1
|
Luo C, Wu C, Wang X, Han Z, Wang Z, Ding K. Ruthenium-Catalyzed Carbocycle-Selective Hydrogenation of Fused Heteroarenes. J Am Chem Soc 2024; 146:35043-35056. [PMID: 39661002 DOI: 10.1021/jacs.4c05365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The homogeneous catalytic hydrogenation of benzo-fused heteroarenes generally provides partially hydrogenated products wherein the heteroaryl ring is preferentially reduced, such as quinoline hydrogenation, leading to 1,2,3,4-tetrahydroquinoline. Herein, we report a carbocycle-selective hydrogenation of fused N-heteroarenes (quinoline, isoquinoline, quinoxaline, etc.) using the Ru complex of a chiral spiroketal-based diphosphine (SKP) as the catalyst, affording the corresponding 5,6,7,8-tetrahydro products in high chemoselectivities. This catalytic system is also effective for the asymmetric carbocycle hydrogenation of fused heteroarenes bearing a boryl or amino group. Experimental studies provided a strong support for the homogeneous nature of the catalysis, and an inner-sphere mechanism was proposed for the hydrogenation. DFT calculations indicated that the hydrogenation is initiated by η4-coordinative activation of quinoline carbocycle to Ru dihydride complex of SKP, followed by metal-to-ligand hydride transfer. Subsequent carbocycle reduction proceeds via consecutive steps of the H2 oxidative addition and C-H reductive elimination.
Collapse
Affiliation(s)
- Chenguang Luo
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chaozheng Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhaobin Han
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
2
|
Li S, Hu C, Leo Liu L, Wu L. Selective Hydroboration of C-C Single Bonds without Transition-Metal Catalysis. Angew Chem Int Ed Engl 2024; 63:e202412368. [PMID: 39090033 DOI: 10.1002/anie.202412368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Selective hydroboration of C-C single bonds presents a fundamental challenge in the chemical industry. Previously, only catalytic systems utilizing precious metals Ir and Rh, in conjunction with N- and P- ligands, could achieve this, ensuring bond cleavage and selectivity. In sharp contrast, we discovered an unprecedented and general transition-metal-free system for the hydroboration of C-C single bonds. This methodology is transition-metal and ligand-free and surpasses the transition-metal systems regarding chemo- and regioselectivities, substrate versatility, or yields. In addition, our system tolerates various functional groups such as Ar-X (X=halides), heterocyclic rings, ketones, esters, amides, nitro, nitriles, and C=C double bonds, which are typically susceptible to hydroboration in the presence of transition metals. As a result, a diverse range of γ-boronated amines with varied structures and functions has been readily obtained. Experimental mechanistic studies, density functional theory (DFT), and intrinsic bond orbital (IBO) calculations unveiled a hydroborane-promoted C-C bond cleavage and hydride-shift reaction pathway. The carbonyl group of the amide suppresses dehydrogenation between the free N-H and hydroborane. The lone pair on the nitrogen of the amide facilitates the cleavage of C-C bonds in cyclopropanes.
Collapse
Affiliation(s)
- Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chaopeng Hu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
3
|
Zhao J, Chen A, Zou X, Ji C, Feng H, Gao D. Catalytic Selective Functionalization of Poly(organoborons) †. CHINESE J CHEM 2024; 42:3484-3498. [DOI: 10.1002/cjoc.202400500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/06/2024] [Indexed: 01/03/2025]
Abstract
Comprehensive SummaryOrganoborons are commonly used building blocks for rapidly increasing molecular complexity. Although significant progress has been made in the selective functionalization of mono‐organoborons, the site‐selective functionalization of poly(organoborons) has attracted substantial interest in organic synthesis, pharmaceuticals, and agrochemicals due to the presence of multiple potential reaction sites. This review discusses various activation modes of the target C–B bond, with diverse transformations being achieved in both a selective and efficient manner. Recent advances in the catalytic selective transformations of 1,n‐diboronates through ionic and radical pathways are highlighted. Furthermore, we summarize the existing challenges and future research directions in this field.
Key ScientistsIn 1993, Suzuki, Miyaura and coworkers developed a pioneering example of selective arylation towards cis‐1,2‐bis(boryl) alkenes, marking the inception of this field. The Morken group has made significant contributions to the asymmetric diboration of alkenes and realized elegant catalytic functionalization of these compounds since 2004. In 2016, Fernández and colleagues achieved the selective arylation of the internal C–B bond of tri(boronates). Since 2019, the Aggarwal group has developed efficient Giese‐type addition and selective arylation at the more substituted C–B bond of 1,2‐bis(boronic) esters through photoredox catalysis. The controllable regiodivergent alkynylation of 1,3‐bis(boronic) esters was developed by Gao and coworkers in 2023. Recently, Qin conducted elegant research on the programmable late‐stage functionalization of bridge‐substituted bicyclo[1.1.1]pentane (BCP) bis‐boronates. Since 2013, catalytic stereoselective transformations have been developed by several groups, including those led by Morken and Chen. This review summarizes the latest and most significant developments in this field since 1993.
