1
|
Kment Š, Bakandritsos A, Tantis I, Kmentová H, Zuo Y, Henrotte O, Naldoni A, Otyepka M, Varma RS, Zbořil R. Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chem Rev 2024; 124:11767-11847. [PMID: 38967551 DOI: 10.1021/acs.chemrev.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.
Collapse
Affiliation(s)
- Štĕpán Kment
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB - Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB - Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Iosif Tantis
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Hana Kmentová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Yunpeng Zuo
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Olivier Henrotte
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Alberto Naldoni
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
- Department of Chemistry and NIS Centre, University of Turin, Turin, Italy 10125
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
- IT4Innovations, VŠB - Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB - Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
2
|
Ngo QP, Prabhakaran S, Kim DH, Kim BS. Rational Design of Ultrahigh-Loading Ir Single Atoms on Reconstructed Mn─NiOOH for Enhanced Catalytic Performance in Urea-Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406786. [PMID: 39467020 DOI: 10.1002/smll.202406786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Indexed: 10/30/2024]
Abstract
Investigating advanced electrocatalysts is crucial for improving the efficacy of water splitting to generate environmentally friendly fuel. The discovery of highly effective electrocatalysts, capable of driving oxygen evolution reaction (OER) and urea oxidation reaction (UOR) in urea-alkaline environments, is pivotal for advancing large-scale hydrogen production. This study aims to introduce a new method that involves creating nanosheets of high-loading iridium single atoms embedded in a manganese-containing nickel oxyhydroxide matrix (Ir@Mn─NiOOH). These nanostructures are derived from self-supported hydrate pre-catalyst nanosheets grown on nickel foam and then activated through electrochemical etching pretreatment. The Ir@Mn─NiOOH nanoarchitecture displays outstanding electrocatalytic activity, having a low overpotential of just 258 mV and a potential of 1.319 V (at 10 mA cm-2) for OER and UOR, respectively. Such extraordinary catalytic characteristics of Ir@Mn─NiOOH is mainly owing to the strong synthetic electronic interaction between Ir single atoms and Mn─NiOOH, which can change its electronic characteristics and boost electrochemical catalytic sites. This research presents a new way to produce exceptionally efficient catalysts by adding a synergistic effect to complex multi-electron processes.
Collapse
Affiliation(s)
- Quynh Phuong Ngo
- Department of Organic Materials and Textile Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Sampath Prabhakaran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Do Hwan Kim
- Division of Science Education, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Byoung-Suhk Kim
- Department of Organic Materials and Textile Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
3
|
Liu D, Yang Y, Xue B, Zhang D, Li F. The Construction of Face-to-Face Combination between NiFe-layered Double Hydroxide Nanosheets and Monolayer rGO for Efficient Water Splitting and Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57017-57031. [PMID: 39382976 DOI: 10.1021/acsami.4c10721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Developing cost-effective and efficient electrocatalysts is essential for advancing a green energy future. Herein, a NiFe-layered double hydroxide loaded on reduced graphene oxide (NiFe-LDHs@rGO) hybrid was synthesized using a straightforward three-step process involving exfoliation tearing, electrostatic self-assembly, and chemical reduction. The face-to-face packing and ultrathin exfoliation enable strong heterogeneous interactions, fully harnessing the potential of these complementary two-dimensional counterparts. Consequently, the resultant catalyst displays outstanding oxygen evolution reaction (OER) catalytic activity and stability, whose overpotential is as low as 241 mV at 30 mA cm-2 and 255 mV at 50 mA cm-2 with a low Tafel slope of 62.1 mV dec-1. Both the experimental results and density functional theory (DFT) calculations reveal that the face-to-face assembly strengthens the electronic interactions between NiFe-LDHs and rGO, which effectively modulates the d-band center of Ni and Fesites and improves the reaction kinetics for OER. Moreover, the resultant NiFe-LDHs@rGO hybrids exhibit excellent multifunctional catalytic performance. Its hydrogen evolution reaction (HER) activity is endowed by Fe-site of NiFe-LDHs and defect states rGO and achieves a low voltage of 1.68 V to drive a current density of 10 mA cm-2 for overall water splitting. The face-to-face heteroassembly also imparts NiFe-LDHs@rGO with superior oxygen reduction reaction (ORR) activity, with a half-wave potential of 0.70 V and a limiting current density of 4.2 mA cm-2. Its ORR primarily follows a four-electron transfer pathway with a minor contribution from a two-electron process. This study establishes the groundwork for optimizing two-dimensional heterogeneous interfaces in LDH@carbon-based materials for advanced energy conversion.
Collapse
Affiliation(s)
- Daoxin Liu
- Key Laboratory of Automobile Materials of Ministry of Education, Changchun 130022, China
- Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
- Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals, Ministry of Natural Resources, Changchun 130022, China
| | - Yang Yang
- Key Laboratory of Automobile Materials of Ministry of Education, Changchun 130022, China
- Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
- Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals, Ministry of Natural Resources, Changchun 130022, China
| | - Bing Xue
- Key Laboratory of Automobile Materials of Ministry of Education, Changchun 130022, China
- Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
- Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals, Ministry of Natural Resources, Changchun 130022, China
| | - Dandan Zhang
- Key Laboratory of Automobile Materials of Ministry of Education, Changchun 130022, China
- Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Fangfei Li
- Key Laboratory of Automobile Materials of Ministry of Education, Changchun 130022, China
- Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
- Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals, Ministry of Natural Resources, Changchun 130022, China
| |
Collapse
|
4
|
Li M, Han Z, Hu Q, Fan W, Hu Q, He D, Chen Q, Jiao X, Xie Y. Recent progress in solar-driven CO 2 reduction to multicarbon products. Chem Soc Rev 2024; 53:9964-9975. [PMID: 39269194 DOI: 10.1039/d4cs00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Currently, most catalysts used for photoconverting carbon dioxide (CO2) typically produce C1 products. Achieving multicarbon (C2+) products, which are highly desirable due to their greater energy density and economic potential, still remains a significant challenge. This difficulty is primarily due to the kinetic hurdles associated with the C-C coupling step in the process. Given this, devising diverse strategies to accelerate C-C coupling for generating multicarbon products is requisite. Herein, we first give a classification of catalysts involved in the photoconversion of CO2 to C2+ fuels. We summarize metallic oxides, metallic sulfides, MXenes, and metal-organic frameworks as catalysts for CO2 photoreduction to C2+ products, attributing their efficacy to the inherent dual active sites facilitating C-C coupling. In addition, we survey covalent organic frameworks, carbon nitrides, metal phosphides, and graphene as cocatalysts for CO2 photoreduction to C2+ products, owing to the incorporated dual active sites that induce C-C coupling. In the end, we provide a brief conclusion and an outlook on designing new photocatalysts, understanding the catalytic mechanisms, and considering the practical application requirements for photoconverting CO2 into multicarbon products.
Collapse
Affiliation(s)
- Mengqian Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Zequn Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Qinyuan Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Wenya Fan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Qing Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Dongpo He
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - QingXia Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
5
|
Xu N, Jin Y, Liu Q, Yu M, Wang X, Wang C, Tu W, Zhang Z, Geng Z, Suenaga K, Cheng F, Song E, Peng Z, Xu J. Rational Design of Diatomic Active Sites for Elucidating Oxygen Evolution Reaction Performance Trends. Angew Chem Int Ed Engl 2024:e202413749. [PMID: 39363752 DOI: 10.1002/anie.202413749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
Diatomic catalysts, especially those with heteronuclear active sites, have recently attracted significant attention for their advantages over single-atom catalysts in reactions with relatively high energy barrier, e.g. oxygen evolution reaction. Rational design and synthesis of heteronuclear diatomic catalysts are of immense significance but have so far been plagued by the lack of a definitive correlation between structure and catalytic properties. Here, we report macrocyclic precursor constrained strategy to fabricate series of transition metal (MT, Ni, Co, Fe, Mn, or Cu)-noble (MN, Ir or Ru) centers in carbon material. One notable performance trend is observed in the order of Cu-MN
Collapse
Affiliation(s)
- Nanfeng Xu
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuxiang Jin
- State Key Lab of High-Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Qiunan Liu
- The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka, 567-0047, Japan
| | - Meng Yu
- State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao Wang
- State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao Wang
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wei Tu
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhirong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Kazu Suenaga
- The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka, 567-0047, Japan
| | - Fangyi Cheng
- State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Erhong Song
- State Key Lab of High-Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhangquan Peng
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Junyuan Xu
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
6
|
Choi J, Seo S, Kim M, Han Y, Shao X, Lee H. Relationship between Structure and Performance of Atomic-Scale Electrocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304560. [PMID: 37544918 DOI: 10.1002/smll.202304560] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Atomic-scale electrocatalysts greatly improve the performance and efficiency of water splitting but require special adjustments of the supporting structures for anchoring and dispersing metal single atoms. Here, the structural evolution of atomic-scale electrocatalysts for water splitting is reviewed based on different synthetic methods and structural properties that create different environments for electrocatalytic activity. The rate-determining step or intermediate state for hydrogen or oxygen evolution reactions is energetically stabilized by the coordination environment to the single-atom active site from the supporting material. In large-scale practical use, maximizing the loading amount of metal single atoms increases the efficiency of the electrocatalyst and reduces the economic cost. Dual-atom electrocatalysts with two different single-atom active sites react with an increased number of water molecules and reduce the adsorption energy of water derived from the difference in electronegativity between the two metal atoms. In particular, single-atom dimers induce asymmetric active sites that promote the degradation of H2O to H2 or O2 evolution. Consequently, the structural properties of atomic-scale electrocatalysts clarify the atomic interrelation between the catalytic active sites and the supporting material to achieve maximum efficiency.
