1
|
Saidjalolov S, Chen XX, Moreno J, Cognet M, Wong-Dilworth L, Bottanelli F, Sakai N, Matile S. Asparagusic Golgi Trackers. JACS AU 2024; 4:3759-3765. [PMID: 39483219 PMCID: PMC11522900 DOI: 10.1021/jacsau.4c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 11/03/2024]
Abstract
Thiol-mediated uptake (TMU) is thought to occur through dynamic covalent cascade exchange networks. Here we show that the cascade accounting for TMU of asparagusic acid derivatives (AspA) ends in the Golgi apparatus (G) and shifts from disulfide to thioester exchange with palmitoyl transferases as the final exchange partner. As a result, AspA combined with pH-sensitive fluoresceins, red-shifted silicon-rhodamines, or mechanosensitive flipper probes selectively labels the Golgi apparatus in fluorescence microscopy images in living and fixed cells. AspA Golgi trackers work without cellular engineering and excel with speed, simplicity, generality, and compatibility with G/ER and cis/trans discrimination, morphological changes, anterograde vesicular trafficking, and superresolution imaging by stimulated emission depletion microscopy. Golgi flippers in particular can image membrane order and tension in the Golgi and, if desired, at the plasma membrane during TMU.
Collapse
Affiliation(s)
| | - Xiao-Xiao Chen
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Julia Moreno
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Michael Cognet
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Luis Wong-Dilworth
- Institute
for Chemistry and Biochemistry, Freie Universität
Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Francesca Bottanelli
- Institute
for Chemistry and Biochemistry, Freie Universität
Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Naomi Sakai
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Stefan Matile
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
2
|
Lyu F, Hakariya H, Hiraoka H, Li Z, Matsubara N, Soo Y, Hashiya F, Abe N, Shu Z, Nakamoto K, Kimura Y, Abe H. Intracellular Delivery of Antisense Oligonucleotides by Tri-Branched Cyclic Disulfide Units. ChemMedChem 2024; 19:e202400472. [PMID: 38957922 DOI: 10.1002/cmdc.202400472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Therapeutic oligonucleotides, such as antisense DNA, show promise in treating previously untreatable diseases. However, their applications are still hindered by the poor membrane permeability of naked oligonucleotides. Therefore, it is necessary to develop efficient methods for intracellular oligonucleotide delivery. Previously, our group successfully developed disulfide-based Membrane Permeable Oligonucleotides (MPON), which achieved enhanced cellular uptake and gene silencing effects through an endocytosis-free uptake mechanism. Herein, we report a new molecular design for the next generation of MPON, called trimer MPON. The trimer MPON consists of a tri-branched backbone, three α-lipoic acid units, and a spacer linker between the oligonucleotides and tri-branched cyclic disulfide unit. We describe the design, synthesis, and functional evaluation of the trimer MPON, offering new insights into the molecular design for efficient oligonucleotide delivery.
Collapse
Affiliation(s)
- Fangjie Lyu
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Hayase Hakariya
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Haruka Hiraoka
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Zhenmin Li
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Noriaki Matsubara
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Yonghao Soo
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Zhaoma Shu
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Kosuke Nakamoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
3
|
Narita M, Kohata A, Kageyama T, Watanabe H, Aikawa K, Kawaguchi D, Morihiro K, Okamoto A, Okazoe T. Fluorocarbon-DNA Conjugates for Enhanced Cellular Delivery: Formation of a Densely Packed DNA Nano-Assembly. Chembiochem 2024; 25:e202400436. [PMID: 38858172 DOI: 10.1002/cbic.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Forming nano-assemblies is essential for delivering DNA conjugates into cells, with the DNA density in the nano-assembly playing an important role in determining the uptake efficiency. In this study, we developed a strategy for the facile synthesis of DNA strands bearing perfluoroalkyl (RF) groups (RF-DNA conjugates) and investigated how they affect cellular uptake. An RF-DNA conjugate bearing a long RF group at the DNA terminus forms a nano-assembly with a high DNA density, which results in greatly enhanced cellular uptake. The uptake mechanism is mediated by clathrin-dependent endocytosis. The use of RF groups to densely assemble negatively charged DNA is a useful strategy for designing drug delivery carriers.
Collapse
Grants
- 22UT0019 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 23UT0211 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 23UT1115 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 20K05460 JSPS KAKENHI Grant-in-Aid for Scientific Research
- 23K13852 Grant-in-Aid for Early-Career Scientists
Collapse
Affiliation(s)
- Minako Narita
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Ai Kohata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Current address: School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Yokohama-shi, Kanagawa, 226-8501, Japan
| | - Taiichi Kageyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Honoka Watanabe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kohsuke Aikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Daisuke Kawaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kunihiko Morihiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Yokohama Technical Center, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
4
|
Fan CY, Wang SW, Chung C, Chen JY, Chang CY, Chen YC, Hsu TL, Cheng TJR, Wong CH. Synthesis of a dendritic cell-targeted self-assembled polymeric nanoparticle for selective delivery of mRNA vaccines to elicit enhanced immune responses. Chem Sci 2024; 15:11626-11632. [PMID: 39055027 PMCID: PMC11268467 DOI: 10.1039/d3sc06575h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/23/2024] [Indexed: 07/27/2024] Open
Abstract
Recent development of SARS-CoV-2 spike mRNA vaccines to control the pandemic is a breakthrough in the field of vaccine development. mRNA vaccines are generally formulated with lipid nanoparticles (LNPs) which are composed of several lipids with specific ratios; however, they generally lack selective delivery. To develop a selective delivery method for mRNA vaccine formulation, we reported here the synthesis of polymeric nanoparticles (PNPs) composed of a guanidine copolymer containing zwitterionic groups and a dendritic cell (DC)-targeted aryl-trimannoside ligand for encapsulation and selective delivery of an mRNA to dendritic cells. A DC-targeted SARS-CoV-2 spike mRNA-PNP vaccine was shown to elicit a stronger protective immune response in mice compared to the traditional mRNA-LNP vaccine and those without the selective delivery design. It is anticipated that this technology is generally applicable to other mRNA vaccines for DC-targeted delivery with enhanced immune response.
Collapse
Affiliation(s)
- Chen-Yo Fan
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Szu-Wen Wang
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Cinya Chung
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Jia-Yan Chen
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Chia-Yen Chang
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Yu-Chen Chen
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | | | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
- Department of Chemistry, The Scripps Research Institute La Jolla California 92037 USA
| |
Collapse
|
5
|
Wang L, Wang D, Lei W, Sun T, Gu B, Dong H, Taniguchi Y, Liu Y, Ling Y. Trigonometric Bundling Disulfide Unit Starship Synergizes More Effectively to Promote Cellular Uptake. Int J Mol Sci 2024; 25:7518. [PMID: 39062760 PMCID: PMC11277142 DOI: 10.3390/ijms25147518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
A small molecule disulfide unit technology platform based on dynamic thiol exchange chemistry at the cell membrane has the potential for drug delivery. However, the alteration of the CSSC dihedral angle of the disulfide unit caused by diverse substituents directly affects the effectiveness of this technology platform as well as its own chemical stability. The highly stable open-loop relaxed type disulfide unit plays a limited role in drug delivery due to its low dihedral angle. Here, we have built a novel disulfide unit starship based on the 3,4,5-trihydroxyphenyl skeleton through trigonometric bundling. The intracellular delivery results showed that the trigonometric bundling of the disulfide unit starship effectively promoted cellular uptake without any toxicity, which is far more than 100 times more active than that of equipment with a single disulfide unit in particular. Then, the significant reduction in cell uptake capacity (73-93%) using thiol erasers proves that the trigonometric bundling of the disulfide starship is an endocytosis-independent internalization mechanism via a dynamic covalent disulfide exchange mediated by thiols on the cell surface. Furthermore, analysis of the molecular dynamics simulations demonstrated that trigonometric bundling of the disulfide starship can significantly change the membrane curvature while pushing lipid molecules in multiple directions, resulting in a significant distortion in the membrane structure and excellent membrane permeation performance. In conclusion, the starship system we built fully compensates for the inefficiency deficiencies induced by poor dihedral angles.
