1
|
Pausch T, Clopot S, Jordan DN, Weingart O, Janiak C, Schmidt BM. Fluorinated Squareimines for Molecular Sieving of Aromatic over Aliphatic Compounds. Angew Chem Int Ed Engl 2024; 63:e202418877. [PMID: 39512137 DOI: 10.1002/anie.202418877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The development of more energy-efficient separation technologies is essential. Especially the separation of cyclic aliphatic hydrocarbons from their aromatic counterparts remains a significant challenge due to azeotrope formation and similar physical properties, often requiring energy-intensive processes. Herein, we introduce a novel class of electron-deficient macrocycles with a unique rectangular structure to optimise interactions within the pore, enabling the highly selective molecular sieving of aromatic compounds from mixtures. Utilising dynamic covalent imine chemistry, the squareimine NDI2F42-based crystalline functional material is directly obtained from the reaction mixture in a single self-assembly step in high yields of 83 %, alongside the larger NDI2F82 congener, which can be obtained in 69 % yield. In vapour sorption and diffusion experiments, NDI2F42 demonstrates rapid adsorption kinetics with selectivities of 97 : 3 for benzene over cyclohexane and 93 : 7 for toluene over methylcyclohexane, while single-crystal and powder X-ray diffraction studies indicate that the selectivity is primarily governed by directed interactions between the electron-deficient panels and aromatic guests.
Collapse
Affiliation(s)
- Tobias Pausch
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Samanta Clopot
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Dustin N Jordan
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Oliver Weingart
- Zentrum für Informations- und Medientechnologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Bernd M Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
2
|
David T, Oestreich R, Pausch T, Wada Y, Fleck-Kunde T, Kawano M, Janiak C, Schmidt BM. Fluorinated vs. non-fluorinated tetrahedral Tri 4Tri 4 porous organic cages for H 2, CO 2, and CH 4 adsorption. Chem Commun (Camb) 2024; 60:14762-14765. [PMID: 39533810 DOI: 10.1039/d4cc05277c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We present the synthesis of two porous complementary tetrahedral Tri4Tri4 imine cages, exhibiting Brunauer-Emmett-Teller (BET) surface areas of 591 m2 g-1 and 753 m2 g-1, suitable for the adsorption of H2, CO2, and CH4. Comparisons in terms of crystallinity, thermal stability, porosity, and selectivity highlight the promising properties of fluorinated and non-fluorinated porous organic cages as functional materials.
Collapse
Affiliation(s)
- Tim David
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Robert Oestreich
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Tobias Pausch
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Yuki Wada
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tom Fleck-Kunde
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Masaki Kawano
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Bernd M Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
3
|
Ovalle M, Stindt CN, Feringa BL. Light, Switch, Action! The Influence of Geometrical Photoisomerization in an Adaptive Self-Assembled System. J Am Chem Soc 2024; 146:31892-31900. [PMID: 39500717 PMCID: PMC11583216 DOI: 10.1021/jacs.4c11206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The ubiquitous ability of natural dynamic nanostructures to adapt to environmental changes is a highly desirable property for chemical systems, particularly in the development of complex matter, molecular machines, and life-like materials. Designing such systems is challenging due to the generation of complex mixtures with responses that are difficult to predict, characterize, and diversify. Here, we navigate between self-assembled architectures using light by operating an intrinsic photoswitchable building block that governs the state of the system. When complementary units are present, the photoswitch determines the predominant architecture, reversibly adapting between the cage and macrocycles, including (otherwise inaccessible) higher-energy assemblies. Our study showcases this concept with seven different transformations, offering an unprecedented degree of control, diversification, and adaptation by self-selecting complementary units. These findings could enable applications of on-demand dissipative macrocycles based on dynamic bonds. We also envision different transient nanostructures, e.g., reticular and polymeric materials, being explored by fine-tuning the nature of the complementary unit.
Collapse
Affiliation(s)
- Marco Ovalle
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, Groningen 9747 AG, The Netherlands
| | - Charlotte N Stindt
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, Groningen 9747 AG, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, Groningen 9747 AG, The Netherlands
| |
Collapse
|
4
|
Deng Y, Du Z, Du S, Li N, Wang W, Su K, Yuan D. Stable Porous Organic Cage Nanocapsules for pH-Responsive Anticancer Drug Delivery for Precise Tumor Therapy. ACS APPLIED BIO MATERIALS 2024; 7:7535-7543. [PMID: 39395005 PMCID: PMC11577425 DOI: 10.1021/acsabm.4c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
The search for drug nanocarriers with stimuli-responsive properties and high payloads for targeted drug delivery and precision medicine is currently a focal point of biomedical research, but this endeavor still encounters various challenges. Herein, a porous organic cage (POC) is applied to paclitaxel (PTX) drug delivery for cancer therapy for the first time. Specifically, water-soluble, stable, and biocompatible POC-based nanocapsules (PTX@POC@RH40) with PTX encapsulation efficiency over 98% can be synthesized by simply grafting nonionic surfactant (Polyoxyl 40 hydrogenated castor oil, RH40) on the POC surface. These PTX@POC@RH40 nanocapsules demonstrate remarkable stability for more than a week without aggregation and exhibit pH-responsive behavior under acidic conditions (pH 5.5) and display sustained release behavior at both pH 7.4 and pH 5.5. Intravenous administration of PTX@POC@RH40 led to a 3.5-fold increase in PTX bioavailability compared with the free PTX group in rats. Moreover, in vivo mouse model experiments involving 4T1 subcutaneous breast cancer tumors revealed that PTX@POC@RH40 exhibited enhanced anticancer efficacy with minimal toxicity compared with free PTX. These findings underscore the potential of POCs as promising nanocarriers for stimuli-responsive drug delivery in therapeutic applications.
Collapse
Affiliation(s)
- Yanping Deng
- Fujian
Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhenhong Du
- Fujian
Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Shunfu Du
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Li
- Fujian
Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wenjing Wang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Kongzhao Su
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Daqiang Yuan
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Ge C, Cao Z, Feng T, Wu Y, Xiao M, Tang H, Wang K, Wang L, Li H. Self-Assembly of an Unlikely Occurring Quadrangular Tube by Modulating Intramolecular Forces. Angew Chem Int Ed Engl 2024; 63:e202411401. [PMID: 39038093 DOI: 10.1002/anie.202411401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
One of the central focuses in self-assembly is precisely controlling the self-assembly pathway so that the target molecules can be produced exclusively. Trans-1,2-cyclohexanediamine contains two amino units that form a 60° angle when projected on a plane. This angle naturally favors the formation of triangular products in most cases when trans-1,2-cyclohexanediamine is used as a bisamino building block in the synthesis of macrocycles and tubes. Here, we synthesized a slightly bent tetraformyl precursor bearing a central dibenzothiophene moiety, whose 3,7-positions are functionalized with two m-phthalaldehyde units. We observed that combining this tetraformyl building block with trans-1,2-cyclohexanediamine yielded a quadrangular tube when the concentrations of the precursors were relatively high. Both experimental measurements and theoretical calculations indicate that the formation of this unlikely occurring quadrangular product was driven by the intramolecular C-H⋅⋅⋅π interactions between the dibenzothiophene building blocks within the tube framework. This driving force, however, was disturbed in the triangular tube, a smaller counterpart whose formation was considered previously much more thermodynamically favored. These results improved our fundamental understanding on how to create those products whose syntheses are considered difficult or impossible, by modulating the intramolecular driving forces.