Collapse
Affiliation(s)
- Jia‐Hui Zhao
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Ang Chen
- School of Physical Science and Technology ShanghaiTech University Shanghai 200120 China
| | - Xi‐Zhang Zou
- School of Physical Science and Technology ShanghaiTech University Shanghai 200120 China
| | - Chong‐Lei Ji
- School of Physical Science and Technology ShanghaiTech University Shanghai 200120 China
| | - Huang‐Di Feng
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - De‐Wei Gao
- School of Physical Science and Technology ShanghaiTech University Shanghai 200120 China
| |
Collapse
|
4
|
Wang J, Bai S, Yang C, Qi X. Enantioselective Decarboxylative C(sp 3)-C(sp 3) Cross-Coupling of Aliphatic Redox-Active Esters with gem-Borazirconocene Alkanes. J Am Chem Soc 2024; 146:27070-27079. [PMID: 39288446 DOI: 10.1021/jacs.4c09245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Asymmetric decarboxylative cross-couplings of carboxylic acids are powerful methods for synthesizing chiral building blocks essential in medicinal chemistry and material science. Despite their potential, creating versatile chiral alkylboron derivatives through asymmetric decarboxylative C(sp3)-C(sp3) cross-coupling from readily available primary aliphatic acids and mild organometallic reagents remains challenging. In this study, we present a visible light-induced Ni-catalyzed enantioconvergent C(sp3)-C(sp3) cross-coupling of unactivated primary aliphatic acid NHPI esters with gem-borazirconocene alkanes, producing a diverse array of valuable chiral alkylboron building blocks. The method boasts a broad substrate scope, high functional group tolerance, and the ability for late-stage modification of complex drug molecules and natural products with high enantioselectivity, showcasing its synthetic potential. Mechanistic investigations suggest a nickel-catalyzed enantioconvergent radical cross-coupling pathway, wherein the primary radical from a redox-active ester is generated through single-electron reduction with ZrIII species. This represents an unprecedented example of enantioselective radical C(sp3)-C(sp3) cross-coupling in the absence of photocatalysts.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Songlin Bai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Chao Yang
- Celluranics New Materials Co., No. 18-28, Tongjiang Road, Taixing Economic and Technological Development Zone, Taizhou City, Jiangsu 225400, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Fang T, Zhang P, Liu C. "Boron Ylide" Enables Stereoselective Construction of gem-Diborylcyclopropanes. Angew Chem Int Ed Engl 2024:e202415301. [PMID: 39301960 DOI: 10.1002/anie.202415301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Indexed: 11/05/2024]
Abstract
The stereoselective cyclopropanation of olefins with "boron ylide" is disclosed for the first time, providing a modular strategy for the synthesis of stereospecific diboryl-functionalized cyclopropanes. The chiral gem-diborylcyclopropanes are synthesized with excellent enantioselectivity with the aid of a chiral auxiliary. Based on the powerful transformable ability of boryl group, those challenging multi-quaternary carbon centers in cyclopropane units have been facilely constructed with excellent stereoselectivity. Control experiments indicate that the boryl groups are necessary for both chemoselectivity and stereoselectivity control.
Collapse
Affiliation(s)
- Tongchang Fang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
- TUniversity of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
- State Key Laboratory of Coordination Chemistry, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Suzhou, Jiangsu 215163, China
| |
Collapse
|
6
|
Wu X, Li S, Chen L, Ma S, Ma B, Song L, Qian D. Stereoselective Construction of Multifunctional C-Glycosides Enabled by Nickel-Catalyzed Tandem Borylation/Glycosylation. J Am Chem Soc 2024; 146:22413-22423. [PMID: 39096292 DOI: 10.1021/jacs.4c05485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Stereochemically pure saccharides have indispensable roles in fields ranging from medicinal chemistry to materials science and organic synthesis. However, the development of a simple, stereoselective, and efficient glycosylation protocol to access α- and β-C-glycosides (particularly 2-deoxy entities) remains a persistent challenge. Existing studies have primarily focused on C1 modification of carbohydrates and transformation of glycosyl radical precursors. Here, we innovate by harnessing the in situ generated glycosyl-Ni species to achieve one-pot borylation and glycosylation in a cascade manner, which is enabled by an earth-abundant nickel-catalyzed carboboration of readily accessible glycals without any ligand. This work reveals the potential for the development of a modular and multifunctional glycosylation platform to facilitate the simultaneous introduction of C-C and C-B bonds at the stereogenic center of saccharides, a largely unexploited research area. Preliminary experimental and computational studies indicate that the endocyclic O and the C3 group play important roles in stereoseclectively forging glycosidic bonds. As a result, a diverse range of C-R (R = alkyl, aryl, and alkenyl) and 2-deoxygenated glycosides bearing modifiable boron groups could be rapidly made with excellent stereocontrol and exhibit remarkable functional group tolerance. The synthetic potential is underscored in the late-stage glycosylation of natural products and commercial drugs as well as the facile preparation of various rare sugars, bioactive conjugates, and key intermediates to prorocentin, phomonol, and aspergillide A.