Collapse
Affiliation(s)
- Lei Wang
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Dezhi Wang
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Wenzhuo Lei
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Tiantian Sun
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Bei Gu
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Han Dong
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Yosuke Taniguchi
- School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Yichang Liu
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Yong Ling
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| |
Collapse
|
6
|
Saidjalolov S, Coelho F, Mercier V, Moreau D, Matile S. Inclusive Pattern Generation Protocols to Decode Thiol-Mediated Uptake. ACS CENTRAL SCIENCE 2024; 10:1033-1043. [PMID: 38799667 PMCID: PMC11117725 DOI: 10.1021/acscentsci.3c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024]
Abstract
Thiol-mediated uptake (TMU) is an intriguing enigma in current chemistry and biology. While the appearance of cell-penetrating activity upon attachment of cascade exchangers (CAXs) has been observed by many and is increasingly being used in practice, the molecular basis of TMU is essentially unknown. The objective of this study was to develop a general protocol to decode the dynamic covalent networks that presumably account for TMU. Uptake inhibition patterns obtained from the removal of exchange partners by either protein knockdown or alternative inhibitors are aligned with original patterns generated by CAX transporters and inhibitors and patterns from alternative functions (here cell motility). These inclusive TMU patterns reveal that the four most significant CAXs known today enter cells along three almost orthogonal pathways. Epidithiodiketopiperazines (ETP) exchange preferably with integrins and protein disulfide isomerases (PDIs), benzopolysulfanes (BPS) with different PDIs, presumably PDIA3, and asparagusic acid (AspA), and antisense oligonucleotide phosphorothioates (OPS) exchange with the transferrin receptor and can be activated by the removal of PDIs with their respective inhibitors. These findings provide a solid basis to understand and use TMU to enable and prevent entry into cells.
Collapse
Affiliation(s)
| | - Filipe Coelho
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Vincent Mercier
- Department
of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Dimitri Moreau
- Department
of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Stefan Matile
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
7
|
Guo J, Chen S, Onishi Y, Shi Q, Song Y, Mei H, Chen L, Kool ET, Zhu RY. RNA Control via Redox-Responsive Acylation. Angew Chem Int Ed Engl 2024; 63:e202402178. [PMID: 38480851 DOI: 10.1002/anie.202402178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 04/05/2024]
Abstract
Incorporating stimuli-responsive components into RNA constructs provides precise spatiotemporal control over RNA structures and functions. Despite considerable advancements, the utilization of redox-responsive stimuli for the activation of caged RNAs remains scarce. In this context, we present a novel strategy that leverages post-synthetic acylation coupled with redox-responsive chemistry to exert control over RNA. To achieve this, we design and synthesize a series of acylating reagents specifically tailored for introducing disulfide-containing acyl adducts into the 2'-OH groups of RNA ("cloaking"). Our data reveal that these acyl moieties can be readily appended, effectively blocking RNA catalytic activity and folding. We also demonstrate the traceless release and reactivation of caged RNAs ("uncloaking") through reducing stimuli. By employing this strategy, RNA exhibits rapid cellular uptake, effective distribution and activation in the cytosol without lysosomal entrapment. We anticipate that our methodology will be accessible to laboratories engaged in RNA biology and holds promise as a versatile platform for RNA-based applications.
Collapse
Affiliation(s)
- Junsong Guo
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Siqin Chen
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Yoshiyuki Onishi
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Qi Shi
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Hui Mei
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Ru-Yi Zhu
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| |
Collapse
|
8
|
Chen Z, Zhang Z, Liu S, Xiao Z, Luo Y, Pan X, Feng X, Xu L. Synthesis and evaluation of antisense oligonucleotides prodrug with G-quadruplex assembly and lysosome escape capabilities for oncotherapy. Bioorg Chem 2024; 148:107475. [PMID: 38772293 DOI: 10.1016/j.bioorg.2024.107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
The applications of antisense oligonucleotides (ASOs) in rare or common diseases treatment have garnered great attention in recent years. Nevertheless, challenges associated with stability and bioavailability still persist, hampering the efficiency of ASOs. This work presents an ASO prodrug with parallel G-quadruplex assembly and lysosome escape capabilities for oncotherapy. Our findings revealed that the end-assembled quadruplex structure effectively shielded the ASO from enzymatic degradation. Meanwhile, the conjugation of maleimide within the quadruplex enhanced cellular uptake, potentially offering an alternative cell entry mechanism that circumvents lysosome involvement. Notably, an optimized molecule, Mal2-G4-ASO, exhibited remarkable therapeutic effects both in vitro and in vivo. This work presents a promising avenue for enhancing the activity of nucleic acid drugs in oncotherapy and potentially other disease contexts.
Collapse
Affiliation(s)
- Zuyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; China Medical University, School of Pharmacy, Shenyang 110122, China
| | - Zhe Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Shuangshuang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; China Medical University, School of Pharmacy, Shenyang 110122, China
| | - Zhenyu Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Xiaochen Pan
- Beijing Easyresearch Technology Limited, Beijing 100850, China
| | - Xuesong Feng
- China Medical University, School of Pharmacy, Shenyang 110122, China.
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
9
|
Youssef S, Tsang E, Samanta A, Kumar V, Gothelf KV. Reversible Protection and Targeted Delivery of DNA Origami with a Disulfide-Containing Cationic Polymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301058. [PMID: 37916910 DOI: 10.1002/smll.202301058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/08/2023] [Indexed: 11/03/2023]
Abstract
DNA nanostructures have considerable biomedical potential as intracellular delivery vehicles as they are highly homogeneous and can be functionalized with high spatial resolution. However, challenges like instability under physiological conditions, limited cellular uptake, and lysosomal degradation limit their use. This paper presents a bio-reducible, cationic polymer poly(cystaminebisacrylamide-1,6-diaminohexane) (PCD) as a reversible DNA origami protector. PCD displays a stronger DNA affinity than other cationic polymers. DNA nanostructures with PCD protection are shielded from low salt conditions and DNase I degradation and show a 40-fold increase in cell-association when linked to targeting antibodies. Confocal microscopy reveals a potential secondary cell uptake mechanism, directly delivering the nanostructures to the cytoplasm. Additionally, PCD can be removed by cleaving its backbone disulfides using the intracellular reductant, glutathione. Finally, the application of these constructs is demonstrated for targeted delivery of a cytotoxic agent to cancer cells, which efficiently decreases their viability. The PCD protective agent that is reported here is a simple and efficient method for the stabilization of DNA origami structures. With the ability to deprotect the DNA nanostructures upon entry of the intracellular space, the possibility for the use of DNA origami in pharmaceutical applications is enhanced.
Collapse
Affiliation(s)
- Sarah Youssef
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Emily Tsang
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Anirban Samanta
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Vipin Kumar
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
10
|
Luo Y, Su L, Yang H, Geng A, Bai S, Zhou J. A disulfide molecule-vancomycin nanodrug delivery system efficiently eradicates intracellular bacteria. J Mater Chem B 2024; 12:2334-2345. [PMID: 38327236 DOI: 10.1039/d3tb02430j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Intracellular bacteria often lead to chronic and recurrent infections; however, most of the known antibiotics have poor efficacy against intracellular bacteria due to their poor cell membrane penetration efficiency into the cytosol. Here, a thiol-mediated nanodrug delivery system, named Van-DM NPs, was developed to improve vancomycin's penetration efficiency and intracellular antibacterial activities. Van-DM NPs were prepared through self-assembly of vancomycin (Van) and the disulfide molecule (DM) in NaOH buffer solution. On the one hand, the disulfide exchange reaction between Van-DM NPs and the bacterial surface enhances vancomycin accumulation in bacteria, increasing the local concentration of vancomycin. On the other hand, the disulfide exchange reaction between Van-DM NPs and the mammalian cell membrane triggered the translocation of Van-DM NPs across the mammalian cell membrane into the cell cytosol. These dual mechanisms promote antibacterial activities of vancomycin against both extracellular and intracellular bacteria S. aureus. Furthermore, in an intravenous S. aureus infection mouse model, Van-DM NPs exhibited high antibacterial capability and efficiently reduced the bacterial load in liver and spleen, where intracellular bacteria tend to reside. Altogether, the reported Van-DM NPs would be highly promising against intracellular pathogenic infections.
Collapse
Affiliation(s)
- Yuting Luo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Liu Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Hui Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Aizhen Geng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Shumeng Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Jie Zhou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
- China Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
11
|
Gong S, Qiu J, Thayumanavan S. Self-Assembly of Epitope-Tagged Proteins and Antibodies for Delivering Biologics to Antigen Presenting Cells. J Am Chem Soc 2024; 146:33-38. [PMID: 38147631 PMCID: PMC11131140 DOI: 10.1021/jacs.3c09334] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Inspired by the immune system's own strategy for macrophage activation, we describe here a simple self-assembly strategy for generating artificial immune complexes. The built-in recognition domains in the antibody, viz. the Fab and Fc domains, are judiciously leveraged for cargo conjugation to generate the nanoassembly and macrophage targeting, respectively. A responsive linker is engineered into the nanoassembly for releasing the protein cargo inside the macrophages, while ensuring stability during delivery. The design principles are simple and versatile to be applicable to a range of biologics, from small protein toxins to large enzymes, with high loading capacity. This self-assembly platform has the potential for delivering biologics to immune cells with implications in immunotherapy.