Collapse
Affiliation(s)
- Chenqi Ge
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ze Cao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Tinglong Feng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yating Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Mingrui Xiao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hua Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Kun Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Linjun Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| |
Collapse
|
6
|
Zhang W, Wu X, Peng X, Tian Y, Yuan H. Solution Processable Metal-Organic Frameworks: Synthesis Strategy and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412708. [PMID: 39470040 DOI: 10.1002/adma.202412708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), constructed by inorganic secondary building units with organic linkers via reticular chemistry, inherently suffer from poor solution processability due to their insoluble nature, resulting from their extensive crystalline networks and structural rigidity. The ubiquitous occurrence of precipitation and agglomeration of MOFs upon formation poses a significant obstacle to the scale-up production of MOF-based monolith, aerogels, membranes, and electronic devices, thus restricting their practical applications in various scenarios. To address the previously mentioned challenge, significant strides have been achieved over the past decade in the development of various strategies aimed at preparing solution-processable MOF systems. In this review, the latest advance in the synthetic strategies for the construction of solution-processable MOFs, including direct dispersion in ionic liquids, surface modification, controllable calcination, and bottom-up synthesis, is comprehensively summarized. The respective advantages and disadvantages of each method are discussed. Additionally, the intriguing applications of solution-processable MOF systems in the fields of liquid adsorbent, molecular capture, sensing, and separation are systematically discussed. Finally, the challenges and opportunities about the continued advancement of solution-processable MOFs and their potential applications are outlooked.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yefei Tian
- School of Materials Science and Engineering, Chang'an University, No. 75 Changan Middle Road, Xi'an, Shaanxi, 710064, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
7
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
8
|
Jin T, Zeng K, Zhang X, Dou WT, Hu L, Zhang D, Zhu W, Qian X, Yang HB, Xu L. Efficient Self-Sorting Behaviours of Metallacages with Subtle Structural Differences. Angew Chem Int Ed Engl 2024; 63:e202409878. [PMID: 39051526 DOI: 10.1002/anie.202409878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/06/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
Investigating the self-sorting behaviour of assemblies with subtle structural differences is a captivating yet challenging endeavour. Herein, we elucidate the unusual self-sorting behaviour of metallacages with subtle structural differences in batch reactors and microdroplets. Narcissistic self-sorting of metallacages has been observed for two ligands with identical sizes, shapes, and symmetries, with only minor differences in the substituted groups. In particular, the self-sorting process in microdroplets occurs within 1 min at room temperature, in stark contrast to batch reactors, which require equilibration for 30 min. To reveal the mechanism of self-sorting and the role of microdroplets, we conducted a series of experiments and theoretical calculations, including competitive self-assembly, cage-to-cage transformation, control experiments involving model metallacages with larger cavities, noncovalent interaction analysis, and root mean square deviation (RMSD) analysis. This research demonstrates an unusual case of self-sorting of very similar assemblies and provides a new strategy for facilitating the self-sorting efficiency of supramolecular systems.
Collapse
Affiliation(s)
- Tongxia Jin
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Kai Zeng
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xin Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei-Tao Dou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lianrui Hu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Dawei Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Weiping Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuhong Qian
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
9
|
Liu C, Wang Z, Wang H, Jiang J. Recent advances in porous organic cages for energy applications. Chem Sci 2024:d4sc05309e. [PMID: 39483250 PMCID: PMC11523839 DOI: 10.1039/d4sc05309e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
In recent years, the energy and environmental crises have attracted more and more attention. It is very important to develop new materials and technologies for energy storage and conversion. In particular, it is crucial to develop carriers that store energy or promote mass and electron transport. Emerging porous organic cages (POCs) are very suitable for this purpose because they have inherent advantages including structural designability, porosity, multifunction and post-synthetic modification. POC-based materials, such as pristine POCs, POC composites and POC derivatives also exhibit excellent energy-related properties. This latest perspective provides an overview of the progress of POC-based materials in energy storage and conversion applications, including photocatalysis, electrocatalysis (CO2RR, NO3RR, ORR, HER and OER), separation (gas separation and liquid separation), batteries (lithium-sulfur, lithium-ion and perovskite solar batteries) and proton conductivity, highlighting the unique advantages of POC-based materials in various forms. Finally, we summarize the current advances, challenges and further perspectives of POC-based materials in energy applications. This perspective will promote the design and synthesis of next-generation POC-based materials for energy applications.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Zhixuan Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
10
|
Zhang X, Wei C, Zong K, Zhong Q, Yan H. Tetraasteranes as homologues of cubanes: effective scaffolds for drug discovery. Org Biomol Chem 2024; 22:8037-8047. [PMID: 39263808 DOI: 10.1039/d4ob01043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Classical hydrocarbon scaffolds have long assisted in bringing new molecules to the market for a variety of applications, but one notable omission is that of tetraasteranes, which are homologues of cubanes belonging to a class of polycyclic hydrocarbon cage compounds. Tetraasteranes exhibit potential as scaffolds in drug discovery due to their identical cyclobutane structures and rigid conformation resembling cubanes. Based on the studies of the physical and chemical properties of tetraasteranes by density functional theory, three series of compounds were designed as homologues of cubanes by the substitution of cubane scaffolds in pharmaceuticals with tetraasteranes. Their potential for pharmaceutical applications was evaluated in silico by molecular docking and dynamics simulations. Their pharmacokinetic and physicochemical properties were studied by the ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis. The results indicate that tetraasteranes may be scaffolds as novel bioisosteres of cubanes, as well as hydrogen bond donors or acceptors, which enhance the affinity between ligands and receptors with more stable binding behavior and feasible tolerability in ADMET. All these findings provide new opportunities for tetraasteranes to serve as effective pharmaceutical scaffolds for drug discovery and to accelerate the drug discovery process by repurposing both new and old commercial compounds.
Collapse
Affiliation(s)
- Xiaokun Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, P. R. China.
| | - Chaochun Wei
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, P. R. China.
| | - Keli Zong
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, P. R. China.
| | - Qidi Zhong
- School of Pharmacy, North China University of Science and Technology, Tangshan, P. R. China
| | - Hong Yan
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, P. R. China.
| |
Collapse
|
11
|
Fang F, Liu P, Lin W, Alimi LO, Moosa B, Maltseva E, Khashab NM. Supramolecular Interfacial Assembly: Integrating Supramolecular Hosts into Polymeric Membranes through an Aqueous Interface. Angew Chem Int Ed Engl 2024:e202416050. [PMID: 39382223 DOI: 10.1002/anie.202416050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/10/2024]
Abstract
Efficient incorporation of macrocycles in polymeric membranes can impart the overall matrix with new properties for a range of cutting-edge applications. Here, we introduce a Supramolecular Interfacial Assembly (SIA) method for the fabrication of polymeric membranes featuring embedded macrocycles. Through harnessing the quasi-liquid nature of the concentrated polymer solution, SIA orchestrates the homogeneous spreading of macrocycles in an aqueous layer on its surface, leading to the creation of an interface between "water/water" phases, subsequently forming a cross-linked membrane driven by supramolecular electrostatic interactions. Remarkably, compared to the traditional interfacial polymerization, SIA adheres to a "green" paradigm without the need for organic solvents. The resultant composite membrane exhibits superior performance in organic solvent nanofiltration (OSN), owing to the precise molecular sieving property provided by the macrocycles with well-defined permanent cavities. This fabrication method holds great promise for the innovative design and production of composite membranes that seamlessly integrates macrocycles with conventional polymers, which can greatly impact the design and preparation of advanced membrane materials in the future.
Collapse
Affiliation(s)
- Fang Fang
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Peiren Liu
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Weibin Lin
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Elizaveta Maltseva
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
12
|
Pérez-Ferreiro M, Gallagher QM, León AB, Webb MA, Criado A, Mosquera J. Engineering a Surfactant Trap via Postassembly Modification of an Imine Cage. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:8920-8928. [PMID: 39347472 PMCID: PMC11428146 DOI: 10.1021/acs.chemmater.4c01808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024]
Abstract
Imine self-assembly stands as a potent strategy for the preparation of molecular organic cages. However, challenges persist, such as water insolubility and limited recognition properties due to constraints in the application of specific components during the self-assembly process. In this study, we addressed these limitations by initially employing a locking strategy, followed by a postassembly modification. This sequential approach enables precise control over both the solubility and host-guest properties of an imine-based cage. The resulting structure demonstrates water solubility and exhibits an exceptional capacity to selectively interact with anionic surfactants, inducing their precipitation. Remarkably, each cage precipitates 24 equiv of anionic surfactants even at concentrations much lower than the surfactant's critical micelle concentration (CMC), ensuring their complete removal. Molecular simulations elucidate how anionic surfactants specifically interact with the cage to facilitate aggregation below the surfactant CMC and induce precipitation as a micellar cross-linker. This innovative class of cages paves the way for the advancement of materials tailored for environmental remediation.
Collapse
Affiliation(s)
- María Pérez-Ferreiro
- Universidade da Coruña, CICA-Centro Interdisciplinar de Química e Bioloxía, Rúa as Carballeiras, 15071 A Coruña, Spain
| | - Quinn M Gallagher
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Andrea B León
- Universidade da Coruña, CICA-Centro Interdisciplinar de Química e Bioloxía, Rúa as Carballeiras, 15071 A Coruña, Spain
| | - Michael A Webb
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Alejandro Criado
- Universidade da Coruña, CICA-Centro Interdisciplinar de Química e Bioloxía, Rúa as Carballeiras, 15071 A Coruña, Spain
| | - Jesús Mosquera
- Universidade da Coruña, CICA-Centro Interdisciplinar de Química e Bioloxía, Rúa as Carballeiras, 15071 A Coruña, Spain
| |
Collapse
|
13
|
Yang M, Su K, Yuan D. Construction of stable porous organic cages: from the perspective of chemical bonds. Chem Commun (Camb) 2024; 60:10476-10487. [PMID: 39225058 DOI: 10.1039/d4cc04150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Porous organic cages (POCs) are constructed from purely organic synthons by covalent linkages with intrinsic cavities and have shown potential applications in many areas. However, the majority of POC synthesis methods reported thus far have relied on dynamically reversible imine linkages, which can be metastable and unstable under humid or harsh chemical conditions. This instability significantly hampers their research prospects and practical applications. Consequently, strategies to enhance the chemical stability of POCs by modifying imine bonds and developing robust covalent linkages are imperative for realizing the full potential of these materials. In this review, we aim to highlight recent advancements in synthesizing chemical-stable POCs through these approaches and their associated applications. Additionally, we propose further strategies for creating stable POCs and discuss future opportunities for practical applications.
