1
|
Lin Q, Lv H, Lu Y, Yang C, Yu Y, Liu Z. Redox Active vs Redox Neutral in Ru/Pd-Catalyzed Sulfonylation: Theoretical Insights into Structure-Activity Relationship between Metal Centers and Regio-Selectivity. J Org Chem 2024; 89:18131-18141. [PMID: 39658527 DOI: 10.1021/acs.joc.4c01940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The structure-activity relationship between the metal center and regio-selectivity is persistently a pivotal scientific issue. To address this, we select the 2-phenylpyridine sulfonylation reactions catalyzed by ruthenium and palladium as research subjects. An extensive theoretical study has been conducted on their reaction mechanisms, the sources of regio-selectivity, and the evolution of electronic structures. The distinct electronic structures lead to completely different catalytic mechanisms and electronic structure evolution processes for ruthenium and palladium. Ruthenium tends to form six-coordinate octahedral complexes, thus undergoing an inner-sphere redox active Ru(II)-Ru(III)-Ru(IV)-Ru(II) catalytic cycle. In contrast, palladium tends to form four-coordinate planar quadrilateral complexes, hence undergoing an outer-sphere redox neutral Pd(II) catalytic cycle. The distinct electronic structure evolution processes fundamentally differentiate the radical attack modes in the sulfonation process, thereby determining the regio-selectivity of the reaction. In the Ru-catalyzed system, the meta-selectivity arises mainly from a more stable Schrock carbene-type meta-intermediate. For the Pd-catalyzed system, the ortho-selectivity mainly comes from the stabilizing effect of the Pd(II) center on the single electron. This study provides novel insights into how the electronic structure of metal centers influences the reaction mechanism and selectivity, making a theoretical contribution to a deeper comprehension of the mechanism and regio-selectivity underlying aromatic functionalization reactions.
Collapse
Affiliation(s)
| | | | - Yu Lu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Chengkai Yang
- Key Laboratory of Advanced Materials Technologies, International (Hong Kong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan Yu
- Key Laboratory of Advanced Materials Technologies, International (Hong Kong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zheyuan Liu
- Key Laboratory of Advanced Materials Technologies, International (Hong Kong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
2
|
Simon H, Zangarelli A, Bauch T, Ackermann L. Ruthenium(II)-Catalyzed Late-Stage Incorporation of N-Aryl Triazoles and Tetrazoles with Sulfonium Salts via C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202402060. [PMID: 38618872 DOI: 10.1002/anie.202402060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
The late-stage functionalization of active pharmaceutical ingredients is a key challenge in medicinal chemistry. Furthermore, N-aryl triazoles and tetrazoles are important structural motifs with the potential to boost the activity of diverse drug molecules. Using easily accessible dibenzothiophenium salts for the ruthenium-catalyzed C-H arylation, these scaffolds were introduced into a variety of bioactive compounds. Our methodology uses cost-efficient ruthenium, KOAc as a mild base and gives access to a plethora of highly decorated triazole and tetrazole containing drug derivatives.