Collapse
Affiliation(s)
- Shuai Gong
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jingyi Qiu
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Yu L, Xu Y, Al-Amin M, Jiang S, Sample M, Prasad A, Stephanopoulos N, Šulc P, Yan H. CytoDirect: A Nucleic Acid Nanodevice for Specific and Efficient Delivery of Functional Payloads to the Cytoplasm. J Am Chem Soc 2023; 145:27336-27347. [PMID: 38055928 PMCID: PMC10789493 DOI: 10.1021/jacs.3c07491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Direct and efficient delivery of functional payloads such as chemotherapy drugs, siRNA, or small-molecule inhibitors into the cytoplasm, bypassing the endo/lysosomal trapping, is a challenging task for intracellular medicine. Here, we take advantage of the programmability of DNA nanotechnology to develop a DNA nanodevice called CytoDirect, which incorporates disulfide units and human epidermal growth factor receptor 2 (HER2) affibodies into a DNA origami nanostructure, enabling rapid cytosolic uptake into targeted cancer cells and deep tissue penetration. We further demonstrated that therapeutic oligonucleotides and small-molecule chemotherapy drugs can be easily delivered by CytoDirect and showed notable effects on gene knockdown and cell apoptosis, respectively. This study demonstrates the synergistic effect of disulfide and HER2 affibody modifications on the rapid cytosolic delivery of DNA origami and its payloads to targeted cells and deep tissues, thereby expanding the delivery capabilities of DNA nanostructures in a new direction for disease treatment.
Collapse
Affiliation(s)
- Lu Yu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Yang Xu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Md Al-Amin
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Shuoxing Jiang
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Matthew Sample
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Abhay Prasad
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Nicholas Stephanopoulos
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Hao Yan
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
13
|
Takatsu M, Morihiro K, Watanabe H, Yuki M, Hattori T, Noi K, Aikawa K, Noguchi K, Yohda M, Okazoe T, Okamoto A. Cellular Penetration and Intracellular Dynamics of Perfluorocarbon-Conjugated DNA/RNA as a Potential Means of Conditional Nucleic Acid Delivery. ACS Chem Biol 2023; 18:2590-2598. [PMID: 37981738 DOI: 10.1021/acschembio.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Nucleic acid-based therapeutics represent a novel approach for controlling gene expression. However, a practical delivery system is required that overcomes the poor cellular permeability and intercellular instability of nucleic acids. Perfluorocarbons (PFCs) are highly stable structures that can readily traverse the lipid membrane of cells. Thus, PFC-DNA/RNA conjugates have properties that offer a potential means of delivering nucleic acid therapeutics, although the cellular dynamics of the conjugates remain unknown. Here, we performed systematic analysis of the cellular permeability of sequence-controlled PFC-DNA conjugates (N[PFC]n-DNA, n = 1,2,3,4,5) that can be synthesized by conventional phosphoramidite chemistry. We showed that DNA conjugates with two or more PFC-containing units (N[PFC]n≥2-DNA) penetrated HeLa cells without causing cellular damage. Imaging analysis along with quantitative flow cytometry analysis revealed that N[PFC]2-DNA rapidly passes through the cell membrane and is evenly distributed within the cytoplasm. Moreover, N[PFC]2-modified cyclin B1-targeting siRNA promoted gene knockdown efficacy of 30% compared with naked siRNA. A similar cell penetration without associated toxicity was consistent among the seven different human cell lines tested. These unique cellular environmental properties make N[PFC]2-DNA/RNA a potential nucleic acid delivery platform that can meet a wide range of applications.
Collapse
Affiliation(s)
- Masako Takatsu
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, , Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kunihiko Morihiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Honoka Watanabe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mizue Yuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takara Hattori
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kentaro Noi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kohsuke Aikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- Yokohama Technical Center, AGC Inc. Yokohama, Kanagawa 230-0045, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
14
|
Yu D, Wang Y, Qu S, Zhang N, Nie K, Wang J, Huang Y, Sui D, Yu B, Qin M, Xu FJ. Controllable Star Cationic Poly(Disulfide)s Achieve Genetically Cascade Catalytic Therapy by Delivering Bifunctional Fusion Plasmids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307190. [PMID: 37691439 DOI: 10.1002/adma.202307190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Indexed: 09/12/2023]
Abstract
The absence of effective delivery vectors and suitable multifunctional plasmids limits cancer gene therapy development. The star cationic poly(disulfide)s with β-cyclodextrin cores (termed β-CD-g-PSSn ) for caveolae-mediated endocytosis are designed and prepared via mild and controllable disulfide exchange polymerization for high-efficacy cancer therapy. Then, β-CD-g-PSSn /pDNA complexes are transported to the Golgi apparatus and endoplasmic reticulum. Disulfides in β-CD-g-PSSn vectors are degraded by glutathione in tumor cells, which not only promotes intracellular pDNA release but also reduces in vitro and in vivo toxicity. One bifunctional fusion plasmid pCATKR, which expresses catalase (CAT) fused to KillerRed (KR) (CATKR) in the same target cell, is also proposed for genetically cascade catalytic therapy. When compared with pCAT-KR (plasmid expressing CAT and KR separately in the same cell), delivered pCATKR decomposes hydrogen peroxide, alleviates tumor hypoxia more effectively, generates stronger reactive oxygen species (ROS) capabilities under moderate irradiation, and leads to robust antitumor cascade photodynamic effects. These impressive results are attributed to fusion protein design, which shortens the distance between CAT and KR catalytic centers and leads to improved ROS production efficiency. This work provides a promising strategy by delivering a catalytic cascade functional plasmid via a high-performance vector with biodegradable and caveolae-mediated endocytosis characteristics.
Collapse
Affiliation(s)
- Dan Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuanchen Wang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuang Qu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Na Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kaili Nie
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junkai Wang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yichun Huang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dandan Sui
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meng Qin
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- Cancer Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
15
|
Bouffard J, Coelho F, Sakai N, Matile S. Dynamic Phosphorus: Thiolate Exchange Cascades with Higher Phosphorothioates. Angew Chem Int Ed Engl 2023:e202313931. [PMID: 37847524 DOI: 10.1002/anie.202313931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
In this study, we introduce phosphorus, a pnictogen, as an exchange center for dynamic covalent chemistry. Cascade exchange of neutral phosphorotri- and -tetrathioates with thiolates is demonstrated in organic solvents, aqueous micellar systems, and in living cells. Exchange rates increase with the pH value, electrophilicity of the exchange center, and nucleophilicity of the exchangers. Molecular walking of the dynamic phosphorus center along Hammett gradients is simulated by the sequential addition of thiolate exchangers. Compared to phosphorotrithioates, tetrathioates are better electrophiles with higher exchange rates. Dynamic phosphorotri- and -tetrathioates are non-toxic to HeLa Kyoto cells and participate in the dynamic networks that account for thiol-mediated uptake into living cells.
Collapse
Affiliation(s)
- Jules Bouffard
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Filipe Coelho
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Zhou J, Zhang J, Chen S, Lin Q, Zhu R, Wang L, Chen X, Li J, Yang H. Direct cytoplasmic delivery of RNAi therapeutics through a non-lysosomal pathway for enhanced gene therapy. Acta Biomater 2023; 170:401-414. [PMID: 37625679 DOI: 10.1016/j.actbio.2023.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The first approved RNAi therapeutics, ONPATTRO, in 2017 moves the concept of RNA interference (RNAi) therapy from research to clinical reality, raising the hopes for the treatment of currently incurable diseases. However, RNAi therapeutics are still facing two main challenges-susceptibility to enzymatic degradation and low ability to escape from endo/lysosome into the cytoplasm. Therefore, we developed disulfide-based nanospheres (DBNPs) as universal vehicles to achieve efficient RNA delivery to address these problems. Notably, the DBNPs possess unique and desirable features, including improved resistance to nuclease degradation, direct cytoplasmic delivery through thiol-mediated cellular uptake, and cytosolic environment-responsive release, greatly enhancing the bioavailability of RNA therapeutics. Additionally, DBNPs are superior in terms of overcoming formidable physiological barriers, including vascular barriers and impermeable tumor tissues. Owning to these advantages, the DBNPs exhibit efficient gene silencing effect when delivering either small interfering RNA (siRNA) or microRNA in various cell lines and generate remarkable growth inhibition in the zebrafish and mouse model of pancreatic tumors as compared to traditional delivery vectors, such as PEI. Therefore, DBNPs have potential application prospect in RNAi therapy both in vitro and in vivo. STATEMENT OF SIGNIFICANCE: RNA interference (RNAi) therapeutics could target and alter any disease-related mRNA translation, thus have great potential in clinical application. Delivery efficiency of RNA modalities into cell cytoplasm is the main problem that currently limit RNAi therapeutics to release their full potential. Most of the known delivery materials suffer from the endo/lysosomal entrapment and enzymatic degradation during endocytosis-dependent uptake, resulting unsatisfied efficiency of the cytoplasmic release. Here, we developed disulfide-based nanospheres could directly transfer RNA modalities into the cytoplasm and significantly enhance the delivery efficiency, thus holding great potential in RNAi therapy.
