1
|
Han CQ, Liu XY. Emission Library and Applications of 2,1,3-Benzothiadiazole and Its Derivative-Based Luminescent Metal-Organic Frameworks. Angew Chem Int Ed Engl 2025; 64:e202416286. [PMID: 39305074 DOI: 10.1002/anie.202416286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Indexed: 11/01/2024]
Abstract
Organic linker-based luminescent metal-organic frameworks (LMOFs) have received extensive attention due to their promising applications in chemical sensing, energy transfer, solid-state-lighting and heterogeneous catalysis. Benefiting from the virtually unlimited emissive organic linkers and the intrinsic advantages of MOFs, significant progress has been made in constructing LMOFs with specific emission behaviors and outstanding performances. Among these reported organic linkers, 2,1,3-benzothiadiazole and its derivatives, as unique building units with tunable electron-withdrawing abilities, can be used to synthesize numerous emissive linkers with a donor-bridge-acceptor-bridge-donor type structure. These linkers were utilized to coordinate with different metal nodes, forming LMOFs with diverse underlying nets and optical properties. In this Minireview, 2,1,3-benzothiadiazole and its derivative-based organic linkers and their corresponding LMOFs are summarized with which an emission library is built between the linker structures and the emission behaviors of constructed LMOFs. In particular, the preparation of LMOFs with customized emission properties ranging from deep-blue to near-infrared and sizes from dozens to hundreds of nanometers is discussed in detail. The applications of these LMOFs, including chemical sensing, energy harvesting and transfer, and catalysis, are then highlighted. Key perspectives and challenges for the future development of LMOFs are also addressed.
Collapse
Affiliation(s)
- Chao-Qin Han
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| |
Collapse
|
2
|
Szymański B, Sahoo SR, Vakuliuk O, Valiev R, Ramazanov R, Łaski P, Jarzembska KN, Kamiński R, Teimouri MB, Baryshnikov G, Gryko DT. Shedding new light on quadrupolar 1,4-dihydropyrrolo[3,2- b]pyrroles: impact of electron-deficient scaffolds over emission. Chem Sci 2024:d4sc07275h. [PMID: 39664808 PMCID: PMC11629117 DOI: 10.1039/d4sc07275h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024] Open
Abstract
In this work, we disclose a series of seven quadrupolar centrosymmetric 1,4-dihydropyrrolo[3,2-b]pyrroles (DHPPs) linked to the two peripheral, strongly electron-accepting heterocycles such as benzoxadiazole, benzothiadiazole and benzoselenadiazole. This represents the first study probing the influence of electron-deficient heterocycles, rather that small electron-withdrawing substituents, on photophysics of DHPPs. These new acceptor-donor-acceptor hybrid dyes exhibit an appreciable combination of photophysical properties including absorption maxima in the range of 470-620 nm, and emission in the range of 500-720 nm with fluorescence quantum yields reaching 0.88. We discovered that the presence of two 7-nitro-benzoxadiazolyl substituents at positions 2 and 5 of DHPP core, evokes a strong fluorescence in non-polar solvents shifted to 639 nm. This is the most bathochromically shifted emission for quadrupolar, centrosymmetric chromophore bearing exclusively biaryl linkages. Interestingly, 1,2,4,5-tetraaryl-1,4-dihydropyrrolo[3,2-b]pyrrole (TAPP) possessing 4-benzothiadiazolyl groups is strongly emitting in the crystalline state (fluorescence quantum yield = 0.43). The combined photophysical and crystallographic studies point towards existence of intermolecular hydrogen bonds which modify the dihedral angles between the donor and acceptor moieties as a primary reason for this strong emission. Small structural alteration via the replacement of two 2,1,3-benzoxadiazole scaffolds with 2,1,3-benzoxadiazole-2-oxide moieties causes >103 decrease in the fluorescence intensity. Computational studies point out to strong charge transfer originating from exceptionally large dihedral angles as the pivotal reason of this phenomenon. Although internal conversion originating from the charge-transfer state is the prevailing non-radiative deactivation mechanism, intersystem crossing also plays a role. The rational design of DHPPs that enables modulation of emission will advance their applicability.
Collapse
Affiliation(s)
- Bartosz Szymański
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
- Department of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Smruti Ranjan Sahoo
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University SE-60174 Norrköping Sweden
| | - Olena Vakuliuk
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Rashid Valiev
- Department of Chemistry, University of Helsinki FI-00014 Helsinki Finland
| | - Ruslan Ramazanov
- Department of Chemistry, University of Helsinki FI-00014 Helsinki Finland
| | - Piotr Łaski
- Department of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | | | - Radosław Kamiński
- Department of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Mohammad B Teimouri
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
- Faculty of Chemistry, Kharazmi University 15719-14911 Tehran Iran
| | - Glib Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University SE-60174 Norrköping Sweden
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| |
Collapse
|
3
|
Nestoros E, de Moliner F, Nadal-Bufi F, Seah D, Ortega-Liebana MC, Cheng Z, Benson S, Adam C, Maierhofer L, Kozoriz K, Lee JS, Unciti-Broceta A, Vendrell M. Tuning singlet oxygen generation with caged organic photosensitizers. Nat Commun 2024; 15:7689. [PMID: 39227575 PMCID: PMC11372191 DOI: 10.1038/s41467-024-51872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Controlling the succession of chemical processes with high specificity in complex systems is advantageous for widespread applications, from biomedical research to drug manufacturing. Despite synthetic advances in bioorthogonal and photochemical methodologies, there is a need for generic chemical approaches that can universally modulate photodynamic reactivity in organic photosensitizers. Herein we present a strategy to fine-tune the production of singlet oxygen in multiple photosensitive scaffolds under the activation of bioresponsive and bioorthogonal stimuli. We demonstrate that the photocatalytic activity of nitrobenzoselenadiazoles can be fully blocked by site-selective incorporation of electron-withdrawing carbamate moieties and restored on demand upon uncaging with a wide range of molecular triggers, including abiotic transition-metal catalysts. We also prove that this strategy can be expanded to most photosensitizers, including diverse structures and spectral properties. Finally, we show that such advanced control of singlet oxygen generation can be broadly applied to the photodynamic ablation of human cells as well as to regulate the release of singlet oxygen in the semi-synthesis of natural product drugs.
Collapse
Affiliation(s)
- Eleni Nestoros
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Fabio de Moliner
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Ferran Nadal-Bufi
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Deborah Seah
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - M Carmen Ortega-Liebana
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre Pfizer-GENYO, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Zhiming Cheng
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Sam Benson
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Catherine Adam
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Larissa Maierhofer
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Kostiantyn Kozoriz
- Department of Pharmacology, College of Medicine, Korea University, Seoul, Korea
| | - Jun-Seok Lee
- Department of Pharmacology, College of Medicine, Korea University, Seoul, Korea
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Yi S, Kim D, Cho W, Lee JH, Kwon JH, Kim J, Park SB. Rational Design of Pyrido[3,2- b]indolizine as a Tunable Fluorescent Scaffold for Fluorogenic Bioimaging. JACS AU 2024; 4:2896-2906. [PMID: 39211616 PMCID: PMC11350592 DOI: 10.1021/jacsau.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Novel fluorescent scaffolds are highly demanding for a wide range of applications in biomedical investigation. To meet this demand, the pyrido[3,2-b]indolizine scaffold was designed as a versatile organic fluorophore. With the aid of computational modeling, fluorophores offering tunable emission colors (blue to red) were constructed. Notably, constructed fluorophores absorb lights in the visible range (>400 nm) despite their small sizes (<300 g/mol). Among the fluorophores was discovered a highly fluorogenic fluorophore with a unique turn-on property, 1, and it was developed into a washing-free bioprobe for visualizing cellular lipid droplets in living cells. Furthermore, motivated by the core's compact size and structural analogy to indole, unprecedented tryptophan-analogous fluorogenic unnatural amino acids were constructed and incorporated into fluorogenic peptide probes for monitoring peptide-protein interactions.
Collapse
Affiliation(s)
- Sihyeong Yi
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Dahham Kim
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Wansang Cho
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jung Ho Lee
- Department
of Biophysics and Chemical Biology, Seoul
National University, Seoul 08826, Korea
| | - Ji Hoon Kwon
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jonghoon Kim
- Department
of Chemistry and Integrative Institute of Basic Science, Department
of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Korea
| | - Seung Bum Park
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Department
of Biophysics and Chemical Biology, Seoul
National University, Seoul 08826, Korea
| |
Collapse
|
5
|
Martínez-Parra JM, Gómez-Ojea R, Daudey GA, Calvelo M, Fernández-Caro H, Montenegro J, Bergueiro J. Exo-chirality of the α-helix. Nat Commun 2024; 15:6987. [PMID: 39143054 PMCID: PMC11325010 DOI: 10.1038/s41467-024-51072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
The structure of helical polymers is dictated by the molecular chirality of their monomer units. Particularly, macromolecular helices with monomer sequence control have the potential to generate chiral topologies. In α-helical folded peptides, the sequential repetition of amino acids generates a chiral layer defined by the amino acid side chains projected outside the amide backbone. Despite being closely related to peptides' structural and functional properties, to the best of our knowledge, a general exo-helical symmetry model has not been yet described for the α-helix. Here, we perform the theoretical, computational, and spectroscopic elucidation of the α-helix principal exo-helical topologies. Non-canonical labeled amino acids are employed to spectroscopically characterize the different exo-helical topologies in solution, which precisely match the theorical prediction. Backbone-to-chromophore distance also shows the expected impact in the exo-helices' geometry and spectroscopic fingerprint. Theoretical prediction and spectroscopic validation of this exo-helical topological model provides robust experimental evidence of the chiral potential on the surface of helical peptides and outlines an entirely new structural scenario for the α-helix.
Collapse
Affiliation(s)
- Jose M Martínez-Parra
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Rebeca Gómez-Ojea
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Geert A Daudey
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Martin Calvelo
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Hector Fernández-Caro
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Javier Montenegro
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - Julian Bergueiro
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Lochenie C, Duncan S, Zhou Y, Fingerhut L, Kiang A, Benson S, Jiang G, Liu X, Mills B, Vendrell M. Photosensitizer-Amplified Antimicrobial Materials for Broad-Spectrum Ablation of Resistant Pathogens in Ocular Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404107. [PMID: 38762778 DOI: 10.1002/adma.202404107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/17/2024] [Indexed: 05/20/2024]
Abstract
The emergence of multidrug resistant (MDR) pathogens and the scarcity of new potent antibiotics and antifungals are one of the biggest threats to human health. Antimicrobial photodynamic therapy (aPDT) combines light and photosensitizers to kill drug-resistant pathogens; however, there are limited materials that can effectively ablate different classes of infective pathogens. In the present work, a new class of benzodiazole-paired materials is designed as highly potent PDT agents with broad-spectrum antimicrobial activity upon illumination with nontoxic light. The results mechanistically demonstrate that the energy transfer and electron transfer between nonphotosensitive and photosensitive benzodiazole moieties embedded within pathogen-binding peptide sequences result in increased singlet oxygen generation and enhanced phototoxicity. Chemical optimization renders PEP3 as a novel PDT agent with remarkable activity against MDR bacteria and fungi as well as pathogens at different stages of development (e.g., biofilms, spores, and fungal hyphae), which also prove effective in an ex vivo porcine model of microbial keratitis. The chemical modularity of this strategy and its general compatibility with peptide-based targeting agents will accelerate the design of highly photosensitive materials for antimicrobial PDT.