Collapse
Affiliation(s)
- Jungsue Choi
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sohyeon Seo
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Creative Research Institute (CRI), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Minsu Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Yeonsu Han
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Xiaodong Shao
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Creative Research Institute (CRI), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
7
|
Li L, Han M, Zhang P, Yang D, Zhang M. Recent Advances in Engineering Fe-N-C Catalysts for Oxygen Electrocatalysis in Zn-Air Batteries. CHEMSUSCHEM 2024:e202401186. [PMID: 39215381 DOI: 10.1002/cssc.202401186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Fe-N-C single-atom catalysts (SACs) have emerged as one of the most promising candidates for oxygen electrocatalysis due to their maximized atom utilization efficiency, high intrinsic activity, and strong metal-support interaction. Significant progress has been made in engineering Fe-N-C SACs for oxygen electrocatalysis in Zn-air batteries (ZABs). This review provides a comprehensive overview of the recent advancements in Fe-N-C SACs, with a special focus on effective engineering strategies, their performance in oxygen electrocatalysis, and their potential applications in ZABs. The review also discusses the key challenges and future directions in the development of Fe-N-C SACs for efficient and durable oxygen electrocatalysis in ZABs. This review aims to offer valuable insights into the current state of research in this field and to guide future efforts in the development of advanced oxygen electrocatalysts for ZABs.
Collapse
Affiliation(s)
- Le Li
- Jiangsu Urban and Rural Construction Vocational College, Changzhou, 213147, China
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Jiangsu Province, Changzhou, 213164, China
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou, 213147, China
| | | | - Donglei Yang
- PetroChina Tarim Oilfield Company, Korla, 841000, China
| | - Meng Zhang
- Jiangsu Urban and Rural Construction Vocational College, Changzhou, 213147, China
| |
Collapse
|
8
|
Hu Y, Lan H, He J, Fang W, Zhang WD, Lu S, Duan F, Du M. Entropy-Engineered Middle-In Synthesis of Dual Single-Atom Compounds for Nitrate Reduction Reaction. ACS NANO 2024; 18:23168-23180. [PMID: 39045619 DOI: 10.1021/acsnano.4c05568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Despite the immense potential of Dual Single-Atom Compounds (DSACs), the challenges in their synthesis process, including complexity, stability, purity, and scalability, remain primary concerns in current research. Here, we present a general strategy, termed "Entropy-Engineered Middle-In Synthesis of Dual Single-Atom Compounds" (EEMIS-DSAC), which is meticulously crafted to produce a diverse range of DSACs, effectively addressing the aforementioned issues. Our strategy integrates the advantages of both bottom-up and top-down paradigms, proposing an insight into optimizing the catalyst structure. The as-fabricated DSACs exhibited excellent activity and stability in the nitrate reduction reaction (NO3RR). In a significant advancement, our prototypical CuNi DSACs demonstrated outstanding performance under conditions reminiscent of industrial wastewater. Specifically, under a NO3- concentration of 2000 ppm, it yielded a Faradaic efficiency (FE) for NH3 of 96.97%, coupled with a mass productivity of 131.47 mg h-1 mg-1 and an area productivity of 10.06 mg h-1 cm-2. Impressively, even under a heightened NO3- concentration of 0.5 M, the FE for NH3 peaked at 90.61%, with a mass productivity reaching 1024.50 mg h-1 mg-1 and an area productivity of 78.41 mg h-1 cm-2. This work underpins the potential of the EEMIS-DSAC approach, signaling a frontier for high-performing DSACs.
Collapse
Affiliation(s)
- Yao Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Haihui Lan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Junjun He
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wenjing Fang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
9
|
Xu H, Liu Y, Wang K, Jin L, Chen J, He G, Chen H. Multicomponent Interface and Electronic Structure Engineering in Ir-Doped CoMO 4-Co(OH) 2 (M = W and Mo) Enable Promoted Oxygen Evolution Reaction. Inorg Chem 2024; 63:16037-16046. [PMID: 39121355 DOI: 10.1021/acs.inorgchem.4c02603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
The core principles of multicomponent interface and electronic structure engineering are essential in designing high-performance catalysts for the oxygen evolution reaction (OER). However, combining these aspects within a catalyst is a significant challenge. In this investigation, a novel approach involving the development of hybrid Ir-doped CoMO4-Co(OH)2 (M = W and Mo) hollow nanoboxes was introduced, enabling remarkably efficient water oxidation electrocatalysis. Constructed from ultrathin nanosheet-assembled hollow nanoboxes, these structures boast a wealth of active centers for intermediate species, which in turn enhance both charge transfer and mass transport capabilities. Moreover, the compelling electronic and synergistic effects arising from the interaction between CoMO4 and Co(OH)2 significantly bolster OER electrocatalysis by facilitating efficient electron transfer. The introduction of Ir atoms serves to strategically adjust the electronic structure, fine-tune its electronic state, and operate as active centers to enhance OER electrocatalysis, thus diminishing the overpotential. This configuration results in Ir-CoWO4-Co(OH)2 and Ir-CoMoO4-Co(OH)2 exhibiting impressively low overpotentials of 252 and 261 mV, respectively, to 10 mA cm-2. Utilized in conjunction with the Pt/C catalyst in a two-electrode system for overall water splitting, a mere 1.53 V cell potential is needed to achieve the desired 10 mA cm-2 current density.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Yang Liu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Lei Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Jie Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| |
Collapse
|
10
|
Zhang D, Wang R, Luo S, Wei G. Restructuring and Hydrogen Evolution on Sub-Nanosized Pd xB y Clusters. Molecules 2024; 29:3549. [PMID: 39124954 PMCID: PMC11314066 DOI: 10.3390/molecules29153549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
As a Pt-group element, Pd has been regarded as one of the alternatives to Pt-based catalysts for the hydrogen evolution reaction (HER). Herein, we performed density functional theory (DFT) computations to explore the most stable structures of PdxBy (x = 6, 19, 44), revealed the in situ structural reconstruction of these clusters under acidic conditions, and evaluated their HER activity. We found that the presence of B can prevent underpotential hydrogen adsorption and activate the H atoms on the cluster surface for the HER. The theoretical calculations show that the reaction barrier for the HER on ~1 nm sized Pd44B4 can be as low as 0.36 eV, which is even lower than for the same-sized Pt and Pd2B nanoparticles. The ultra-high HER activity of sub-nanosized PdxBy clusters makes them a potential new and efficient HER electro-catalyst. This study provides new ideas for evaluating and designing novel nanocatalysts based on the structural reconstruction of small-sized nanoparticles in the future.
Collapse
Affiliation(s)
| | | | | | - Guangfeng Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
11
|
Ma T, Li H, Yu Y, Wang K, Yu W, Shang Y, Bai Y, Zhang R, Yang Y, Nie X. Lattice-Confined Single-Atom Catalyst: Preparation, Application and Electron Regulation Mechanism. SMALL METHODS 2024:e2400530. [PMID: 39007247 DOI: 10.1002/smtd.202400530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Lattice-confined single-atom catalyst (LC SAC), featuring exceptional activity, intriguing stability and prominent selectivity, has attracted extensive attention in the fields of various reactions (e.g., hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), etc.). To design a "smart" LC SAC for catalytic applications, one must systematically comprehend updated advances in the preparation, the application, and especially the peculiar electron regulation mechanism of LC SAC. In this review, the specific preparation methods of LC SAC based on general coordination strategy are updated, and its applications in HER, OER, ORR, N2 reduction reaction (NRR), advanced oxidation processes (AOPs) and so forth are summarized to display outstanding activity, stability and selectivity. Uniquely, the electron regulation mechanisms are first and deeply discussed and can be primarily categorized as electron transfer bridge with monometallic active sites, novel catalytic centers with polymetallic active sites, and positive influence by surrounding environments. In the end, the existing issues and future development directions are put forward with a view to further optimize the performance of LC SAC. This review is expected to contribute to the in-depth understanding and practical application of highly efficient LC SAC.
Collapse
Affiliation(s)
- Ting Ma
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yanyan Yu
- Yantai Environmental Sanitation Management Center, Yantai, 264000, China
| | - Kaixuan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Wei Yu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yu Shang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yilin Bai
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Rongyu Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yue Yang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xiangqi Nie
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
12
|
Chang Y, Lu X, Wang S, Li X, Yuan Z, Bao J, Liu Y. Built-In Electric Field Boosted Overall Water Electrolysis at Large Current Density for the Heterogeneous Ir/CoMoO 4 Nanosheet Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311763. [PMID: 38348916 DOI: 10.1002/smll.202311763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/28/2024] [Indexed: 07/19/2024]
Abstract
Advanced bifunctional electrocatalysts are essential for propelling overall water splitting (OWS) progress. Herein, relying on the obvious difference in the work function of Ir (5.44 eV) and CoMoO4 (4.03 eV) and the constructed built-in electric field (BEF), an Ir/CoMoO4/NF heterogeneous catalyst, with ultrafine Ir nanoclusters (1.8 ± 0.2 nm) embedded in CoMoO4 nanosheet arrays on the surface of nickel foam skeleton, is reported. Impressively, the Ir/CoMoO4/NF shows remarkable electrocatalytic bifunctionality toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), especially at large current densities, requiring only 13 and 166 mV to deliver 10 and 1000 mA cm-2 for HER and 196 and 318 mV for OER. Furthermore, the Ir/CoMoO4/NF||Ir/CoMoO4/NF electrolyzer demands only 1.43 and 1.81 V to drive 10 and 1000 mA cm-2 for OWS. Systematical theoretical calculations and tests show that the formed BEF not only optimizes interfacial charge distribution and the Fermi level of both Ir and CoMoO4, but also reduces the Gibbs free energy (ΔGH*, from 0.25 to 0.03 eV) and activation energy (from 13.6 to 8.9 kJ mol-1) of HER, the energy barrier (from 3.47 to 1.56 eV) and activation energy (from 21.1 to 13.9 kJ mol-1) of OER, thereby contributing to the glorious electrocatalytic bifunctionality.