Collapse
Affiliation(s)
- Jie Zhou
- China Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, the School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 3501116, China
| | - Junjie Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 3501116, China
| | - Senyan Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Qinghua Lin
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 3501116, China
| | - Liping Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 3501116, China
| | - Xiaole Chen
- China Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, the School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 3501116, China
| |
Collapse
|
17
|
Weidner J, Kolosionek E, Holmila R, Ax E, Garreau M, Gnerlich F, Olsson H, Czechtizky W, Vollmer S, Rydzik AM. Gymnotic uptake of AntimiRs alter microRNA-34a levels in 2D and 3D epithelial cell culture. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:898-907. [PMID: 37680982 PMCID: PMC10480572 DOI: 10.1016/j.omtn.2023.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
MicroRNAs are attractive therapeutic targets in many diseases, including chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Among microRNA inhibitors antimiRs have been proven successful in lowering aberrant microRNA levels in the clinic. We present a set of antimiRs targeting miR-34a, which has been shown to be dysregulated in chronic lung diseases. The tool compounds were taken up by a bronchial epithelial cell line and primary human bronchial epithelial cells, followed by efficient knockdown of miR-34a. Similar results were observed in 3D differentiated primary human bronchial epithelial cells cultured at the air-liquid interface. Varying chemical properties of antimiRs had significant impact on cellular uptake and potency, resulting in effective tool compounds for use in lung-relevant cellular systems. This report demonstrates gymnotic antimiR uptake and activity in 3D epithelial cell culture after apical administration, mimicking inhalation conditions.
Collapse
Affiliation(s)
- Julie Weidner
- Translational Science Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Ewa Kolosionek
- Bioscience COPD/IPF, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Reetta Holmila
- Bioscience COPD/IPF, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Elisabeth Ax
- Translational Science Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Marion Garreau
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Felix Gnerlich
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Henric Olsson
- Translational Science Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Werngard Czechtizky
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Stefan Vollmer
- Bioscience COPD/IPF, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Anna M. Rydzik
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| |
Collapse
|
18
|
Mangla P, Vicentini Q, Biscans A. Therapeutic Oligonucleotides: An Outlook on Chemical Strategies to Improve Endosomal Trafficking. Cells 2023; 12:2253. [PMID: 37759475 PMCID: PMC10527716 DOI: 10.3390/cells12182253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The potential of oligonucleotide therapeutics is undeniable as more than 15 drugs have been approved to treat various diseases in the liver, central nervous system (CNS), and muscles. However, achieving effective delivery of oligonucleotide therapeutics to specific tissues still remains a major challenge, limiting their widespread use. Chemical modifications play a crucial role to overcome biological barriers to enable efficient oligonucleotide delivery to the tissues/cells of interest. They provide oligonucleotide metabolic stability and confer favourable pharmacokinetic/pharmacodynamic properties. This review focuses on the various chemical approaches implicated in mitigating the delivery problem of oligonucleotides and their limitations. It highlights the importance of linkers in designing oligonucleotide conjugates and discusses their potential role in escaping the endosomal barrier, a bottleneck in the development of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Priyanka Mangla
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| | - Quentin Vicentini
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
- Department of Laboratory Medicine, Clinical Research Centre, Karolinska Institute, 141 57 Stockholm, Sweden
| | - Annabelle Biscans
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| |
Collapse
|
19
|
Fan M, Huang H, Xu Y, Wang S, Chen S, Luo Z, Xu J. mRNA-activated DNAzyme nanoprobe for tumor cell precise imaging and gene therapy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4114-4118. [PMID: 37555320 DOI: 10.1039/d3ay00937h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A novel Au-nucleic acid nanoprobe, catalyzed by mRNA, has been developed for live cell imaging and precise treatment of tumor cells. This nanoprobe exhibits the remarkable ability to differentiate between tumor cells and normal cells through live cell mRNA imaging, while selectively inducing apoptosis in tumor cells.
Collapse
Affiliation(s)
- Mingzhu Fan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, China.
| | | | - Yang Xu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, China.
| | - Shulong Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, China.
| | - Shengyu Chen
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, China.
| | - Zhihui Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, China.
| | - Jiayao Xu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, China.
| |
Collapse
|
20
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
21
|
Dohmen C, Ihmels H. Switching between DNA binding modes with a photo- and redox-active DNA-targeting ligand, part II: the influence of the substitution pattern. Org Biomol Chem 2023. [PMID: 37401249 DOI: 10.1039/d3ob00879g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
A disulfide-functionalized photoactive DNA ligand is presented that enables the control of its DNA-binding properties by a combination of a photocycloaddition reaction and the redox reactivity of the sulfide/disulfide functionalities. In particular, the initially applied ligand binds to DNA by a combination of intercalation and groove-binding of separate benzo[b]quinolizinium units. The association to DNA is interrupted by an intramolecular [4 + 4] photocycloaddition to the non-binding head-to-head cyclomers. In turn, the subsequent cleavage of these cyclomers with dithiothreitol (DTT) regains temporarily a DNA-intercalating benzoquinolizinium ligand that is eventually converted into a non-binding benzothiophene. As a special feature, this sequence of controlled deactivation, recovery and internal shut-off of DNA-binding properties can be performed directly in the presence of DNA.
Collapse
Affiliation(s)
- Christoph Dohmen
- Department of Chemistry - Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Heiko Ihmels
- Department of Chemistry - Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| |
Collapse
|
22
|
Coelho F, Saidjalolov S, Moreau D, Thorn-Seshold O, Matile S. Inhibition of Cell Motility by Cell-Penetrating Dynamic Covalent Cascade Exchangers: Integrins Participate in Thiol-Mediated Uptake. JACS AU 2023; 3:1010-1016. [PMID: 37124287 PMCID: PMC10131202 DOI: 10.1021/jacsau.3c00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Integrins are cell surface proteins responsible for cell motility. Inspired by the rich disulfide exchange chemistry of integrins, we show here the inhibition of cell migration by cascade exchangers (CAXs), which also enable and inhibit cell penetration by thiol-mediated uptake. Fast-moving CAXs such as reversible Michael acceptor dimers, dithiabismepanes, and bioinspired epidithiodiketopiperazines are best, much better than Ellman's reagent. The implication that integrins participate in thiol-mediated uptake is confirmed by reduced uptake in integrin-knockdown cells. Although thiol-mediated uptake is increasingly emerging as a unifying pathway to bring matter into cells, its molecular basis is essentially unknown. These results identify the integrin superfamily as experimentally validated general cellular partners in the dynamic covalent exchange cascades that are likely to account for thiol-mediated uptake. The patterns identified testify to the complexity of the dynamic covalent networks involved. This work also provides chemistry tools to explore cell motility and expands the drug discovery potential of CAXs from antiviral toward antithrombotic and antitumor perspectives.
Collapse
Affiliation(s)
- Filipe Coelho
- Department
of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | | | - Dimitri Moreau
- Department
of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Oliver Thorn-Seshold
- Department
of Pharmacy, Ludwig-Maximilians University
of Munich, 81377 Munich, Germany
| | - Stefan Matile
- Department
of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
23
|
Ding W, Yang X, Lin H, Xu Z, Wang J, Dai J, Xu C, Chen F, Wen X, Chai W, Ruan G. Mechanism-Driven Technology Development for Solving the Intracellular Delivery Problem of Hard-To-Transfect Cells. NANO LETTERS 2023. [PMID: 36971675 DOI: 10.1021/acs.nanolett.2c04834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The so-called "hard-to-transfect cells" are well-known to present great challenges to intracellular delivery, but detailed understandings of the delivery behaviors are lacking. Recently, we discovered that vesicle trapping is a likely bottleneck of delivery into a type of hard-to-transfect cells, namely, bone-marrow-derived mesenchymal stem cells (BMSCs). Driven by this insight, herein, we screened various vesicle trapping-reducing methods on BMSCs. Most of these methods failed in BMSCs, although they worked well in HeLa cells. In stark contrast, coating nanoparticles with a specific form of poly(disulfide) (called PDS1) nearly completely circumvented vesicle trapping in BMSCs, by direct cell membrane penetration mediated by thiol-disulfide exchange. Further, in BMSCs, PDS1-coated nanoparticles dramatically enhanced the transfection efficiency of plasmids of fluorescent proteins and substantially improved osteoblastic differentiation. In addition, mechanistic studies suggested that higher cholesterol content in plasma membranes of BMSCs might be a molecular-level reason for the greater difficulty of vesicle escape in BMSCs.