Collapse
Affiliation(s)
- Xiaomei Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Shijia Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Kowloon, 999077 Hong Kong SAR, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Liqin Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Siwei Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Bin Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Deyun Qian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| |
Collapse
|
7
|
Bao Y, Zheng C, Xiong K, Hu C, Lu P, Wang Y, Lu Z. Enantioconvergent Hydroboration of E/ Z-Mixed Trisubstituted Alkenes. J Am Chem Soc 2024. [PMID: 38994866 DOI: 10.1021/jacs.4c06585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The lack of mode for chirality recognition makes it particularly challenging to carry out asymmetric transformations on E/Z-mixed minimally functionalized trisubstituted alkenes. Here, we report a catalytic enantioconvergent hydroboration of minimally functionalized trisubstituted E/Z-mixed alkenes to construct chiral organoboronic esters with excellent enantioselectivity using chiral radical cobalt catalyst. This C(sp3)-H borylation protocol showed good functional group tolerance and products could be converted to valuable compounds via C-B derivatizations. The mechanistic studies, which included control experiments, nonlinear effect experiments, deuterated labeling experiments, and X-ray diffraction, demonstrated that the favorable compatibility between the thermodynamically unfavorable isomerization and hydroboration was the key factor in achieving convergent transformation.
Collapse
Affiliation(s)
- Yinwei Bao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenggong Zheng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Kangyu Xiong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenke Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Peng Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuwen Wang
- Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
8
|
Lu HX, Wang C, Gao TT, Lin EZ, Lu SL, Hong X, Li BJ. Rhodium-Catalyzed Highly Enantioselective Hydroboration of Acyclic Tetrasubstituted Alkenes Directed by an Amide. J Am Chem Soc 2024; 146:16194-16202. [PMID: 38832699 DOI: 10.1021/jacs.4c04108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Although progress has been made in enantioselective hydroboration of di- and trisubstituted alkenes over the past decades, enantioselective hydroboration of tetrasubstituted alkenes with high diastereo- and enantioselectivities continues as an unmet challenge since the 1950s due to its extremely low reactivity and the difficulties to simultaneously control the regio- and stereoselectivity of a tetrasubstituted alkene. Here, we report highly regio-, diastereo-, and enantioselective catalytic hydroboration of diverse acyclic tetrasubstituted alkenes. The delicate interplay of an electron-rich rhodium complex and coordination-assistance forms a highly adaptive catalyst that effectively overcomes the low reactivity and controls the stereoselectivity. The generality of the catalyst system is exemplified by its efficacy across various tetrasubstituted alkenes with diverse steric and electronic properties.
Collapse
Affiliation(s)
- Hou-Xiang Lu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Cheng Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Tao-Tao Gao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - En-Ze Lin
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shou-Lin Lu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Li Z, Pang Y, Peng G, Wang H, Li Q, Zhou X, Li Z, Wang Q, Jin Z. Aminoazanium of A-site Cations in Metal-Free Halide Perovskite Single Crystals to Reduce Thermal Expansion for Efficient X-ray Detection. J Phys Chem Lett 2024; 15:4375-4383. [PMID: 38620049 DOI: 10.1021/acs.jpclett.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Metal-free perovskites (MFPs) have recently become a newcomer in X-ray detection due to their flexibility and low toxicity characteristics. However, their photoelectronic properties and stability should be further improved mainly through materials design. Here, the aminoazanium of DABCO2+ was developed for the preparation of NDABCO-NH4Br3 (NDABCO = N-amino-N'-diazabicyclo[2.2.2]octonium) single crystals (SCs), and its physical properties, intermolecular interactions, and device performance were systematically explored. Notably, NDABCO-NH4Br3 can achieve improved stability by enlarging defect formation energy and inducing abundant intermolecular forces. Moreover, the slight lattice distortion could ensure the weakening electron-phonon coupling for improving carrier transport. In particular, the slight lattice distortion after the long-chain NDABCO2+ introduction could retard thermal expansion for the preparation of high-quality crystals. Finally, the corresponding X-ray detector delivered a moderate sensitivity of 623.3 μC Gyair-1 cm-2. This work provides a novel strategy through rationally designed organic cations to balance the material stability and device performance.