Collapse
Affiliation(s)
- Hendrik Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Agnese Zangarelli
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Tristan Bauch
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
- Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
3
|
Ojea V, Ruiz M. DLPNO-CCSD(T) and DFT study of the acetate-assisted C-H activation of benzaldimine at [RuCl 2( p-cymene)] 2: the relevance of ligand exchange processes at ruthenium(II) complexes in polar protic media. Dalton Trans 2024; 53:8662-8679. [PMID: 38695752 DOI: 10.1039/d4dt00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
To gain mechanistic insights into the acetate-assisted cyclometallations of arylimines promoted by [RuCl2(p-cymene)]2 in polar protic media, DFT geometry optimizations (with M06 and ωB97X-D3 functionals and the cc-pVDZ-PP[Ru] basis set) followed by DLPNO-CCSD(T)/CBS energy evaluations were performed using benzaldimine as a model substrate and methanol as the solvent (with CPCM or SMD models). The calculation results show that coordination of the imine to an acetate ruthenium precursor is followed by anion (chloride or acetate) dissociation as the rate-determining step of the process. H-Bonding of two explicit MeOH to the anion reduces the calculated activation energy to ca. 23 kcal mol-1, in good agreement with the experimental half-life at room temperature. Subsequent AMLA/CMD C-H activation of the intermediate cationic complexes is a faster, reversible process. Alternative reaction pathways involving neutral diacetate ruthenium complexes offer AMLA/CMD transition state structures of lower energy but are precluded due to higher energy barriers for the initial ligand exchange processes at ruthenium. Solvent assistance accelerates the final chloride/acetate exchange processes on the cycloruthenate intermediates, particularly when compression in the condensed phase is taken into consideration. The performance of six DFT functionals (with the aug-pVTZ-PP[Ru] basis set) was assessed using the DLPNO-CCSD(T)/CBS reference energies. Neutral diacetate ruthenium complexes were incorrectly predicted as being kinetically relevant when using hybrid DFT methods (PBE0-D3(BJ), M06-2X or ωB97M-V). Good agreement between the calculated barrier heights and our benchmark energy results was obtained by using double-hybrid DFT methods. PWPB95 with D3(BJ) or D4 dispersion energy corrections was found to be the most accurate (ΔG≠ MUE of ca. 1 kcal mol-1). This study may aid our understanding of and help with further experimental investigations of synthetically useful carboxylate-assisted C-H bond functionalizations involving (N,C)-cyclometallated (p-cymene)Ru(II) intermediate complexes in sustainable polar protic solvents.
Collapse
Affiliation(s)
- Vicente Ojea
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| | - María Ruiz
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| |
Collapse
|
4
|
Lin Z, Oliveira JC, Scheremetjew A, Ackermann L. Palladium-Catalyzed Electrooxidative Double C-H Arylation. J Am Chem Soc 2024; 146:228-239. [PMID: 38150013 PMCID: PMC10785825 DOI: 10.1021/jacs.3c08479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
The electrochemical transition metal-catalyzed cross-dehydrogenative reaction has emerged as a promising platform to achieve a sustainable and atom-economic organic synthesis that avoids hazardous oxidants and minimizes undesired byproducts and circuitous functional group operations. However, a poor mechanistic understanding still prevents the widespread adoption of this strategy. In this regard, we herein present an electrochemical palladium-catalyzed oxidative coupling strategy to access biaryls in the absence of a stoichiometric chemical oxidant. The robust palladaelectrocatalysis considerably suppresses the occurrence of homocoupling and oxygenation, being compatible even with electron-deficient arenes. Late-stage functionalization and Boscalid precursor synthesis further highlighted the practical importance of our electrolysis. Remarkably, mechanistic studies including the evaluation of the reaction order of each component by variable time normalization analysis (VTNA) and initial rate analysis, H/D exchange experiment, kinetic isotope effect, and stoichiometric organometallic experiments provided strong support for the involvement of transmetalation between two organopalladium complexes in the turnover limiting step. Therefore, matching the concentrations or lifetimes of two distinct organopalladium intermediates is revealed to be a pivot to the success of electrooxidative catalysis. Moreover, the presence of cationic copper(II) seems to contribute to the stabilization of the palladium(0) catalyst instead of playing a role in the oxidation of the catalyst.
Collapse
Affiliation(s)
- Zhipeng Lin
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Wöhler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - João C.
A. Oliveira
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Wöhler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Alexej Scheremetjew
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Wöhler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Wöhler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Vuagnat M, Tognetti V, Jubault P, Besset T. Ru(II)-Catalyzed Hydroarylation of in situ Generated 3,3,3-Trifluoro-1-propyne by C-H Bond Activation: A Facile and Practical Access to β-Trifluoromethylstyrenes. Chemistry 2022; 28:e202201928. [PMID: 35736795 PMCID: PMC9804422 DOI: 10.1002/chem.202201928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/05/2023]
Abstract
In this study, a practical and straightforward synthesis of β-(E)-trifluoromethylstyrenes by ruthenium-catalyzed C-H bond activation was developed. The readily available and inexpensive 2-bromo-3,3,3-trifluoropropene (BTP), a non-ozone depleting reagent, was used as a reservoir of 3,3,3-trifluoropropyne. With this approach, the monofunctionalization of a panel of heteroarenes was possible in a safe and scalable manner (23 examples, up to 87 % yield). Mechanistic investigations and density functional theory (DFT) calculations were also conducted to get a better understanding of the mechanism of this transformation. These studies suggested that 1) a cyclometallated ruthenium complex enabled the transformation, 2) this complex exhibited high efficiency in this transformation compared to the commercially available [RuCl2 (p-cymene)]2 and 3) the mechanism proceeded through a bis-cyclometallated ruthenium intermediate for the carboruthenation step.
