrid systems are described, including two different kinds of electron exchange sites on the enzyme molecules. Third, some cases where photocatalysts and enzymes are integrated into a reaction cascade with specific intermediates will be discussed in the following chapter. Finally, we provide perspective concerning the future of this field.
Collapse
Affiliation(s)
- Nan Yang
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yao Tian
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Mai Zhang
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Xiting Peng
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Feng Li
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China.
| | - Hao Song
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
50
|
Meneghello M, Oliveira AR, Jacq‐Bailly A, Pereira IAC, Léger C, Fourmond V. Formate Dehydrogenases Reduce CO
2
Rather than HCO
3
−
: An Electrochemical Demonstration. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marta Meneghello
- CNRS Aix-Marseille Université BIP IMM IM2B 31 Chemin J. Aiguier, CS70071 13402 Marseille Cedex 20 France
| | - Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA) Universidade Nova de Lisboa Oeiras Portugal
| | - Aurore Jacq‐Bailly
- CNRS Aix-Marseille Université BIP IMM IM2B 31 Chemin J. Aiguier, CS70071 13402 Marseille Cedex 20 France
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA) Universidade Nova de Lisboa Oeiras Portugal
| | - Christophe Léger
- CNRS Aix-Marseille Université BIP IMM IM2B 31 Chemin J. Aiguier, CS70071 13402 Marseille Cedex 20 France
| | - Vincent Fourmond
- CNRS Aix-Marseille Université BIP IMM IM2B 31 Chemin J. Aiguier, CS70071 13402 Marseille Cedex 20 France
| |
Collapse
|