Collapse
Affiliation(s)
- Zhizai Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Yunqing Pang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Guoqiang Peng
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Haoxu Wang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Qijun Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xufeng Zhou
- School of Material Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - ZhenHua Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Qian Wang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Ahrweiler E, Schoetz MD, Singh G, Bindschaedler QP, Sorroche A, Schoenebeck F. Triply Selective & Sequential Diversification at C sp 3: Expansion of Alkyl Germane Reactivity for C-C & C-Heteroatom Bond Formation. Angew Chem Int Ed Engl 2024; 63:e202401545. [PMID: 38386517 DOI: 10.1002/anie.202401545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
We report the triply selective and sequential diversification of a single Csp 3 carbon carrying Cl, Bpin and GeEt3 for the modular and programmable construction of sp3-rich molecules. Various functionalizations of Csp 3-Cl and Csp 3-BPin (e.g. alkylation, arylation, homologation, amination, hydroxylation) were tolerated by the Csp 3-GeEt3 group. Moreover, the methodological repertoire of alkyl germane functionalization was significantly expanded beyond the hitherto known Giese addition and arylation to alkynylation, alkenylation, cyanation, halogenation, azidation, C-S bond formation as well as the first demonstration of stereo-selective functionalization of a Csp 3-[Ge] bond.
Collapse
Affiliation(s)
- Eric Ahrweiler
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Markus D Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Gurdeep Singh
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Quentin P Bindschaedler
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Alba Sorroche
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| |
Collapse
|
11
|
Zhu CL, Lu CD. Stereoselective Cyclopropanation of Multisubstituted Enesulfinamides: Asymmetric Construction of α-Tertiary Cyclopropylamine Derivatives Containing β-Quaternary Stereocenters. Org Lett 2024; 26:2606-2611. [PMID: 38513116 DOI: 10.1021/acs.orglett.4c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Enesulfinamides with α,β,β-trisubstitution undergo a Simmons-Smith reaction to yield multisubstituted cyclopropylamine derivatives with high stereocontrol. The resulting α-tertiary cyclopropylamine derivatives, which feature β-quaternary stereocenters bearing two electronically and sterically similar substituents (e.g., methyl and ethyl), are seldom achieved by using conventional methods. By adjusting the stereochemistry of the carbon-carbon double bond and/or sulfinyl group within the enesulfinamides, it is feasible to selectively produce four stereoisomers of the cyclopropylamines, each with different absolute configurations at the α- and β-carbons.
Collapse
Affiliation(s)
- Chong-Lin Zhu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
- Southwest United Graduate School, Kunming, Yunnan 650092, China
| | - Chong-Dao Lu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- Southwest United Graduate School, Kunming, Yunnan 650092, China
| |
Collapse
|
12
|
Kiyokawa K, Kawanaka K, Minakata S. Amino-λ 3 -iodane-Enabled Electrophilic Amination of Arylboronic Acid Derivatives. Angew Chem Int Ed Engl 2024; 63:e202319048. [PMID: 38272833 DOI: 10.1002/anie.202319048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
In this report, we describe the use of amino-λ3 -iodanes in the electrophilic amination of arylboronic acids and boronates. Iodine(III) reagents with transferable amino groups, including one with an NH2 group, were synthesized and used in the amination, allowing the synthesis of a wide range of primary and secondary (hetero)arylamines. Mechanistic studies by DFT calculations indicate that the reaction proceeds through an electrophilic amination process from a tetravalent borate complex with a B-N dative bond.
Collapse
Affiliation(s)
- Kensuke Kiyokawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Kazuki Kawanaka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Satoshi Minakata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Patil MD, Ghosh KK, RajanBabu TV. Cobalt-Catalyzed Enantioselective Hydroboration of α-Substituted Acrylates. J Am Chem Soc 2024; 146:6604-6617. [PMID: 38431968 PMCID: PMC11407689 DOI: 10.1021/jacs.3c12020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Even though metal-catalyzed enantioselective hydroborations of alkenes have attracted enormous attention, few preparatively useful reactions of α-alkyl acrylic acid derivatives are known, and most use rhodium catalysts. No examples of asymmetric hydroboration of the corresponding α-arylacrylic acid esters are known. In our continuing efforts to search for new applications of earth-abundant cobalt catalysts for broadly applicable organic transformations, we have identified 2-(2-diarylphosphinophenyl)oxazoline ligands and mild reaction conditions for efficient and highly regio- and enantioselective hydroboration of α-alkyl- and α-aryl- acrylates, giving β-borylated propionates. Since the C-B bonds in these compounds can be readily replaced by C-O, C-N, and C-C bonds, these intermediates could serve as valuable chiral synthons, some from feedstock carbon sources, for the synthesis of propionate-bearing motifs including polyketides and related molecules. Two-step syntheses of "Roche" ester from methyl methacrylate (79%; er 99:1), arguably the most widely used chiral fragment in polyketide synthesis, and tropic acid esters (∼80% yield; er ∼93:7), which are potential intermediates for several medicinally important classes of compounds, illustrate the power of the new methods. Mechanistic studies confirm the requirement of a cationic Co(I) species [(L)Co]+as the viable catalyst in these reactions and rule out the possibility of a [L]Co-H-initiated route, which has been well-established in related hydroborations of other classes of alkenes. A mechanism involving an oxidative migration of a boryl group to the β-carbon of an η4-coordinated acrylate-cobalt complex is proposed as a plausible route.