Collapse
Affiliation(s)
- Martin Vuagnat
- Normandie UnivINSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance
| | - Vincent Tognetti
- Normandie UnivINSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance
| | - Philippe Jubault
- Normandie UnivINSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance
| | - Tatiana Besset
- Normandie UnivINSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance
| |
Collapse
|
6
|
Lu P, Zhuang W, Lu L, Liu A, Chen Y, Wu C, Zhang X, Huang Q. Chemodivergent Synthesis of Indeno[1,2- b]indoles and Isoindolo[2,1- a]indoles via Mn(III)-Mediated or Electrochemical Intramolecular Radical Cross-Dehydrogenative Coupling. J Org Chem 2022; 87:10967-10981. [PMID: 35901234 DOI: 10.1021/acs.joc.2c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chemodivergent synthesis of indeno[1,2-b]indoles and isoindolo[2,1-a]indoles from the same starting materials involving radical cross-dehydrogenative couplings have been developed. Mn(OAc)3·2H2O selectively promoted an intramolecular radical C-H/C-H dehydrogenative coupling reaction to provide indeno[1,2-b]indoles, while an intramolecular radical C-H/N-H dehydrogenative coupling reaction could proceed via electrochemistry to deliver isoindolo[2,1-a]indoles. Plausible mechanisms of the chemodivergent reactions were proposed.
Collapse
Affiliation(s)
- Piao Lu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Weihui Zhuang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Leipeng Lu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Anyi Liu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Yixi Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Chenmeng Wu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| |
Collapse
|
7
|
Cai S, Sun Q, Wang Q, He G, Chen G. Ruthenium-Catalyzed Pyridine-Directed Aryl C-H Glycosylation with Glycosyl Chlorides. J Org Chem 2022; 87:8811-8818. [PMID: 35696353 DOI: 10.1021/acs.joc.2c00815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metal-catalyzed C-H glycosylation reactions with glycosyl chloride donors have emerged as a useful strategy for the synthesis of C-glycosides. Previously, palladium and nickel complexes were reported to catalyze C-H glycosylation reactions using amide-linked bidentate auxiliaries. Herein, a ruthenium-catalyzed ortho C-H glycosylation reaction of arenes with various glycosyl chloride donors using a monodentate pyridine directing group is developed. Preliminary mechanistic studies indicated that two-electron oxidative addition and reductive elimination of ruthenocycle intermediate led to the glycosylation products.
Collapse
Affiliation(s)
- Shaokun Cai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qikai Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Quanquan Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Wang H, Wang H, Li L, Wang X, Sun R, Zhou M. Ruthenium(II)‐Catalyzed Hydroamination of Allenoates: A Regioselective Synthesis of Allylamines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hua Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 People's Republic of China
| | - He Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 People's Republic of China
| | - Lei Li
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 People's Republic of China
| | - Xin Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 People's Republic of China
| | - Ran Sun
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 People's Republic of China
| | - Ming‐Dong Zhou
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 People's Republic of China
| |
Collapse
|
9
|
Li X, Chen M, Xie C, Zhang J. Visible Light-Activated Ruthenium-Catalysed Direct Arylation at Ambient Temperature. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Liu M, Mao Z, Jiang Y, Zhang Z, Zhang X. Pd-catalyzed Site-selective direct arene C H arylation of Pyrrolo[2,3-d]pyrimidine derivatives with aryl iodides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Hou X, Kaplaneris N, Yuan B, Frey J, Ohyama T, Messinis AM, Ackermann L. Ruthenaelectro-catalyzed C-H acyloxylation for late-stage tyrosine and oligopeptide diversification. Chem Sci 2022; 13:3461-3467. [PMID: 35432858 PMCID: PMC8943857 DOI: 10.1039/d1sc07267f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Ruthenaelectro(ii/iv)-catalyzed intermolecular C-H acyloxylations of phenols have been developed by guidance of experimental, CV and computational insights. The use of electricity bypassed the need for stoichiometric chemical oxidants. The sustainable electrocatalysis strategy was characterized by ample scope, and its unique robustness enabled the late-stage C-H diversification of tyrosine-derived peptides.