Collapse
Affiliation(s)
- Miao Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Song Z, Liu L, Sun Q, Du J, Guan J, Dou P, Zhang R, Jiang Z, Liu J. Crystalline Porous Organic Cage Membranes Constructed Using Fortified Intermolecular Interactions for Molecular Sieving. Angew Chem Int Ed Engl 2024; 63:e202409296. [PMID: 38923710 DOI: 10.1002/anie.202409296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Among the various types of materials with intrinsic porosity, porous organic cages (POCs) are distinctive as discrete molecules that possess intrinsic cavities and extrinsic channels capable of facilitating molecular sieving. However, the fabrication of POC membranes remains highly challenging due to the weak noncovalent intermolecular interactions and most reported POCs are powders. In this study, we constructed crystalline free-standing porous organic cage membranes by fortifying intermolecular interactions through the induction of intramolecular hydrogen bonds, which was confirmed by single-crystal X-ray analysis. To elucidate the driving forces behind, a series of terephthaldehyde building blocks containing different substitutions were reacted with flexible triamine under different conditions via interfacial polymerization (IP). Furthermore, density functional theory (DFT) calculations suggest that intramolecular hydrogen bonding can significantly boost the intermolecular interactions. The resulting membranes exhibited fast solvent permeance and high rejection of dyes not only in water, but also in organic solvents. In addition, the membrane demonstrated excellent performance in precise molecular sieving in organic solvents. This work opens an avenue to designing and fabricating free-standing membranes composed of porous organic materials for efficient molecular sieving.
Collapse
Affiliation(s)
- Ziye Song
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Linghao Liu
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Qian Sun
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Jingcheng Du
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Jian Guan
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Pengjia Dou
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Runnan Zhang
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jiangtao Liu
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
15
|
Li P, Jiang X, Gu R, Tian H, Qu DH. Catalyst-Free Dynamic Covalent C=C/C=N Metathesis Reaction for Associative Covalent Adaptable Networks. Angew Chem Int Ed Engl 2024; 63:e202406708. [PMID: 38828797 DOI: 10.1002/anie.202406708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Covalent adaptable networks (CANs), leveraging the dynamic exchange of covalent bonds, emerge as a promising material to address the challenge of irreversible cross-linking in thermosetting polymers. In this work, we explore the introduction of a catalyst-free and associative C=C/C=N metathesis reaction into thermosetting polyurethanes, creating CANs with superior stability, solvent resistance, and thermal/mechanical properties. By incorporating this dynamic exchange reaction, stress-relaxation is significantly accelerated compared to imine-bond-only networks, with the rate adjustable by modifying substituents in the ortho position of the dynamic double bonds. The obtained plasticity enables recycle without altering the chemical structure or mechanical properties, and is also found to be vital for achieving shape memory functions with complex spatial structures. This metathesis reaction as a new dynamic crosslinker of polymer networks has the potential to accelerate the ongoing exploration of malleable and functional thermoset polymers.
Collapse
Affiliation(s)
- Pengyun Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Xin Jiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Ruirui Gu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
16
|
Li B, Sun B, Fang S, Chen Y, Li H. Guest-induced narcissistic self-sorting in water via imine formation. Chem Commun (Camb) 2024; 60:5743-5746. [PMID: 38743417 DOI: 10.1039/d4cc01239a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Two anionic tetrahedral cages were self-assembled as the only observable products in weakly basic water via imine condensation. The success of the high-yielding formation of the cages in water relies on (i) multivalency enhancing the stability of the imine bond and affording these cages water compatibility and (ii) a guest template with a complementary size and geometry that provides a hydrophobic driving force by occupying the corresponding cage cavity. When all four precursors, namely two trisaldehydes and two trisamines, were combined in water, narcissistic self-sorting occurred when both guest templates were present. In organic media where the hydrophobic effect is absent, narcissistic self-sorting did not occur in the analogous cage systems, confirming the importance of guest templates.
Collapse
Affiliation(s)
- Bingda Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Bin Sun
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Shuai Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Yixin Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
17
|
Esteve F, Rieu T, Lehn JM. Constitutional adaptation to p Ka modulation by remote ester hydrolysis. Chem Sci 2024; 15:7092-7103. [PMID: 38756812 PMCID: PMC11095373 DOI: 10.1039/d4sc01288g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
The mechanisms through which environmental conditions affect the expression of interconnected species is a key step to comprehending the principles underlying complex chemical processes. In Nature, chemical modifications triggered by the environment have a major impact on the structure and function of biomolecules and regulate different reaction pathways. Yet, minimalistic artificial systems implementing related adaptation behaviours remain barely explored. The hydrolysis of amino acid methyl esters to their corresponding amino acids leads to a drastic change in pKa (ca. 7 and 9, respectively) that protonates the free amino group at physiological conditions. Dynamic covalent libraries (DCvLs) based on amino acid methyl esters and aldehydes respond to such hydrolysis and lead to constitutional adaptation. Each of the libraries studied experiences a DCvL conversion allowing for constituent selection due to the silencing of the zwitterionic amino acids towards imine formation. The selective action of different enzymes on the DCvLs results in states with simplified constitutional distributions and transient chirality. When additional components (i.e., scavengers) that are not affected by hydrolysis are introduced into the dynamic libraries, the amino acid methyl ester hydrolysis induces the up-regulation of the constituents made of these scavenging components. In these systems, the constituent distribution is resolved from a scrambled mixture of imines to a state characterized by the predominance of a single aldimine. Remarkably, although the final libraries display higher "simplexity", the different transient states present an increased complexity that allows for the emergence of organized structures [micelle formation] and distributions [up-regulation of two antagonistic constituents]. This reactive site inhibition by a remote chemical modification resembles the scenario found in some enzymes for the regulation of their activity through proximal post-translational modifications.
Collapse
Affiliation(s)
- Ferran Esteve
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Tanguy Rieu
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
18
|
Trzaskowski B, Martínez JP, Sarwa A, Szyszko B, Goddard WA. Argentophilic Interactions, Flexibility, and Dynamics of Pyrrole Cages Encapsulating Silver(I) Clusters. J Phys Chem A 2024; 128:3339-3350. [PMID: 38651289 PMCID: PMC11077489 DOI: 10.1021/acs.jpca.4c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Recently, pyrrole cages have been synthesized that encapsulate ion pairs and silver(I) clusters to form intricate supramolecular capsules. We report here a computational analysis of these structures using density functional theory combined with a semiempirical tight-binding approach. We find that for neutral pyrrole cages, the Gibbs free energies of formation provide reliable predictions for the ratio of bound ions. For charged pyrrole cages, we find strong argentophilic interactions between Ag ions on the basis of the calculated bond indices and molecular orbitals. For the cage with the Ag4 cluster, we find two minimum-geometry conformations that differ by only 6.5 kcal/mol, with an energy barrier <1 kcal/mol, suggesting a very flexible structure as indicated by molecular dynamics. The predicted energies of formation of [Agn⊂1]n-3+ (n = 1-5) cryptands provide low energy barriers of formation of 5-20 kcal/mol for all cases, which is consistent with the experimental data. Furthermore, we also examined the structural variability of mixed-valence silver clusters to test whether additional geometrical conformations inside the organic cage are thermodynamically accessible. In this context, we show that the time-dependent density functional theory UV-vis spectra may potentially serve as a diagnostic probe to characterize mixed-valence and geometrical configurations of silver clusters encapsulated into cryptands.
Collapse
Affiliation(s)
- Bartosz Trzaskowski
- Centre
of New Technologies, University of Warsaw, 2C Banacha Street, 02-097 Warszawa, Poland
| | - Juan Pablo Martínez
- Centre
of New Technologies, University of Warsaw, 2C Banacha Street, 02-097 Warszawa, Poland
| | - Aleksandra Sarwa
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50-387 Wrocław, Poland
| | - Bartosz Szyszko
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50-387 Wrocław, Poland
| | - William A. Goddard
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91106, United States
| |
Collapse
|
19
|
Andrews KG, Horton PN, Coles SJ. Programmable synthesis of organic cages with reduced symmetry. Chem Sci 2024; 15:6536-6543. [PMID: 38699263 PMCID: PMC11062111 DOI: 10.1039/d4sc00889h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/31/2024] [Indexed: 05/05/2024] Open
Abstract
Integrating symmetry-reducing methods into self-assembly methodology is desirable to efficiently realise the full potential of molecular cages as hosts and catalysts. Although techniques have been explored for metal organic (coordination) cages, rational strategies to develop low symmetry organic cages remain limited. In this article, we describe rules to program the shape and symmetry of organic cage cavities by designing edge pieces that bias the orientation of the amide linkages. We apply the rules to synthesise cages with well-defined cavities, supported by evidence from crystallography, spectroscopy and modelling. Access to low-symmetry, self-assembled organic cages such as those presented, will widen the current bottleneck preventing study of organic enzyme mimics, and provide synthetic tools for novel functional material design.