Collapse
Affiliation(s)
- Charles Lochenie
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sheelagh Duncan
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Yanzi Zhou
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Leonie Fingerhut
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Alex Kiang
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sam Benson
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Guanyu Jiang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Bethany Mills
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Marc Vendrell
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| |
Collapse
|
7
|
Zhou C, Zeng F, Yang H, Liang Z, Xu G, Li X, Liu X, Yang J. Near-infrared II theranostic agents for the diagnosis and treatment of Alzheimer's disease. Eur J Nucl Med Mol Imaging 2024; 51:2953-2969. [PMID: 38502215 DOI: 10.1007/s00259-024-06690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Near-infrared II theranostic agents have gained great momentum in the research field of AD owing to the appealing advantages. Recently, an array of activatable NIR-II fluorescence probes has been developed to specifically monitor pathological targets of AD. Furthermore, various NIR-II-mediated nanomaterials with desirable photothermal and photodynamic properties have demonstrated favorable outcomes in the management of AD. METHODS We summerized amounts of references and focused on small-molecule probes, nanomaterials, photothermal therapy, and photodynamic therapy based on NIR-II fluorescent imaging for the diagnosis and treatment in AD. In addition, design strategies for NIR-II-triggered theranostics targeting AD are presented, and some prospects are also addressed. RESULTS NIR-II theranostic agents including small molecular probes and nanoparticles have received the increasing attention for biomedical applications. Meanwhile, most of the theranostic agents exhibited the promising results in animal studies. To our surprise, the multifunctional nanoplatforms also show a great potential in the diagnosis and treatment of AD. CONCLUSIONS Although NIR-II theranostic agents showed the great potential in diagnosis and treatment of AD, there are still many challenges: 1) Faborable NIR-II fluorohpores are still lacking; 2) Biocompatibility, bioseurity and dosage of NIR-II theranostic agents should be further revealed; 3) New equipment and software associated with NIR-II imaging system should be explored.
Collapse
Affiliation(s)
- Can Zhou
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Fantian Zeng
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Haijun Yang
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zeying Liang
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guanyu Xu
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| | - Xingdang Liu
- Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Jian Yang
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
8
|
Ren X, Li H, Peng H, Yang Y, Su H, Huang C, Wang X, Zhang J, Liu Z, Wei W, Cheng K, Zhu T, Lu Z, Li Z, Zhao Q, Tang BZ, Yao SQ, Song X, Sun H. Reactivity-Tunable Fluorescent Platform for Selective and Biocompatible Modification of Cysteine or Lysine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402838. [PMID: 38896788 PMCID: PMC11336953 DOI: 10.1002/advs.202402838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Chemoselective modification of specific residues within a given protein poses a significant challenge, as the microenvironment of amino acid residues in proteins is variable. Developing a universal molecular platform with tunable chemical warheads can provide powerful tools for precisely labeling specific amino acids in proteins. Cysteine and lysine are hot targets for chemoselective modification, but current cysteine/lysine-selective warheads face challenges due to cross-reactivity and unstable reaction products. In this study, a versatile fluorescent platform is developed for highly selective modification of cysteine/lysine under biocompatible conditions. Chloro- or phenoxy-substituted NBSe derivatives effectively labeled cysteine residues in the cellular proteome with high specificity. This finding also led to the development of phenoxy-NBSe phototheragnostic for the diagnosis and activatable photodynamic therapy of GSH-overexpressed cancer cells. Conversely, alkoxy-NBSe derivatives are engineered to selectively react with lysine residues in the cellular environment, exhibiting excellent anti-interfering ability against thiols. Leveraging a proximity-driven approach, alkoxy-NBSe probes are successfully designed to demonstrate their utility in bioimaging of lysine deacetylase activity. This study also achieves integrating a small photosensitizer into lysine residues of proteins in a regioselective manner, achieving photoablation of cancer cells activated by overexpressed proteins.
Collapse
Affiliation(s)
- Xiaojie Ren
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
- College of Chemistry & Chemical EngineeringCentral South UniversityChangshaHunan410083China
| | - Haokun Li
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Hui Peng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE)MOE Key Laboratory of Tumor Molecular BiologySchool of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Yang Yang
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong999077China
| | - Hang Su
- College of Chemistry & Chemical EngineeringCentral South UniversityChangshaHunan410083China
| | - Chen Huang
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Xuan Wang
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Jie Zhang
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Zhiyang Liu
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Wenyu Wei
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Ke Cheng
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Tianyang Zhu
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong999077China
| | - Zhenpin Lu
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Zhengqiu Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE)MOE Key Laboratory of Tumor Molecular BiologySchool of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Qian Zhao
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong999077China
| | - Ben Zhong Tang
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
| | - Shao Q. Yao
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Xiangzhi Song
- College of Chemistry & Chemical EngineeringCentral South UniversityChangshaHunan410083China
| | - Hongyan Sun
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| |
Collapse
|
9
|
Munan S, Kottarathil S, Joseph MM, Jana A, Ali M, Mapa K, Maiti KK, Samanta A. IndiFluors: A New Full-Visible Color-Tunable Donor-Acceptor-Donor (D 1-A-D 2) Fluorophore Family for Ratiometric pH Imaging during Mitophagy. ACS Sens 2024; 9:3502-3510. [PMID: 35113517 DOI: 10.1021/acssensors.1c02381] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Full-visible color-tunable new fluorophores are essential in bioimaging research. However, it is significantly challenging to design fluorophores with the desired optical and biological properties owing to their structural complexity. We report a unified design of an interesting molecular framework, IndiFluors, based on the principle of a donor-acceptor-donor (D1-A-D2) system. The IndiFluors comprise pyrylium, pyridinium, and pyridine derivatives, which exhibit full-visible emission color (375-700 nm) by varying donor and acceptor strengths of the core scaffolds. With a minimal change of structure, the bright fluorophores (Φ: 0.96) can be tuned to become nonfluorescent (Φ: 0.01), which is well explained by time-dependent density functional theory (TD-DFT/PCM) by oscillator strengths in the S1 state. Within IndiFluors, pyridinium offers several advantages, including a large Stokes shift (∼154 nm) and excellent stability, compared to pentacyclic pyrylium fluorophores. Especially, the designed probe, PM-Mito-OH, demonstrated specific colocalization in mitochondria and a monitored ratiometric pH change during mitochondrial damage, autolysosomes, and the mitophagy process. Hence, IndiFluors and the derived probe show great potential for cellular pH imaging in live cells while exhibiting minimal cytotoxicity.
Collapse
Affiliation(s)
- Subrata Munan
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Shamna Kottarathil
- Chemical Sciences and Technology Division, Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, PO Pappanamcode, Trivandrum 695019, Kerala, India
| | - Manu M Joseph
- Chemical Sciences and Technology Division, Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, PO Pappanamcode, Trivandrum 695019, Kerala, India
| | - Anal Jana
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Mudassar Ali
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Koyeli Mapa
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division, Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, PO Pappanamcode, Trivandrum 695019, Kerala, India
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
10
|
Mach L, Omran A, Bouma J, Radetzki S, Sykes DA, Guba W, Li X, Höffelmeyer C, Hentsch A, Gazzi T, Mostinski Y, Wasinska-Kalwa M, de Molnier F, van der Horst C, von Kries JP, Vendrell M, Hua T, Veprintsev DB, Heitman LH, Grether U, Nazare M. Highly Selective Drug-Derived Fluorescent Probes for the Cannabinoid Receptor Type 1 (CB 1R). J Med Chem 2024; 67:11841-11867. [PMID: 38990855 DOI: 10.1021/acs.jmedchem.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The cannabinoid receptor type 1 (CB1R) is pivotal within the endocannabinoid system regulating various signaling cascades with effects in appetite regulation, pain perception, memory formation, and thermoregulation. Still, understanding of CB1R's cellular signaling, distribution, and expression dynamics is very fragmentary. Real-time visualization of CB1R is crucial for addressing these questions. Selective drug-like CB1R ligands with a defined pharmacological profile were investigated for the construction of CB1R fluorescent probes using a reverse design-approach. A modular design concept with a diethyl glycine-based building block as the centerpiece allowed for the straightforward synthesis of novel probe candidates. Validated by computational docking studies, radioligand binding, and cAMP assay, this systematic approach allowed for the identification of novel pyrrole-based CB1R fluorescent probes. Application in fluorescence-based target-engagement studies and live cell imaging exemplify the great versatility of the tailored CB1R probes for investigating CB1R localization, trafficking, pharmacology, and its pathological implications.
Collapse
Affiliation(s)
- Leonard Mach
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Anahid Omran
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Jara Bouma
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Silke Radetzki
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - David A Sykes
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, NG7 2UH Nottingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Edgbaston, B15 2TT Birmingham, Midlands, U.K
| | - Wolfgang Guba
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Xiaoting Li
- iHuman Institute, ShanghaiTech University, 201210 Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Calvin Höffelmeyer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Axel Hentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Thais Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Yelena Mostinski
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | | | - Fabio de Molnier
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, EH16 4UU Edinburgh, U.K
| | - Cas van der Horst
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Jens Peter von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Marc Vendrell
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, EH16 4UU Edinburgh, U.K
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, 201210 Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Dmitry B Veprintsev
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, NG7 2UH Nottingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Edgbaston, B15 2TT Birmingham, Midlands, U.K
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Marc Nazare
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| |
Collapse
|
11
|
Cheng Z, Benson S, Mendive-Tapia L, Nestoros E, Lochenie C, Seah D, Chang KY, Feng Y, Vendrell M. Enzyme-Activatable Near-Infrared Hemicyanines as Modular Scaffolds for in vivo Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202404587. [PMID: 38717316 DOI: 10.1002/anie.202404587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 06/21/2024]
Abstract
Photodynamic therapy is an anti-cancer treatment that requires illumination of photosensitizers to induce local cell death. Current near-infrared organic photosensitizers are built from large and non-modular structures that cannot be tuned to improve safety and minimize off-target toxicity. This work describes a novel chemical platform to generate enzyme-activatable near-infrared photosensitizers. We optimized the Se-bridged hemicyanine scaffold to include caging groups and biocompatible moieties, and generated cathepsin-triggered photosensitizers for effective ablation of human glioblastoma cells. Furthermore, we demonstrated that enzyme-activatable Se-bridged hemicyanines are effective photosensitizers for the safe ablation of microtumors in vivo, creating new avenues in the chemical design of targeted anti-cancer photodynamic therapy agents.
Collapse
Affiliation(s)
- Zhiming Cheng
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Sam Benson
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Eleni Nestoros
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Charles Lochenie
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Deborah Seah
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Kai Yee Chang
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Yi Feng
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, EH4 2XR, Edinburgh, UK
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| |
Collapse
|
12
|
Lane AN, Higashi RM, Fan TWM. Challenges of Spatially Resolved Metabolism in Cancer Research. Metabolites 2024; 14:383. [PMID: 39057706 PMCID: PMC11278851 DOI: 10.3390/metabo14070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.