Collapse
Affiliation(s)
- Wanchuan Ding
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Xuan Yang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Nanobiotechnology & Nanomedicine Center, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Cell & Gene Therapy Center, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Huoyue Lin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Zixing Xu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Nanobiotechnology & Nanomedicine Center, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Cell & Gene Therapy Center, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Jun Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Jie Dai
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Can Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaowei Wen
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Nanobiotechnology & Nanomedicine Center, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Cell & Gene Therapy Center, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weiran Chai
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Gang Ruan
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Nanobiotechnology & Nanomedicine Center, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Cell & Gene Therapy Center, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Institute of Materials Engineering of Nanjing University, Nantong 210033, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518063, China
| |
Collapse
|
24
|
Tanaka Y, Tanioku Y, Nakayama T, Aso K, Yamaguchi T, Kamada H, Obika S. Synthesis of multivalent fatty acid-conjugated antisense oligonucleotides: Cell internalization, physical properties, and in vitro and in vivo activities. Bioorg Med Chem 2023; 81:117192. [PMID: 36780806 DOI: 10.1016/j.bmc.2023.117192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Herein, we describe the design and synthesis of multi-conjugatable fatty acid monomer phosphoramidites and their conjugation to antisense oligonucleotides (ASOs). Multivalent long-chain fatty acid conjugation improved the cellular uptake of ASOs but decreased in vitro activity due to alterations in physical properties and cellular localization. In addition, multivalently fatty acid-conjugated ASOs showed different organ specificity compared with that of unconjugated ASO in in vivo experiment. Although optimization of the linker structure between the fatty acid moiety and the ASO may be required, divalent long-chain fatty acid conjugation provides a new approach to increase endocytosis, thereby potentially improving the activity of therapeutic ASOs.
Collapse
Affiliation(s)
- Yuya Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yurika Tanioku
- School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taisuke Nakayama
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kotomi Aso
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Haruhiko Kamada
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
25
|
Shybeka I, Maynard JRJ, Saidjalolov S, Moreau D, Sakai N, Matile S. Dynamic Covalent Michael Acceptors to Penetrate Cells: Thiol-Mediated Uptake with Tetrel-Centered Exchange Cascades, Assisted by Halogen-Bonding Switches. Angew Chem Int Ed Engl 2022; 61:e202213433. [PMID: 36272154 PMCID: PMC10098706 DOI: 10.1002/anie.202213433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Chalcogen-centered cascade exchange chemistry is increasingly understood to account for thiol-mediated uptake, that is, the ability of reversibly thiol-reactive agents to penetrate cells. Here, reversible Michael acceptors are shown to enable and inhibit thiol-mediated uptake, including the cytosolic delivery of proteins. Dynamic cyano-cinnamate dimers rival the best chalcogen-centered inhibitors. Patterns generated in inhibition heatmaps reveal contributions from halogen-bonding switches that occur independent from the thyroid transporter MCT8. The uniqueness of these patterns supports that the entry of tetrel-centered exchangers into cells differs from chalcogen-centered systems. These results expand the chemical space of thiol-mediated uptake and support the existence of a universal exchange network to bring matter into cells, abiding to be decoded for drug delivery and drug discovery in the broadest sense.
Collapse
Affiliation(s)
- Inga Shybeka
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - John R. J. Maynard
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Saidbakhrom Saidjalolov
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Dimitri Moreau
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Naomi Sakai
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Stefan Matile
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
26
|
Zhang Z, Ren H, Chen Z, Zhang Y, Zhang Z, Luo Y, Wang S, Feng X, Xu L. Dumbbell-Shaped Antisense Oligonucleotide Prodrugs Showed Improved Antinuclease Stability and Anticancer Efficacy. Mol Pharm 2022; 19:3915-3921. [DOI: 10.1021/acs.molpharmaceut.2c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhe Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Hongqian Ren
- Department of Clinical Research Center, Dazhou Central Hospital, Sichuan 635000, China
| | - Zuyi Chen
- School of Pharmacy, China Medical University, Shenyang 110122, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Yaling Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Zhuolin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Shiyuan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Xuesong Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| |
Collapse
|
27
|
Mou Q, Xue X, Ma Y, Banik M, Garcia V, Guo W, Wang J, Song T, Chen LQ, Lu Y. Efficient delivery of a DNA aptamer-based biosensor into plant cells for glucose sensing through thiol-mediated uptake. SCIENCE ADVANCES 2022; 8:eabo0902. [PMID: 35767607 PMCID: PMC9242441 DOI: 10.1126/sciadv.abo0902] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DNA aptamers have been widely used as biosensors for detecting a variety of targets. Despite decades of success, they have not been applied to monitor any targets in plants, even though plants are a major platform for providing oxygen, food, and sustainable products ranging from energy fuels to chemicals, and high-value products such as pharmaceuticals. A major barrier to progress is a lack of efficient methods to deliver DNA into plant cells. We herein report a thiol-mediated uptake method that more efficiently delivers DNA into Arabidopsis and tobacco leaf cells than another state-of-the-art method, DNA nanostructures. Such a method allowed efficient delivery of a glucose DNA aptamer sensor into Arabidopsis for sensing glucose. This demonstration opens a new avenue to apply DNA aptamer sensors for functional studies of various targets, including metabolites, plant hormones, metal ions, and proteins in plants for a better understanding of the biodistribution and regulation of these species and their functions.
Collapse
Affiliation(s)
- Quanbing Mou
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Xueyi Xue
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuan Ma
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Mandira Banik
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Valeria Garcia
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Weijie Guo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Jiang Wang
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tingjie Song
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Li-Qing Chen
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Corresponding author. (Y.L.); (L.-Q.C.)
| | - Yi Lu
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
- Corresponding author. (Y.L.); (L.-Q.C.)
| |
Collapse
|
28
|
Zhu Y, Lin M, Hu W, Wang J, Zhang ZG, Zhang K, Yu B, Xu FJ. Controllable Disulfide Exchange Polymerization of Polyguanidine for Effective Biomedical Applications by Thiol-Mediated Uptake. Angew Chem Int Ed Engl 2022; 61:e202200535. [PMID: 35304808 DOI: 10.1002/anie.202200535] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 01/13/2023]
Abstract
New preparation methods of vectors are the key to developing the next generation of biomacromolecule delivery systems. In this study, a controllable disulfide exchange polymerization was established to obtain low-toxicity and efficient bioreducible polyguanidines (mPEG225 -b-PSSn , n=13, 26, 39, 75, 105) by regulating the concentration of activated nucleophiles and reaction time under mild reaction conditions. The relationship between the degrees of polymerization and biocompatibility was studied to identify the optimal polyguanidine mPEG225 -b-PSS26 . Such polyguanidine exhibited good in vitro performance in delivering different functional nucleic acids. The impressive therapeutic effects of mPEG225 -b-PSS26 were further verified in the 4T1 tumor-bearing mice as well as the mice with full-thickness skin defects. Controllable disulfide exchange polymerization provides an attractive strategy for the construction of new biomacromolecule delivery systems.
Collapse
Affiliation(s)
- Yiwen Zhu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mengyu Lin
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenting Hu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junkai Wang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
29
|
Chen N, He Y, Zang M, Zhang Y, Lu H, Zhao Q, Wang S, Gao Y. Approaches and materials for endocytosis-independent intracellular delivery of proteins. Biomaterials 2022; 286:121567. [DOI: 10.1016/j.biomaterials.2022.121567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
|
30
|
Kato T, Lim B, Cheng Y, Pham AT, Maynard J, Moreau D, Poblador-Bahamonde AI, Sakai N, Matile S. Cyclic Thiosulfonates for Thiol-Mediated Uptake: Cascade Exchangers, Transporters, Inhibitors. JACS AU 2022; 2:839-852. [PMID: 35557769 PMCID: PMC9088311 DOI: 10.1021/jacsau.1c00573] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 05/16/2023]
Abstract
Thiol-mediated uptake is emerging as a powerful method to penetrate cells. Cyclic oligochalcogenides (COCs) have been identified as privileged scaffolds to enable and inhibit thiol-mediated uptake because they can act as dynamic covalent cascade exchangers, i.e., every exchange produces a new, covalently tethered exchanger. In this study, our focus is on the essentially unexplored COCs of higher oxidation levels. Quantitative characterization of the underlying dynamic covalent exchange cascades reveals that the initial ring opening of cyclic thiosulfonates (CTOs) proceeds at a high speed even at a low pH. The released sulfinates exchange with disulfides in aprotic but much less in protic environments. Hydrophobic domains were thus introduced to direct CTOs into hydrophobic pockets to enhance their reactivity. Equipped with such directing groups, fluorescently labeled CTOs entered the cytosol of living cells more efficiently than the popular asparagusic acid. Added as competitive agents, CTOs inhibit the uptake of various COC transporters and SARS-CoV-2 lentivectors. Orthogonal trends found with different transporters support the existence of multiple cellular partners to account for the diverse expressions of thiol-mediated uptake. Dominant self-inhibition and high activity of dimers imply selective and synergistic exchange in hydrophobic pockets as distinguishing characteristics of thiol-mediated uptake with CTOs. The best CTO dimers with hydrophobic directing groups inhibit the cellular entry of SARS-CoV-2 lentivectors with an IC50 significantly lower than the previous best CTO, below the 10 μM threshold and better than ebselen. Taken together, these results identify CTOs as an intriguing motif for use in cytosolic delivery, as inhibitors of lentivector entry, and for the evolution of dynamic covalent networks in the broadest sense, with reactivity-based selectivity of cascade exchange emerging as a distinguishing characteristic that deserves further attention.