Collapse
Affiliation(s)
- Keith G Andrews
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
- Department of Chemistry, Durham University Lower Mount Joy, South Rd Durham DH1 3LE UK
| | - Peter N Horton
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton Southampton SO17 1BJ UK
| | - Simon J Coles
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton Southampton SO17 1BJ UK
| |
Collapse
|
20
|
Mohan M, Pham DJ, Fluck A, Chapuis S, Chaumont A, Kauffmann B, Barloy L, Mobian P. A Chiral [2+3] Covalent Organic Cage Based on 1,1'-Bi-2-naphthol (BINOL) Units. Chemistry 2024; 30:e202400458. [PMID: 38427204 DOI: 10.1002/chem.202400458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
A [2+3] chiral covalent organic cage is produced through a dynamic covalent chemistry approach by mixing two readily available building units, viz. an enantiopure 3,3'-diformyl 2,2'-BINOL compound (A) with a triamino spacer (B). The two enantiomeric (R,R,R) and (S,S,S) forms of the cage C are formed nearly quantitatively thanks to the reversibility of the imine linkage. The X-ray diffraction analysis of cage (S,S,S)-C highlights that the six OH functions of the BINOL fragments are positioned inside the cage cavity. Upon reduction of the imine bonds of cage C, the amine cage D is obtained. The ability of the cage D to host the 1-phenylethylammonium cation (EH+) as a guest is evaluated through UV, CD and DOSY NMR studies. A higher binding constant for (R)-EH+ cation (Ka=1.7 106±10 % M-1) related to (S)-EH+ (Ka=0.9 106±10 % M-1) is determined in the presence of the (R,R,R)-D cage. This enantiopreference is in close agreement with molecular dynamics simulation.
Collapse
Affiliation(s)
- Midhun Mohan
- Laboratoire de Synthèse et Fonctions des Architectures Moléculaire (SFAM), UMR 7140 (CMC), Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| | - David-Jérôme Pham
- Laboratoire de Synthèse et Fonctions des Architectures Moléculaire (SFAM), UMR 7140 (CMC), Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| | - Audrey Fluck
- Laboratoire de Synthèse et Fonctions des Architectures Moléculaire (SFAM), UMR 7140 (CMC), Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| | - Simon Chapuis
- Laboratoire de Modélisation et Simulations Moléculaires, UMR 7140 (CMC), Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| | - Alain Chaumont
- Laboratoire de Modélisation et Simulations Moléculaires, UMR 7140 (CMC), Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| | - Brice Kauffmann
- Univ. Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, F-33600, Pessac, France
| | - Laurent Barloy
- Laboratoire de Synthèse et Fonctions des Architectures Moléculaire (SFAM), UMR 7140 (CMC), Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| | - Pierre Mobian
- Laboratoire de Synthèse et Fonctions des Architectures Moléculaire (SFAM), UMR 7140 (CMC), Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| |
Collapse
|
21
|
van Hilst QVC, Pearcy AC, Preston D, Wright LJ, Hartinger CG, Brooks HJL, Crowley JD. A dynamic covalent approach to [Pt nL 2n] 2n+ cages. Chem Commun (Camb) 2024; 60:4302-4305. [PMID: 38530770 DOI: 10.1039/d4cc00323c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A dynamic covalent approach was exploited to generate a family of homometallic [PtnL2n]2n+ cage (predominantly [Pt2L4]4+ systems) architectures. The family of platinum(II) architectures were characterized using 1H nuclear magnetic resonance (NMR) and diffusion ordered spectroscopy (DOSY), electrospray ionization mass spectrometry (ESI-MS) and the molecular structures of two cages were determined by X-ray crystallography.
Collapse
Affiliation(s)
- Quinn V C van Hilst
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- The MacDiarmid Institute, Wellington 6140, New Zealand
| | - Aston C Pearcy
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- The MacDiarmid Institute, Wellington 6140, New Zealand
| | - Dan Preston
- Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
| | - L James Wright
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Heather J L Brooks
- Department of Pathology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- The MacDiarmid Institute, Wellington 6140, New Zealand
| |
Collapse
|
22
|
Pausch T, David T, Fleck-Kunde T, Pols H, Gurke J, Schmidt BM. Multifold Post-Modification of Macrocycles and Cages by Isocyanate-Induced Azadefluorination Cyclisation. Angew Chem Int Ed Engl 2024; 63:e202318362. [PMID: 38294139 DOI: 10.1002/anie.202318362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
We present the multiple post-modification of organic macrocycles and cages, introducing functional groups into two- and three-dimensional supramolecular scaffolds bearing fluorine substituents, which opens up new possibilities in multi-step supramolecular chemistry employing the vast chemical space of readily available isocyanates. The mechanism and scope of the reaction that proceeds after isocyanate addition to the benzylamine motif via an azadefluorination cyclisation (ADFC) were investigated using DFT calculations, and a series of aromatic isocyanates with different electronic properties were tested. The compounds show excellent chemical stability and were fully characterised. They can be used for subsequent cross-coupling reactions, and ADFC can be used directly to generate cross-linked membranes from macrocycles or cages when using ditopic isocyanates. Single-crystal X-ray (SC-XRD) analysis shows the proof of the formation of the desired supramolecular entity together with the connectivity predicted by calculations and from 19F NMR shifts, allowing the late-stage functionalisation of self-assembled macrocycles and cages by ADFC.
Collapse
Affiliation(s)
- Tobias Pausch
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Tim David
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Tom Fleck-Kunde
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Hendrik Pols
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Johannes Gurke
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Bernd M Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
23
|
Eren N, Fadaei-Tirani F, Scopelliti R, Severin K. Molecular imine cages with π-basic Au 3(pyrazolate) faces. Chem Sci 2024; 15:3539-3544. [PMID: 38455017 PMCID: PMC10915823 DOI: 10.1039/d3sc06280e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024] Open
Abstract
One tetrahedral and two trigonal prismatic cages with π-basic Au3(pyrazolate)3 faces were obtained by connection of pre-formed gold complexes via dynamic covalent imine chemistry. The parallel arrangement of the Au3(pyrazolate)3 complexes in the prismatic cages augments the interaction with π-acids, as demonstrated by the encapsulation of polyhalogenated aromatic compounds. The tetrahedral cage was found to act as a potent receptor for fullerenes. The structures of the three cages, as well as the structures of adducts with C60 and C70, could be established by X-ray crystallography.
Collapse
Affiliation(s)
- Noga Eren
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
24
|
Zhang M, He Z, Wang L, Zhang X, Li G. Isomorphous Substitution of Organic Cage Crystal by Pd Nanoclusters for Selective Hydrogenation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308400. [PMID: 37948438 DOI: 10.1002/smll.202308400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Indexed: 11/12/2023]
Abstract
For supporting active metal, the cavity confinement and mass transfer facilitation lie not in one sack, a trade-off between high activity and good stability of the catalyst is present. Porous organic cages (POCs) are expected to break the trade-off when metal particles are properly loaded. Herein, three organic cages (CC3, RCC3, and FT-RCC3) are employed to support Pd nanoclusters for catalytic hydrogenation. Subnanometer Pd clusters locate differently in different cage frameworks by using the same reverse double-solvents approach. Compared with those encapsulated in the intrinsic cavity of RCC3 and anchored on the outer surface of CC3, the Pd nanoclusters orderly assembled in FT-RCC3 crystal via isomorphous substitution exhibit superior activity, high selectivity, and good stability for semi-hydrogenation of phenylacetylene. Isomorphous substitution of FT-RCC3 crystal by Pd nanoclusters is originated from high crystallization capacity of FT-RCC3 and specific interaction of each Pd nanocluster with four cage windows. Both confinement function and H2 accumulation capacity of FT-RCC3 are fully utilized to support active Pd nanoclusters for efficient selective hydrogenation. The present results provide a new perspective to the heterogeneous catalysis field in terms of crystalizing metal nanoclusters in POC framework and outside the cage for making the best use of both parts.