Collapse
Affiliation(s)
- Manoj D Patil
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Kiron Kumar Ghosh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
14
|
Li S, Jiao H, Shu XZ, Wu L. Zirconium and hafnium catalyzed C-C single bond hydroboration. Nat Commun 2024; 15:1846. [PMID: 38418499 PMCID: PMC10902336 DOI: 10.1038/s41467-024-45697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/01/2024] [Indexed: 03/01/2024] Open
Abstract
Selective cleavage and subsequent functionalization of C-C single bonds present a fundamental challenge in synthetic organic chemistry. Traditionally, the activation of C-C single bonds has been achieved using stoichiometric transition-metal complexes. Recently, examples of catalytic processes were developed in which use is made of precious metals. However, the use of inexpensive and Earth-abundant group IV metals for catalytic C-C single-bond cleavage is largely underdeveloped. Herein, the zirconium-catalyzed C-C single-bond cleavage and subsequent hydroboration reactions is realized using Cp2ZrCl2 as a catalytic system. A series of structures of various γ-boronated amines are readily obtained, which are otherwise difficult to obtain. Mechanistic studies disclose the formation of a N-ZrIV species, and then a β-carbon elimination route is responsible for C-C single bond activation. Besides zirconium, hafnium exhibits a similar performance for this transformation.
Collapse
Affiliation(s)
- Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany.
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, PR China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
15
|
Fang T, Wang L, Wu M, Qi X, Liu C. Diborodichloromethane as Versatile Reagent for Chemodivergent Synthesis of gem-Diborylalkanes. Angew Chem Int Ed Engl 2024; 63:e202315227. [PMID: 38059834 DOI: 10.1002/anie.202315227] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
The development of boron reagents is crucial for synthetic chemistry. Herein, we present a scalable and practical synthesis of diborodichloromethane (DBDCM) through the reaction of trichloromethyllithium with bis(pinacolato)diboron (B2 pin2 ). The resulting DBDCM reagent serves as a basic synthetic unit for the construction of various structurally diverse gem-diborylalkanes through controllable C-Cl functionalizations. Moreover, we have developed consecutive tetra-functionalizations of DBDCM for the construction of diverse tertiary and quaternary carbon containing molecules. The use of isotopically enriched 13 C-chloroform and 10 B2 pin2 enables the synthesis of isotopically enriched 13 C-DBDCM and 10 B-DBDCM reagents, which are beneficial for the convenient synthesis of carbon-13 and boron-10 molecules.
Collapse
Affiliation(s)
- Tongchang Fang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Liwei Wang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Miaomiao Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
| |
Collapse
|
16
|
Valdés-Maqueda Á, López L, Plaza M, Valdés C. Synthesis of substituted benzylboronates by light promoted homologation of boronic acids with N-sulfonylhydrazones. Chem Sci 2023; 14:13765-13775. [PMID: 38075646 PMCID: PMC10699570 DOI: 10.1039/d3sc05678c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 07/30/2024] Open
Abstract
The synthesis of benzylboronates by photochemical homologation of boronic acids with N-tosylhydrazones under basic conditions is described. The reaction involves the photolysis of the N-tosylhydrazone salt to give a diazoalkane followed by the geminal carboborylation of the diazoalkane. Under the mild reaction conditions, the protodeboronation of the unstable benzylboronic acid is circumvented and the pinacolboronates can be isolated after reaction of the benzylboronic acid with pinacol. The metholodogy has been applied to the reactions of alkylboronic acids with N-tosylhydrazones of aromatic aldehydes and ketones, and to the reactions of arylboronic acids with N-tosylhydrazones of aliphatic ketones. Moreover, the employment of the DBU/DIPEA bases combination allows for homogeneous reactions which have been adapted to photochemical continuous flow conditions. Additionally, the synthetic versatility of boronates enables their further transformation via Csp3-C or Csp3-X bond forming reactions converting this methodology into a novel method for the geminal difunctionalization of carbonyls via N-tosylhydrazones.
Collapse
Affiliation(s)
- Álvaro Valdés-Maqueda
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Lucía López
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Manuel Plaza
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Carlos Valdés
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
17
|
Linne E, Kalesse M. Stereoselective Construction of β-chiral Homoallyl Functionalities by Substrate- and Reagent-Controlled Iterative 1,2-Metallate Rearrangements. Org Lett 2023; 25:8210-8214. [PMID: 37943683 PMCID: PMC10683368 DOI: 10.1021/acs.orglett.3c02935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Homoallylic alcohols possessing chiral β-centers are considered highly valuable in the synthesis of polyketide-based natural products. Therefore, there is a significant demand for new methods that allow for their stereoselective access. In pursuit of this objective, we have successfully combined our substrate-controlled protocol of Hoppe-Matteson-Aggarwal chemistry with iterative 1,2-metallate rearrangements. Notably, this approach has proven effective in introducing not only primary alcohols but also other functional groups such as alkynes and protected amines.