Collapse
Affiliation(s)
- Andrew N. Lane
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA; (R.M.H.); (T.W.-M.F.)
| | | | | |
Collapse
|
13
|
de Moliner F, Nadal-Bufi F, Vendrell M. Recent advances in minimal fluorescent probes for optical imaging. Curr Opin Chem Biol 2024; 80:102458. [PMID: 38670028 DOI: 10.1016/j.cbpa.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Fluorescent probes have revolutionized biological imaging by enabling the real-time visualization of cellular processes under physiological conditions. However, their size and potential perturbative nature can pose challenges in retaining the integrity of biological functions. This manuscript highlights recent advancements in the development of small fluorescent probes for optical imaging studies. Single benzene-based fluorophores offer versatility with minimal disruption, exhibiting diverse properties like aggregation-induced emission and pH responsiveness. Fluorescent nucleobases enable precise labeling of nucleic acids without compromising function, offering high sensitivity and compatibility with biochemistry studies. Bright yet small fluorescent amino acids provide an interesting alternative to bulky fusion proteins, facilitating non-invasive imaging of cellular events with high precision. These miniaturized fluorophores promise enhanced capabilities for studying biological systems in a non-invasive manner, fostering further innovations in molecular imaging.
Collapse
Affiliation(s)
- Fabio de Moliner
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU Edinburgh, UK; IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, UK
| | - Ferran Nadal-Bufi
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU Edinburgh, UK; IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, UK
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU Edinburgh, UK; IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, UK.
| |
Collapse
|
14
|
Clarke R, Zeng L, Atkinson BC, Kadodwala M, Thomson AR, Sutherland A. Fluorescent carbazole-derived α-amino acids: structural mimics of tryptophan. Chem Sci 2024; 15:5944-5949. [PMID: 38665535 PMCID: PMC11040653 DOI: 10.1039/d4sc01173b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Fluorescent tags are commonly used for imaging of proteins and peptides during biological events; however, the large size of dyes can disrupt protein structure and function, and typically require the use of a chemical spacer. Herein, we report the synthesis of a new class of fluorescent unnatural α-amino acid, containing carbazole side-chains designed to mimic l-tryptophan and thus, readily incorporated into peptides. The amino acids were constructed using a Negishi cross-coupling reaction as the key step and exhibited strong fluorescent emission, with high quantum yields in both organic solvents and water. Compatible with solid phase peptide synthesis, the carbazole amino acids were used to replace tryptophan in a β-hairpin model peptide and shown to be a close structural mimic with retention of conformation. They were also found to be effective fluorescent molecular reporters for biological events. Incorporation into a proline-rich ligand of the WW domain protein demonstrated that the fluorescent properties of a carbazole amino acid could be used to measure the protein-protein binding interaction of this important biological signalling process.
Collapse
Affiliation(s)
- Rebecca Clarke
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Liyao Zeng
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Bethany C Atkinson
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Malcolm Kadodwala
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Andrew R Thomson
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Andrew Sutherland
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| |
Collapse
|
15
|
Jiang G, Liu H, Liu H, Ke G, Ren TB, Xiong B, Zhang XB, Yuan L. Chemical Approaches to Optimize the Properties of Organic Fluorophores for Imaging and Sensing. Angew Chem Int Ed Engl 2024; 63:e202315217. [PMID: 38081782 DOI: 10.1002/anie.202315217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/30/2023]
Abstract
Organic fluorophores are indispensable tools in cells, tissue and in vivo imaging, and have enabled much progress in the wide range of biological and biomedical fields. However, many available dyes suffer from insufficient performances, such as short absorption and emission wavelength, low brightness, poor stability, small Stokes shift, and unsuitable permeability, restricting their application in advanced imaging technology and complex imaging. Over the past two decades, many efforts have been made to improve these performances of fluorophores. Starting with the luminescence principle of fluorophores, this review clarifies the mechanisms of the insufficient performance for traditional fluorophores to a certain extent, systematically summarizes the modified approaches of optimizing properties, highlights the typical applications of the improved fluorophores in imaging and sensing, and indicates existing problems and challenges in this area. This progress not only proves the significance of improving fluorophores properties, but also provide a theoretical guidance for the development of high-performance fluorophores.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
16
|
Munan S, Chang YT, Samanta A. Chronological development of functional fluorophores for bio-imaging. Chem Commun (Camb) 2024; 60:501-521. [PMID: 38095135 DOI: 10.1039/d3cc04895k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Functional fluorophores represent an emerging research field, distinguished by their diverse applications, especially in sensing and cellular imaging. After the discovery of quinine sulfate and subsequent elucidation of the fluorescence mechanism by Sir George Stokes, research in the field of fluorescence gained momentum. Over the past few decades, advancements in sophisticated instruments, including super-resolution microscopy, have further promoted cellular imaging using traditional fluorophores. These advancements include deciphering sensing mechanisms via photochemical reactions and scrutinizing the applications of fluorescent probes that specifically target organelles. This approach elucidates molecular interactions with biomolecules. Despite the abundance of literature illustrating different classes of probe development, a concise summary of newly developed fluorophores remains inadequate. In this review, we systematically summarize the chronological discovery of traditional fluorophores along with new fluorophores. We briefly discuss traditional fluorophores ranging from visible to near-infrared (NIR) in the context of cellular imaging and in vivo imaging. Furthermore, we explore ten new core fluorophores developed between 2007 and 2022, which exhibit advanced optical properties, providing new insights into bioimaging. We illustrate the utilization of new fluorophores in cellular imaging of biomolecules, such as reactive oxygen species (ROS), reactive nitrogen species (RNS), and proteins and microenvironments, especially pH and viscosity. Few of the fluorescent probes provided new insights into disease progression. Furthermore, we speculate on the potential prospects and significant challenges of existing fluorophores and their potential biomedical research applications. By addressing these aspects, we intend to illuminate the compelling advancements in fluorescent probe development and their potential influence across various fields.
Collapse
Affiliation(s)
- Subrata Munan
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, NH 91, Tehsil Dadri 201314, Uttar Pradesh, India.
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, NH 91, Tehsil Dadri 201314, Uttar Pradesh, India.
| |
Collapse
|
17
|
Chatterjee T, Mandal M, Mardanya S, Singh M, Saha A, Ghosh S, Mandal PK. meta-Fluorophores: an uncharted ocean of opportunities. Chem Commun (Camb) 2023; 59:14370-14386. [PMID: 37965696 DOI: 10.1039/d3cc04182d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
meta-Fluorophores (MFs) are unique ultra-light (in terms of molecular weight (MW)) fluorophores exhibiting luminescence with a wide colour gamut ranging from blue to the NIR. Single benzenic MFs are easy to synthesize, are quite bright (with photoluminescence quantum yield (PLQY) as high as 63%) and exhibit very large Stokes shift (as high as 260 nm (8965 cm-1)), with large solvatochromic shift (as high as 175 nm), and very long excited-state-lifetime (as high as 26 ns) for such ultra-light fluorophores. An emission maximum of ≥600 nm has been achieved with an MF in a polar medium having a MW of only 177 g mol-1 and in a nonpolar medium having MW of only 255 g mol-1; therefore, a large-sized π-conjugated para-fluorophore is no longer a prerequisite for red/NIR emission. Structurally varied MFs pave the way for creating an ocean of opportunities and are thus promising for replacing para-fluorophores for different applications, ranging from bioimaging to LEDs.
Collapse
Affiliation(s)
- Tanmay Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Mrinal Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Sukumar Mardanya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Manjeev Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Arijit Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Swarnali Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Prasun K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
18
|
Liu Y, Wang B, Hou JT, Xie P, Li W, Wang S. Molecular engineering and bioimaging applications of C2-alkenyl indole dyes with tunable emission wavelengths covering visible to NIR light. Bioorg Chem 2023; 141:106905. [PMID: 37832222 DOI: 10.1016/j.bioorg.2023.106905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
As an important member of dyes, small-molecule fluorescent dyes show indispensable value in biomedical fields. Although various molecular dyes have been developed, full-color dyes covering blue to red region derived from a single chromophore are still in urgent demand. In this work, a series of dyes based on C2-alkenyl indole skeleton were synthesized, namely AI dyes, and their photophysical properties, cytotoxicity, and imaging capacity were verified to be satisfactory. Particularly, the maximal emission wavelengths of these dyes could cover a wide range from visible to NIR light with large Stokes shifts. Besides, the optical and structural discrepancies between the C2- and C3- alkenyl AI dyes were discussed in detail, and the theoretical calculations were conducted to provide insights on such structure-activity relationship. Finally, as a proof-of-concept, a fluorescent probe AI-Py-B capable of imaging endogenous ONOO- was presented, demonstrating the bioimaging potentials of these alkenyl indole dyes. This work is anticipated to open up new possibilities for developing dye engineering and bio-applications of natural indole framework.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bingya Wang
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ji-Ting Hou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Peng Xie
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China.
| | - Weiyi Li
- School of Science, Research Center for Advanced Computation, Xihua University, Chengdu 610039, China.
| | - Shan Wang
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China.
| |
Collapse
|
19
|
Lucas FLR, Finol-Urdaneta RK, Van Thillo T, McArthur JR, van der Heide NJ, Maglia G, Dedecker P, Strauss O, Wloka C. Evidence of Cytolysin A nanopore incorporation in mammalian cells assessed by a graphical user interface. NANOSCALE 2023; 15:16914-16923. [PMID: 37853831 DOI: 10.1039/d3nr01977b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Technologies capable of assessing cellular metabolites with high precision and temporal resolution are currently limited. Recent developments in the field of nanopore sensors allow the non-stochastic quantification of metabolites, where a nanopore is acting as an electrical transducer for selective substrate binding proteins (SBPs). Here we show that incorporation of the pore-forming toxin Cytolysin A (ClyA) into the plasma membrane of Chinese hamster ovary cells (CHO-K1) results in the appearance of single-channel conductance amenable to multiplexed automated patch-clamp (APC) electrophysiology. In CHO-K1 cells, SBPs modify the ionic current flowing though ClyA nanopores, thus demonstrating its potential for metabolite sensing of living cells. Moreover, we developed a graphical user interface for the analysis of the complex signals resulting from multiplexed APC recordings. This system lays the foundation to bridge the gap between recent advances in the nanopore field (e.g., proteomic and transcriptomic) and potential cellular applications.
Collapse
Affiliation(s)
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
- Electrophysiology Facility for Cell Phenotyping and Drug Discovery, Wollongong, NSW 2522, Australia
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Toon Van Thillo
- Lab for Nanobiology, Department of Chemistry, KU Leuven, Belgium.