Collapse
Affiliation(s)
- Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Binbin Yuan
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Johanna Frey
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Tsuyoshi Ohyama
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- German Center for Cardiovascular Research (DZHK) Potsdamer Straße 58 10785 Berlin Germany
| |
Collapse
|
12
|
Zhang L, Wang LL, Fang DC. DFT Case Study on the Comparison of Ruthenium-Catalyzed C-H Allylation, C-H Alkenylation, and Hydroarylation. ACS OMEGA 2022; 7:6133-6141. [PMID: 35224376 PMCID: PMC8867598 DOI: 10.1021/acsomega.1c06584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Density functional calculations at the B3LYP-D3+IDSCRF/TZP-DKH(-dfg) level of theory have been performed to understand the mechanism of ruthenium-catalyzed C-H allylation reported in the literature in depth. The plausible pathway consisted of four sequential processes, including C-H activation, migratory insertion, amide extrusion, and recovery of the catalyst, in which C-H activation was identified as the rate-determining step. The amide extrusion step could be promoted kinetically by trifluoroacetic acid since its mediation lowered the free-energy barrier from 32.1 to 12.2 kcal/mol. Additional calculations have been performed to explore other common pathways between arenes and alkenes, such as C-H alkenylation and hydroarylation. A comparison of the amide extrusion and β-H elimination steps established the following reactivity sequence of the leaving groups: protonated amide group > β-H group > unprotonated amide group. The suppression of hydroarylation was attributed to the sluggishness of the Ru-C protonation step as compared to the amide extrusion step. This study can unveil factors favoring the C-H allylation reaction.
Collapse
Affiliation(s)
- Lei Zhang
- School
of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - Ling-Ling Wang
- School
of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - De-Cai Fang
- College
of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
13
|
Bakthadoss M, Reddy TT, Agarwal V, Sharada DS. Ester-directed orthogonal dual C-H activation and ortho aryl C-H alkenylation via distal weak coordination. Chem Commun (Camb) 2022; 58:1406-1409. [PMID: 34994762 DOI: 10.1039/d1cc06097j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented orthogonal cross-coupling between aromatic C(sp2) and aliphatic olefinic C(sp2) carbons of two same molecules via dual C-H bond activation in an intermolecular fashion has been developed using a distal ester-directing group. This new coupling reaction led to the synthesis of the highly functionalized 1,3-diaryl molecular architecture in very good yields and with high chemo- and regioselectivities. In addition, using ester as the distal directing group, ortho C-H olefination of α-methyl aryl acrylates and cinnamic esters with various alkenes has been achieved in very good yields and with a wide range of substrate scope.
Collapse
Affiliation(s)
| | | | - Vishal Agarwal
- Department of Chemistry, Pondicherry University, Pondicherry-605014, India.
| | - Duddu S Sharada
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Telangana-502285, India
| |
Collapse
|
14
|
Thongpaen J, Manguin R, Kittikool T, Camy A, Roisnel T, Dorcet V, Yotphan S, Canac Y, Mauduit M, Baslé O. Ruthenium–NHC complex-catalyzed P( iii)-directed C–H borylation of arylphosphines. Chem Commun (Camb) 2022; 58:12082-12085. [DOI: 10.1039/d2cc03909e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bidentate NHC-based ruthenium catalyst for P(III)-directed ortho C–H borylation of arylphosphines.