Collapse
Affiliation(s)
- Elvira Linne
- Institute
of Organic Chemistry (OCI), Gottfried Wilhelm
Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Markus Kalesse
- Institute
of Organic Chemistry (OCI), Gottfried Wilhelm
Leibniz Universität Hannover, 30167 Hannover, Germany
- Centre
of Biomolecular Drug Research (BMWZ), Gottfried
Wilhelm Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
18
|
Xie Q, Zhang R, Dong G. Programmable Amine Synthesis via Iterative Boron Homologation. Angew Chem Int Ed Engl 2023; 62:e202307118. [PMID: 37417916 DOI: 10.1002/anie.202307118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
The value of Matteson-type reactions has been increasingly recognized for developing automated organic synthesis. However, the typical Matteson reactions almost exclusively focus on homologation of carbon units. Here, we report the detailed development of sequential insertion of nitrogen and carbon atoms into boronate C-B bonds, which provides a modular and iterative approach to access functionalized tertiary amines. A new class of nitrenoid reagents is uncovered to allow direct formation of aminoboranes from aryl or alkyl boronates via N-insertion. The one-pot N-insertion followed by controlled mono- or double-carbenoid insertion has been realized with widely available aryl boronates. The resulting aminoalkyl boronate products can undergo further homologation and various other transformations. Preliminary success on homologation of N,N-dialkylaminoboranes and sequential N- and C-insertions with alkyl boronates have also been achieved. To broaden the synthetic utility, selective removal of a benzyl or aryl substituent permits access to secondary or primary amine products. The application of this method has been demonstrated in the modular synthesis of bioactive compounds and the programmable construction of diamines and aminoethers. A plausible reaction mechanism, supported by preliminary NMR (nuclear magnetic resonance) and computational studies, is also proposed.
Collapse
Affiliation(s)
- Qiqiang Xie
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave., Chicago, IL, 60637, USA
| | - Rui Zhang
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave., Chicago, IL, 60637, USA
| | - Guangbin Dong
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave., Chicago, IL, 60637, USA
| |
Collapse
|
19
|
Liao H, Wang Y, Zhu Y, Zhang M, Wang H, Zhang X, Liu G, Tan C. Iodine Molecules within Triethylenediamine-Based Metal-Organic Frameworks for Hydrolysis/Alkylation Tandem Reactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38433-38443. [PMID: 37535436 DOI: 10.1021/acsami.3c06326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The integration of radionuclide iodine molecules in metal-organic frameworks (MOFs) for organic synthesis is attracting considerable research attention due to their specific catalytic performance. However, understanding the comprehensive catalytic behaviors of different types of molecular iodine encapsulated in MOFs for a sequential organic transformation is a great challenge. To address this issue, we have designed two triethylenediamine-functionalized MOFs assembled from 1,3,5-tricarboxyphenyl-2-(triethylenediaminemethyl)benzene-linker and {Cd(COO)3N} or {Cu4(u3-OH)2(COO)6N} clusters. Both MOFs show good stability and adsorption of I2 in the solution and vapor phases. Catalysts obtained after treatment with ethyl acetate present efficient catalytic activity in hydrolysis/alkylation tandem reactions in water. The mechanistic investigations disclose a sequential catalytic process comprising a "hidden" Brønsted acid catalytic hydrolysis of acetals to aldehydes followed by the I2-bonding Lewis acid catalytic alkylation of aldehydes to 3,3'-disubstituted 1H-indoles.
Collapse
Affiliation(s)
- Haocheng Liao
- Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yongjie Wang
- Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yuanli Zhu
- Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Mengzhi Zhang
- Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Houting Wang
- Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Xiang Zhang
- Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Guohua Liu
- Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Chunxia Tan
- Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| |
Collapse
|
20
|
Zhang X, Gao C, Morken JP. Enantioselective Construction of Carbocyclic and Heterocyclic Tertiary Boronic Esters by Conjunctive Cross-Coupling Reaction. J Am Chem Soc 2023; 145:16344-16349. [PMID: 37487220 PMCID: PMC10925917 DOI: 10.1021/jacs.3c05815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Synthesis of stereodefined carbocyclic and heterocyclic tertiary boronic esters is accomplished by performing a conjunctive cross-coupling reaction on preformed cyclic boron ate complexes. Boronates bearing spirocyclic and aryl bicyclic skeletons can be synthesized enantioselectively using a chiral PHOX-ligated Pd catalyst with achiral starting material, while substrates bearing continuous stereogenic centers can be generated diastereoselectively. A variety of aryl and alkenyl electrophiles are incorporated.