Collapse
Affiliation(s)
- Yanan Chang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xuyun Lu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Shasha Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoxuan Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zeyu Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jianchun Bao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
13
|
Wang J, Wang L, Wu R, Fan C, Zhang X, Fan Y. Robust High-performance Bifunctional Porous Cobalt MOF-Based Catalysts for Overall Water Splitting. Inorg Chem 2024; 63:11542-11553. [PMID: 38860865 DOI: 10.1021/acs.inorgchem.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
MOF-based materials, as bifunctional catalysts for electrocatalytic water splitting, play an important role in the application and development of clean fuel hydrogen energy. This study presents a series of novel 3D Co-based MOFs with layered networks, including [Co(4,4'-bipy)0.5(aip)(CH3OH)·H2O]n (Co-MOF 1), [Co2(1,3'-bit)(aip)2(CH3OH)·H2O]n (Co-MOF 2), [Co(4,4'-bipb)(aip)]n (Co-MOF 3), and [Co2(4,4'-bipe)(aip)2·1.5H2O]n (Co-MOF 4). Their single-crystal structures of Co-MOFs 1-4 are characterized and analyzed before being applied in alkaline solutions for water decomposition (OER and HER). The electrocatalytic tests indicate that Co-MOFs 1-4 exhibit a good performance. Notably, Co-MOF 4 exhibits great behavior which has low overpotentials of 94 and 188 mV (OER) as well as 185 and 352 mV (HER) at the currents of 10 and 100 mA cm-2, respectively. In comparison with Co-MOFs 1-3, Co-MOF 4 has the lowest Tafel slopes, highest ECSA, and smallest resistance. The immanent qualities, such as distinct interwoven long chain layered structure, unsaturated coordination modes, and synergistic catalytic qualities among Co ions, contribute to explaining the results. The fundamentals provide valuable information for the investigation of innovative MOF-based bifunctional electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Jinmiao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Lulu Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Ruixue Wu
- College of Food Engineering, Qingdao Institute of Technology, Qingdao, Shandong 266300, P. R. China
| | - Chuanbin Fan
- Key Laboratory of Research on Environment and Population Health in Aluminum Mining Areas, Education Department of Guangxi Zhuang Autonomous Region, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P. R. China
| | - Xia Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Yuhua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| |
Collapse
|
14
|
Chen Q, Cao P, Wang Y, Yuan J, Wu P. Spontaneous Formation of Ultrasmall Noble Metal Nanoparticles on Cobalt-Based Layered Double Hydroxide for Electrochemical and Environmental Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310380. [PMID: 38189520 DOI: 10.1002/smll.202310380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Supported noble metal nanoparticles (NMNPs) are appealing for energy and environment catalysis. To facilitate the loading of NMNPs, in situ reduction of Mn+ on the support with extra reductants/surfactants is adopted, but typically results in aggregated NMNPs with uneven size distributions or blocked active sites of the NMNPs. Herein, the use of cobalt layered double hydroxide (Co-LDH) is proposed as both support and reductant for the preparation of supported NMNPs with ultrasmall sizes and even distributions. The resultant Co-LDH-supported NMNPs exhibit excellent catalytic performance and stability. For example, Ir/Co-LDH displays a low overpotential of 188 mV (10 mA cm-2) for electrocatalytic oxygen evolution reaction and a long-term stability over 100 h (100 mA cm-2) in overall water splitting. Ru/Co-LDH can achieve a 4-nitrophenol reduction with high rate of 0.36 min-1 and S2- detection with low limit of detection (LOD) of 0.34 µm. Overall, this work provides a green and effective strategy to fabricate supported NMNPs with greatly improved catalytic performances.
Collapse
Affiliation(s)
- Qian Chen
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Yihuan Rd, Chengdu, 610064, China
| | - Peisheng Cao
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yanying Wang
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Yihuan Rd, Chengdu, 610064, China
| | - Jing Yuan
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Peng Wu
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Yihuan Rd, Chengdu, 610064, China
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
15
|
Li Y, Xu X, Ai Z, Zhang B, Shi D, Yang M, Hu H, Shao Y, Wu Y, Hao X. Enhancing Electrocatalytic Kinetics via Synergy of Co Nanoparticles and Co/Ni-N 4-C- and N-Doped Porous Carbon. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27224-27229. [PMID: 38745464 DOI: 10.1021/acsami.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Transition-metal species embedded in carbon have sparked intense interest in the fields of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, improvement of the electrocatalytic kinetics remains a challenge caused by the synergistic assembly. Here, we propose a biochemical strategy to fabricate the Co nanoparticles (NPs) and Co/Ni-N4-C co-embedded N-doped porous carbon (CoNPs&Co/Ni-N4-C@NC) catalysts via constructing the zeolitic imidazolate framework (ZIF)@yeast precursor. The rich amino groups provide the possibility for the anchorage of Co2+/Ni2+ ions as well as the construction of Co/Ni-ZIF@yeast through the yeast cell biomineralization effect. The functional design induces the formation of CoNPs and Co/Ni-N4-C sites in N-doped carbon as well as regulates the porosity for exposing such sites. Synergy of CoNPs, Co/Ni-N4-C, and porous N-doped carbon delivered excellent electrocatalytic kinetics (the ORR Tafel slope of 76.3 mV dec-1 and the OER Tafel slope of 80.4 mV dec-1) and a high voltage of 1.15 V at 10 mA cm-2 for the discharge process in zinc air batteries. It provides an effective strategy to fabricate high-performance catalysts.
Collapse
Affiliation(s)
- Yalong Li
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaolong Xu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zizheng Ai
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Baoguo Zhang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Dong Shi
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mingzhi Yang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Haixiao Hu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yongliang Shao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yongzhong Wu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaopeng Hao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
16
|
Feidenhans’l A, Regmi YN, Wei C, Xia D, Kibsgaard J, King LA. Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chem Rev 2024; 124:5617-5667. [PMID: 38661498 PMCID: PMC11082907 DOI: 10.1021/acs.chemrev.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
The quest to identify precious metal free hydrogen evolution reaction catalysts has received unprecedented attention in the past decade. In this Review, we focus our attention to recent developments in precious metal free hydrogen evolution reactions in acidic and alkaline electrolyte owing to their relevance to commercial and near-commercial low-temperature electrolyzers. We provide a detailed review and critical analysis of catalyst activity and stability performance measurements and metrics commonly deployed in the literature, as well as review best practices for experimental measurements (both in half-cell three-electrode configurations and in two-electrode device testing). In particular, we discuss the transition from laboratory-scale hydrogen evolution reaction (HER) catalyst measurements to those in single cells, which is a critical aspect crucial for scaling up from laboratory to industrial settings but often overlooked. Furthermore, we review the numerous catalyst design strategies deployed across the precious metal free HER literature. Subsequently, we showcase some of the most commonly investigated families of precious metal free HER catalysts; molybdenum disulfide-based, transition metal phosphides, and transition metal carbides for acidic electrolyte; nickel molybdenum and transition metal phosphides for alkaline. This includes a comprehensive analysis comparing the HER activity between several families of materials highlighting the recent stagnation with regards to enhancing the intrinsic activity of precious metal free hydrogen evolution reaction catalysts. Finally, we summarize future directions and provide recommendations for the field in this area of electrocatalysis.
Collapse
Affiliation(s)
| | - Yagya N. Regmi
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Chao Wei
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Dong Xia
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Jakob Kibsgaard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Laurie A. King
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| |
Collapse
|
17
|
Li L, Qu J, Zhang L, Wei L, Su J, Guo L. RuSe 2 and CoSe 2 Nanoparticles Incorporated Nitrogen-Doped Carbon as Efficient Trifunctional Electrocatalyst for Zinc-Air Batteries and Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38710018 DOI: 10.1021/acsami.4c02766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The development of affordable, highly active, and stable trifunctional electrocatalysts is imperative for sustainable energy applications such as overall water splitting and rechargeable Zn-air battery. Herein, we report a composite electrocatalyst with RuSe2 and CoSe2 hybrid nanoparticles embedded in nitrogen-doped carbon (RuSe2CoSe2/NC) synthesized through a carbonization-adsorption-selenylation strategy. This electrocatalyst is a trifunctional electrocatalyst with excellent hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) activities. An in-depth study of the effect of Se on the electrocatalytic process was conducted. Notably, the incorporation of Se moderately adjusted electronic structure of Ru and Co, enhancing all three types of catalytic performance (HER, η10 = 31 mV; OER, η10 = 248 mV; ORR, E1/2 = 0.834 V) under alkaline condition with accelerated kinetics and improved stability. Density functional theory (DFT) calculation reveals that the (210) crystal facet of RuSe2 is the dominant HER active site as it exhibited the lowest ΔGH* value. The in situ Raman spectra unravel the evolution process of the local electronic environment of Co-Se and Ru-Se bonds, which synergistically promotes the formation of CoOOH as the active intermediate during the OER. The superior catalytic efficiency and remarkable durability of RuSe2CoSe2/NC as an electrode for water splitting and zinc-air battery devices demonstrate its great potential for energy storage and conversion devices.
Collapse
Affiliation(s)
- Lubing Li
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingkuo Qu
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhang
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liting Wei
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinzhan Su
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liejin Guo
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
18
|
Liu Y, Li L, Wang L, Li N, Zhao X, Chen Y, Sakthivel T, Dai Z. Janus electronic state of supported iridium nanoclusters for sustainable alkaline water electrolysis. Nat Commun 2024; 15:2851. [PMID: 38565546 PMCID: PMC10987502 DOI: 10.1038/s41467-024-47045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Metal-support electronic interactions play crucial roles in triggering the hydrogen spillover (HSo) to boost hydrogen evolution reaction (HER). It requires the supported metal of electron-rich state to facilitate the proton adsorption/spillover. However, this electron-rich metal state contradicts the traditional metal→support electron transfer protocol and is not compatible with the electron-donating oxygen evolution reaction (OER), especially in proton-poor alkaline conditions. Here we profile an Ir/NiPS3 support structure to study the Ir electronic states and performances in HSo/OER-integrated alkaline water electrolysis. The supported Ir is evidenced with Janus electron-rich and electron-poor states at the tip and interface regions to respectively facilitate the HSo and OER processes. Resultantly, the water electrolysis (WE) is efficiently implemented with 1.51 V at 10 mA cm-2 for 1000 h in 1 M KOH and 1.44 V in urea-KOH electrolyte. This research clarifies the Janus electronic state as fundamental in rationalizing efficient metal-support WE catalysts.