Collapse
Affiliation(s)
- Jompol Thongpaen
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | - Romane Manguin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | - Tanakorn Kittikool
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Aurèle Camy
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Vincent Dorcet
- Univ Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marc Mauduit
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | - Olivier Baslé
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
15
|
Singh P, Kumar Chouhan K, Mukherjee A. Ruthenium Catalyzed Intramolecular C-X (X=C, N, O, S) Bond Formation via C-H Functionalization: An Overview. Chem Asian J 2021; 16:2392-2412. [PMID: 34251077 DOI: 10.1002/asia.202100513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Indexed: 01/12/2023]
Abstract
Ruthenium catalyzed C-H activation is well known for its high tolerance towards the functional group and broad applicability in organic synthesis and molecular sciences, with significant applications in pharmaceutical industries, material sciences, and polymer industry. In the last few decades, enormous progress has been observed with ruthenium-catalyzed C-H activation chemistry. Notably, the vast majority of the C-H functionalization known in the literature are intermolecular, although the intramolecular variant provides fascinating new structural facet starting from the simple molecular scaffolds. Intramolecular C-H functionalization is atom economical and step efficient, results in less formation of undesired products which is easy to purify. This has created a lot of interest in organic chemistry in developing new synthetic strategies for such functionalization. The focus of this review is to present the relatively unexplored intramolecular functionalization of C-H bonds into C-X (X=C, N, O, S) bonds utilizing versatile ruthenium catalysts, their scope, and brief mechanistic discussion.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, Chhattisgarh, 492015, India
| | - Kishor Kumar Chouhan
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, Chhattisgarh, 492015, India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, Chhattisgarh, 492015, India
| |
Collapse
|
16
|
Orthogonal cross-coupling through intermolecular metathesis of unstrained C(aryl)-C(aryl) single bonds. Nat Chem 2021; 13:836-842. [PMID: 34341526 DOI: 10.1038/s41557-021-00757-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/22/2021] [Indexed: 11/08/2022]
Abstract
While metathesis reactions involving carbon-carbon double bonds, namely olefin metathesis, have been well established with broad utility in organic synthesis and materials science, direct metathesis of kinetically less accessible C-C single bonds is extremely rare. Here we report a ruthenium-catalysed reversible C-C single-bond metathesis reaction that allows redox- and pH-neutral biaryl synthesis. Assisted by directing groups, unstrained homo-biaryl compounds undergo aryl exchanges to generate cross-biaryl products, catalysed by a well-defined air-stable ruthenium(II) complex. Functional groups reactive under typical cross-coupling reactions, such as halogen, silyl and boronate moieties, are compatible under the metathesis conditions. Mechanistic studies disclose an intriguing 'olefin-metathesis-like' pathway that involves an unexpected heptacoordinated, 18-electron closed-shell intermediate. The distinct reaction mode discovered here is expected to inspire the development of more general C-C single-bond metathesis and orthogonal cross-coupling reactions.
Collapse
|
17
|
Zhu Y, Xu H, Zhang J, Luo Y, Dong L. Ru(II)‐Catalyzed Difluoromethylations of 7‐Azaindoles: Access to Novel Fluoro‐7‐Azaindole Derivatives. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yan‐Ying Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University 610041 Chengdu P. R. China
| | - Hui‐Bei Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University 610041 Chengdu P. R. China
| | - Jing Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University 610041 Chengdu P. R. China
| | - Yi Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University 610041 Chengdu P. R. China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University 610041 Chengdu P. R. China
| |
Collapse
|
18
|
Bansal S, Shabade AB, Punji B. Advances in C(
sp
2
)−H/C(
sp
2
)−H Oxidative Coupling of (Hetero)arenes Using 3d Transition Metal Catalysts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sadhna Bansal
- Organometallic Synthesis and Catalysis Lab Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Anand B. Shabade
- Organometallic Synthesis and Catalysis Lab Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
19
|
Liang Y, Si X, Zhang H, Yang D, Niu J, Song M. Thiocarbamate‐directed Cp*Co(III)‐Catalyzed Olefinic C−H Amidation: Facile Access to Enamines with High (
Z
)‐Selectivity. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ya‐Ru Liang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Xiao‐Ju Si
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - He Zhang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Dandan Yang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Jun‐Long Niu
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Mao‐Ping Song
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
20
|
Xu M, Xia Y. Mechanistic Understanding of Rh(III)-Catalyzed Redox-Neutral C—H Activation/Annulation Reactions of N-Phenoxyacetamides and Methyleneoxetanones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Fan WT, Li Y, Wang D, Ji SJ, Zhao Y. Iron-Catalyzed Highly para-Selective Difluoromethylation of Arenes. J Am Chem Soc 2020; 142:20524-20530. [PMID: 33252232 DOI: 10.1021/jacs.0c09545] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Direct functionalization of a C-H bond at either the meta or para position by only changing the catalyst system poses a significant challenge. We herein report the [Fe(TPP)Cl]-enabled, selective, C-H difluoromethylation of arenes using BrCF2CO2Et as the difluoromethylation source, which successfully altered the selectivity from the meta to the para position. A preliminary mechanistic study revealed the iron porphyrin complex not only activated the aromatic ring but also induced para selectivity due to the influence of ligand sterics.