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nieck Jordy van der Heide
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, 9747 AG, Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, 9747 AG, Groningen, The Netherlands
| | - Peter Dedecker
- Lab for Nanobiology, Department of Chemistry, KU Leuven, Belgium.
| | - Olaf Strauss
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, A Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| | - Carsten Wloka
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, A Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
20
|
Ye Z, Hu C, Wang J, Liu H, Li L, Yuan J, Ha JW, Li Z, Xiao L. Burst of hopping trafficking correlated reversible dynamic interactions between lipid droplets and mitochondria under starvation. EXPLORATION (BEIJING, CHINA) 2023; 3:20230002. [PMID: 37933279 PMCID: PMC10582609 DOI: 10.1002/exp.20230002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/27/2023] [Indexed: 11/08/2023]
Abstract
Dynamic membrane contacts between lipid droplets (LDs) and mitochondria play key roles in lipid metabolism and energy homeostasis. Understanding the dynamics of LDs under energy stimulation is thereby crucial to disclosing the metabolic mechanism. Here, the reversible interactions between LDs and mitochondria are tracked in real-time using a robust LDs-specific fluorescent probe (LDs-Tags). Through tracking the dynamics of LDs at the single-particle level, spatiotemporal heterogeneity is revealed. LDs in starved cells communicate and integrate their activities (i.e., lipid exchange) through a membrane contact site-mediated mechanism. Thus the diffusion is intermittently alternated between active and confined states. Statistical analysis shows that the translocation of LDs in response to starvation stress is non-Gaussian, and obeys nonergodic-like behavior. These results provide deep understanding of the anomalous diffusion of LDs in living cells, and also afford guidance for rationally designing efficient transporter.
Collapse
Affiliation(s)
- Zhongju Ye
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Chengyuan Hu
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Junli Wang
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Hua Liu
- College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
| | - Luping Li
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Jie Yuan
- School of Chemistry and Chemical EngineeringSchool of EnvironmentHenan Normal UniversityXinxiangChina
| | - Ji Won Ha
- Department of ChemistryUniversity of UlsanNam‐guRepublic of Korea
| | - Zhaohui Li
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Lehui Xiao
- College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
| |
Collapse
|
21
|
Singh BP, Morris RJ, Kunath T, MacPhee CE, Horrocks MH. Lipid-induced polymorphic amyloid fibril formation by α-synuclein. Protein Sci 2023; 32:e4736. [PMID: 37515406 PMCID: PMC10521247 DOI: 10.1002/pro.4736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Many proteins that self-assemble into amyloid and amyloid-like fibers can adopt diverse polymorphic forms. These forms have been observed both in vitro and in vivo and can arise through variations in the steric-zipper interactions between β-sheets, variations in the arrangements between protofilaments, and differences in the number of protofilaments that make up a given fiber class. Different polymorphs arising from the same precursor molecule not only exhibit different levels of toxicity, but importantly can contribute to different disease conditions. However, the factors which contribute to formation of polymorphic forms of amyloid fibrils are not known. In this work, we show that in the presence of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine, a highly abundant lipid in the plasma membrane of neurons, the aggregation of α-synuclein is markedly accelerated and yields a diversity of polymorphic forms under identical experimental conditions. This morphological diversity includes thin and curly fibrils, helical ribbons, twisted ribbons, nanotubes, and flat sheets. Furthermore, the amyloid fibrils formed incorporate lipids into their structures, which corroborates the previous report of the presence of α-synuclein fibrils with high lipid content in Lewy bodies. Thus, the present study demonstrates that an interface, such as that provided by a lipid membrane, can not only modulate the kinetics of α-synuclein amyloid aggregation but also plays an important role in the formation of morphological variants by incorporating lipid molecules in the process of amyloid fibril formation.
Collapse
Affiliation(s)
- Bhanu P. Singh
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
- EaStCHEM School of Chemistry, The University of EdinburghEdinburghUK
| | - Ryan J. Morris
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
| | - Tilo Kunath
- Centre for Regenerative Medicine, School of Biological Sciences, The University of EdinburghEdinburghUK
| | - Cait E. MacPhee
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
| | - Mathew H. Horrocks
- EaStCHEM School of Chemistry, The University of EdinburghEdinburghUK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of EdinburghEdinburghUK
| |
Collapse
|
22
|
Adair LD, New EJ. Molecular fluorescent sensors for in vivo imaging. Curr Opin Biotechnol 2023; 83:102973. [PMID: 37531801 DOI: 10.1016/j.copbio.2023.102973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Small-molecule fluorophores are powerful tools for biological research. They have enabled researchers to study cellular architecture and decipher biological processes. Responsive fluorescent sensors have enabled the study of a wide range of analytes and their effects on biological phenomena in situ. The application of fluorescent sensors to studies in living organisms is complicated by challenges such as biocompatibility, chemostability, photostability and sufficient penetration of light through living tissues. Translation to in vivo imaging is therefore not straightforward and requires innovative approaches. Recent advances in the design of fluorophores with improved photophysical properties and the development of long-wavelength-emitting fluorophore scaffolds that can be modularly functionalised with targeting and sensing groups have allowed the application of fluorogenic, ratiometric and reversible sensors in vivo.
Collapse
Affiliation(s)
- Liam D Adair
- School of Chemistry, The University of Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia.
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
23
|
Monsorno K, Ginggen K, Ivanov A, Buckinx A, Lalive AL, Tchenio A, Benson S, Vendrell M, D'Alessandro A, Beule D, Pellerin L, Mameli M, Paolicelli RC. Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice. Nat Commun 2023; 14:5749. [PMID: 37717033 PMCID: PMC10505217 DOI: 10.1038/s41467-023-41502-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Microglia, the innate immune cells of the central nervous system, actively participate in brain development by supporting neuronal maturation and refining synaptic connections. These cells are emerging as highly metabolically flexible, able to oxidize different energetic substrates to meet their energy demand. Lactate is particularly abundant in the brain, but whether microglia use it as a metabolic fuel has been poorly explored. Here we show that microglia can import lactate, and this is coupled with increased lysosomal acidification. In vitro, loss of the monocarboxylate transporter MCT4 in microglia prevents lactate-induced lysosomal modulation and leads to defective cargo degradation. Microglial depletion of MCT4 in vivo leads to impaired synaptic pruning, associated with increased excitation in hippocampal neurons, enhanced AMPA/GABA ratio, vulnerability to seizures and anxiety-like phenotype. Overall, these findings show that selective disruption of the MCT4 transporter in microglia is sufficient to alter synapse refinement and to induce defects in mouse brain development and adult behavior.
Collapse
Affiliation(s)
- Katia Monsorno
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Kyllian Ginggen
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - An Buckinx
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Arnaud L Lalive
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Anna Tchenio
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Sam Benson
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Marc Vendrell
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Angelo D'Alessandro
- University of Colorado, Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Denver, CO, USA
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Luc Pellerin
- Inserm U1313, University of Poitiers and CHU of Poitiers, Poitiers Cedex, France
| | - Manuel Mameli
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | | |
Collapse
|
24
|
Bertolini M, Wong MS, Mendive-Tapia L, Vendrell M. Smart probes for optical imaging of T cells and screening of anti-cancer immunotherapies. Chem Soc Rev 2023; 52:5352-5372. [PMID: 37376918 PMCID: PMC10424634 DOI: 10.1039/d2cs00928e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 06/29/2023]
Abstract
T cells are an essential part of the immune system with crucial roles in adaptive response and the maintenance of tissue homeostasis. Depending on their microenvironment, T cells can be differentiated into multiple states with distinct functions. This myriad of cellular activities have prompted the development of numerous smart probes, ranging from small molecule fluorophores to nanoconstructs with variable molecular architectures and fluorescence emission mechanisms. In this Tutorial Review, we summarize recent efforts in the design, synthesis and application of smart probes for imaging T cells in tumors and inflammation sites by targeting metabolic and enzymatic biomarkers as well as specific surface receptors. Finally, we briefly review current strategies for how smart probes are employed to monitor the response of T cells to anti-cancer immunotherapies. We hope that this Review may help chemists, biologists and immunologists to design the next generation of molecular imaging probes for T cells and anti-cancer immunotherapies.
Collapse
Affiliation(s)
- Marco Bertolini
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Man Sing Wong
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| |
Collapse
|
25
|
Benson S, Kiang A, Lochenie C, Lal N, Mohanan SMPC, Williams GOS, Dhaliwal K, Mills B, Vendrell M. Environmentally sensitive photosensitizers enable targeted photodynamic ablation of Gram-positive antibiotic resistant bacteria. Theranostics 2023; 13:3814-3825. [PMID: 37441588 PMCID: PMC10334829 DOI: 10.7150/thno.84187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/09/2023] [Indexed: 07/15/2023] Open
Abstract
Bacterial infections remain among the biggest challenges to human health, leading to high antibiotic usage, morbidity, hospitalizations, and accounting for approximately 8 million deaths worldwide every year. The overuse of antibiotics and paucity of antimicrobial innovation has led to antimicrobial resistant pathogens that threaten to reverse key advances of modern medicine. Photodynamic therapeutics can kill bacteria but there are few agents that can ablate pathogens with minimal off-target effects. Methods: We describe nitrobenzoselenadiazoles as some of the first environmentally sensitive organic photosensitizers, and their adaptation to produce theranostics with optical detection and light-controlled antimicrobial activity. We combined nitrobenzoselenadiazoles with bacteria-targeting moieties (i.e., glucose-6-phosphate, amoxicillin, vancomycin) producing environmentally sensitive photodynamic agents. Results: The labelled vancomycin conjugate was able to both visualize and eradicate multidrug resistant Gram-positive ESKAPE pathogens at nanomolar concentrations, including clinical isolates and those that form biofilms. Conclusion: Nitrobenzoselenadiazole conjugates are easily synthesized and display strong environment dependent ROS production. Due to their small size and non-invasive character, they unobtrusively label antimicrobial targeting moieties. We envisage that the simplicity and modularity of this chemical strategy will accelerate the rational design of new antimicrobial therapies for refractory bacterial infections.
Collapse
Affiliation(s)
- Sam Benson
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4TJ, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Alex Kiang
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Charles Lochenie
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4TJ, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Navita Lal
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | - Gareth O. S. Williams
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kevin Dhaliwal
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Bethany Mills
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4TJ, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
26
|
Oyama T, Mendive-Tapia L, Cowell V, Kopp A, Vendrell M, Ackermann L. Late-stage peptide labeling with near-infrared fluorogenic nitrobenzodiazoles by manganese-catalyzed C-H activation. Chem Sci 2023; 14:5728-5733. [PMID: 37265715 PMCID: PMC10231426 DOI: 10.1039/d3sc01868g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Late-stage diversification of structurally complex amino acids and peptides provides tremendous potential for drug discovery and molecular imaging. Specifically, labeling peptides with fluorescent tags is one of the most important methods for visualizing their mode of operation. Despite major recent advances in the field, direct molecular peptide labeling by C-H activation is largely limited to dyes with relatively short emission wavelengths, leading to high background signals and poor signal-to-noise ratios. In sharp contrast, here we report on the fluorescent labeling of peptides catalyzed by non-toxic manganese(i) via C(sp2)-H alkenylation in chemo- and site-selective manners, providing modular access to novel near-infrared (NIR) nitrobenzodiazole-based peptide fluorogenic probes.