Collapse
Affiliation(s)
- Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Li Wang
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Na Li
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ya Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Thangavel Sakthivel
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gyeongbuk, 39177, South Korea
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
19
|
Yu Y, Zhu Z, Huang H. Surface Engineered Single-atom Systems for Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311148. [PMID: 38197471 DOI: 10.1002/adma.202311148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Indexed: 01/11/2024]
Abstract
Single-atom catalysts (SACs) are demonstrated to show exceptional reactivity and selectivity in catalytic reactions by effectively utilizing metal species, making them a favorable choice among the different active materials for energy conversion. However, SACs are still in the early stages of energy conversion, and problems like agglomeration and low energy conversion efficiency are hampering their practical applications. Substantial research focus on support modifications, which are vital for SAC reactivity and stability due to the intimate relationship between metal atoms and support. In this review, a category of supports and a variety of surface engineering strategies employed in SA systems are summarized, including surface site engineering (heteroatom doping, vacancy introducing, surface groups grafting, and coordination tunning) and surface structure engineering (size/morphology control, cocatalyst deposition, facet engineering, and crystallinity control). Also, the merits of support surface engineering in single-atom systems are systematically introduced. Highlights are the comprehensive summary and discussions on the utilization of surface-engineered SACs in diversified energy conversion applications including photocatalysis, electrocatalysis, thermocatalysis, and energy conversion devices. At the end of this review, the potential and obstacles of using surface-engineered SACs in the field of energy conversion are discussed. This review aims to guide the rational design and manipulation of SACs for target-specific applications by capitalizing on the characteristic benefits of support surface engineering.
Collapse
Affiliation(s)
- Yutang Yu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zijian Zhu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hongwei Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
20
|
Alam N, Noor T, Iqbal N. Catalyzing Sustainable Water Splitting with Single Atom Catalysts: Recent Advances. CHEM REC 2024; 24:e202300330. [PMID: 38372409 DOI: 10.1002/tcr.202300330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Electrochemical water splitting for sustainable hydrogen and oxygen production have shown enormous potentials. However, this method needs low-cost and highly active catalysts. Traditional nano catalysts, while effective, have limits since their active sites are mostly restricted to the surface and edges, leaving interior surfaces unexposed in redox reactions. Single atom catalysts (SACs), which take advantage of high atom utilization and quantum size effects, have recently become appealing electrocatalysts. Strong interaction between active sites and support in SACs have considerably improved the catalytic efficiency and long-term stability, outperforming their nano-counterparts. This review's first section examines the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER). In the next section, SACs are categorized as noble metal, non-noble metal, and bimetallic synergistic SACs. In addition, this review emphasizes developing methodologies for effective SAC design, such as mass loading optimization, electrical structure modulation, and the critical role of support materials. Finally, Carbon-based materials and metal oxides are being explored as possible supports for SACs. Importantly, for the first time, this review opens a discussion on waste-derived supports for single atom catalysts used in electrochemical reactions, providing a cost-effective dimension to this vibrant research field. The well-known design techniques discussed here may help in development of electrocatalysts for effective water splitting.
Collapse
Affiliation(s)
- Nasar Alam
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| |
Collapse
|
21
|
Liu M, Zhang J, Su H, Jiang Y, Zhou W, Yang C, Bo S, Pan J, Liu Q. In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction. Nat Commun 2024; 15:1675. [PMID: 38396104 PMCID: PMC10891135 DOI: 10.1038/s41467-024-45990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Single-atom catalysts, especially those with metal-N4 moieties, hold great promise for facilitating the oxygen reduction reaction. However, the symmetrical distribution of electrons within the metal-N4 moiety results in unsatisfactory adsorption strength of intermediates, thereby limiting their performance improvements. Herein, we present atomically coordination-regulated Co single-atom catalysts that comprise a symmetry-broken Cl-Co-N4 moiety, which serves to break the symmetrical electron distribution. In situ characterizations reveal the dynamic evolution of the symmetry-broken Cl-Co-N4 moiety into a coordination-reduced Cl-Co-N2 structure, effectively optimizing the 3d electron filling of Co sites toward a reduced d-band electron occupancy (d5.8 → d5.28) under reaction conditions for a fast four-electron oxygen reduction reaction process. As a result, the coordination-regulated Co single-atom catalysts deliver a large half-potential of 0.93 V and a mass activity of 5480 A gmetal-1. Importantly, a Zn-air battery using the coordination-regulated Co single-atom catalysts as the cathode also exhibits a large power density and excellent stability.
Collapse
Affiliation(s)
- Meihuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, Hunan, China
| | - Jing Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China
| | - Hui Su
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Yaling Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China
| | - Wanlin Zhou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China
| | - Chenyu Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China
| | - Shuowen Bo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China
| | - Jun Pan
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, Hunan, China.
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China.
| |
Collapse
|
22
|
Huo J, Ge R, Liu Y, Li Y, Liao T, Yang J, Zhang J, Li S, Fei B, Li W. Heterointerface manipulation in the architecture of Co-Mo 2C@NC boosts water electrolysis. J Colloid Interface Sci 2024; 655:963-975. [PMID: 37953134 DOI: 10.1016/j.jcis.2023.10.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
Heterostructures with tunable electronic properties have shown great potential in water electrolysis for the replacement of current benchmark precious metals. However, constructing heterostructures with sufficient interfaces to strengthen the synergistic effect of multiple species still remains a challenge due to phase separation. Herein, an efficient electrocatalyst composed of a nanosized cobalt/Mo2C heterostructure anchored on N-doped carbon (Co-Mo2C@NC) was achieved by in situ topotactic phase transformation. With the merits of high conductivity, hierarchical pores, and strong electronic interaction between Co and Mo2C, the Co-Mo2C@5NC-4 catalyst shows excellent activity with a low overpotential for the hydrogen evolution reaction (HER, 89 mV@10 mA cm-2 in alkaline medium; 143 mV@10 mA cm-2 in acidic medium) and oxygen evolution reaction (OER, 356 mV@10 mA cm-2 in alkaline medium), as well as high stability. Furthermore, this catalyst in an electrolyzer shows efficient activity for overall water splitting and long-term durability. Theoretical calculations reveal the optimized adsorption-desorption behaviour of hydrogen intermediates on the generated cobalt layered hydroxide (Co LDH)/Mo2C interfaces, resulting in boosting alkaline water electrolysis. This work proposes a new interface-engineering perspective for the construction of high-activity heterostructures for electrochemical conversion.
Collapse
Affiliation(s)
- Juanjuan Huo
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Riyue Ge
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China; School of Fashion & Textiles, The Hong Kong Polytechnic University, Hong Kong S.A.R, 999077, China.
| | - Yang Liu
- Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | - Ying Li
- Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China; School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Ting Liao
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Australia
| | - Jack Yang
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jiujun Zhang
- Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | - Sean Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Bin Fei
- School of Fashion & Textiles, The Hong Kong Polytechnic University, Hong Kong S.A.R, 999077, China.
| | - Wenxian Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
23
|
Xu Z, Zuo W, Yu Y, Liu J, Cheng G, Zhao P. Surface Reconstruction Facilitated by Fluorine Migration and Bimetallic Center in NiCo Bimetallic Fluoride Toward Oxygen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306758. [PMID: 38044293 PMCID: PMC10853698 DOI: 10.1002/advs.202306758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Oxygen evolution reaction (OER) is a critical anodic reaction of electrochemical water splitting, developing a high-efficiency electrocatalyst is essential. Transition metal-based catalysts are much more cost-effective if comparable activities can be achieved. Among them, fluorides are rarely reported due to their low aqueous stability of coordination and low electric conductivity. Herein, a NiCo bimetallic fluoride with good crystallinity is designed and constructed, and significantly enhanced catalytic activity and conductivity are observed. The inevitable oxidation of transition metal ions at high potential and the dissociation of F- are attributed to the low aqueous stability of coordination. The theoretical researches predicte that transition metal fluorides should have a strong tendency to electrochemical reconstruction. Therefore, based on the observations on their electrochemical behavior, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and bode plots, it is further demonstrated that surface reconstruction occurred during the electrochemical process, meanwhile a significant increase of electrochemically active area, which is created by F migration, are also directly observed. Additionally, DFT calculation results show that the electronic structure of the catalysts is modulated by the bimetallic centers, and this reconstruction helps optimizing the adsorption energy of oxygen-containing species and improves OER activity.
Collapse
Affiliation(s)
- Zhenhang Xu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Wei Zuo
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Yueying Yu
- School of NursingWuhan UniversityWuhanHubei430072P. R. China
| | - Jinyan Liu
- Department of Biological and Chemical EngineeringZhixing College of Hubei UniversityWuhanHubei430011P. R. China
| | - Gongzhen Cheng
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Pingping Zhao
- School of NursingWuhan UniversityWuhanHubei430072P. R. China
| |
Collapse
|
24
|
Ahmad W, Ahmad N, Wang K, Aftab S, Hou Y, Wan Z, Yan B, Pan Z, Gao H, Peung C, Junke Y, Liang C, Lu Z, Yan W, Ling M. Electron-Sponge Nature of Polyoxometalates for Next-Generation Electrocatalytic Water Splitting and Nonvolatile Neuromorphic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304120. [PMID: 38030565 PMCID: PMC10837383 DOI: 10.1002/advs.202304120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/23/2023] [Indexed: 12/01/2023]
Abstract
Designing next-generation molecular devices typically necessitates plentiful oxygen-bearing sites to facilitate multiple-electron transfers. However, the theoretical limits of existing materials for energy conversion and information storage devices make it inevitable to hunt for new competitors. Polyoxometalates (POMs), a unique class of metal-oxide clusters, have been investigated exponentially due to their structural diversity and tunable redox properties. POMs behave as electron-sponges owing to their intrinsic ability of reversible uptake-release of multiple electrons. In this review, numerous POM-frameworks together with desired features of a contender material and inherited properties of POMs are systematically discussed to demonstrate how and why the electron-sponge-like nature of POMs is beneficial to design next-generation water oxidation/reduction electrocatalysts, and neuromorphic nonvolatile resistance-switching random-access memory devices. The aim is to converge the attention of scientists who are working separately on electrocatalysts and memory devices, on a point that, although the application types are different, they all hunt for a material that could exhibit electron-sponge-like feature to realize boosted performances and thus, encouraging the scientists of two completely different fields to explore POMs as imperious contenders to design next-generation nanodevices. Finally, challenges and promising prospects in this research field are also highlighted.