Collapse
|
31
|
Xu FJ, Zhu Y, Lin M, Hu W, Wang J, Zhang ZG, Zhang K, Yu B. Controllable Disulfide Exchange Polymerization of Polyguanidine for Effective Biomedical Applications by Thiol‐Mediated Uptake. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fu-Jian Xu
- Beijing University of Chemical Technology College of Materials and Engineering Beijing 100029 100029 Beijing CHINA
| | - Yiwen Zhu
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Mengyu Lin
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Wenting Hu
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Junkai Wang
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Zhi-Guo Zhang
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Kai Zhang
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Bingran Yu
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| |
Collapse
|
32
|
Zhang R, Nie T, Fang Y, Huang H, Wu J. Poly(disulfide)s: From Synthesis to Drug Delivery. Biomacromolecules 2021; 23:1-19. [PMID: 34874705 DOI: 10.1021/acs.biomac.1c01210] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioresponsive polymers have been widely used in drug delivery because of their degradability. For example, poly(disulfide)s with repeating disulfide bonds in the main chain have attracted considerable research attention. The characteristics of the disulfide bonds, including their dynamic and reversible properties and their responsiveness to stimuli such as reductants, light, heat, and mechanical force, make them ideal platforms for on-demand drug delivery. This review introduces the synthesis methods and applications of poly(disulfide)s. Furthermore, the synthesis methods of poly(disulfide)s are classified on the basis of the monomers used: oxidative step-growth polymerization with dithiols, ring-opening polymerization with cyclic disulfides, and polymerization with linear disulfides. In addition, recent advances in poly(disulfide)s for the delivery of small-molecule or biomacromolecular drugs are discussed. Quantum-dot-loaded poly(disulfide) delivery systems for imaging are also included. This review provides an overview of the various design strategies employed in the construction of poly(disulfide) platforms to inspire new applications in the field of drug delivery.
Collapse
Affiliation(s)
- Ruhe Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Tianqi Nie
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
33
|
Martinent R, Tawffik S, López-Andarias J, Moreau D, Laurent Q, Matile S. Dithiolane quartets: thiol-mediated uptake enables cytosolic delivery in deep tissue. Chem Sci 2021; 12:13922-13929. [PMID: 34760179 PMCID: PMC8549803 DOI: 10.1039/d1sc04828g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
The cytosolic delivery of various substrates in 3D multicellular spheroids by thiol-mediated uptake is reported. This is important because most orthodox systems, including polycationic cell-penetrating peptides, fail to deliver efficiently into deep tissue. The grand principles of supramolecular chemistry, that is the pH dependence of dynamic covalent disulfide exchange with known thiols on the transferrin receptor, are proposed to account for transcytosis into deep tissue, while the known but elusive exchange cascades along the same or other partners assure cytosolic delivery in kinetic competition. For quantitative detection in the cytosol, the 2D chloroalkane penetration assay (CAPA) is translated to 3D deep tissue. The targeted delivery of quantum dots, otherwise already troublesome in 2D culture, and the controlled release of mechanophores are realized to exemplify the power of thiol-mediated uptake into spheroids. As transporters, dithiolane quartets on streptavidin templates are introduced as modular motifs. Built from two amino acids only, the varied stereochemistry and peptide sequence are shown to cover maximal functional space with minimal structural change, i.e., constitutional isomers. Reviving a classic in peptide chemistry, this templated assembly of β quartets promises to expand streptavidin biotechnology in new directions, while the discovery of general cytosolic delivery in deep tissue as an intrinsic advantage further enhances the significance and usefulness of thiol-mediated uptake.
Collapse
Affiliation(s)
- Rémi Martinent
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Salman Tawffik
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Javier López-Andarias
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Dimitri Moreau
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Quentin Laurent
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| |
Collapse
|
34
|
Hiraoka H, Shu Z, Tri Le B, Masuda K, Nakamoto K, Fangjie L, Abe N, Hashiya F, Kimura Y, Shimizu Y, Veedu RN, Abe H. Antisense Oligonucleotide Modified with Disulfide Units Induces Efficient Exon Skipping in mdx Myotubes through Enhanced Membrane Permeability and Nucleus Internalization. Chembiochem 2021; 22:3437-3442. [PMID: 34636471 DOI: 10.1002/cbic.202100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/09/2021] [Indexed: 11/07/2022]
Abstract
We have found that antisense oligonucleotides and siRNA molecules modified with repeat structures of disulfide units can be directly introduced into the cytoplasm and exhibit a suppressive effect on gene expression. In this study, we analyzed the mechanism of cellular uptake of these membrane-permeable oligonucleotides (MPONs). Time-course analysis by confocal microscopy showed that the uptake of MPONs from the plasma membrane to the cytoplasm reached 50 % of the total uptake in about 5 min. In addition, analysis of the plasma membrane proteins to which MPONs bind, identified several proteins, including voltage-dependent anion channel. Next, we analyzed the behavior of MPONs in the cell and found them to be abundant in the nucleus as early as 24 h after addition with the amount increasing further after 48 and 72 h. The amount of MPONs was 2.5-fold higher than that of unmodified oligonucleotides in the nucleus after 72 h. We also designed antisense oligonucleotides and evaluated the effect of MPONs on mRNA exon skipping using DMD model cells; MPONs caused exon skipping with 69 % efficiency after 72 h, which was three times higher than the rate of the control. In summary, the high capacity for intracytoplasmic and nuclear translocation of MPONs is expected to be useful for therapeutic strategies targeting exon skipping.
Collapse
Affiliation(s)
- Haruka Hiraoka
- Chemistry Department, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Zhaoma Shu
- Chemistry Department, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Bao Tri Le
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South Street Murdoch, Perth, Western Australia, 6150, Australia.,Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, Perth, Western Australia, 6009, Australia
| | - Keiko Masuda
- RIKEN Center for Biosystems Dynamics Research, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
| | - Kosuke Nakamoto
- Chemistry Department, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Lyu Fangjie
- Chemistry Department, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Naoko Abe
- Chemistry Department, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.,Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Yasuaki Kimura
- Chemistry Department, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Yoshihiro Shimizu
- RIKEN Center for Biosystems Dynamics Research, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South Street Murdoch, Perth, Western Australia, 6150, Australia.,Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, Perth, Western Australia, 6009, Australia
| | - Hiroshi Abe
- Chemistry Department, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.,Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.,CREST (Japan) Science and Technology Agency, 7, Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan.,Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
35
|
Laurent Q, Martinent R, Moreau D, Winssinger N, Sakai N, Matile S. Oligonucleotide Phosphorothioates Enter Cells by Thiol‐Mediated Uptake. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Quentin Laurent
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Rémi Martinent
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Dimitri Moreau
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Nicolas Winssinger
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| |
Collapse
|
36
|
Laurent Q, Martinent R, Moreau D, Winssinger N, Sakai N, Matile S. Oligonucleotide Phosphorothioates Enter Cells by Thiol-Mediated Uptake. Angew Chem Int Ed Engl 2021; 60:19102-19106. [PMID: 34173696 PMCID: PMC8456962 DOI: 10.1002/anie.202107327] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 12/14/2022]
Abstract
Oligonucleotide phosphorothioates (OPS) are DNA or RNA mimics where one phosphate oxygen is replaced by a sulfur atom. They have been shown to enter mammalian cells much more efficiently than non-modified DNA. Thus, solving one of the key challenges with oligonucleotide technology, OPS became very useful in practice, with several FDA-approved drugs on the market or in late clinical trials. However, the mechanism accounting for this facile cellular uptake is unknown. Here, we show that OPS enter cells by thiol-mediated uptake. The transient adaptive network produced by dynamic covalent pseudo-disulfide exchange is characterized in action. Inhibitors with nanomolar efficiency are provided, together with activators that reduce endosomal capture for efficient delivery of OPS into the cytosol, the site of action.
Collapse
Affiliation(s)
- Quentin Laurent
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Rémi Martinent
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Dimitri Moreau
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Nicolas Winssinger
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Naomi Sakai
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Stefan Matile
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
37
|
Kainuma R, Motohashi Y, Nishihara T, Kurihara R, Tanabe K. Modulation of cell membrane functionalization with aggregates of oligodeoxynucleotides containing alkyl chain-modified uridines. Org Biomol Chem 2021; 18:5406-5413. [PMID: 32618314 DOI: 10.1039/d0ob00943a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we prepared oligodeoxynucleotides (ODNs) containing the uridine base modified by an alkyl chain at the 5-position (AU) and characterized their aggregate formation, localization, and functions in cells. These experiments revealed that aggregates of these ODNs were readily transported into cells, but their localization was dependent upon the number of hydrophobic units. ODNs with one modified AU were transported in the cytosol, while ODNs with multiple AU modifications resulted in their accumulation at the cell membrane. We also examined the ability of the AU-modified ODNs to capture small molecules at the cell membrane and their cellular uptake. We positioned a thioflavin-T (ThT)-binding aptamer on the cell membrane by means of hybridization with ODNs with three AUs at the strand end. Treatment with ThT resulted in its efficient uptake into cells, due to the capture of the ThT by the aptamers on the cell membrane. Thus, we demonstrated the functionalization of cell membranes with modified ODNs and the efficient delivery of small molecules into the cells.