Collapse
Affiliation(s)
- Minghui Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zexing He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
25
|
Kirchner P, Schramm L, Ivanova S, Shoyama K, Würthner F, Beuerle F. A Water-Stable Boronate Ester Cage. J Am Chem Soc 2024; 146:5305-5315. [PMID: 38325811 PMCID: PMC10910528 DOI: 10.1021/jacs.3c12002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
The reversible condensation of catechols and boronic acids to boronate esters is a paradigm reaction in dynamic covalent chemistry. However, facile backward hydrolysis is detrimental for stability and has so far prevented applications for boronate-based materials. Here, we introduce cubic boronate ester cages 6 derived from hexahydroxy tribenzotriquinacenes and phenylene diboronic acids with ortho-t-butyl substituents. Due to steric shielding, dynamic exchange at the Lewis acidic boron sites is feasible only under acid or base catalysis but fully prevented at neutral conditions. For the first time, boronate ester cages 6 tolerate substantial amounts of water or alcohols both in solution and solid state. The unprecedented applicability of these materials under ambient and aqueous conditions is showcased by efficient encapsulation and on-demand release of β-carotene dyes and heterogeneous water oxidation catalysis after the encapsulation of ruthenium catalysts.
Collapse
Affiliation(s)
- Philipp
H. Kirchner
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Louis Schramm
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Svetlana Ivanova
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Kazutaka Shoyama
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Frank Würthner
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Florian Beuerle
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
- Institut
für Organische Chemie, Eberhard Karls
Universität Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| |
Collapse
|
26
|
Bhandari P, Ahmed S, Saha R, Mukherjee PS. Enhancing Fluorescence in Both Solution and Solid States Induced by Imine Cage Formation. Chemistry 2024; 30:e202303101. [PMID: 38116855 DOI: 10.1002/chem.202303101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/26/2023] [Accepted: 12/20/2023] [Indexed: 12/21/2023]
Abstract
Developing luminescent materials that exhibit strong emissions in both solution and solid phases is highly desirable and challenging. Herein, we report imine-bond directed formation of a rigid organic cage (TPE-cage) that was synthesized by [2+4] imine condensation of a TPE-cored tetra-aldehyde (TPE-TA) with a clip-like diamine (XA) to illustrate confinement-induced fluorescence enhancement. Compared to the non-emissive TPE-TA (ϕF =0.26 %) in the dichloromethane (DCM) solution, the TPE-cage achieved a remarkable (~520-fold) emission enhancement (ϕF =70.38 %). In contrast, a monomeric tetra-imine model compound (TPE-model) showed only a minor enhancement (ϕF =0.56 %) in emission compared to the parent tetra-aldehyde TPE-TA. The emission of TPE-cage was further enhanced by ~1.5-fold (ϕF =80.96 %) in the aggregated state owing to aggregation-induced emission enhancement (AIEE). This approach establishes the potential for synthesizing luminescent materials with high emission in both solution and solid-state by employing a single-step imine condensation reaction.
Collapse
Affiliation(s)
- Pallab Bhandari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Shakil Ahmed
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Rajib Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
27
|
Hokimoto Y, Nakamura T. Synthesis of a macrocyclic oligomer of pyridylbenzoxazole utilizing dynamic covalent bonds and its unsymmetric conversion. Chem Commun (Camb) 2024; 60:1281-1284. [PMID: 38196391 DOI: 10.1039/d3cc06216c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
A new unsymmetric macrocycle was synthesized by an effective and high yield 3-step synthesis, which was composed of macrocyclization, irreversible conversion, and desymmetrization. The dynamic nature of imine bonds as well as selective conversion based on strain release were utilized. Moreover, the unsymmetric macrocycle formed an interesting bivalve-like 2 : 1 complex with zinc.
Collapse
Affiliation(s)
- Yuya Hokimoto
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takashi Nakamura
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
28
|
Wang Z, Zhang QP, Guo F, Ma H, Liang ZH, Yi CH, Zhang C, Chen CF. Self-similar chiral organic molecular cages. Nat Commun 2024; 15:670. [PMID: 38253630 PMCID: PMC10803742 DOI: 10.1038/s41467-024-44922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The endeavor to enhance utility of organic molecular cages involves the evolution of them into higher-level chiral superstructures with self-similar, presenting a meaningful yet challenging. In this work, 2D tri-bladed propeller-shaped triphenylbenzene serves as building blocks to synthesize a racemic 3D tri-bladed propeller-shaped helical molecular cage. This cage, in turn, acts as a building block for a pair of higher-level 3D tri-bladed chiral helical molecular cages, featuring multilayer sandwich structures and displaying elegant characteristics with self-similarity in discrete superstructures at different levels. The evolutionary procession of higher-level cages reveals intramolecular self-shielding effects and exclusive chiral narcissistic self-sorting behaviors. Enantiomers higher-level cages can be interconverted by introducing an excess of corresponding chiral cyclohexanediamine. In the solid state, higher-level cages self-assemble into supramolecular architectures of L-helical or D-helical nanofibers, achieving the scale transformation of chiral characteristics from chiral atoms to microscopic and then to mesoscopic levels.
Collapse
Affiliation(s)
- Zhen Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei, 430200, China.
| | - Qing-Pu Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fei Guo
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei, 430200, China
| | - Hui Ma
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zi-Hui Liang
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei, 430200, China
| | - Chang-Hai Yi
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei, 430200, China
| | - Chun Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
29
|
Zhou W, Lavendomme R, Zhang D. Recent progress in iodine capture by macrocycles and cages. Chem Commun (Camb) 2024; 60:779-792. [PMID: 38126398 DOI: 10.1039/d3cc05337g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The effective capture of radioiodine is vital to the development of the nuclear industry and ecological environmental protection. There is, therefore, a continuously growing research exploration in various types of solid-state materials for iodine capture. During the last decade, the potential of using macrocycle and cage-based supramolecular materials in effective uptake and separation of radioactive iodine has been demonstrated. Interest in the application of these materials in iodine capture originates from their diversified porous characteristics, abundant host-guest chemistry, high iodine affinity and adsorption capacity, high stability in various environments, facile modification and functionalization, and intrinsic structural flexibility, among other attributes. Herein, recent progress in macrocycle and cage-based solid-state materials, including pure discrete macrocycles and cages, and their polymeric forms, for iodine capture is summarized and discussed with an emphasis on iodine capture capacities, mechanisms, and design strategies.
Collapse
Affiliation(s)
- Weinan Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China.
| | - Roy Lavendomme
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium.
- Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/08, B-1050 Brussels, Belgium
| | - Dawei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
30
|
Cougnon FBL, Stefankiewicz AR, Ulrich S. Dynamic covalent synthesis. Chem Sci 2024; 15:879-895. [PMID: 38239698 PMCID: PMC10793650 DOI: 10.1039/d3sc05343a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/10/2023] [Indexed: 01/22/2024] Open
Abstract
Dynamic covalent synthesis aims to precisely control the assembly of simple building blocks linked by reversible covalent bonds to generate a single, structurally complex, product. In recent years, considerable progress in the programmability of dynamic covalent systems has enabled easy access to a broad range of assemblies, including macrocycles, shape-persistent cages, unconventional foldamers and mechanically-interlocked species (catenanes, knots, etc.). The reversibility of the covalent linkages can be either switched off to yield stable, isolable products or activated by specific physico-chemical stimuli, allowing the assemblies to adapt and respond to environmental changes in a controlled manner. This activatable dynamic property makes dynamic covalent assemblies particularly attractive for the design of complex matter, smart chemical systems, out-of-equilibrium systems, and molecular devices.
Collapse
Affiliation(s)
- Fabien B L Cougnon
- Department of Chemistry and Nanoscience Centre, University of Jyväskylä Jyväskylä Finland
| | - Artur R Stefankiewicz
- Centre for Advanced Technology and Faculty of Chemistry, Adam Mickiewicz University Poznań Poland
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| |
Collapse
|
31
|
Guo F, Ma H, Yang BB, Wang Z, Meng XG, Bu JH, Zhang C. Rigidity with Flexibility: Porous Triptycene Networks for Enhancing Methane Storage. Polymers (Basel) 2024; 16:156. [PMID: 38201822 PMCID: PMC10780442 DOI: 10.3390/polym16010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
In the pursuit of advancing materials for methane storage, a critical consideration arises given the prominence of natural gas (NG) as a clean transportation fuel, which holds substantial potential for alleviating the strain on both energy resources and the environment in the forthcoming decade. In this context, a novel approach is undertaken, employing the rigid triptycene as a foundational building block. This strategy is coupled with the incorporation of dichloromethane and 1,3-dichloropropane, serving as rigid and flexible linkers, respectively. This combination not only enables cost-effective fabrication but also expedites the creation of two distinct triptycene-based hypercrosslinked polymers (HCPs), identified as PTN-70 and PTN-71. Surprisingly, despite PTN-71 manifesting an inferior Brunauer-Emmett-Teller (BET) surface area when compared to the rigidly linked PTN-70, it showcases remarkably enhanced methane adsorption capabilities, particularly under high-pressure conditions. At a temperature of 275 K and a pressure of 95 bars, PTN-71 demonstrates an impressive methane adsorption capacity of 329 cm3 g-1. This exceptional performance is attributed to the unique flexible network structure of PTN-71, which exhibits a pronounced swelling response when subjected to elevated pressure conditions, thus elucidating its superior methane adsorption characteristics. The development of these advanced materials not only signifies a significant stride in the realm of methane storage but also underscores the importance of tailoring the structural attributes of hypercrosslinked polymers for optimized gas adsorption performance.