Collapse
Affiliation(s)
- Waqar Ahmad
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Nisar Ahmad
- School of MicroelectronicsUniversity of Science and Technology of ChinaHefei230026China
| | - Kun Wang
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Sumaira Aftab
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Yunpeng Hou
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengwei Wan
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Bei‐Bei Yan
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Zhao Pan
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Huai‐Ling Gao
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Chen Peung
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
| | - Yang Junke
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
| | - Chengdu Liang
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Zhihui Lu
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Wenjun Yan
- School of AutomationHangzhou Dianzi UniversityHangzhou310018China
| | - Min Ling
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
25
|
Duan Y, Zhong W, Zeng Z, Feng J, Xu J, Yang F, Liu J. Iodine-promoted transfer of dihydrogen from ketones to alkenes, triphenylmethyl, and diphenylmethyl derivatives. Chem Commun (Camb) 2023; 60:75-78. [PMID: 38018515 DOI: 10.1039/d3cc03409g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Herein, a novel class of transfer hydrogenation agent, cycloheptanone, was successfully employed in metal-free hydrogenation facilitated by iodine. A series of alkenes, triphenylmethyl derivatives, and diphenylmethyl derivatives were reduced to the desired compounds in moderate to excellent yields. The transfer hydrodeuteration of alkenes using α-deuterated cyclododecanone exhibited high regioselectivity. Preliminary mechanism studies confirmed the origins of the two hydrogen atoms involved in the reduction of alkenes. The current study paves the way for the use of ketones as unique transfer hydrogenation agents in chemical synthesis.
Collapse
Affiliation(s)
- Yiping Duan
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Wenyi Zhong
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Zhaolan Zeng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Jiajie Feng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Fulai Yang
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Jie Liu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| |
Collapse
|
26
|
Jia JF, Hao TT, Chen PH, Wu FY, Zhu W, Hung SF, Suen NT. Direct Electrosynthesis of Metal Nanoparticles on Ti 3C 2T x-Mxene during Hydrogen Evolution. Inorg Chem 2023; 62:19230-19237. [PMID: 37874974 DOI: 10.1021/acs.inorgchem.3c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Herein, we propose a simple yet effective method to deposit metal nanoparticles on Ti3C2Tx-MXene via direct electrosynthesis. Without using any reducing reagent or annealing under reducing atmosphere, it allows the conversion of metal salts (e.g., PtCl4, RuCl3·yH2O, IrCl3·zH2O, AgNO3, and CuCl2·2H2O) to metal nanoparticles with a small particle size (ca. 2 nm). Under these circumstances, it was realized that the support effect from Ti3C2Tx-MXene (electron pushing) is quite profound, in which the Ti3C2Tx-MXene support will act as an electron donor to push the electron to Pt nanoparticles and increase the electron density of Pt nanoparticles. It populates the antibonding state of Pt-Pt bonds as well as the adsorbate level that leads to a "weakening" of the ΔGH* in the optimal position. This rationalizes the outstanding activity of Pt/Ti3C2Tx-MXene (5 wt %, η10 = 16 mV) for the hydrogen evolution reaction (HER). In addition, this direct electrosynthesis method grants the growth of two or multiple types of metal nanoparticles on the Ti3C2Tx-MXene substrate that can perform dual or multiple functions as desired. For instance, one can prepare an electrocatalyst with Pt (2.5 wt %) and Ru nanoparticles (2.5 wt %) on the Ti3C2Tx-MXene support from the same synthetic method. This electrocatalyst (Pt_Ru/Ti3C2Tx-MXene) can display good electrocatalytic HER performance in both acid (0.5 M H2SO4) and alkaline electrolytes (1.0 M KOH).
Collapse
Affiliation(s)
- Jin-Feng Jia
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Tong Tong Hao
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Pei-Hsuan Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Feng-Yi Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wei Zhu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- Yangzhou High School, Yangzhou 225009, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Nian-Tzu Suen
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
27
|
Chen Y, Lin J, Pan Q, Liu X, Ma T, Wang X. Inter-Metal Interaction of Dual-Atom Catalysts in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2023; 62:e202306469. [PMID: 37312248 DOI: 10.1002/anie.202306469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Dual-atom catalysts (DACs) have been a new frontier in heterogeneous catalysis due to their unique intrinsic properties. The synergy between dual atoms provides flexible active sites, promising to enhance performance and even catalyze more complex reactions. However, precisely regulating active site structure and uncovering dual-atom metal interaction remain grand challenges. In this review, we clarify the significance of the inter-metal interaction of DACs based on the understanding of active center structures. Three diatomic configurations are elaborated, including isolated dual single-atom, N/O-bridged dual-atom, and direct dual-metal bonding interaction. Subsequently, the up-to-date progress in heterogeneous oxidation reactions, hydrogenation/dehydrogenation reactions, electrocatalytic reactions, and photocatalytic reactions are summarized. The structure-activity relationship between DACs and catalytic performance is then discussed at an atomic level. Finally, the challenges and future directions to engineer the structure of DACs are discussed. This review will offer new prospects for the rational design of efficient DACs toward heterogeneous catalysis.
Collapse
Affiliation(s)
- Yang Chen
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Institute of Clean Energy Chemistry, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Qin Pan
- Institute of Clean Energy Chemistry, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Xu Liu
- Institute of Clean Energy Chemistry, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC 3122, Australia
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
28
|
Zhang S, Hou M, Zhai Y, Liu H, Zhai D, Zhu Y, Ma L, Wei B, Huang J. Dual-Active-Sites Single-Atom Catalysts for Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302739. [PMID: 37322318 DOI: 10.1002/smll.202302739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Dual-Active-Sites Single-Atom catalysts (DASs SACs) are not only the improvement of SACs but also the expansion of dual-atom catalysts. The DASs SACs contains dual active sites, one of which is a single atomic active site, and the other active site can be a single atom or other type of active site, endowing DASs SACs with excellent catalytic performance and a wide range of applications. The DASs SACs are categorized into seven types, including the neighboring mono metallic DASs SACs, bonded DASs SACs, non-bonded DASs SACs, bridged DASs SACs, asymmetric DASs SACs, metal and nonmetal combined DASs SACs and space separated DASs SACs. Based on the above classification, the general methods for the preparation of DASs SACs are comprehensively described, especially their structural characteristics are discussed in detail. Meanwhile, the in-depth assessments of DASs SACs for variety applications including electrocatalysis, thermocatalysis and photocatalysis are provided, as well as their unique catalytic mechanism are addressed. Moreover, the prospects and challenges for DASs SACs and related applications are highlighted. The authors believe the great expectations for DASs SACs, and this review will provide novel conceptual and methodological perspectives and exciting opportunities for further development and application of DASs SACs.
Collapse
Affiliation(s)
- Shaolong Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Minchen Hou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yanliang Zhai
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Youqi Zhu
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Institution, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li Ma
- Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning, 530023, P. R. China
| | - Bin Wei
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Jing Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
| |
Collapse
|
29
|
Da Y, Tian Z, Jiang R, Chen G, Liu Y, Xiao Y, Zhang J, Xi S, Chen W, Han X, Hu W. Single-Atom Pt Doping Induced p-Type to n-Type Transition in NiO Nanosheets toward Self-Gating Modulated Electrocatalytic Hydrogen Evolution Reaction. ACS NANO 2023; 17:18539-18547. [PMID: 37676083 DOI: 10.1021/acsnano.3c06595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Exploring highly efficient single atom catalysts with defined active centers and tunable electronic structures is highly desirable. Herein, we developed an efficient hydrogen evolution reaction (HER) electrocatalyst through a self-gating phenomenon induced by Pt single atoms (SAs) supported on ultrathin NiO nanosheets (PtSA-NiO). The Ni atoms in NiO are partially replaced by the atomically dispersed Pt atoms, leading to a transition from p-type NiO into n-type PtSA-NiO. When the n-type PtSA-NiO serves as HER electrocatalyst, the self-gating phenomenon occurs in the ultrathin nanosheets, resulting in a mixture of leakage ("active") and metal-insulator-semiconductor ("inert") regions. The "inert" region induced by the ionic gating and reverse potential is capable of accumulating relatively high surface charge carrier concentration with an ultrahigh electric field, making the PtSA-NiO highly conductive; meanwhile, the HER process occurs at the Pt SAs sites (active region) in the PtSA-NiO nanosheets. As a result, the PtSA-NiO requires only 55 mV to deliver 10 mA/cm2 in an alkaline solution with good stability.
Collapse
Affiliation(s)
- Yumin Da
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117551, Singapore
| | - Zhangliu Tian
- Department of Chemistry, National University of Singapore, Singapore 117551, Singapore
| | - Rui Jiang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Ganwen Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117551, Singapore
| | - Yuan Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117551, Singapore
| | - Yukun Xiao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117551, Singapore
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, 1 Pesek Road, 627833, Singapore
| | - Wei Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117551, Singapore
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Wenbin Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
30
|
Li L, Zhu Q, Han M, Tu X, Shen Y. MOF-derived single-atom catalysts for oxygen electrocatalysis in metal-air batteries. NANOSCALE 2023; 15:13487-13497. [PMID: 37563956 DOI: 10.1039/d3nr02548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Electrocatalysts play a critical role in oxygen electrocatalysis, enabling great improvements for the future development and application of metal-air batteries. Single-atom catalysts (SACs) derived from metal-organic frameworks (MOFs) are promising catalysts for oxygen electrocatalysis since they are endowed with the merits of a distinctive electronic structure, a low-coordination environment, quantum size effect, and strong metal-support interaction. In addition, MOFs afford a desirable molecular platform for ensuring the synthesis of well-dispersed SACs, endowing them with remarkably high catalytic activity and durability. In this review, we focus on the current status of MOF-derived SACs used as catalysts for oxygen electrocatalysis, with special attention to MOF-derived strategies for the fabrication of SACs and their application in various metal-air batteries. Finally, to facilitate the future deployment of high-performing SACs, some technical challenges and the corresponding research directions are also proposed.