Collapse
Affiliation(s)
- Tsuyoshi Oyama
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammanstraße 2 37077 Göttingen Germany
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh EH16 4TJ Edinburgh UK
| | - Verity Cowell
- Centre for Inflammation Research, The University of Edinburgh EH16 4TJ Edinburgh UK
| | - Adelina Kopp
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammanstraße 2 37077 Göttingen Germany
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh EH16 4TJ Edinburgh UK
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammanstraße 2 37077 Göttingen Germany
- German Center for Cardiovascular Research (DZHK) Potsdamer Straße 58 10785 Berlin Germany
| |
Collapse
|
27
|
Hecko S, Schiefer A, Badenhorst CPS, Fink MJ, Mihovilovic MD, Bornscheuer UT, Rudroff F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023; 123:2832-2901. [PMID: 36853077 PMCID: PMC10037340 DOI: 10.1021/acs.chemrev.2c00304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.
Collapse
Affiliation(s)
- Sebastian Hecko
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
28
|
Świerczyńska M, Słowiński D, Michalski R, Romański J, Podsiadły R. A thiomorpholine-based fluorescent probe for the far-red hypochlorous acid monitoring. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122193. [PMID: 36508902 DOI: 10.1016/j.saa.2022.122193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
A simple thiomorpholine-based fluorescent probe was designed and synthesized by combining thiomorpholine (TM) and nitrobenzenoselenadiazoles fluorophore (NBD-Se). The thiomorpholine group quenches the fluorescence of NBD-Se efficiently through the photoinduced electron transfer (PET) effect. Hypochlorous acid (HOCl) oxidizes the NBD-Se-TM probe to its fluorescent S-oxide (NBD-Se-TSO) with a 1:1 stoichiometry. The desirable features of NBD-Se-TM for detecting HOCl in aqueous solutions, such as its high sensitivity and selectivity, reliability at physiological pH, and rapid fluorescence response, enabled its application in the detection of HOCl produced by myeloperoxidase. The results proved that NBD-Se-TM is a promising fluorescent probe that can be used in screening assays for MPO inhibitors. Its high reaction rate constant with HOCl (2k = 2.0 × 107M-1s-1) indicates the possibility of application in more complex biological systems.
Collapse
Affiliation(s)
- Małgorzata Świerczyńska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Daniel Słowiński
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90‑924 Lodz, Poland
| | - Jarosław Romański
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| |
Collapse
|
29
|
Maiti D, Munan S, Singh S, Das R, Samanta A, Sen S. Light induced diversity-oriented synthesis (DOS) library of annulated indolizine fluorophores for imaging non-lysosomal lipid droplets (LDs). J Mater Chem B 2023; 11:2191-2199. [PMID: 36779938 DOI: 10.1039/d2tb02656b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report the design, synthesis, and biological evaluation of a novel class of annulated indolizines as fluorescent probes. The compounds were generated through an eco-friendly, blue LED-induced domino reaction in ethyl acetate. A library of 24 coloured compounds exhibited tuneable emissions. One of the compounds (which we call DASS-fluor) proved to be an excellent polarity sensing probe. It is biocompatible, photostable, and detects specific types of lipid droplets (LDs in response to oleic acid, stress, and drug-induced autophagy in lungs and hepatic carcinoma cells). In comparison to Nile Red (a commercial probe), DASS-fluor can differentiate non-lysosomal LDs from lysosomal LDs and offers an advantage in precisely mapping drug-induced lipidosis caused by increased non-lysosomal LDs in cancerous cells. This unique probe could be a potential fluorescent marker for specific types of lipidosis induced by drugs.
Collapse
Affiliation(s)
- Debajit Maiti
- Molecular Library Design and Synthesis Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India.
| | - Subrata Munan
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India.
| | - Shweta Singh
- Molecular Library Design and Synthesis Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India.
| | - Ranajit Das
- Molecular Library Design and Synthesis Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India.
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India.
| | - Subhabrata Sen
- Molecular Library Design and Synthesis Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India.
| |
Collapse
|
30
|
de Moliner F, Konieczna Z, Mendive‐Tapia L, Saleeb RS, Morris K, Gonzalez‐Vera JA, Kaizuka T, Grant SGN, Horrocks MH, Vendrell M. Small Fluorogenic Amino Acids for Peptide-Guided Background-Free Imaging. Angew Chem Int Ed Engl 2023; 62:e202216231. [PMID: 36412996 PMCID: PMC10108274 DOI: 10.1002/anie.202216231] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
The multiple applications of super-resolution microscopy have prompted the need for minimally invasive labeling strategies for peptide-guided fluorescence imaging. Many fluorescent reporters display limitations (e.g., large and charged scaffolds, non-specific binding) as building blocks for the construction of fluorogenic peptides. Herein we have built a library of benzodiazole amino acids and systematically examined them as reporters for background-free fluorescence microscopy. We have identified amine-derivatized benzoselenadiazoles as scalable and photostable amino acids for the straightforward solid-phase synthesis of fluorescent peptides. Benzodiazole amino acids retain the binding capabilities of bioactive peptides and display excellent signal-to-background ratios. Furthermore, we have demonstrated their application in peptide-PAINT imaging of postsynaptic density protein-95 nanoclusters in the synaptosomes from mouse brain tissues.
Collapse
Affiliation(s)
| | | | | | | | - Katie Morris
- EaStCHEM School of ChemistryThe University of EdinburghUK
| | | | - Takeshi Kaizuka
- Centre for Clinical Brain SciencesThe University of EdinburghUK
| | | | | | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghUK
| |
Collapse
|
31
|
de Moliner F, Konieczna Z, Mendive‐Tapia L, Saleeb RS, Morris K, Gonzalez‐Vera JA, Kaizuka T, Grant SGN, Horrocks MH, Vendrell M. Small Fluorogenic Amino Acids for Peptide-Guided Background-Free Imaging. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202216231. [PMID: 38515539 PMCID: PMC10952862 DOI: 10.1002/ange.202216231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 11/23/2022]
Abstract
The multiple applications of super-resolution microscopy have prompted the need for minimally invasive labeling strategies for peptide-guided fluorescence imaging. Many fluorescent reporters display limitations (e.g., large and charged scaffolds, non-specific binding) as building blocks for the construction of fluorogenic peptides. Herein we have built a library of benzodiazole amino acids and systematically examined them as reporters for background-free fluorescence microscopy. We have identified amine-derivatized benzoselenadiazoles as scalable and photostable amino acids for the straightforward solid-phase synthesis of fluorescent peptides. Benzodiazole amino acids retain the binding capabilities of bioactive peptides and display excellent signal-to-background ratios. Furthermore, we have demonstrated their application in peptide-PAINT imaging of postsynaptic density protein-95 nanoclusters in the synaptosomes from mouse brain tissues.
Collapse
Affiliation(s)
| | | | | | | | - Katie Morris
- EaStCHEM School of ChemistryThe University of EdinburghUK
| | | | - Takeshi Kaizuka
- Centre for Clinical Brain SciencesThe University of EdinburghUK
| | | | | | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghUK
| |
Collapse
|
32
|
Yuanwei Liang, Qiu W, Li S, He L, Wang D, Gong X, Zheng K, Li Z, Chen J. Synthesis and In vitro Antiproliferative Activity of 5-Halogen-6-nitrobenzo[c][1,2,5]selenadiazoles on A549 Cells. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162023010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Izquierdo E, López-Corrales M, Abad-Montero D, Rovira A, Fabriàs G, Bosch M, Abad JL, Marchán V. Fluorescently Labeled Ceramides and 1-Deoxyceramides: Synthesis, Characterization, and Cellular Distribution Studies. J Org Chem 2022; 87:16351-16367. [PMID: 36441972 PMCID: PMC9764360 DOI: 10.1021/acs.joc.2c02019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ceramides (Cer) are bioactive sphingolipids that have been proposed as potential disease biomarkers since they are involved in several cellular stress responses, including apoptosis and senescence. 1-Deoxyceramides (1-deoxyCer), a particular subtype of noncanonical sphingolipids, have been linked to the pathogenesis of type II diabetes. To investigate the metabolism of these bioactive lipids, as well as to have a better understanding of the signaling processes where they participate, it is essential to expand the toolbox of fluorescent sphingolipid probes exhibiting complementary subcellular localization. Herein, we describe a series of new sphingolipid probes tagged with two different organic fluorophores, a far-red/NIR-emitting coumarin derivative (COUPY) and a green-emitting BODIPY. The assembly of the probes involved a combination of olefin cross metathesis and click chemistry reactions as key steps, and these fluorescent ceramide analogues exhibited excellent emission quantum yields, being the Stokes' shifts of the COUPY derivatives much higher than those of the BODIPY counterparts. Confocal microscopy studies in HeLa cells confirmed an excellent cellular permeability for these sphingolipid probes and revealed that most of the vesicles stained by COUPY probes were either lysosomes or endosomes, whereas BODIPY probes accumulated either in Golgi apparatus or in nonlysosomal intracellular vesicles. The fact that the two sets of fluorescent Cer probes have such different staining patterns indicates that their subcellular distribution is not entirely defined by the sphingolipid moiety but rather influenced by the fluorophore.
Collapse
Affiliation(s)
- Eduardo Izquierdo
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028Barcelona, Spain
| | - Marta López-Corrales
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028Barcelona, Spain
| | - Diego Abad-Montero
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028Barcelona, Spain,Research
Unit on BioActive Molecules, Departament de Química Biològica, Institut de Química Avançada de Catalunya
(IQAC-CSIC), Jordi Girona
18-26, 08034Barcelona, Spain
| | - Anna Rovira
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028Barcelona, Spain
| | - Gemma Fabriàs
- Research
Unit on BioActive Molecules, Departament de Química Biològica, Institut de Química Avançada de Catalunya
(IQAC-CSIC), Jordi Girona
18-26, 08034Barcelona, Spain
| | - Manel Bosch
- Unitat
de Microscòpia Òptica Avanc̨ada, Centres Científics
i Tecnològics, Universitat de Barcelona
(UB), Av. Diagonal, 643, 08028Barcelona, Spain
| | - José Luís Abad
- Research
Unit on BioActive Molecules, Departament de Química Biològica, Institut de Química Avançada de Catalunya
(IQAC-CSIC), Jordi Girona
18-26, 08034Barcelona, Spain,
| | - Vicente Marchán
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028Barcelona, Spain,Institut
de Biomedicina de la Universitat de Barcelona (IBUB), 08028Barcelona, Spain,
| |
Collapse
|
34
|
Fernandez A, Kielland N, Makda A, Carragher NO, González-García MC, Espinar-Barranco L, González-Vera JA, Orte A, Lavilla R, Vendrell M. A multicomponent reaction platform towards multimodal near-infrared BODIPY dyes for STED and fluorescence lifetime imaging. RSC Chem Biol 2022; 3:1251-1259. [PMID: 36320886 PMCID: PMC9533399 DOI: 10.1039/d2cb00168c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2023] Open
Abstract
We report a platform combining multicomponent reaction synthesis and automated cell-based screening to develop biocompatible NIR-BODIPY fluorophores. From a library of over 60 fluorophores, we optimised compound NIRBD-62c as a multimodal probe with suitable properties for STED super-resolution and fluorescence lifetime imaging. Furthermore, we employed NIRBD-62c for imaging trafficking inside cells and to examine how pharmacological inhibitors can alter the vesicular traffic between intracellular compartments and the plasma membrane.