Collapse
Affiliation(s)
- Fei Guo
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan 430200, China;
| | - Hui Ma
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China; (H.M.); (B.-B.Y.); (C.Z.)
| | - Bin-Bin Yang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China; (H.M.); (B.-B.Y.); (C.Z.)
| | - Zhen Wang
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan 430200, China;
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China; (H.M.); (B.-B.Y.); (C.Z.)
| | - Xiang-Gao Meng
- School of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian-Hua Bu
- Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China; (H.M.); (B.-B.Y.); (C.Z.)
| |
Collapse
|
32
|
Kou J, Wu Q, Cui D, Geng Y, Zhang K, Zhang M, Zang H, Wang X, Su Z, Sun C. Selective Encapsulation and Chiral Induction of C 60 and C 70 Fullerenes by Axially Chiral Porous Aromatic Cages. Angew Chem Int Ed Engl 2023; 62:e202312733. [PMID: 37819157 DOI: 10.1002/anie.202312733] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Chiral induction has been an important topic in chemistry, not only for its relevance in understanding the mysterious phenomenon of spontaneous symmetry breaking in nature but also due to its critical implications in medicine and the chiral industry. The induced chirality of fullerenes by host-guest interactions has been rarely reported, mainly attributed to their chiral resistance from high symmetry and challenges in their accessibility. Herein, we report two new pairs of chiral porous aromatic cages (PAC), R-PAC-2, S-PAC-2 (with Br substituents) and R-PAC-3, S-PAC-3 (with CH3 substituents) enantiomers. PAC-2, rather than PAC-3, achieves fullerene encapsulation and selective binding of C70 over C60 in fullerene carbon soot. More significantly, the occurrence of chiral induction between R-PAC-2, S-PAC-2 and fullerenes is confirmed by single-crystal X-ray diffraction and the intense CD signal within the absorption region of fullerenes. DFT calculations reveal the contribution of electrostatic effects originating from face-to-face arene-fullerene interactions dominate C70 selectivity and elucidate the substituent effect on fullerene encapsulation. The disturbance from the differential interactions between fullerene and surrounding chiral cages on the intrinsic highly symmetric electronic structure of fullerene could be the primary reason accounting for the induced chirality of fullerene.
Collapse
Affiliation(s)
- Junning Kou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Qi Wu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Dongxu Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yun Geng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Kunhao Zhang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Min Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Hongying Zang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Xinlong Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Zhongmin Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, China
| | - Chunyi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
33
|
La Cognata S, Amendola V. Recent applications of organic cages in sensing and separation processes in solution. Chem Commun (Camb) 2023; 59:13668-13678. [PMID: 37902039 DOI: 10.1039/d3cc04522f] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Organic cages are three-dimensional polycyclic compounds of great interest in the scientific community due to their unique features, which generally include simple synthesis based on the dynamic covalent chemistry strategies, structural tunability and high selectivity. In this feature article, we present the advances over the last ten years in the application of organic cages as chemosensors or components in chemosensing devices for the determination of analytes (pollutants, analytes of biological interest) in complex aqueous media including wine, fruit juice, urine. Details on the recent applications of organic cages as selective (back-)extractants or masking agents for potential applications in relevant separation processes, such as the plutonium and uranium recovery by extraction, are also provided. Over the last ten years, organic cages with permanent porosity in the liquid and solid states have been highly appreciated as porous materials able to discriminate molecules of different sizes. These features, combined with good solvent processability and film-forming tendency, have proved useful in the fabrication of membranes for gas separation, solvent nanofiltration and water remediation processes. An overview of the recent applications of organic cages in membrane separation technologies is given.
Collapse
Affiliation(s)
- Sonia La Cognata
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy.
| | - Valeria Amendola
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy.
| |
Collapse
|
34
|
van Dam A, van Schendel R, Gangarapu S, Zuilhof H, Smulders MMJ. DFT Study of Imine-Exchange Reactions in Iron(II)-Coordinated Pincers. Chemistry 2023; 29:e202301795. [PMID: 37560922 DOI: 10.1002/chem.202301795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/11/2023]
Abstract
The imine bond is among the most applied motifs in dynamic covalent chemistry. Although its uses are varied and often involve coordination to a transition metal for stability, mechanistic studies on imine exchange reactions so far have not included metal coordination. Herein, we investigated the condensation and transimination reactions of an Fe2+ -coordinated diimine pyridine pincer, employing wB97XD/6-311G(2d,2p) DFT calculations in acetonitrile. We first experimentally confirmed that Fe2+ is strongly coordinated by these pincers, and is thus a justified model ion. When considering a four-membered ring-shaped transition state for proton transfers, the required activation energies for condensation and transimination reaction exceeded the values expected for reactions known to be spontaneous at room temperature. The nature of the incoming and exiting amines and the substituents on the para-position of the pincer had no effect on this. Replacing Fe2+ with Zn2+ or removing it altogether did not reduce it either. However, the addition of two ethylamine molecules lowered the energy barriers to be compatible with experiment (19.4 and 23.2 kcal/mol for condensation and transimination, respectively). Lastly, the energy barrier of condensation of a non-coordinated pincer was significantly higher than found for Fe2+ -coordinating pincers, underlining the catalyzing effect of metal coordination on imine exchange reactions.
Collapse
Affiliation(s)
- Annemieke van Dam
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Robin van Schendel
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Satesh Gangarapu
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, P.R. China
| | - Maarten M J Smulders
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| |
Collapse
|
35
|
Kurisingal JF, Yun H, Hong CS. Porous organic materials for iodine adsorption. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131835. [PMID: 37348374 DOI: 10.1016/j.jhazmat.2023.131835] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
The nuclear industry will continue to develop rapidly and produce energy in the foreseeable future; however, it presents unique challenges regarding the disposal of released waste radionuclides because of their volatility and long half-life. The release of radioactive isotopes of iodine from uranium fission reactions is a challenge. Although various adsorbents have been explored for the uptake of iodine, there is still interest in novel adsorbents. The novel adsorbents should be synthesized using reliable and economically feasible synthetic procedures. Herein, we discussed the state-of-the-art performance of various categories of porous organic materials including covalent organic frameworks, covalent triazine frameworks, porous aromatic frameworks, porous organic cages, among other porous organic polymers for the uptake of iodine. This review discussed the synthesis of porous organic materials and their iodine adsorption capacity and reusability. Finally, the challenges and prospects for iodine capture using porous organic materials are highlighted.
Collapse
Affiliation(s)
| | - Hongryeol Yun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
36
|
Qin Y, Ling QH, Wang YT, Hu YX, Hu L, Zhao X, Wang D, Yang HB, Xu L, Tang BZ. Construction of Covalent Organic Cages with Aggregation-Induced Emission Characteristics from Metallacages for Mimicking Light-Harvesting Antenna. Angew Chem Int Ed Engl 2023; 62:e202308210. [PMID: 37452485 DOI: 10.1002/anie.202308210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
A series of covalent organic cages built from fluorophores capable of aggregation-induced emission (AIE) were elegantly prepared through the reduction of preorganized M2 (LA )3 (LB )2 -type metallacages, simultaneously taking advantage of the synthetic accessibility and well-defined shapes and sizes of metallacages, the good chemical stability of the covalent cages as well as the bright emission of AIE fluorophores. Moreover, the covalent cages could be further post-synthetically modified into an amide-functionalized cage with a higher quantum yield. Furthermore, these presented covalent cages proved to be good energy donors and were used to construct light-harvesting systems employing Nile Red as an energy acceptor. These light-harvesting systems displayed efficient energy transfer and relatively high antenna effect, which enabled their use as efficient photocatalysts for a dehalogenation reaction. This research provides a new avenue for the development of luminescent covalent cages for light-harvesting and photocatalysis.