Collapse
Affiliation(s)
- Wei-Tai Fan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China
| | - Yuting Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China
| | - Dongjie Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
22
|
Korvorapun K, Moselage M, Struwe J, Rogge T, Messinis AM, Ackermann L. Regiodivergent C-H and Decarboxylative C-C Alkylation by Ruthenium Catalysis: ortho versus meta Position-Selectivity. Angew Chem Int Ed Engl 2020; 59:18795-18803. [PMID: 32700444 PMCID: PMC7589394 DOI: 10.1002/anie.202007144] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Indexed: 12/17/2022]
Abstract
Ruthenium(II)biscarboxylate complexes enabled the selective alkylation of C-H and C-C bonds at the ortho- or meta-position. ortho-C-H Alkylations were achieved with 4-, 5- as well as 6-membered halocycloalkanes. Furthermore, the judicious choice of the directing group allowed for a full control of ortho-/meta-selectivities. Detailed mechanistic studies by experiment and computation were performed and provided strong support for an oxidative addition/reductive elimination process for ortho-alkylations, while a homolytic C-X cleavage was operative for the meta-selective transformations.
Collapse
Affiliation(s)
- Korkit Korvorapun
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Marc Moselage
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Julia Struwe
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Torben Rogge
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Antonis M. Messinis
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
23
|
Li XC, Xue Y, Song W, Yan Y, Min J, Liu F, Liu X, Lai WY, Huang W. Highly Regioselective Direct C-H Arylation: Facile Construction of Symmetrical Dithienophthalimide-Based π-Conjugated Molecules for Optoelectronics. RESEARCH 2020; 2020:9075697. [PMID: 33015637 PMCID: PMC7510346 DOI: 10.34133/2020/9075697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/26/2020] [Indexed: 11/20/2022]
Abstract
Controllable direct C-H arylation with high regioselectivity is highly desirable yet remains a formidable challenge. Herein, a facile regioselective direct C-H arylation is developed for efficient construction of a variety of symmetrical dithienophthalimide-based π-conjugated molecules. The resulting methodology is applicable to a wide range of substrates, from electron-rich units to electron-deficient units with large steric end groups. Aryl halides have been confirmed to be able to couple with dithienophthalimide (DTI) via direct C-H arylation, showing high regioselectivity. Varying the functional end groups onto the DTI core has been demonstrated to fine tune the emission colors to cover most of the visible spectra. The results suggest a facile strategy towards highly selective direct C-H arylation, opening the prospects towards efficient construction of π-conjugated molecules for various potential optoelectronic applications.