Collapse
Affiliation(s)
- Antonio Fernandez
- Centre for Inflammation Research, The University of Edinburgh Edinburgh UK
- Dpt Organic Chemistry, Faculty of Chemistry, University of Murcia Spain
| | - Nicola Kielland
- Centre for Inflammation Research, The University of Edinburgh Edinburgh UK
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Institute of Biomedicine (IBUB), University of Barcelona Spain
| | - Ashraff Makda
- Institute of Genetics and Cancer, The University of Edinburgh Edinburgh UK
| | - Neil O Carragher
- Institute of Genetics and Cancer, The University of Edinburgh Edinburgh UK
| | | | | | - Juan A González-Vera
- Nanoscopy-UGR Laboratory, Facultad de Farmacia, Universidad de Granada Granada Spain
| | - Angel Orte
- Nanoscopy-UGR Laboratory, Facultad de Farmacia, Universidad de Granada Granada Spain
| | - Rodolfo Lavilla
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Institute of Biomedicine (IBUB), University of Barcelona Spain
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh Edinburgh UK
| |
Collapse
|
35
|
Ali A, Davidson S, Fraenkel E, Gilmore I, Hankemeier T, Kirwan JA, Lane AN, Lanekoff I, Larion M, McCall LI, Murphy M, Sweedler JV, Zhu C. Single cell metabolism: current and future trends. Metabolomics 2022; 18:77. [PMID: 36181583 PMCID: PMC10063251 DOI: 10.1007/s11306-022-01934-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
Single cell metabolomics is an emerging and rapidly developing field that complements developments in single cell analysis by genomics and proteomics. Major goals include mapping and quantifying the metabolome in sufficient detail to provide useful information about cellular function in highly heterogeneous systems such as tissue, ultimately with spatial resolution at the individual cell level. The chemical diversity and dynamic range of metabolites poses particular challenges for detection, identification and quantification. In this review we discuss both significant technical issues of measurement and interpretation, and progress toward addressing them, with recent examples from diverse biological systems. We provide a framework for further directions aimed at improving workflow and robustness so that such analyses may become commonly applied, especially in combination with metabolic imaging and single cell transcriptomics and proteomics.
Collapse
Affiliation(s)
- Ahmed Ali
- Leiden Academic Centre for Drug Research, University of Leiden, Gorlaeus Building Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Shawn Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ernest Fraenkel
- Department of Biological Engineering and the Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ian Gilmore
- National Physical Laboratory, Teddington, TW11 0LW, Middlesex, UK
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research, University of Leiden, Room number GW4.07, Gorlaeus Building, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jennifer A Kirwan
- Berlin Institute of Health, Metabolomics Platform, Translational Research Unit of the Charite-Universitätsmedizin Berlin, Anna-Louisa-Karsch-Str 2, 10178, Berlin, Germany
| | - Andrew N Lane
- Department of Toxicology and Cancer Biology, and Center for Environmental and Systems Biochemistry, University of Kentucky, 789 S. Limestone St, Lexington, KY, 40536, USA.
| | - Ingela Lanekoff
- Department of Chemistry-BMC, Uppsala University, Husargatan 3 (576), 751 23, Uppsala, Sweden
| | - Mioara Larion
- Center for Cancer Research, National Cancer Institute, Building 37, Room 1136A, Bethesda, MD, 20892, USA
| | - Laura-Isobel McCall
- Department of Chemistry & Biochemistry, Department of Microbiology and Plant Biology, Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, 101 Stephenson Parkway, room 3750, Norman, OK, 73019-5251, USA
| | - Michael Murphy
- Departments of Biological Engineering, Department of Electrical Engineering, and Computer Science and the Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, USA
| | - Jonathan V Sweedler
- Department of Chemistry, and the Beckman Institute, University of Illinois Urbana-Champaign, 505 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Caigang Zhu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
36
|
Choi ML, Chappard A, Singh BP, Maclachlan C, Rodrigues M, Fedotova EI, Berezhnov AV, De S, Peddie CJ, Athauda D, Virdi GS, Zhang W, Evans JR, Wernick AI, Zanjani ZS, Angelova PR, Esteras N, Vinokurov AY, Morris K, Jeacock K, Tosatto L, Little D, Gissen P, Clarke DJ, Kunath T, Collinson L, Klenerman D, Abramov AY, Horrocks MH, Gandhi S. Pathological structural conversion of α-synuclein at the mitochondria induces neuronal toxicity. Nat Neurosci 2022; 25:1134-1148. [PMID: 36042314 PMCID: PMC9448679 DOI: 10.1038/s41593-022-01140-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2022] [Indexed: 11/08/2022]
Abstract
Aggregation of alpha-synuclein (α-Syn) drives Parkinson's disease (PD), although the initial stages of self-assembly and structural conversion have not been directly observed inside neurons. In this study, we tracked the intracellular conformational states of α-Syn using a single-molecule Förster resonance energy transfer (smFRET) biosensor, and we show here that α-Syn converts from a monomeric state into two distinct oligomeric states in neurons in a concentration-dependent and sequence-specific manner. Three-dimensional FRET-correlative light and electron microscopy (FRET-CLEM) revealed that intracellular seeding events occur preferentially on membrane surfaces, especially at mitochondrial membranes. The mitochondrial lipid cardiolipin triggers rapid oligomerization of A53T α-Syn, and cardiolipin is sequestered within aggregating lipid-protein complexes. Mitochondrial aggregates impair complex I activity and increase mitochondrial reactive oxygen species (ROS) generation, which accelerates the oligomerization of A53T α-Syn and causes permeabilization of mitochondrial membranes and cell death. These processes were also observed in induced pluripotent stem cell (iPSC)-derived neurons harboring A53T mutations from patients with PD. Our study highlights a mechanism of de novo α-Syn oligomerization at mitochondrial membranes and subsequent neuronal toxicity.
Collapse
Affiliation(s)
- Minee L Choi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | | | - Bhanu P Singh
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
- School of Physics, University of Edinburgh, Edinburgh, UK
| | | | - Margarida Rodrigues
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Dementia Research institute at University of Cambridge, Cambridge, UK
| | - Evgeniya I Fedotova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Alexey V Berezhnov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Suman De
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Dementia Research institute at University of Cambridge, Cambridge, UK
| | | | - Dilan Athauda
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Gurvir S Virdi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Weijia Zhang
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - James R Evans
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anna I Wernick
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zeinab Shadman Zanjani
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Noemi Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Andrey Y Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Katie Morris
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Kiani Jeacock
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Laura Tosatto
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Istituto di Biofisica, National Council of Research, Trento, Italy
| | - Daniel Little
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - David J Clarke
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Dementia Research institute at University of Cambridge, Cambridge, UK
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia.
| | - Mathew H Horrocks
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK.
| | - Sonia Gandhi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
- The Francis Crick Institute, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
37
|
Benson S, de Moliner F, Tipping W, Vendrell M. Miniaturized Chemical Tags for Optical Imaging. Angew Chem Int Ed Engl 2022; 61:e202204788. [PMID: 35704518 PMCID: PMC9542129 DOI: 10.1002/anie.202204788] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/06/2022]
Abstract
Recent advances in optical bioimaging have prompted the need for minimal chemical reporters that can retain the molecular recognition properties and activity profiles of biomolecules. As a result, several methodologies to reduce the size of fluorescent and Raman labels to a few atoms (e.g., single aryl fluorophores, Raman-active triple bonds and isotopes) and embed them into building blocks (e.g., amino acids, nucleobases, sugars) to construct native-like supramolecular structures have been described. The integration of small optical reporters into biomolecules has also led to smart molecular entities that were previously inaccessible in an expedite manner. In this article, we review recent chemical approaches to synthesize miniaturized optical tags as well as some of their multiple applications in biological imaging.
Collapse
Affiliation(s)
- Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| | - Fabio de Moliner
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| | - William Tipping
- Centre for Molecular NanometrologyThe University of StrathclydeGlasgowG1 1RDUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| |
Collapse
|
38
|
Thomas CN, Alfahad N, Capewell N, Cowley J, Hickman E, Fernandez A, Harrison N, Qureshi OS, Bennett N, Barnes NM, Dick AD, Chu CJ, Liu X, Denniston AK, Vendrell M, Hill LJ. Triazole-derivatized near-infrared cyanine dyes enable local functional fluorescent imaging of ocular inflammation. Biosens Bioelectron 2022; 216:114623. [PMID: 36029662 DOI: 10.1016/j.bios.2022.114623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
Near-infrared (NIR) chemical fluorophores are promising tools for in-vivo imaging in real time but often succumb to rapid photodegradation. Indocyanine green (ICG) is the only NIR dye with regulatory approval for ocular imaging in humans; however, ICG, when employed for applications such as labelling immune cells, has limited sensitivity and does not allow precise detection of specific inflammatory events, for example leukocyte recruitment during uveitic flare-ups. We investigated the potential use of photostable novel triazole NIR cyanine (TNC) dyes for detecting and characterising activated T-cell activity within the eye. Three TNC dyes were evaluated for ocular cytotoxicity in-vitro using a MTT assay and optimised concentrations for intraocular detection within ex-vivo porcine eyes after topical application or intracameral injections of the dyes. TNC labelled T-cell tracking experiments and mechanistic studies were also performed in-vitro. TNC-1 and TNC-2 dyes exhibited greater fluorescence intensity than ICG at 10 μM, whereas TNC-3 was only detectable at 100 μM within the porcine eye. TNC dyes did not demonstrate any ocular cell toxicity at working concentrations of 10 μM. CD4+T-cells labelled with TNC-1 or TNC-2 were detected within the porcine eye, with TNC-1 being brighter than TNC-2. Detection of TNC-1 and TNC-2 into CD4+T-cells was prevented by prior incubation with dynole 34-2 (50 μM), suggesting active uptake of these dyes via dynamin-dependent processes. The present study provides evidence that TNC dyes are suitable to detect activated CD4+T-cells within the eye with potential as a diagnostic marker for ocular inflammatory diseases.
Collapse
Affiliation(s)
- Chloe N Thomas
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Nada Alfahad
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Nicholas Capewell
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Jamie Cowley
- Celentyx Ltd, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, UK
| | - Eleanor Hickman
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Antonio Fernandez
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Murcia, Spain; Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Neale Harrison
- Celentyx Ltd, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, UK
| | - Omar S Qureshi
- Celentyx Ltd, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, UK
| | - Naomi Bennett
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Nicholas M Barnes
- Neuropharmacology Research Group, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Andrew D Dick
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK; Academic Unit of Ophthalmology, Bristol Medical School and School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Colin J Chu
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK; Academic Unit of Ophthalmology, Bristol Medical School and School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Xiaoxuan Liu
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK; Health Data Research UK, London, UK
| | - Alastair K Denniston
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK; Health Data Research UK, London, UK; Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Marc Vendrell
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
39
|
Roßmann K, Akkaya KC, Poc P, Charbonnier C, Eichhorst J, Gonschior H, Valavalkar A, Wendler N, Cordes T, Dietzek-Ivanšić B, Jones B, Lehmann M, Broichhagen J. N-Methyl deuterated rhodamines for protein labelling in sensitive fluorescence microscopy. Chem Sci 2022; 13:8605-8617. [PMID: 35974762 PMCID: PMC9337740 DOI: 10.1039/d1sc06466e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Rhodamine fluorophores are setting benchmarks in fluorescence microscopy. Herein, we report the deuterium (d12) congeners of tetramethyl(silicon)rhodamine, obtained by isotopic labelling of the four methyl groups, show improved photophysical parameters (i.e. brightness, lifetimes) and reduced chemical bleaching. We explore this finding for SNAP- and Halo-tag labelling in live cells, and highlight enhanced properties in several applications, such as fluorescence activated cell sorting, fluorescence lifetime microscopy, stimulated emission depletion nanoscopy and single-molecule Förster-resonance energy transfer. We finally extend this idea to other dye families and envision deuteration as a generalizable concept to improve existing and to develop new chemical biology probes.