Collapse
Affiliation(s)
- Reina Kainuma
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan.
| | - Yuto Motohashi
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan.
| | - Tatsuya Nishihara
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan.
| | - Ryohsuke Kurihara
- School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Kazuhito Tanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan.
| |
Collapse
|
38
|
Lu F, Zhang H, Pan W, Li N, Tang B. Delivery nanoplatforms based on dynamic covalent chemistry. Chem Commun (Camb) 2021; 57:7067-7082. [PMID: 34195709 DOI: 10.1039/d1cc02246f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a paramount factor to restrict the potential action of drugs and biologics, nanoplatforms based on dynamic covalent chemistry have been demonstrated as promising candidates to fulfill the full requirements during the whole delivery process by the virtue of their remarkable features such as adaptiveness, stimuli-responsiveness, specificity, reversibility and feasibility. This contribution summarizes the latest progress in dynamic covalent bond-based nanoplatforms with improved delivery efficiency and therapeutic performance. In addition, major challenges and perspectives in this field are also discussed. We expect that this feature article will provide a valuable and systematic reference for the further development of dynamic covalent bond-based nanoplatforms.
Collapse
Affiliation(s)
- Fei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Huiwen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
39
|
Lim B, Cheng Y, Kato T, Pham A, Le Du E, Mishra AK, Grinhagena E, Moreau D, Sakai N, Waser J, Matile S. Inhibition of Thiol‐Mediated Uptake with Irreversible Covalent Inhibitors. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bumhee Lim
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Yangyang Cheng
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Takehiro Kato
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Anh‐Tuan Pham
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Eliott Le Du
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306 1015 Lausanne Switzerland
| | - Abhaya Kumar Mishra
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306 1015 Lausanne Switzerland
| | - Elija Grinhagena
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306 1015 Lausanne Switzerland
| | - Dimitri Moreau
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Jerome Waser
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306 1015 Lausanne Switzerland
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| |
Collapse
|
40
|
Laurent Q, Martinent R, Lim B, Pham AT, Kato T, López-Andarias J, Sakai N, Matile S. Thiol-Mediated Uptake. JACS AU 2021; 1:710-728. [PMID: 34467328 PMCID: PMC8395643 DOI: 10.1021/jacsau.1c00128] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 05/19/2023]
Abstract
This Perspective focuses on thiol-mediated uptake, that is, the entry of substrates into cells enabled by oligochalcogenides or mimics, often disulfides, and inhibited by thiol-reactive agents. A short chronology from the initial observations in 1990 until today is followed by a summary of cell-penetrating poly(disulfide)s (CPDs) and cyclic oligochalcogenides (COCs) as privileged scaffolds in thiol-mediated uptake and inhibitors of thiol-mediated uptake as potential antivirals. In the spirit of a Perspective, the main part brings together topics that possibly could help to explain how thiol-mediated uptake really works. Extreme sulfur chemistry mostly related to COCs and their mimics, cyclic disulfides, thiosulfinates/-onates, diselenolanes, benzopolysulfanes, but also arsenics and Michael acceptors, is viewed in the context of acidity, ring tension, exchange cascades, adaptive networks, exchange affinity columns, molecular walkers, ring-opening polymerizations, and templated polymerizations. Micellar pores (or lipid ion channels) are considered, from cell-penetrating peptides and natural antibiotics to voltage sensors, and a concise gallery of membrane proteins, as possible targets of thiol-mediated uptake, is provided, including CLIC1, a thiol-reactive chloride channel; TMEM16F, a Ca-activated scramblase; EGFR, the epithelial growth factor receptor; and protein-disulfide isomerase, known from HIV entry or the transferrin receptor, a top hit in proteomics and recently identified in the cellular entry of SARS-CoV-2.
Collapse
Affiliation(s)
- Quentin Laurent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Rémi Martinent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Bumhee Lim
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Anh-Tuan Pham
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Takehiro Kato
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
41
|
Guo J, Wan T, Li B, Pan Q, Xin H, Qiu Y, Ping Y. Rational Design of Poly(disulfide)s as a Universal Platform for Delivery of CRISPR-Cas9 Machineries toward Therapeutic Genome Editing. ACS CENTRAL SCIENCE 2021; 7:990-1000. [PMID: 34235260 PMCID: PMC8227594 DOI: 10.1021/acscentsci.0c01648] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 05/19/2023]
Abstract
We synthesized a series of poly(disulfide)s by ring-opening polymerization and demonstrated that the copolymerization of monomer 1 containing diethylenetriamine moieties and monomer 2 containing guanidyl ligands could generate an efficient delivery platform for different forms of CRISPR-Cas9-based genome editors, including plasmid, mRNA, and protein. The excellent delivery performance of designed poly(disulfide)s stems from their delicate molecular structures to interact with genome-editing biomacromolecules, unique delivery pathways to mediate the cellular uptake of CRISPR-Cas9 cargoes, and strong ability to escape the endosome. The degradation of poly(disulfide)s by intracellular glutathione not only promotes the timely release of CRISPR-Cas9 machineries into the cytosol but also minimizes the cytotoxicity that nondegradable polymeric carriers often encounter. These merits collectively account for the excellent ability of poly(disulfide)s to mediate different forms of CRISPR-Cas9 for their efficient genome-editing activities in vitro and in vivo.
Collapse
Affiliation(s)
- Jiajing Guo
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Wan
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu
Laboratory, Zhejiang University Medical
Center, Hangzhou 311121, China
| | - Bowen Li
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Pan
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huhu Xin
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yayu Qiu
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yuan Ping
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu
Laboratory, Zhejiang University Medical
Center, Hangzhou 311121, China
- E-mail:
| |
Collapse
|
42
|
Kadekar S, Nawale GN, Rangasami VK, Le Joncour V, Laakkonen P, Hilborn J, Varghese OP, Oommen OP. Redox responsive Pluronic micelle mediated delivery of functional siRNA: a modular nano-assembly for targeted delivery. Biomater Sci 2021; 9:3939-3944. [PMID: 34002185 DOI: 10.1039/d1bm00428j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is an unmet need to develop strategies that allow site-specific delivery of short interfering RNA (siRNA) without any associated toxicity. To address this challenge, we have developed a novel siRNA delivery platform using chemically modified pluronic F108 as an amphiphilic polymer with a releasable bioactive disulfide functionality. The micelles exhibited thermoresponsive properties and showed a hydrodynamic size of ∼291 nm in DLS and ∼200-250 nm in SEM at 37 °C. The grafting of free disulfide pyridyl groups enhanced the transfection efficiency and was successfully demonstrated in human colon carcinoma (HCT116; 88%) and glioma cell lines (U87; 90%), non-cancerous human dermal fibroblast (HDF; 90%) cells as well as in mouse embryonic stem (mES; 54%) cells. To demonstrate the versatility of our modular nanocarrier design, we conjugated the MDGI receptor targeting COOP peptide on the particle surface that allowed the targeted delivery of the cargo molecules to human patent-derived primary BT-13 gliospheres. Transfection experiments with this design resulted in ∼65% silencing of STAT3 mRNA in BT-13 gliospheres, while only ∼20% of gene silencing was observed in the absence of the peptide. We believe that our delivery method solves current problems related to the targeted delivery of RNAi drugs for potential in vivo applications.