Collapse
Affiliation(s)
- Yi Qin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qing-Hui Ling
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu-Te Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiaoli Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
37
|
Liu X, Liu C, Song X, Ding X, Wang H, Yu B, Liu H, Han B, Li X, Jiang J. Cofacial porphyrin organic cages. Metals regulating excitation electron transfer and CO 2 reduction electrocatalytic properties. Chem Sci 2023; 14:9086-9094. [PMID: 37655043 PMCID: PMC10466316 DOI: 10.1039/d3sc01816d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023] Open
Abstract
Herein, we introduce a comprehensive study of the photophysical behaviors and CO2 reduction electrocatalytic properties of a series of cofacial porphyrin organic cages (CPOC-M, M = H2, Co(ii), Ni(ii), Cu(ii), Zn(ii)), which are constructed by the covalent-bonded self-assembly of 5,10,15,20-tetrakis(4-formylphenyl)porphyrin (TFPP) and chiral (2-aminocyclohexyl)-1,4,5,8-naphthalenetetraformyl diimide (ANDI), followed by post-synthetic metalation. Electronic coupling between the TFPP donor and naphthalene-1,4 : 5,8-bis(dicarboximide) (NDI) acceptor in the metal-free cage is revealed to be very weak by UV-vis spectroscopic, electrochemical, and theoretical investigations. Photoexcitation of CPOC-H2, as well as its post-synthetic Zn and Co counterparts, leads to fast energy transfer from the triplet state porphyrin to the NDI unit according to the femtosecond transient absorption spectroscopic results. In addition, CPOC-Co enables much better electrocatalytic activity for CO2 reduction reaction than the other metallic CPOC-M (M = Ni(ii), Cu(ii), Zn(ii)) and monomeric porphyrin cobalt compartment, supplying a partial current density of 18.0 mA cm-2 at -0.90 V with 90% faradaic efficiency of CO.
Collapse
Affiliation(s)
- Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Chenxi Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Xiaojuan Song
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Heyuan Liu
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Xiyou Li
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
38
|
Yan M, Wang Y, Chen J, Zhou J. Potential of nonporous adaptive crystals for hydrocarbon separation. Chem Soc Rev 2023; 52:6075-6119. [PMID: 37539712 DOI: 10.1039/d2cs00856d] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Hydrocarbon separation is an important process in the field of petrochemical industry, which provides a variety of raw materials for industrial production and a strong support for the development of national economy. However, traditional separation processes involve huge energy consumption. Adsorptive separation based on nonporous adaptive crystal (NAC) materials is considered as an attractive green alternative to traditional energy-intensive separation technologies due to its advantages of low energy consumption, high chemical and thermal stability, excellent selective adsorption and separation performance, and outstanding recyclability. Considering the exceptional potential of NAC materials for hydrocarbon separation, this review comprehensively summarizes recent advances in various supramolecular host-based NACs. Moreover, the current challenges and future directions are illustrated in detail. It is expected that this review will provide useful and timely references for researchers in this area. Based on a large number of state-of-the-art studies, the review will definitely advance the development of NAC materials for hydrocarbon separation and stimulate more interesting studies in related fields.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
39
|
Vestrheim O, Schenkelberg ME, Dai Q, Schneebeli ST. Efficient Multigram Procedure for the Synthesis of Large Hydrazone-linked Molecular Cages. Org Chem Front 2023; 10:3965-3974. [PMID: 37906634 PMCID: PMC10600964 DOI: 10.1039/d3qo00480e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Covalently linked molecular cages can provide significant advantages (including, but not limited to enhanced thermal and chemical stability) over metal-linked coordination cages. Yet, while large coordination cages can now be created routinely, it is still challenging to create chemically robust, covalently linked molecular cages with large internal cavities. This fundamental challenge has made it difficult, for example, to introduce endohedral functional groups into covalent cages to enhance their practical utility (e.g., for selective guest recognition or catalysis), since the cavities would have simply been filled up with such endohedral functional groups in most cases. Here we now report the synthesis of some of the largest known covalently linked molecular tetrahedra. Our new covalent cages all contain 12 peripheral functional groups, which keep them soluble. They are formed from a common vertex, which aligns the hydrazide functions required for the hydrazone linkages with atropisomerism. While we previously reported this vertex as a building block for the smallest member of our hydrazone-linked tetrahedra, our original synthesis was not feasible to be carried out on the larger scales required to successfully access the larger tetrahedra. To overcome this synthetic challenge, we now present a greatly improved synthesis of our vertex, which only requires a single chromatographic step (compared to 3 chromatographic purification steps, which were needed for the initial synthesis). Our new synthetic route enabled us to create a whole family of molecular cages with increasing size (all linked with hydrolytically stable hydrazone bonds), with our largest covalent cage featuring p-quarterphenyl linkers and the ability to encapsulate a hypothetical sphere of approximately 3 nm in diameter. These results now open up the possibility to introduce functional groups required for selective recognition and catalysis into chemically robust covalent cages (without blocking the cavities of the covalent cages).
Collapse
Affiliation(s)
- Olav Vestrheim
- Departments of Industrial & Physical Pharmacy and Chemistry, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907
- Department of Chemistry and Materials Science Program, University of Vermont, 82 University Place, Burlington, VT 05405, USA
| | - Mica E. Schenkelberg
- Departments of Industrial & Physical Pharmacy and Chemistry, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907
- Department of Chemistry and Materials Science Program, University of Vermont, 82 University Place, Burlington, VT 05405, USA
| | - Qingsheng Dai
- Department of Chemistry and Materials Science Program, University of Vermont, 82 University Place, Burlington, VT 05405, USA
- This paper describes experimental work performed by Qingsheng Dai but she is unaware that it has been submitted for publication as we have no contact details for her. Qingsheng Dai, therefore, does not take any responsibility for the submission
| | - Severin T. Schneebeli
- Departments of Industrial & Physical Pharmacy and Chemistry, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907
- Department of Chemistry and Materials Science Program, University of Vermont, 82 University Place, Burlington, VT 05405, USA
| |
Collapse
|
40
|
Chen Q, Li Z, Lei Y, Chen Y, Tang H, Wu G, Sun B, Wei Y, Jiao T, Zhang S, Huang F, Wang L, Li H. The sharp structural switch of covalent cages mediated by subtle variation of directing groups. Nat Commun 2023; 14:4627. [PMID: 37532710 PMCID: PMC10397198 DOI: 10.1038/s41467-023-40255-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
It is considered a more formidable task to precisely control the self-assembled products containing purely covalent components, due to a lack of intrinsic templates such as transition metals to suppress entropy loss during self-assembly. Here, we attempt to tackle this challenge by using directing groups. That is, the self-assembly products of condensing a 1:2 mixture of a tetraformyl and a biamine can be precisely controlled by slightly changing the substituent groups in the aldehyde precursor. This is because different directing groups provide hydrogen bonds with different modes to the adjacent imine units, so that the building blocks are endowed with totally different conformations. Each conformation favors the formation of a specific product that is thus produced selectively, including chiral and achiral cages. These results of using a specific directing group to favor a target product pave the way for accomplishing atom economy in synthesizing purely covalent molecules without relying on toxic transition metal templates.
Collapse
Affiliation(s)
- Qiong Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhaoyong Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China
| | - Ye Lei
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Yixin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Hua Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Bin Sun
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China
| | - Yuxi Wei
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Tianyu Jiao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Songna Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| | - Feihe Huang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| | - Linjun Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China.
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| |
Collapse
|
41
|
Yang Z, Esteve F, Antheaume C, Lehn JM. Dynamic covalent self-assembly and self-sorting processes in the formation of imine-based macrocycles and macrobicyclic cages. Chem Sci 2023; 14:6631-6642. [PMID: 37350816 PMCID: PMC10284075 DOI: 10.1039/d3sc01174g] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Investigating the self-assembly and self-sorting behaviour of dynamic covalent organic architectures makes possible the parallel generation of multiple discrete products in a single one pot procedure. We here report the self-assembly of covalent organic macrocycles and macrobicyclic cages from dialdehyde and polyamine components via multiple [2 + 2] and [3 + 2] polyimine condensations. Furthermore, component self-sorting processes have been monitored within the dynamic covalent libraries formed by these macrocycles and macrobicyclic cages. The progressive assembly of the final structures involves intermediates which undergo component selection and self-correction to generate the final thermodynamic constituents. The homo-self-sorting observed seems to involve entropic factors, as the homoleptic species present a higher symmetry than the competing heteroleptic ones. This study not only emphasizes the importance of an adequate design of the components of complex self-sorting systems, but also verifies the conjecture that systems of higher complexity may generate simpler outputs through the operation of competitive self-sorting.
Collapse
Affiliation(s)
- Zhaozheng Yang
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University 510006 Guangzhou China
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Ferran Esteve
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Cyril Antheaume
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean-Marie Lehn
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University 510006 Guangzhou China
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
42
|
Wołczański G, Gil W, Cichos J, Lisowski M, Stefanowicz P. Alkyl Thiocyanurates as Thioester Mimetics. Transthioesterification and Ligation Reactions with High Potential in Dynamic Covalent Chemistry. J Org Chem 2023. [PMID: 37329497 DOI: 10.1021/acs.joc.3c00200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alkyl thiocyanurates, the compounds formed in the SN reaction of thiocyanuric acid and alkyl halides, are susceptible to transthioesterification and ligation with molecules containing cysteamine, analogous to native chemical ligation of thioesters with peptides with an N-terminal cysteine moiety. The ligation is irreversible and results in the formation of mono- and disubstituted products dominantly. Transthioesterification, in contrast, is fully reversible and may be used in constructing dynamic systems. The application of this reactivity in dynamic covalent chemistry has been exemplified by the preparation of a library of mixed thiocyanurates of glutathione and thioglycolic acid with self-assembly abilities and metathesis between thiocyanurates of tris(carboxymethyl) and tris(carboxamidomethyl) catalyzed by MESNa (sodium 2-mercaptoethylsulphonate) or MPAA (4-mercaptophenylacetic acid). Differences in reactivity of thiocyanurates toward cysteamines and thiols has been explained based on conceptual DFT.