Collapse
Affiliation(s)
- Xiang-Chun Li
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yibo Xue
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wan Song
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yu Yan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jie Min
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Fang Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xu Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wen-Yong Lai
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
24
|
Korvorapun K, Struwe J, Kuniyil R, Zangarelli A, Casnati A, Waeterschoot M, Ackermann L. Photo-Induced Ruthenium-Catalyzed C-H Arylations at Ambient Temperature. Angew Chem Int Ed Engl 2020; 59:18103-18109. [PMID: 32662573 PMCID: PMC7589283 DOI: 10.1002/anie.202003035] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/11/2020] [Indexed: 01/06/2023]
Abstract
Ambient temperature ruthenium-catalyzed C-H arylations were accomplished by visible light without additional photocatalysts. The robustness of the ruthenium-catalyzed C-H functionalization protocol was reflected by a broad range of sensitive functional groups and synthetically useful pyrazoles, triazoles and sensitive nucleosides and nucleotides, as well as multifold C-H functionalizations. Biscyclometalated ruthenium complexes were identified as the key intermediates in the photoredox ruthenium catalysis by detailed computational and experimental mechanistic analysis. Calculations suggested that the in situ formed photoactive ruthenium species preferably underwent an inner-sphere electron transfer.
Collapse
Affiliation(s)
- Korkit Korvorapun
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Julia Struwe
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Agnese Zangarelli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Anna Casnati
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Marjo Waeterschoot
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
25
|
Korvorapun K, Moselage M, Struwe J, Rogge T, Messinis AM, Ackermann L. Regiodivergente C‐H‐ und decarboxylierende C‐C‐Alkylierung mittels Rutheniumkatalyse:
ortho‐
versus
meta‐
Regioselektivität. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Korkit Korvorapun
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| | - Marc Moselage
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| | - Julia Struwe
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| | - Torben Rogge
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| | - Antonis M. Messinis
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| |
Collapse
|
26
|
Korvorapun K, Struwe J, Kuniyil R, Zangarelli A, Casnati A, Waeterschoot M, Ackermann L. Photoinduzierte Rutheniumkatalysierte C‐H‐Arylierungen bei Umgebungstemperatur. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Korkit Korvorapun
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| | - Julia Struwe
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| | - Agnese Zangarelli
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| | - Anna Casnati
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| | - Marjo Waeterschoot
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Deutschland
| |
Collapse
|
27
|
Rogge T, Oliveira JCA, Kuniyil R, Hu L, Ackermann L. Reactivity-Controlling Factors in Carboxylate-Assisted C–H Activation under 4d and 3d Transition Metal Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02808] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Torben Rogge
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lianrui Hu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
28
|
Muntzeck M, Pippert F, Wilhelm R. Tetraalkylammonium-based ionic liquids for a RuCl3 catalyzed C–H activated homocoupling. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Sagadevan A, Charitou A, Wang F, Ivanova M, Vuagnat M, Greaney MF. Ortho C-H arylation of arenes at room temperature using visible light ruthenium C-H activation. Chem Sci 2020; 11:4439-4443. [PMID: 34122900 PMCID: PMC8159458 DOI: 10.1039/d0sc01289k] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A ruthenium-catalyzed ortho C–H arylation process is described using visible light. Using the readily available catalyst [RuCl2(p-cymene)]2, visible light irradiation was found to enable arylation of 2-aryl-pyridines at room temperature for a range of aryl bromides and iodides. A ruthenium-catalyzed ortho C–H arylation process is described using visible light.![]()
Collapse
Affiliation(s)
| | - Anastasios Charitou
- School of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Fen Wang
- School of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Maria Ivanova
- School of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Martin Vuagnat
- School of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Michael F Greaney
- School of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
30
|
Xu JX, Zhao F, Yuan Y, Wu XF. Ruthenium-Catalyzed Carbonylative Coupling of Anilines with Organoboranes by the Cleavage of Neutral Aryl C–N Bond. Org Lett 2020; 22:2756-2760. [DOI: 10.1021/acs.orglett.0c00736] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jian-Xing Xu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Fengqian Zhao
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Yang Yuan
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
31
|
Li M, Yao TY, Sun SZ, Yan TX, Wen LR, Zhang LB. The ruthenium(ii)-catalyzed C–H olefination of indoles with alkynes: the facile construction of tetrasubstituted alkenes under aqueous conditions. Org Biomol Chem 2020; 18:3158-3163. [DOI: 10.1039/d0ob00508h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An environmentally-friendly and facile protocol for the construction of tetrasubstituted alkenes has been established with Ru(ii)-catalyzed C–H bond functionalizations under mild conditions.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Tian-Yu Yao
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Sheng-Zheng Sun
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Ting-Xun Yan
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|