Collapse
Affiliation(s)
- Le Li
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| | - Qianyi Zhu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| | - Xiaobin Tu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| | - Ying Shen
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| |
Collapse
|
31
|
Liu MJ, Yang FH, Mei JC, Guo X, Wang HY, He MY, Yao YA, Zhang HF, Liu CB. MOF Template-Derived Carbon Shell-Embedded CoP Hierarchical Nanosheet as Bifunctional Catalyst for Overall Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2421. [PMID: 37686929 PMCID: PMC10489850 DOI: 10.3390/nano13172421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
The design of earth-abundant and highly efficient bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions (HER/OER) is crucial for hydrogen production through overall water splitting. Herein, we report a novel nanostructure consisting of vertically oriented CoP hierarchical nanosheet arrays with in situ-assembled carbon skeletons on a Ti foil electrode. The novel Zeolitic Imidazolate Framework-67 (ZIF-67) template-derived hierarchical nanosheet architecture effectively improved electrical conductivity, facilitated electrolyte transport, and increased the exposure of the active sites. The obtained bifunctional hybrid exhibited a low overpotential of 72 mV at 10 mA cm-2 and a small Tafel slope of 65 mV dec-1 for HER, and an improved overpotential of 329 mV and a Tafel slope of 107 mV dec-1 for OER. Furthermore, the assembled C@CoP||C@CoP electrolyzer showed excellent overall water splitting performance (1.63 V) at a current density of 10 mA cm-2 and superior durability. This work provides a structure engineering strategy for metal-organic framework (MOF) template-derived hybrids with outstanding electrocatalytic performance.
Collapse
Affiliation(s)
- Mei-Jun Liu
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China; (M.-J.L.); (F.-H.Y.); (J.-C.M.); (X.G.); (H.-Y.W.); (M.-Y.H.); (Y.-A.Y.)
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Fu-Hao Yang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China; (M.-J.L.); (F.-H.Y.); (J.-C.M.); (X.G.); (H.-Y.W.); (M.-Y.H.); (Y.-A.Y.)
| | - Ji-Cheng Mei
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China; (M.-J.L.); (F.-H.Y.); (J.-C.M.); (X.G.); (H.-Y.W.); (M.-Y.H.); (Y.-A.Y.)
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xu Guo
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China; (M.-J.L.); (F.-H.Y.); (J.-C.M.); (X.G.); (H.-Y.W.); (M.-Y.H.); (Y.-A.Y.)
| | - Hua-Yang Wang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China; (M.-J.L.); (F.-H.Y.); (J.-C.M.); (X.G.); (H.-Y.W.); (M.-Y.H.); (Y.-A.Y.)
| | - Meng-Yao He
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China; (M.-J.L.); (F.-H.Y.); (J.-C.M.); (X.G.); (H.-Y.W.); (M.-Y.H.); (Y.-A.Y.)
| | - Yu-Ang Yao
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China; (M.-J.L.); (F.-H.Y.); (J.-C.M.); (X.G.); (H.-Y.W.); (M.-Y.H.); (Y.-A.Y.)
| | - Hai-Feng Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China; (M.-J.L.); (F.-H.Y.); (J.-C.M.); (X.G.); (H.-Y.W.); (M.-Y.H.); (Y.-A.Y.)
| | - Cheng-Bin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
32
|
Wang Y, Wang T, Yang M, Rui Y, Xue Z, Zhu H, Wang C, Li J, Chen B. Co 2P nanowire arrays anchored on a 3D porous reduced graphene oxide matrix embedded in nickel foam for a high-efficiency hydrogen evolution reaction. Dalton Trans 2023; 52:11526-11534. [PMID: 37540012 DOI: 10.1039/d3dt01367g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Regulating the structural and interfacial properties of transition metal phosphides (TMPs) by coupling carbon-based materials with large surface areas to enhance hydrogen evolution reaction (HER) performance presents significant progress for water splitting technology. Herein, we constructed a composite substrate of a three-dimensional porous graphene oxide matrix (3D-GO) embedded in nickel foam (NF) to grow a Co2P electrocatalyst. Well-defined gladiolus-like Co2P nanowire arrays tightly anchored on the substrate show enhanced electrochemical characteristics for the hydrogen evolution reaction (HER) based on the promoting roles of 3D porous reduced GO (3D-rGO) derived from 3D-GO, which promotes the dispersion of active components, improves the rate of electron transfer, and facilitates the transport of water molecules. As a result, the obtained Co2P@3D-rGO/NF electrode exhibits superior HER activity in 1.0 M KOH media, achieving overpotentials of 36.5 and 264.7 mV at current densities of 10 and 100 mA cm-2, respectively. The electrode also has a low Tafel slope of 55.5 mV dec-1, a large electrochemical surface area, and small charge-transfer resistance, further revealing its mechanism of high intrinsic activity. Moreover, the electrode exhibits excellent HER stability and durability without surface morphology and chemical state changes.
Collapse
Affiliation(s)
- Yuanqiang Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Ting Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Mengru Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Yichuan Rui
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Zhili Xue
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Haozhen Zhu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Chengjie Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Jing Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Binling Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| |
Collapse
|
33
|
Wang N, Mei R, Lin X, Chen L, Yang T, Liu Q, Chen Z. Cascade Anchoring Strategy for Fabricating High-Loading Pt Single Atoms as Bifunctional Catalysts for Electrocatalytic Hydrogen Evolution and Oxygen Reduction Reactions. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37300489 DOI: 10.1021/acsami.3c04602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbon supports containing single-atomically dispersed metal-Nx (denoted as MSAC-NxCy, x, y: coordination number) have attracted increasing attention due to their superb performance in heterogeneous catalysis. However, large-scale controllable preparation of single-atom catalysts (SACs) with high concentration of supported metal-Nx is still a big challenge because of the metal atom agglomeration during synthesis at high density and temperatures. Herein, we report a stepwise anchoring strategy from a 1,10-o-phenanthroline Pt chelate to an Nx-doped carbon (NxCy) with isolated Pt single-atom catalysts (PtSAC-NxCy) containing Pt loadings up to 5.31 wt % measured via energy-dispersive X-ray spectroscopy (EDS). The results show that 1,10-o-phenanthroline Pt chelate predominantly contributes to the formation of chelate single metal sites that bind tightly to platinum ions to prevent metal atoms from aggregating, resulting in high metal loading. The high-loading PtSAC-NxCy exhibits a low hydrogen evolution (HER) overpotential of 24 mV at 0.010 A cm-2 current density with a relatively small Tafel gradient of 60.25 mV dec-1 and excellent stable performance. In addition, the PtSAC-NxCy catalyst shows excellent oxygen reduction reaction (ORR) catalytic activity with good stability, represented by the fast ORR kinetics under high-potential conditions. Theoretical calculations show that PtSAC-NC3 (x = 1, y = 3) offers a lower H2O activation energy barrier than Pt nanoparticles. The adsorption free energy of a H atom on a Pt single-atom site is lower than that on a Pt cluster, which is easier for H2 desorption. This study provides a potentially powerful cascade anchoring strategy in the design of other stable MSAC-NxCy catalysts with high-density metal-Nx sites for the HER and ORR.
Collapse
Affiliation(s)
- Nan Wang
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Riguo Mei
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Xidong Lin
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Liqiong Chen
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Tao Yang
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Qingxia Liu
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Zhongwei Chen
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
34
|
Cai Z, Wang P, Zhao X, Bu X, Zhang J, Chen Y, Xu J, Yan Y, Chen A, Wang X. Ultralow-iridium content NiIr alloy derivative nanochain arrays as bifunctional electrocatalysts for overall water splitting. RSC Adv 2023; 13:17315-17323. [PMID: 37304768 PMCID: PMC10249465 DOI: 10.1039/d3ra01845h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
The development of low-cost and high-durability bifunctional electrocatalysts is of considerable importance for overall water splitting (OWS). This work reports the controlled synthesis of nickel-iridium alloy derivative nanochain array electrodes (NiIrx NCs) with fully exposed active sites that facilitated mass transfer for efficient OWS. The nanochains have a self-supported three-dimensional core-shell structure, composed of a metallic NiIrx core and a thin (5-10 nm) amorphous (hydr)oxide film as the shell (e.g., IrO2/NiIrx and Ni(OH)2/NiIrx). Interestingly, NiIrx NCs have bifunctional properties. Particularly, the oxygen evolution reaction (OER) current density (electrode geometrical area) of NiIr1 NCs is four times higher than that of IrO2 at 1.6 V vs. RHE. Meanwhile, its hydrogen evolution reaction (HER) overpotential at 10 mA cm-2 (η10 = 63 mV) is comparable to that of 10 wt% Pt/C. These performances may originate from the interfacial effect between the surface (hydr)oxide shell and metallic NiIrx core, which facilitates the charge transfer, along with the synergistic effect between Ni2+ and Ir4+ in the (hydr)oxide shell. Furthermore, NiIr1 NCs exhibits excellent OER durability (100 h @ 200 mA cm-2) and OWS durability (100 h @ 500 mA cm-2) with the nanochain array structure well preserved. This work provides a promising route for developing effective bifunctional electrocatalysts for OWS applications.