Collapse
Affiliation(s)
- Grzegorz Wołczański
- Faculty of Chemsitry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Lower Silesia District, Poland
| | - Wojciech Gil
- Faculty of Chemsitry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Lower Silesia District, Poland
| | - Jakub Cichos
- Faculty of Chemsitry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Lower Silesia District, Poland
| | - Marek Lisowski
- Faculty of Chemsitry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Lower Silesia District, Poland
| | - Piotr Stefanowicz
- Faculty of Chemsitry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Lower Silesia District, Poland
| |
Collapse
|
43
|
Cortón P, Fernández-Labandeira N, Díaz-Abellás M, Peinador C, Pazos E, Blanco-Gómez A, García MD. Aqueous Three-Component Self-Assembly of a Pseudo[1]rotaxane Using Hydrazone Bonds. J Org Chem 2023; 88:6784-6790. [PMID: 37114355 PMCID: PMC10731646 DOI: 10.1021/acs.joc.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
We present herein the synthesis of a new polycationic pseudo[1]rotaxane, self-assembled in excellent yield through hydrazone bonds in aqueous media of three different aldehyde and hydrazine building blocks. A thermodynamically controlled process has been studied sequentially by analyzing the [1 + 1] reaction of a bisaldehyde and a trishydrazine leading to the macrocyclic part of the system, the ability of this species to act as a molecular receptor, the conversion of a hydrazine-pending cyclophane into the pseudo[1]rotaxane and, lastly, the one-pot [1 + 1 + 1] condensation process. The latter was found to smoothly produce the target molecule through an integrative social self-sorting process, a species that was found to behave in water as a discrete self-inclusion complex below 2.5 mM concentration and to form supramolecular aggregates in the 2.5-70 mM range. Furthermore, we demonstrate how the abnormal kinetic stability of the hydrazone bonds on the macrocycle annulus can be advantageously used for the conversion of the obtained pseudo[1]rotaxane into other exo-functionalized macrocyclic species.
Collapse
Affiliation(s)
- Pablo Cortón
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Natalia Fernández-Labandeira
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Mauro Díaz-Abellás
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Carlos Peinador
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Elena Pazos
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Arturo Blanco-Gómez
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Marcos D. García
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
44
|
Zhu L, Yang X, Sun JK. Cooperative cage hybrids enabled by electrostatic marriage. Chem Commun (Camb) 2023; 59:6020-6023. [PMID: 37186246 DOI: 10.1039/d3cc00779k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A cage hybrid (C-Cage-PB) was developed by electrostatic complexation of a quaternary ammonium cage (C-Cage+) and an anionic inorganic Prussian blue (PB-). Given the unique synergy of the two parts, such a cage hybrid can be used as a promising platform for the efficient removal of toxic compounds in wastewater through adsorption, delivery or catalytic degradation via a Fenton oxidation reaction. In addition, C-Cage-PB can encapsulate Pd clusters, which amplifies the function of the hybrid for enhanced catalytic performance in the sequential degradation of toxic organic compounds and heavy metal pollution in wastewater treatment.
Collapse
Affiliation(s)
- Liying Zhu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.
| | - Xinchun Yang
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, P. R. China.
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.
| |
Collapse
|
45
|
Ovalle M, Kathan M, Toyoda R, Stindt CN, Crespi S, Feringa BL. Light-Fueled Transformations of a Dynamic Cage-Based Molecular System. Angew Chem Int Ed Engl 2023; 62:e202214495. [PMID: 36453623 DOI: 10.1002/anie.202214495] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
In a chemical equilibrium, the formation of high-energy species-in a closed system-is inefficient due to microscopic reversibility. Here, we demonstrate how this restriction can be circumvented by coupling a dynamic equilibrium to a light-induced E/Z isomerization of an azobenzene imine cage. The stable E-cage resists intermolecular imine exchange reactions that would "open" it. Upon switching, the strained Z-cage isomers undergo imine exchange spontaneously, thus opening the cage. Subsequent isomerization of the Z-open compounds yields a high-energy, kinetically trapped E-open species, which cannot be efficiently obtained from the initial E-cage, thus shifting an imine equilibrium energetically uphill in a closed system. Upon heating, the nucleophile is displaced back into solution and an opening/closing cycle is completed by regenerating the stable all-E-cage. Using this principle, a light-induced cage-to-cage transformation is performed by the addition of a ditopic aldehyde.
Collapse
Affiliation(s)
- Marco Ovalle
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands
| | - Michael Kathan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands.,Present address: Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Ryojun Toyoda
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands.,Present address: Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aobaku, Sendai, 980-8578, Japan
| | - Charlotte N Stindt
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands.,Present address: Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen (The, Netherlands
| |
Collapse
|
46
|
Lin HY, Wang YT, Shi X, Yang HB, Xu L. Switchable metallacycles and metallacages. Chem Soc Rev 2023; 52:1129-1154. [PMID: 36722920 DOI: 10.1039/d2cs00779g] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two-dimensional metallacycles and three-dimensional metallacages constructed by coordination-driven self-assembly have attracted much attention because they exhibit unique structures and properties and are highly efficient to synthesize. Introduction of switching into supramolecular chemistry systems is a popular strategy, as switching can endow systems with reversible features that are triggered by different stimuli. Through this strategy, novel switchable metallacycles and metallacages were generated, which can be reversibly switched into different stable states with distinct characteristics by external stimuli. Switchable metallacycles and metallacages exhibit versatile structures and reversible properties and are inherently dynamic and respond to artificial signals; thus, these structures have many promising applications in a wide range of fields, such as drug delivery, data processing, pollutant removal, switchable catalysis, smart functional materials, etc. This review focuses on the design of switchable metallacycles and metallacages, their switching behaviours and mechanisms triggered by external stimuli, and the corresponding structural changes and resultant properties and functions.
Collapse
Affiliation(s)
- Hong-Yu Lin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, P. R. China.
| | - Yu-Te Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, P. R. China.
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, P. R. China.
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, P. R. China. .,Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Wuhu 241001, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, P. R. China. .,Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Wuhu 241001, P. R. China
| |
Collapse
|
47
|
Cester Bonati F, Bazzoni M, Baccini C, Zanichelli V, Orlandini G, Arduini A, Cera G, Secchi A. Calix[6]arene-Based [3]Rotaxanes as Prototypes for the Template Synthesis of Molecular Capsules. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020595. [PMID: 36677647 PMCID: PMC9864859 DOI: 10.3390/molecules28020595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/24/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
In this work, the ability of several bis-viologen axles to thread a series of heteroditopic tris(N-phenylureido)calix[6]arene wheels to give interwoven supramolecular complexes to the [3]pseudorotaxane type was studied. The unidirectionality of the threading process inside these nonsymmetric wheels allows the formation of highly preorganised [3]pseudorotaxane and [3]rotaxane species in which the macrocycles phenylureido moieties, functionalised with either ester, carboxylic, or hydroxymethyl groups, are facing each other. As verified by NMR and semiempirical computational studies, these latter compounds possess the correct spatial arrangement of their subcomponents, which could lead, in principle, upon proper bridging reaction, to the realisation of upper-to-upper molecular capsules that are based on calix[6]arene derivatives.
Collapse
|
48
|
|
49
|
Montà-González G, Sancenón F, Martínez-Máñez R, Martí-Centelles V. Purely Covalent Molecular Cages and Containers for Guest Encapsulation. Chem Rev 2022; 122:13636-13708. [PMID: 35867555 PMCID: PMC9413269 DOI: 10.1021/acs.chemrev.2c00198] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cage compounds offer unique binding pockets similar to enzyme-binding sites, which can be customized in terms of size, shape, and functional groups to point toward the cavity and many other parameters. Different synthetic strategies have been developed to create a toolkit of methods that allow preparing tailor-made organic cages for a number of distinct applications, such as gas separation, molecular recognition, molecular encapsulation, hosts for catalysis, etc. These examples show the versatility and high selectivity that can be achieved using cages, which is impossible by employing other molecular systems. This review explores the progress made in the field of fully organic molecular cages and containers by focusing on the properties of the cavity and their application to encapsulate guests.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain,R.M.-M.: email,
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,V.M.-C.:
email,
| |
Collapse
|
50
|
Bhandari P, Mukherjee PS. Post‐Synthesis Conversion of an Unstable Imine Cage to a Stable Cage with Amide Moieties Towards Selective Receptor for Fluoride. Chemistry 2022; 28:e202201901. [DOI: 10.1002/chem.202201901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Pallab Bhandari
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|