Collapse
Affiliation(s)
- Kilian Roßmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | - Kerem C Akkaya
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | - Pascal Poc
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | | | - Jenny Eichhorst
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | - Hannes Gonschior
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | - Abha Valavalkar
- Leibniz Institute for Photonic Technology Jena e.V. (Leibniz-IPHT), Research Department Functional Interfaces Jena Germany
| | - Nicolas Wendler
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München Großhaderner Str. 2-4, Planegg-Martinsried 82152 Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München Großhaderner Str. 2-4, Planegg-Martinsried 82152 Germany
| | - Benjamin Dietzek-Ivanšić
- Leibniz Institute for Photonic Technology Jena e.V. (Leibniz-IPHT), Research Department Functional Interfaces Jena Germany
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London London W12 0NN UK
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
- Department of Chemical Biology, Max Planck Institute for Medical Research Heidelberg Germany
| |
Collapse
|
40
|
Benson S, de Moliner F, Tipping W, Vendrell M. Miniaturized Chemical Tags for Optical Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sam Benson
- The University of Edinburgh Centre for Inflammation Research UNITED KINGDOM
| | - Fabio de Moliner
- The University of Edinburgh Centre for Inflammation Research UNITED KINGDOM
| | - William Tipping
- University of Strathclyde Centre for Molecular Nanometrology UNITED KINGDOM
| | - Marc Vendrell
- University of Edinburgh Centre for Inflammation Research 47 Little France Crescent EH16 4TJ Edinburgh UNITED KINGDOM
| |
Collapse
|
41
|
Abstract
![]()
Optical
imaging has become an essential tool to study biomolecular
processes in live systems with unprecedented spatial resolution. New
fluorescent technologies and advances in optical microscopy have revolutionized
the ways in which we can study immune cells in real time. For example,
activatable fluorophores that emit signals after target recognition
have enabled direct imaging of immune cell function with enhanced
readouts and minimal background. In this Account, we summarize recent
advances in the chemical synthesis and implementation of activatable
fluorescent probes to monitor the activity and the role of immune
cells in different pathological processes, from infection to inflammatory
diseases or cancer. In addition to the contributions that our group
has made to this field, we review the most relevant literature disclosed
over the past decade, providing examples of different activatable
architectures and their application in diagnostics and drug discovery.
This Account covers the imaging of the three major cell types in the
immune system, that is, neutrophils, macrophages, and lymphocytes.
Attracted by the tunability and target specificity of peptides, many
groups have designed strategies based on fluorogenic peptides whose
fluorescence emission is regulated by the reaction with enzymes (e.g.,
MMPs, cathepsins, granzymes), or through Förster resonance
energy transfer (FRET) mechanisms. Selective imaging of immune cells
has been also achieved by targeting different intracellular metabolic
routes, such as lipid biogenesis. Other approaches involve the implementation
of diversity-oriented fluorescence libraries or the use of environmentally
sensitive fluorescent scaffolds (e.g., molecular rotors). Our group
has made important progress by constructing probes to image metastasis-associated
macrophages in tumors, apoptotic neutrophils, or cytotoxic natural
killer (NK) cells against cancer cells, among other examples. The
chemical probes covered in this Account have been successfully validated
in vitro in cell culture systems, and in vivo in relevant models of
inflammation and cancer. Overall, the range of chemical structures
and activation mechanisms reported to sense immune cell function is
remarkable. However, the emergence of new strategies based on new
molecular targets or activatable mechanisms that are yet to be discovered
will open the door to track unexplored roles of immune cells in different
biological systems. We anticipate that upcoming generations of activatable
probes will find applications in the clinic to help assessing immunotherapies
and advance precision medicine. We hope that this Account will evoke
new ideas and innovative work in the design of fluorescent probes
for imaging cell function.
Collapse
Affiliation(s)
- Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh, EH16 4TJ Edinburgh, U.K
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, EH16 4TJ Edinburgh, U.K
| |
Collapse
|
42
|
Mendive‐Tapia L, Mendive‐Tapia D, Zhao C, Gordon D, Benson S, Bromley MJ, Wang W, Wu J, Kopp A, Ackermann L, Vendrell M. Rationales Design von Phe-BODIPY-Aminosäuren als fluorogene Bausteine für den peptidbasierten Nachweis von Candida-Infektionen im Harntrakt. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202117218. [PMID: 38505242 PMCID: PMC10946803 DOI: 10.1002/ange.202117218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/08/2022]
Abstract
AbstractPilzinfektionen, die durch Candida‐Arten verursacht werden, gehören zu den häufigsten Infektionen bei Krankenhauspatienten. Die derzeitigen Methoden zum Nachweis von Candida‐Pilzzellen in klinischen Proben beruhen jedoch auf zeitaufwändigen Analysen, die eine schnelle und zuverlässige Diagnose erschweren. In diesem Beitrag beschreiben wir die rationale Entwicklung neuer Phe‐BODIPY‐Aminosäuren als kleine fluorogene Bausteine und ihre Anwendung zur Erzeugung fluoreszierender antimikrobieller Peptide für die schnelle Markierung von Candida‐Zellen im Urin. Mit Hilfe von computergestützten Berechnungen haben wir das fluorogene Verhalten von BODIPY‐substituierten aromatischen Aminosäuren analysiert und Bioaktivitäts‐ und konfokale Mikroskopieexperimente bei verschiedenen Stämmen durchgeführt, um den Nutzen und die Vielseitigkeit von Peptiden mit Phe‐BODIPYs zu bestätigen. Schließlich haben wir einen einfachen und sensitiven fluoreszensbasierten Test zum Nachweis von Candida albicans in menschlichen Urinproben entwickelt.
Collapse
Affiliation(s)
- Lorena Mendive‐Tapia
- Zentrum für EntzündungsforschungDie Universität von EdinburghEH16 4TJEdinburghGroßbritannien
| | - David Mendive‐Tapia
- Abteilung Theoretische ChemiePhysikalisch-Chemisches InstitutUniversität Heidelberg69120HeidelbergDeutschland
| | - Can Zhao
- Manchester Fungal Infection GroupAbteilung für EvolutionInfektion und GenomikM139NTManchesterGroßbritannien
| | - Doireann Gordon
- Zentrum für EntzündungsforschungDie Universität von EdinburghEH16 4TJEdinburghGroßbritannien
| | - Sam Benson
- Zentrum für EntzündungsforschungDie Universität von EdinburghEH16 4TJEdinburghGroßbritannien
| | - Michael J. Bromley
- Manchester Fungal Infection GroupAbteilung für EvolutionInfektion und GenomikM139NTManchesterGroßbritannien
| | - Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenDeutschland
| | - Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenDeutschland
| | - Adelina Kopp
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenDeutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenDeutschland
| | - Marc Vendrell
- Zentrum für EntzündungsforschungDie Universität von EdinburghEH16 4TJEdinburghGroßbritannien
| |
Collapse
|
43
|
Mendive‐Tapia L, Mendive‐Tapia D, Zhao C, Gordon D, Benson S, Bromley MJ, Wang W, Wu J, Kopp A, Ackermann L, Vendrell M. Rational Design of Phe-BODIPY Amino Acids as Fluorogenic Building Blocks for Peptide-Based Detection of Urinary Tract Candida Infections. Angew Chem Int Ed Engl 2022; 61:e202117218. [PMID: 35075763 PMCID: PMC9305947 DOI: 10.1002/anie.202117218] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 12/11/2022]
Abstract
Fungal infections caused by Candida species are among the most prevalent in hospitalized patients. However, current methods for the detection of Candida fungal cells in clinical samples rely on time-consuming assays that hamper rapid and reliable diagnosis. Herein, we describe the rational development of new Phe-BODIPY amino acids as small fluorogenic building blocks and their application to generate fluorescent antimicrobial peptides for rapid labelling of Candida cells in urine. We have used computational methods to analyse the fluorogenic behaviour of BODIPY-substituted aromatic amino acids and performed bioactivity and confocal microscopy experiments in different strains to confirm the utility and versatility of peptides incorporating Phe-BODIPYs. Finally, we have designed a simple and sensitive fluorescence-based assay for the detection of Candida albicans in human urine samples.
Collapse
Affiliation(s)
| | - David Mendive‐Tapia
- Department Theoretische ChemiePhysikalisch-Chemisches InstitutUniversität Heidelberg69120HeidelbergGermany
| | - Can Zhao
- Manchester Fungal Infection GroupDivision of EvolutionInfection and GenomicsUniversity of ManchesterM139NTManchesterUK
| | - Doireann Gordon
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Michael J. Bromley
- Manchester Fungal Infection GroupDivision of EvolutionInfection and GenomicsUniversity of ManchesterM139NTManchesterUK
| | - Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenGermany
| | - Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenGermany
| | - Adelina Kopp
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenGermany
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| |
Collapse
|
44
|
Valderrey V, Gawlitza K, Rurack K. Thiourea- and Amino-Substituted Benzoxadiazole Dyes with Large Stokes Shifts as Red-Emitting Probe Monomers for Imprinted Polymer Layers Targeting Carboxylate-Containing Antibiotics. Chemistry 2022; 28:e202104525. [PMID: 35224792 PMCID: PMC9310751 DOI: 10.1002/chem.202104525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 12/23/2022]
Abstract
Bifunctional fluorescent molecular oxoanion probes based on the benzoxadiazole (BD) chromophore are described which integrate a thiourea binding motif and a polymerizable 2-aminoethyl methacrylate unit in the 4,7-positions of the BD core. Concerted charge transfer in this electron donor-acceptor-donor architecture endows the dyes with strongly Stokes shifted (up to >250 nm) absorption and fluorescence. Binding of electron-rich carboxylate guests at the thiourea receptor leads to further analyte-induced red-shifts of the emission, shifting the fluorescence maximum of the complexes to ≥700 nm. Association constants for acetate are ranging from 1-5×105 M-1 in acetonitrile. Integration of one of the fluorescent probes through its polymerizable moiety into molecularly imprinted polymers (MIPs) grafted from the surface of submicron silica cores yielded fluorescent MIP-coated particle probes for the selective detection of antibiotics containing aliphatic carboxylate groups such as enoxacin (ENOX) at micromolar concentrations in highly polar solvents like acetonitrile.