Collapse
Affiliation(s)
- Zhengyang Cai
- School of Materials and Chemistry, University of Shanghai for Science and Technology 200093 Shanghai P. R. China
- Energy Materials Research Center Institute of Ceramics, Chinese Academy of Sciences 200050 Shanghai P. R. China
| | - Ping Wang
- Energy Materials Research Center Institute of Ceramics, Chinese Academy of Sciences 200050 Shanghai P. R. China
| | - Xianglong Zhao
- School of Science, Shandong Jianzhu University Jinan 250101 P. R. China
| | - Xiuming Bu
- Energy Materials Research Center Institute of Ceramics, Chinese Academy of Sciences 200050 Shanghai P. R. China
| | - Jiajia Zhang
- Energy Materials Research Center Institute of Ceramics, Chinese Academy of Sciences 200050 Shanghai P. R. China
| | - Yuhao Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology 200093 Shanghai P. R. China
- Energy Materials Research Center Institute of Ceramics, Chinese Academy of Sciences 200050 Shanghai P. R. China
| | - Jingcheng Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology 200093 Shanghai P. R. China
| | - Ya Yan
- Energy Materials Research Center Institute of Ceramics, Chinese Academy of Sciences 200050 Shanghai P. R. China
| | - Aiying Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology 200093 Shanghai P. R. China
| | - Xianying Wang
- Energy Materials Research Center Institute of Ceramics, Chinese Academy of Sciences 200050 Shanghai P. R. China
| |
Collapse
|
35
|
Wang J, Feng J, Li Y, Lai F, Wang GC, Liu T, Huang J, He G. Multilayered Molybdate Microflowers Fabricated by One-Pot Reaction for Efficient Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206952. [PMID: 36950743 DOI: 10.1002/advs.202206952] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/12/2023] [Indexed: 05/18/2023]
Abstract
The development of high-performance, low-cost and rapid-production bifunctional electrocatalysts towards overall water splitting still poses huge challenges. Herein, the authors utilize a facile hydrothermal method to synthesize a novel structure of Co-doped ammonium lanthanum molybdate on Ni foams (Co-ALMO@NF) as self-supported electrocatalysts. Owing to large active surfaces, lattice defect and conductive channel for rapid charge transport, Co-ALMO@NF exhibits good electrocatalytic performances which requires only 349/341 mV to achieve a high current density of 600 mA cm-2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Besides, a low cell voltage of 1.52 V is required to reach the current density of 10 mA cm-2 in alkaline medium along with an excellent long-term stability for two-electrode configurations. Density functional theory calculations are performed to reveal the reaction mechanism on Co-ALMO@NF, which shows that the Mo site is the most favorable ones for HER, while the introduction of Co is beneficial to reduce the adsorption intensity on the surface of Co-ALMO@NF, thus accelerating OER process. This work highlighted the importance of the structural design for self-supporting electrocatalysts.
Collapse
Affiliation(s)
- Jingyi Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jianrui Feng
- Department of Chemical Engineering, University College London, London, WC1E 6 EB, UK
| | - Yuying Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Gui-Chang Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and the Tianjin Key Lab and Molecule-Based Material Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jiajia Huang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Guanjie He
- Department of Chemical Engineering, University College London, London, WC1E 6 EB, UK
| |
Collapse
|
36
|
Dong H, Zhao Z, Wu Z, Cheng C, Luo X, Li S, Ma T. Metal-oxo Cluster Mediated Atomic Rh with High Accessibility for Efficient Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207527. [PMID: 36651013 DOI: 10.1002/smll.202207527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Achieving single-atom catalysts (SACs) with high metal content and outstanding performance as well as robust stability is critically needed for clean and sustainable energy. However, most of the synthesized SACs are undesired on the loading content of the metal due to the anchored metals and the supports as well as the synthesizing methods. Herein, a Rh-SAC with high accessibility by loading it on the metal nodes of metal-porphyrin-based PCN MOFs (PCN-224) as supporting material is reported. Significantly, the PCN-Rh15.9 /KB catalyst with a high Rh content of 15.9 wt% exhibits excellent hydrogen evolution activity with a low overpotential of 25 mV at a current density of 10 mA cm-2 and a mass activity of 7.7 A mg-1 Rh at overpotential of 150 mV, which is much better than that of the commercial Rh/C. Various characterizations reveal the Rh species is stabilized by the metal nodes bearing -O/OHx in MOFs, which is of importance for the high loading amount and the good activity. This work establishes an efficient approach to synthesize high content SACs on the nodes of MOFs for wide catalyst design.
Collapse
Affiliation(s)
- Hai Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
37
|
Yang S, Si Z, Li G, Zhan P, Liu C, Lu L, Han B, Xie H, Qin P. Single Cobalt Atoms Immobilized on Palladium-Based Nanosheets as 2D Single-Atom Alloy for Efficient Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207651. [PMID: 36631281 DOI: 10.1002/smll.202207651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Single-atom alloys (SAAs) display excellent electrocatalytic performance by overcoming the scaling relationships in alloys. However, due to the lack of a unique structure engineering design, it is difficult to obtain SAAs with a high specific surface area to expose more active sites. Herein, single Co atoms are immobilized on Pd metallene (Pdm) support to obtain Co/Pdm through the design of the engineered morphology of Pd, realizing the preparation of ultra-thin 2D SAA. The unsaturated coordination environments combined with the unique geometric and electronic structures realize the modulation of the d-band center and the redistribution of charges, generating highly active electronic states on the surface of Co/Pdm. Benefiting from the synergistic interaction and spillover effect, the Co/Pdm electrocatalyst exhibits outstanding hydrogen evolution reaction (HER) performance in both acid and alkaline solutions, especially with a Tafel slope of 8.2 mV dec-1 and a low overpotential of 24.7 mV at 10 mA cm-2 in the acidic medium, which outperforms commercial Pt/C and Pd/C. This work highlights the successful preparation of 2D ultra-thin SAA, which provides a new strategy for the preparation of HER electrocatalyst with high efficiency, activity, and stability.
Collapse
Affiliation(s)
- Shuai Yang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Zhihao Si
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Guozhen Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Peng Zhan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Chang Liu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Lu Lu
- Paris Curie Engineer School, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., LTD, No. 712 Wen'er West Road, Hangzhou, 310003, P. R. China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
- Paris Curie Engineer School, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| |
Collapse
|
38
|
Han Z, Huang S, Zhang J, Wang F, Han S, Wu P, He M, Zhuang X. Single Ru-N 4 Site-Embedded Porous Carbons for Electrocatalytic Nitrogen Reduction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13025-13032. [PMID: 36857306 DOI: 10.1021/acsami.2c21744] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ammonia is an effective feedstock for chemicals, fertilizers, and energy storage. The electrocatalytic nitrogen reduction reaction (NRR) is an alternative, efficient, and clean technology for ammonia production, relative to the traditional Haber-Bosch method. Single-metal catalysts are widely studied in the field of NRR. However, very limited conclusions have been made on how to precisely modulate the coordination environment of the single-metal-atom sites to boost catalytic NRR performance. Herein, we report a 5,7-membered carbon ring-involved porous carbon (PC) preparation toward single-atom Ru-embedded PCs. As electrocatalysts, such materials exhibit surprisingly promising catalytic NRR properties with an NH3 yield rate of up to 67.8 ± 4.9 μg h-1 mgcat-1 and a Faradaic efficiency of 19.5 ± 0.6%, exceeding those of most of the reported single-atom NRR catalysts. Extended X-ray absorption fine structure demonstrates that the presence of topological defects increases the Ru-N bond from 1.48 to 1.56 Å, modulating the coordination environment of the single-atom Ru active sites. Density functional theory-calculated results demonstrate that the adsorption of N2 onto single-atom Ru surrounded by topological defects extends the N≡N bond to 1.146 Å, weakening the strength of N≡N and making it susceptible to the NRR. All in all, this work provides a new design strategy by involving topological defects and corresponding large polarization around the Ru single atom to boost the catalytic NRR performance. Such a concept can also be applied to many other kinds of catalysts for energy storage and conversion.
Collapse
Affiliation(s)
- Zhiya Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062, China
- Frontiers Science Center for Transformative Molecules & Zhang Jiang Institute for Advanced Study, Shanghai 200203, China
| | - Senhe Huang
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Frontiers Science Center for Transformative Molecules & Zhang Jiang Institute for Advanced Study, Shanghai 200203, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Fu Wang
- Med-X Research Institute and School of Biomedical Engineering, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Jiao Tong University, Shanghai 200240 P. R. China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Peng Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062, China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062, China
| | - Xiaodong Zhuang
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Frontiers Science Center for Transformative Molecules & Zhang Jiang Institute for Advanced Study, Shanghai 200203, China
| |
Collapse
|
39
|
Electrodeposition of nanoporous Ni0.85Se arrays anchored on rGO promotes high-efficiency oxygen evolution reaction. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
40
|
Ultrathin MoS2 nanosheets decorated on NiSe nanowire arrays as advanced trifunctional electrocatalyst for overall water splitting and urea electrolysis. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
41
|
Tian L, Liu Y, He C, Tang S, Li J, Li Z. Hollow Heterostructured Nanocatalysts for Boosting Electrocatalytic Water Splitting. CHEM REC 2023; 23:e202200213. [PMID: 36193962 DOI: 10.1002/tcr.202200213] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Indexed: 11/07/2022]
Abstract
The implementation of electrochemical water splitting demands the development and application of electrocatalysts to overcome sluggish reaction kinetics of hydrogen/oxygen evolution reaction (HER/OER). Hollow nanostructures, particularly for hollow heterostructured nanomaterials can provide multiple solutions to accelerate the HER/OER kinetics owing to their advantageous merit. Herein, the recent advances of hollow heterostructured nanocatalysts and their excellent performance for water splitting are systematically summarized. Starting by illustrating the intrinsically advantageous features of hollow heterostructures, achievements in engineering hollow heterostructured electrocatalysts are also highlighted with the focus on structural design, interfacial engineering, composition regulation, and catalytic evaluation. Finally, some perspective insights and future challenges of hollow heterostructured nanocatalysts for electrocatalytic water splitting are also discussed.
Collapse
Affiliation(s)
- Lin Tian
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Yuanyuan Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Changchun He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Shirong Tang
- School of Food Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Jing Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| |
Collapse
|
42
|
Naseeb W, Liu Q, Nichols F, Pan D, Kaleem Khosa M, Chen S. Ru-CoO heterostructured nanoparticles supported on nitrogen and sulfur codoped graphene nanosheets as effective electrocatalysts for hydrogen evolution reaction in alkaline media. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
43
|
Yang H, Cheng W, Lu X, Chen Z, Liu C, Tian L, Li Z. Coupling Transition Metal Compound with Single-Atom Site for Water Splitting Electrocatalysis. CHEM REC 2023; 23:e202200237. [PMID: 36538728 DOI: 10.1002/tcr.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Single-atom site catalysts (SACs) provide an ideal platform to identify the active centers, explore the catalytic mechanism, and establish the structure-property relationships, and thus have attracted increasing interests for electrocatalytic energy conversion. Substantial endeavors have been devoted to the construction of carbon-supported SACs, and their progress have been comprehensively reviewed. Compared with carbon-supported SACs, transition metal compounds (TMCs)-supported SACs are still in their infancy in the field of electrocatalysis. However, they have also aroused ever-increasing attention for driving electrocatalytic water splitting, and emerged as an indispensable class of SACs in recent years, predominately owing to their inherently structural features, such as rich anchoring sites, surface defects, and lattice vacancy. Herein, in this review, we have systematically summarized the recent advances of a variety of TMC supported SACs toward electrocatalytic water splitting. The advanced characterization techniques and theoretical analyses for identifying and monitoring the atomic structure of SACs are firstly manifested. Subsequently, the anchoring and stabilization mechanisms for TMC supported SACs are also highlighted. Thereafter, the advances of TMC supported SACs for driving water electrolysis are systematically unraveled.