Collapse
Affiliation(s)
- Xuntong Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chenpeng Gao
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
21
|
Guo C, Li P, Wang S, Liu N, Bu Q, Wang Y, Qiu Y. Selective Electroreductive Hydroboration of Olefins with B 2pin 2. J Org Chem 2023; 88:4569-4580. [PMID: 36944134 DOI: 10.1021/acs.joc.3c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Organoboron showed great potential in the synthesis of various high-value chemical compounds. Direct hydroboration of olefins has been witnessed over time as a mainstream method for the synthesis of organoboron compounds. In this work, an electroreductive anti-Markovnikov hydroboration approach of olefins with readily available B2pin2 to synthesize valuable organoboron compounds with high chemo- and regioselectivities under metal catalyst-free conditions was reported. This protocol exhibited broad substrate scope and good functional-group tolerance on styrenes and heteroaromatic olefins, providing synthetically useful alkylborons with high efficiency and even various deuterium borylation products with good D-incorporation when CD3CN was employed as solvent. Furthermore, gram-scale reactions and extensive functional derivatization further highlighted the potential of this method.
Collapse
Affiliation(s)
- Chengcheng Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, People's Republic of China
| | - Pengfei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Ning Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, People's Republic of China
| | - Qingqing Bu
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, People's Republic of China
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
22
|
Zhang H, Xu ZK, Wang ZX, Yu H, Lv HP, Li PF, Liao WQ, Xiong RG. Large Piezoelectric Response in a Metal-Free Three-Dimensional Perovskite Ferroelectric. J Am Chem Soc 2023; 145:4892-4899. [PMID: 36795554 DOI: 10.1021/jacs.3c00646] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Metal-free perovskites with light weight and eco-friendly processability have received great interest in recent years due to their superior physical features in ferroelectrics, X-ray detection, and optoelectronics. The famous metal-free perovskite ferroelectric MDABCO-NH4-I3 (MDABCO = N-methyl-N'-diazabicyclo[2.2.2]octonium) has been demonstrated to exhibit excellent ferroelectricity comparable to that of inorganic ceramic ferroelectric BaTiO3, such as large spontaneous polarization and high Curie temperature (Ye et al. Science 2018, 361, 151). However, piezoelectricity as a vitally important index is far from enough in the metal-free perovskite family. Here, we report the discovery of large piezoelectric response in a new metal-free three-dimensional perovskite ferroelectric NDABCO-NH4-Br3 (NDABCO = N-amino-N'-diazabicyclo[2.2.2]octonium) by replacing the methyl group of MDABCO with the amino group. Besides the evident ferroelectricity, strikingly, NDABCO-NH4-Br3 shows a large d33 of 63 pC/N more than 4 times that of MDABCO-NH4-I3 (14 pC/N). The d33 value is also strongly supported by the computational study. To the best of our knowledge, such a large d33 value ranks the highest among the documented organic ferroelectric crystals to date and represents a major breakthrough in metal-free perovskite ferroelectrics. Combined with decent mechanical properties, NDABCO-NH4-Br3 is expected to be a competitive candidate for medical, biomechanical, wearable, and body-compatible ferroelectric devices.
Collapse
Affiliation(s)
- Hua Zhang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Zhe-Kun Xu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Zhong-Xia Wang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.,College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, People's Republic of China
| | - Hang Yu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Hui-Peng Lv
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Peng-Fei Li
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
23
|
Zhang M, Liu Z, Zhao W. Rhodium-Catalyzed Remote Borylation of Alkynes and Vinylboronates. Angew Chem Int Ed Engl 2023; 62:e202215455. [PMID: 36445794 DOI: 10.1002/anie.202215455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Remote functionalization involving a fascinating chain-walking process has emerged as a powerful strategy for the rapid access to value-added functional molecules from readily available feedstocks. However, the scope of current methods is predominantly limited to mono- and di-substituted alkenes. The remote functionalization of multi- and heteroatom-substituted alkenes is challenging, and the use of alkynes in the chain walking is unexplored. We herein report a rhodium catalyzed remote borylation of internal alkynes, offering an unprecedented reaction mode of alkynes for the preparation of synthetically valuable 1,n-diboronates. The regioselective distal migratory hydroboration of sterically hindered tri- and tetra-substituted vinylboronates is also demonstrated to furnish various multi-boronic esters. Synthetic utilities are highlighted through the selective manipulation of the two boryl groups in products such as the regioselective cross coupling, oxidation, and amination.