Collapse
Affiliation(s)
- Sandeep Kadekar
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry - Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Ganesh N Nawale
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry - Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Vignesh K Rangasami
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry - Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden. and Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland.
| | - Vadim Le Joncour
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jöns Hilborn
- Polymer Chemistry, Department of Chemistry - Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden
| | - Oommen P Varghese
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry - Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland.
| |
Collapse
|
43
|
Ren H, Song L, Zhang W, Xu L. Synthesis, Stability, and Anti-Tumour Activity of a New Category of "Stapled" Antisense Oligonucleotides with Stimuli-Responsive Feature. J Pharm Sci 2021; 110:3166-3170. [PMID: 34102202 DOI: 10.1016/j.xphs.2021.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
The development of nucleic acid drugs with unique structures and mechanisms has stimulated great research interest. Herein, we report a general strategy to construct "stapled" structures of single-stranded antisense oligonucleotides (ASONs) with a stimuli-responsive feature. "Stapled" cyclic structures can be synthesized with reactive bifunctional handles that react with thiol groups of phosphorothioate (PS)-modified ASONs, and can be alternatively adjusted depending on the desired PS sites in the ASON strand. The disulphide group in the stapled handle can be cleaved in the reducing microenvironment of tumour cells. Thus, "stapled" ASONs may be transformed back to a linear conformation to facilitate binding to target mRNAs. Stapling conferred protection against degradation, and enhanced anti-tumour activity compared to linear counterparts. This study provides a new, effective, and convenient strategy for designing ASONs with "stapled" structures, and also adds a further contribution to facilitate the stability and biological efficacy of novel nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Hongqian Ren
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Liya Song
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
44
|
|
45
|
Arafiles JVV, Hirose H, Hirai Y, Kuriyama M, Sakyiamah MM, Nomura W, Sonomura K, Imanishi M, Otaka A, Tamamura H, Futaki S. Discovery of a Macropinocytosis‐Inducing Peptide Potentiated by Medium‐Mediated Intramolecular Disulfide Formation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Hisaaki Hirose
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Yusuke Hirai
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Masashi Kuriyama
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Maxwell Mamfe Sakyiamah
- Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
- Current address: Graduate School of Biomedical and Health Sciences Hiroshima University 1-2-3 Kasumi, Minami-ku Hiroshima 734-8553 Japan
| | - Kazuhiro Sonomura
- Center for Genomic Medicine Graduate School of Medicine Kyoto University Kyoto 606-8501 Japan
- Life Science Research Center, Technology Research Laboratory Shimadzu Corporation Kyoto 604-8445 Japan
| | - Miki Imanishi
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Akira Otaka
- Institute of Biomedical Sciences Graduate School of Pharmaceutical Sciences Tokushima University Tokushima 770-8505 Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Shiroh Futaki
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| |
Collapse
|
46
|
Arafiles JVV, Hirose H, Hirai Y, Kuriyama M, Sakyiamah MM, Nomura W, Sonomura K, Imanishi M, Otaka A, Tamamura H, Futaki S. Discovery of a Macropinocytosis‐Inducing Peptide Potentiated by Medium‐Mediated Intramolecular Disulfide Formation. Angew Chem Int Ed Engl 2021; 60:11928-11936. [DOI: 10.1002/anie.202016754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/18/2021] [Indexed: 12/11/2022]
Affiliation(s)
| | - Hisaaki Hirose
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Yusuke Hirai
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Masashi Kuriyama
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Maxwell Mamfe Sakyiamah
- Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
- Current address: Graduate School of Biomedical and Health Sciences Hiroshima University 1-2-3 Kasumi, Minami-ku Hiroshima 734-8553 Japan
| | - Kazuhiro Sonomura
- Center for Genomic Medicine Graduate School of Medicine Kyoto University Kyoto 606-8501 Japan
- Life Science Research Center, Technology Research Laboratory Shimadzu Corporation Kyoto 604-8445 Japan
| | - Miki Imanishi
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Akira Otaka
- Institute of Biomedical Sciences Graduate School of Pharmaceutical Sciences Tokushima University Tokushima 770-8505 Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Shiroh Futaki
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| |
Collapse
|
47
|
Dutta K, Das R, Medeiros J, Thayumanavan S. Disulfide Bridging Strategies in Viral and Nonviral Platforms for Nucleic Acid Delivery. Biochemistry 2021; 60:966-990. [PMID: 33428850 PMCID: PMC8753971 DOI: 10.1021/acs.biochem.0c00860] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Self-assembled nanostructures that are sensitive to environmental stimuli are promising nanomaterials for drug delivery. In this class, disulfide-containing redox-sensitive strategies have gained enormous attention because of their wide applicability and simplicity of nanoparticle design. In the context of nucleic acid delivery, numerous disulfide-based materials have been designed by relying on covalent or noncovalent interactions. In this review, we highlight major advances in the design of disulfide-containing materials for nucleic acid encapsulation, including covalent nucleic acid conjugates, viral vectors or virus-like particles, dendrimers, peptides, polymers, lipids, hydrogels, inorganic nanoparticles, and nucleic acid nanostructures. Our discussion will focus on the context of the design of materials and their impact on addressing the current shortcomings in the intracellular delivery of nucleic acids.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ritam Das
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jewel Medeiros
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
48
|
Rangasami VK, Nawale G, Asawa K, Kadekar S, Samanta S, Nilsson B, Ekdahl KN, Miettinen S, Hilborn J, Teramura Y, Varghese OP, Oommen OP. Pluronic Micelle-Mediated Tissue Factor Silencing Enhances Hemocompatibility, Stemness, Differentiation Potential, and Paracrine Signaling of Mesenchymal Stem Cells. Biomacromolecules 2021; 22:1980-1989. [PMID: 33813822 PMCID: PMC8154246 DOI: 10.1021/acs.biomac.1c00070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Mesenchymal stem/stromal
cells (MSCs) evoke great excitement for
treating different human diseases due to their ability to home inflamed
tissues, suppress inflammation, and promote tissue regeneration. Despite
great promises, clinical trial results are disappointing as allotransplantation
of MSCs trigger thrombotic activity and are damaged by the complement
system, compromising their survival and function. To overcome this,
a new strategy is presented by the silencing of tissue factor (TF),
a transmembrane protein that mediates procoagulant activity. Novel Pluronic-based micelles are designed
with the pendant pyridyl disulfide group, which are used to conjugate
TF-targeting siRNA by the thiol-exchange reaction. This nanocarrier
design effectively delivered the payload to MSCs resulting in ∼72%
TF knockdown (KD) without significant cytotoxicity. Hematological
evaluation of MSCs and TF-KD MSCs in an ex vivo human whole blood
model revealed a significant reduction in an instant-blood-mediated-inflammatory
reaction as evidenced by reduced platelet aggregation (93% of free
platelets in the TF-KD group, compared to 22% in untreated bone marrow-derived
MSCs) and thrombin–antithrombin complex formation. Effective
TF silencing induced higher MSC differentiation in osteogenic and
adipogenic media and showed stronger paracrine suppression of proinflammatory
cytokines in macrophages and higher stimulation in the presence of
endotoxins. Thus, TF silencing can produce functional cells with higher
fidelity, efficacy, and functions.
Collapse
Affiliation(s)
- Vignesh K Rangasami
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, Tampere 33720, Finland
| | - Ganesh Nawale
- Translational Chemical Biology Laboratory, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 751 21, Sweden
| | - Kenta Asawa
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sandeep Kadekar
- Translational Chemical Biology Laboratory, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 751 21, Sweden
| | - Sumanta Samanta
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, Tampere 33720, Finland
| | - Bo Nilsson
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75105, Sweden
| | - Kristina N Ekdahl
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75105, Sweden.,Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar SE-391 82, Sweden
| | - Susanna Miettinen
- Adult Stem Cells Group, Faculty of Medicine and Health Technologies, Tampere University, Tampere 33014, Finland.,Research, Development and Innovation Center, Tampere University Hospital, Tampere 33520, Finland
| | - Jöns Hilborn
- Polymer Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala 751 21, Sweden
| | - Yuji Teramura
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75105, Sweden
| | - Oommen P Varghese
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, Tampere 33720, Finland
| |
Collapse
|
49
|
Ren H, Zhang Z, Zhang W, Feng X, Xu L. Prodrug-type antisense oligonucleotides with enhanced nuclease stability and anti-tumour effects. Eur J Pharm Sci 2021; 162:105832. [PMID: 33826934 DOI: 10.1016/j.ejps.2021.105832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
The potential therapeutic and diagnostic applications of oligonucleotides have attracted great attention. However, natural antisense oligonucleotides (ASONs) are susceptible to degradation by intracellular and extracellular nucleases. In this study, we developed a new class of prodrug-type ASONs, which typically bear the hairpin-end conformation with a responsive disulphide switch. The hairpin-end conformation provides protection against nuclease degradation, and, upon stimulation, the molecule converts into the native antisense structure upon entering a tumour microenvironment due to the high concentration of glutathione. The structure-stability relationship analysis indicated that the location, size and composition of the hairpin structure affect the anti-degradation capability. One optimal prodrug-type ASON, O2, exhibited a higher stability against nucleases in serum-containing medium as well as an increased anti-tumour activity both in vitro and in vivo, compared to the linear control. This work presents a new strategy for the design of ASON drugs with novel structures and offers insight on the stability and biological efficacy of general nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Hongqian Ren
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Zhe Zhang
- China Medical University, School of Pharmacy, Shenyang 110122, China
| | - Wei Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Xuesong Feng
- China Medical University, School of Pharmacy, Shenyang 110122, China.
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
50
|
Wang H, Zhang S, Lv J, Cheng Y. Design of polymers for siRNA delivery: Recent progress and challenges. VIEW 2021. [DOI: 10.1002/viw.20200026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Jia Lv
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
- Shanghai Key Laboratory of Regulatory Biology School of Life Sciences East China Normal University Shanghai China
| |
Collapse
|