Collapse
Affiliation(s)
- Virginia Valderrey
- Chemical and Optical Sensing DivisionBundesanstalt für Materialforschung und -prüfung (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
| | - Kornelia Gawlitza
- Chemical and Optical Sensing DivisionBundesanstalt für Materialforschung und -prüfung (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
| | - Knut Rurack
- Chemical and Optical Sensing DivisionBundesanstalt für Materialforschung und -prüfung (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
| |
Collapse
|
45
|
Abstract
Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies on selective surface biomarkers. Compared to antibodies, the fluorescent probe strategy allows the utilisation of intracellular biomarkers, providing broader options with unique chemical principles to achieve the live cell distinction. In general, fluorescent probes can be retained in cells by interacting with biomolecules, accumulating via transporters, and participating in metabolism. Based on the target difference, fluorescent probe strategy can be divided into several categories: protein-oriented live cell distinction (POLD), carbohydrate-oriented live cell distinction (COLD), DNA-oriented live cell distinction (DOLD), gating-oriented live cell distinction (GOLD), metabolism-oriented live cell distinction (MOLD) and lipid-oriented live cell distinction (LOLD). In this review, we will outline the concepts and mechanisms of different strategies, introduce their applications in cell-type discrimination, and discuss their advantages and challenges in this area. We expect this tutorial will provide a new perspective on the mechanisms of fluorescent probe strategy and facilitate the development of cell-type-specific probes.
Collapse
Affiliation(s)
- Xiao Liu
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea. .,Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea. .,Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
46
|
Barth ND, Mendive‐Tapia L, Subiros‐Funosas R, Ghashghaei O, Lavilla R, Maiorino L, He X, Dransfield I, Egeblad M, Vendrell M. A Bivalent Activatable Fluorescent Probe for Screening and Intravital Imaging of Chemotherapy-Induced Cancer Cell Death. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202113020. [PMID: 38505298 PMCID: PMC10947113 DOI: 10.1002/ange.202113020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/11/2022]
Abstract
The detection and quantification of apoptotic cells is a key process in cancer research, particularly during the screening of anticancer therapeutics and in mechanistic studies using preclinical models. Intravital optical imaging enables high-resolution visualisation of cellular events in live organisms; however, there are few fluorescent probes that can reliably provide functional readouts in situ without interference from tissue autofluorescence. We report the design and optimisation of the fluorogenic probe Apotracker Red for real-time detection of cancer cell death. The strong fluorogenic behaviour, high selectivity, and excellent stability of Apotracker Red make it a reliable optical reporter for the characterisation of the effects of anticancer drugs in cells in vitro and for direct imaging of chemotherapy-induced apoptosis in vivo in mouse models of breast cancer.
Collapse
Affiliation(s)
- Nicole D. Barth
- Centre for Inflammation ResearchThe University of EdinburghUK
| | | | | | - Ouldouz Ghashghaei
- Laboratory of Medicinal ChemistryFaculty of Pharmacy and Institute of Biomedicine (IBUB)University of BarcelonaSpain
| | - Rodolfo Lavilla
- Laboratory of Medicinal ChemistryFaculty of Pharmacy and Institute of Biomedicine (IBUB)University of BarcelonaSpain
| | - Laura Maiorino
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Xue‐Yan He
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Ian Dransfield
- Centre for Inflammation ResearchThe University of EdinburghUK
| | - Mikala Egeblad
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghUK
| |
Collapse
|
47
|
Barth ND, Mendive‐Tapia L, Subiros‐Funosas R, Ghashghaei O, Lavilla R, Maiorino L, He X, Dransfield I, Egeblad M, Vendrell M. A Bivalent Activatable Fluorescent Probe for Screening and Intravital Imaging of Chemotherapy-Induced Cancer Cell Death. Angew Chem Int Ed Engl 2022; 61:e202113020. [PMID: 34762762 PMCID: PMC8991960 DOI: 10.1002/anie.202113020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/21/2022]
Abstract
The detection and quantification of apoptotic cells is a key process in cancer research, particularly during the screening of anticancer therapeutics and in mechanistic studies using preclinical models. Intravital optical imaging enables high-resolution visualisation of cellular events in live organisms; however, there are few fluorescent probes that can reliably provide functional readouts in situ without interference from tissue autofluorescence. We report the design and optimisation of the fluorogenic probe Apotracker Red for real-time detection of cancer cell death. The strong fluorogenic behaviour, high selectivity, and excellent stability of Apotracker Red make it a reliable optical reporter for the characterisation of the effects of anticancer drugs in cells in vitro and for direct imaging of chemotherapy-induced apoptosis in vivo in mouse models of breast cancer.
Collapse
Affiliation(s)
- Nicole D. Barth
- Centre for Inflammation ResearchThe University of EdinburghUK
| | | | | | - Ouldouz Ghashghaei
- Laboratory of Medicinal ChemistryFaculty of Pharmacy and Institute of Biomedicine (IBUB)University of BarcelonaSpain
| | - Rodolfo Lavilla
- Laboratory of Medicinal ChemistryFaculty of Pharmacy and Institute of Biomedicine (IBUB)University of BarcelonaSpain
| | - Laura Maiorino
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Xue‐Yan He
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Ian Dransfield
- Centre for Inflammation ResearchThe University of EdinburghUK
| | - Mikala Egeblad
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghUK
| |
Collapse
|
48
|
Rational Design and Synthesis of Large Stokes Shift 2,6-Sulphur-Disubstituted BODIPYs for Cell Imaging. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Five new disubstituted 2,6-thioaryl-BODIPY dyes were synthesized via selective aromatic electrophilic substitution from commercially available thiophenols. The analysis of the photophysical properties via absorption and emission spectroscopy showed unusually large Stokes shifts for BODIPY fluorophores (70–100 nm), which makes them suitable probes for bioimaging. Selected compounds were evaluated for labelling primary immune cells as well as different cancer cell lines using confocal fluorescence microscopy.
Collapse
|
49
|
Ortega‐Liebana MC, Porter NJ, Adam C, Valero T, Hamilton L, Sieger D, Becker CG, Unciti‐Broceta A. Truly-Biocompatible Gold Catalysis Enables Vivo-Orthogonal Intra-CNS Release of Anxiolytics. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202111461. [PMID: 38505566 PMCID: PMC10946786 DOI: 10.1002/ange.202111461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/23/2021] [Indexed: 03/21/2024]
Abstract
Being recognized as the best-tolerated of all metals, the catalytic potential of gold (Au) has thus far been hindered by the ubiquitous presence of thiols in organisms. Herein we report the development of a truly-catalytic Au-polymer composite by assembling ultrasmall Au-nanoparticles at the protein-repelling outer layer of a co-polymer scaffold via electrostatic loading. Illustrating the in vivo-compatibility of the novel catalysts, we show their capacity to uncage the anxiolytic agent fluoxetine at the central nervous system (CNS) of developing zebrafish, influencing their swim pattern. This bioorthogonal strategy has enabled -for the first time- modification of cognitive activity by releasing a neuroactive agent directly in the brain of an animal.
Collapse
Affiliation(s)
- M. Carmen Ortega‐Liebana
- Cancer Research UK Edinburgh CentreInstitute of Genetics & CancerUniversity of EdinburghEdinburghEH4 2XUUK
| | - Nicola J. Porter
- Centre for Discovery Brain SciencesThe Chancellor's BuildingUniversity of EdinburghEdinburghEH16 4SBUK
| | - Catherine Adam
- Cancer Research UK Edinburgh CentreInstitute of Genetics & CancerUniversity of EdinburghEdinburghEH4 2XUUK
| | - Teresa Valero
- Cancer Research UK Edinburgh CentreInstitute of Genetics & CancerUniversity of EdinburghEdinburghEH4 2XUUK
| | - Lloyd Hamilton
- Centre for Discovery Brain SciencesThe Chancellor's BuildingUniversity of EdinburghEdinburghEH16 4SBUK
| | - Dirk Sieger
- Centre for Discovery Brain SciencesThe Chancellor's BuildingUniversity of EdinburghEdinburghEH16 4SBUK
| | - Catherina G. Becker
- Centre for Discovery Brain SciencesThe Chancellor's BuildingUniversity of EdinburghEdinburghEH16 4SBUK
- Center for Regenerative TherapiesTechnische Universität Dresden01307DresdenGermany
| | - Asier Unciti‐Broceta
- Cancer Research UK Edinburgh CentreInstitute of Genetics & CancerUniversity of EdinburghEdinburghEH4 2XUUK
| |
Collapse
|
50
|
Ortega‐Liebana MC, Porter NJ, Adam C, Valero T, Hamilton L, Sieger D, Becker CG, Unciti‐Broceta A. Truly-Biocompatible Gold Catalysis Enables Vivo-Orthogonal Intra-CNS Release of Anxiolytics. Angew Chem Int Ed Engl 2022; 61:e202111461. [PMID: 34730266 PMCID: PMC9299494 DOI: 10.1002/anie.202111461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/23/2021] [Indexed: 01/07/2023]
Abstract
Being recognized as the best-tolerated of all metals, the catalytic potential of gold (Au) has thus far been hindered by the ubiquitous presence of thiols in organisms. Herein we report the development of a truly-catalytic Au-polymer composite by assembling ultrasmall Au-nanoparticles at the protein-repelling outer layer of a co-polymer scaffold via electrostatic loading. Illustrating the in vivo-compatibility of the novel catalysts, we show their capacity to uncage the anxiolytic agent fluoxetine at the central nervous system (CNS) of developing zebrafish, influencing their swim pattern. This bioorthogonal strategy has enabled -for the first time- modification of cognitive activity by releasing a neuroactive agent directly in the brain of an animal.
Collapse
Affiliation(s)
- M. Carmen Ortega‐Liebana
- Cancer Research UK Edinburgh CentreInstitute of Genetics & CancerUniversity of EdinburghEdinburghEH4 2XUUK
| | - Nicola J. Porter
- Centre for Discovery Brain SciencesThe Chancellor's BuildingUniversity of EdinburghEdinburghEH16 4SBUK
| | - Catherine Adam
- Cancer Research UK Edinburgh CentreInstitute of Genetics & CancerUniversity of EdinburghEdinburghEH4 2XUUK
| | - Teresa Valero
- Cancer Research UK Edinburgh CentreInstitute of Genetics & CancerUniversity of EdinburghEdinburghEH4 2XUUK
| | - Lloyd Hamilton
- Centre for Discovery Brain SciencesThe Chancellor's BuildingUniversity of EdinburghEdinburghEH16 4SBUK
| | - Dirk Sieger
- Centre for Discovery Brain SciencesThe Chancellor's BuildingUniversity of EdinburghEdinburghEH16 4SBUK
| | - Catherina G. Becker
- Centre for Discovery Brain SciencesThe Chancellor's BuildingUniversity of EdinburghEdinburghEH16 4SBUK
- Center for Regenerative TherapiesTechnische Universität Dresden01307DresdenGermany
| | - Asier Unciti‐Broceta
- Cancer Research UK Edinburgh CentreInstitute of Genetics & CancerUniversity of EdinburghEdinburghEH4 2XUUK
| |
Collapse
|