Collapse
Affiliation(s)
- Huimin Yang
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili, 835000, China.,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Wenjing Cheng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili, 835000, China.,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Xinhua Lu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Zhenyang Chen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Chao Liu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Lin Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili, 835000, China.,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| |
Collapse
|
44
|
Cao L, Zhang B, Zhao S. Cation-Tuning Engineering on Metal Oxides for Oxygen Electrocatalysis. Chemistry 2023; 29:e202202000. [PMID: 36274220 PMCID: PMC10099866 DOI: 10.1002/chem.202202000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/05/2022]
Abstract
Cation-tuning engineering has become a new frontier in altering the electronic structure of electrocatalysts, which has been employed to enhance their electrochemical performance. Significant efforts have been made to promote the electrochemical performance of transition metal-based materials during oxygen electrocatalysis and related energy devices such as Zn-air batteries. Herein, the advantages of cation-tuning engineering, including cation vacancies/defects and cation doping, in the modification of the electronic structure of transition metal oxide catalysts are discussed. Additionally, practical applications of the cation-tuning engineering strategy are reviewed in detail with a special emphasis on oxygen reduction reaction and oxygen evolution reaction. Lastly, challenges and future opportunities in this field are also proposed.
Collapse
Affiliation(s)
- Liuyue Cao
- School of Chemistry and Chemical EngineeringChongqing UniversityChongqing400044P. R. China
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNew South WalesAustralia
| | - Bin‐Wei Zhang
- School of Chemistry and Chemical EngineeringChongqing UniversityChongqing400044P. R. China
- Center of Advanced Energy Technology and ElectrochemistryInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqing400044P. R. China
| | - Shenlong Zhao
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
45
|
Si F, Liu J, Zhang Y, Zhao B, Liang Y, Wu X, Kang X, Yang X, Zhang J, Fu XZ, Luo JL. Surface Spin Enhanced High Stable NiCo 2 S 4 for Energy-Saving Production of H 2 from Water/Methanol Coelectrolysis at High Current Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205257. [PMID: 36344428 DOI: 10.1002/smll.202205257] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Nickel based materials are promising electrocatalysts to produce hydrogen from water in alkaline media. However, the stability is of great challenge, limiting its practical material functions. Herein, a new technique for electro-deposition flower-like NiCo2 S4 nanosheets on carbon-cloth (CC@NiCo2 S4 ) is proposed for energy-saving production of H2 from water/methanol coelectrolysis at high current density by constructing array architectures and regulating surface magnetism. The optimized and fine-tuned magnetism on the surface of the electrochemical in situ grown CC@NiCo2 S4 nanosheet array result in (0 1 -1) surface universally exposed, high catalytic activity for methanol electrooxidation, and long-term stability at high current density. X-ray photoelectron spectroscopy in combination of density functional theory calculations confirm the valence electron states and spin of d electrons for the surface of NiCo2 S4 , which enhance the surface stability of catalysts. This technology may be utilized to alter the surface magnetism and increase the stability of Ni-based electrocatalytic materials in general.
Collapse
Affiliation(s)
- Fengzhan Si
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianwen Liu
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yan Zhang
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bin Zhao
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yue Liang
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xuexian Wu
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaomin Kang
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoqiang Yang
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
46
|
Xie W, Li K, Liu XH, Zhang X, Huang H. P-Mediated Cu-N 4 Sites in Carbon Nitride Realizing CO 2 Photoreduction to C 2 H 4 with Selectivity Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208132. [PMID: 36331052 DOI: 10.1002/adma.202208132] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Photocatalytic CO2 reduction to high value-added C2 products (e.g., C2 H4 ) is of considerable interest but challenging. The C2 H4 product selectivity strongly hinges on the intermediate energy levels in the CO2 reduction pathway. Herein, Cu-N4 sites anchored phosphorus-modulated carbon nitride (CuACs/PCN) is designed as a photocatalyst to tailor the intermediate energy levels in the the C2 H4 formation reaction pathway for realizing its high production with tunable selectivity. Theoretical calculations combined with experimental data demonstrate that the formation of the C-C coupling intermediates can be realized on Cu-N4 sites and the surrounding doped P facilitates the production of C2 H4 . Thus, CuACs/PCN exhibits a high C2 H4 selectivity of 53.2% with a yielding rate of 30.51 µmol g-1 . The findings reveal the significant role of the coordination environment and surrounding microenvironment of Cu single atoms in C2 H4 formation and offer an effective approach for highly selective CO2 photoreduction to produce C2 H4 .
Collapse
Affiliation(s)
- Wenke Xie
- School of Science, China University of Geosciences (Beijing), Beijing, 100083, P. R. China
| | - Kuangjun Li
- School of Science, China University of Geosciences (Beijing), Beijing, 100083, P. R. China
| | - Xuan-He Liu
- School of Science, China University of Geosciences (Beijing), Beijing, 100083, P. R. China
| | - Xing Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institution of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, P. R. China
| |
Collapse
|
47
|
Co(OH)2 Nanoflowers Decorated α-NiMoO4 Nanowires as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting. Catalysts 2022. [DOI: 10.3390/catal12111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development of bifunctional electrocatalysts with high catalytic activity and cyclic stability is an effective method for electrocatalytic water splitting. Herein, a promising hydroxide/oxide Co(OH)2/α-NiMoO4 NWs/CC heterostructure with nanoflowers decorating the nanowires was fabricated on a carbon cloth (CC) substrate via hydrothermal and calcination methods. In contrast to one-dimensional nanomaterials, the interfaces of Co(OH)2 nanoflowers and α-NiMoO4 nanowires on CC provide more active sites for electrocatalytic reactions; therefore, they exhibit obviously enhanced electrocatalytic activities in overall water splitting. Specifically, the Co(OH)2/α-NiMoO4 NWs/CC electrodes exhibit an overpotential of 183.01 mV for hydrogen evolution reaction (HER) and of 170.26 mV for oxygen evolution reactions (OER) at the current density of 10 mA cm−2 in 1.0 M KOH. Moreover, the electrocatalytic oxygen evolution reaction (OER) activity of the Co(OH)2/α-NiMoO4 NWs/CC electrocatalyst was enhanced after long-term stability tests.
Collapse
|
48
|
Song Z, Li J, Davis KD, Li X, Zhang J, Zhang L, Sun X. Emerging Applications of Synchrotron Radiation X-Ray Techniques in Single Atomic Catalysts. SMALL METHODS 2022; 6:e2201078. [PMID: 36207288 DOI: 10.1002/smtd.202201078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Single atom catalysts (SACs) can achieve a maximum atom utilization efficiency of 100%, which provides significantly increased active sites compared with traditional catalysts during catalytic reactions. Synchrotron radiation technology is an important characterization method for identifying single-atom catalysts. Several types of internal information, such as the coordination number, bond length and electronic structure of metals, can all be analyzed. This review will focus on the introduction of synchrotron radiation techniques and their applications in SACs. First, the fundamentals of synchrotron radiation and the corresponding techniques applied in characterization of SACs will be briefly introduced, such as X-ray absorption near edge spectroscopy and extended X-ray absorption fine structure spectroscopy and in situ techniques. The detailed information obtained from synchrotron radiation X-ray characterization is described through four routes: 1) the local environment of a specific atom; 2) the oxidation state of SACs; 3) electronic structures at different orbitals; and 4) the in situ structure modification during catalytic reaction. In addition, a systematic summary of synchrotron radiation X-ray characterization on different types of SACs (noble metals and transition metals) will be discussed.
Collapse
Affiliation(s)
- Zhongxin Song
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Junjie Li
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Kieran Doyle Davis
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Xifei Li
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Jiujun Zhang
- Institute for New Energy Materials and Engineering/College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
49
|
Multisite engineering towards atomically dispersed Ru on Ni-Co-P composite with N-doped carbon matrix for robust water oxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Chen Y, Lin J, Jia B, Wang X, Jiang S, Ma T. Isolating Single and Few Atoms for Enhanced Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201796. [PMID: 35577552 DOI: 10.1002/adma.202201796] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/16/2022] [Indexed: 05/27/2023]
Abstract
Atomically dispersed metal catalysts have triggered great interest in the field of catalysis owing to their unique features. Isolated single or few metal atoms can be anchored on substrates via chemical bonding or space confinement to maximize atom utilization efficiency. The key challenge lies in precisely regulating the geometric and electronic structure of the active metal centers, thus significantly influencing the catalytic properties. Although several reviews have been published on the preparation, characterization, and application of single-atom catalysts (SACs), the comprehensive understanding of SACs, dual-atom catalysts (DACs), and atomic clusters has never been systematically summarized. Here, recent advances in the engineering of local environments of state-of-the-art SACs, DACs, and atomic clusters for enhanced catalytic performance are highlighted. Firstly, various synthesis approaches for SACs, DACs, and atomic clusters are presented. Then, special attention is focused on the elucidation of local environments in terms of electronic state and coordination structure. Furthermore, a comprehensive summary of isolated single and few atoms for the applications of thermocatalysis, electrocatalysis, and photocatalysis is provided. Finally, the potential challenges and future opportunities in this emerging field are presented. This review will pave the way to regulate the microenvironment of the active site for boosting catalytic processes.
Collapse
Affiliation(s)
- Yang Chen
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shuaiyu Jiang
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|