Collapse
Affiliation(s)
- Minghao Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Hunan, Changsha, P. R. China
| | - Zheming Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Hunan, Changsha, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Hunan, Changsha, P. R. China
| |
Collapse
|
24
|
Kojima Y, Nishii Y, Hirano K. Ligand-Enabled Copper-Catalyzed Regio- and Stereoselective Allylboration of 1-Trifluoromethylalkenes. Org Lett 2022; 24:7450-7454. [DOI: 10.1021/acs.orglett.2c03024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Yuki Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Dong W, Ye Z, Zhao W. Enantioselective Cobalt-Catalyzed Hydroboration of Ketone-Derived Silyl Enol Ethers. Angew Chem Int Ed Engl 2022; 61:e202117413. [PMID: 35488385 DOI: 10.1002/anie.202117413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 12/23/2022]
Abstract
Catalytic asymmetric hydroboration of alkenes is a powerful tool for the synthesis of natural products, agrochemicals, and pharmaceuticals via the versatile transformations of chiral alkyl boronic esters. However, the scope of available alkenes is limited to styrenes, activated alkenes, and compounds with directing groups. The catalytic enantioselective hydroboration of heteroatom-substituted alkenes is rarely explored and those catalyzed by earth-abundant metals are yet to be reported. Herein, we report a cobalt-catalyzed asymmetric hydroboration of ketone-derived silyl enol ethers and provide a convenient approach to access valuable enantiopure β-hydroxy boronic esters. This protocol features mild reaction conditions, a broad substrate scope, and excellent enantioselectivities (up to 99 % ee). This approach was applied in the successful synthesis of salmeterol and albuterol, demonstrating its potential to streamline complex molecule synthesis.
Collapse
Affiliation(s)
- Wenke Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zhiyang Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
26
|
Kumar P, Verma S, Rathi K, Chandra D, Verma VP, Jat JL. Metal‐Free Direct Transformation of Aryl Boronic Acid to Primary Amines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Puneet Kumar
- Babasaheb Bhimrao Ambedkar University School for Physical Sciences Chemistry INDIA
| | - Saumya Verma
- Babasaheb Bhimrao Ambedkar University School for Physical Sciences Chemistry INDIA
| | - Komal Rathi
- Banasthali Vidyapith: Banasthali University Chemistry INDIA
| | - Dinesh Chandra
- Babasaheb Bhimrao Ambedkar University School for Physical Sciences Chemistry INDIA
| | | | - Jawahar L. Jat
- Babasaheb Bhimrao Ambedkar University Chemistry Vidya ViharRaebareli Road226025 226025 Lucknow INDIA
| |
Collapse
|
27
|
Xu N, Liang H, Morken JP. Copper-Catalyzed Stereospecific Transformations of Alkylboronic Esters. J Am Chem Soc 2022; 144:11546-11552. [PMID: 35735669 PMCID: PMC10436227 DOI: 10.1021/jacs.2c04037] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Copper-catalyzed stereospecific cross-couplings of boronic esters are reported. Boron "ate" complexes derived from pinacol boronic esters and tert-butyl lithium undergo stereospecific transmetalation to copper cyanide, followed by coupling with alkynyl bromides, allyl halides, propargylic halides, β-haloenones, hydroxylamine esters, and acyl chlorides. Through this simple transformation, commercially available inexpensive compounds can be employed to convert primary and secondary alkylboronic esters to a wide array of synthetically useful compounds.
Collapse
Affiliation(s)
- Ningxin Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Hao Liang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P. Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
28
|
Asai K, Miura M, Hirano K. Palladium-Catalyzed Cross-Coupling Reaction of Diarylmethanol Derivatives with Diborylmethane. J Org Chem 2022; 87:7436-7445. [PMID: 35608528 DOI: 10.1021/acs.joc.2c00715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-catalyzed cross-coupling reaction of diarylmethanol derivatives with diborylmethane has been developed. The reaction proceeds chemoselectively to deliver the corresponding homobenzylic boronates in good yields.
Collapse
Affiliation(s)
- Kento Asai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
29
|
Zhou Z, Kweon J, Jung H, Kim D, Seo S, Chang S. Photoinduced Transition-Metal-Free Chan-Evans-Lam-Type Coupling: Dual Photoexcitation Mode with Halide Anion Effect. J Am Chem Soc 2022; 144:9161-9171. [PMID: 35549253 DOI: 10.1021/jacs.2c03343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report a photoinduced transition-metal-free C(aryl)-N bond formation between 2,4,6-tri(aryl)boroxines or arylboronic acids as an aryl source and 1,4,2-dioxazol-5-ones (dioxazolones) as an amide coupling partner. Chloride anion, either generated in situ by photodissociation of chlorinated solvent molecules or added separately as an additive, was found to play a critical cooperative role, thereby giving convenient access to a wide range of synthetically versatile N-arylamides under mild photo conditions. The synthetic virtue of this transition-metal-free Chan-Evans-Lam-type coupling was demonstrated by large-scale reactions, synthesis of 15N-labeled arylamides, and applicability toward biologically relevant compounds. On the basis of mechanistic investigations, two distinctive photoexcitations are proposed to function in the current process, in which the first excitation involving chloro-boron adduct facilitates the transition-metal-free activation of dioxazolones by single electron transfer (SET), and the second one enables the otherwise-inoperative 1,2-aryl migration of the thus-formed N-chloroamido-borate adduct.
Collapse
Affiliation(s)
- Zijun Zhou
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Jeonguk Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Sangwon Seo
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
30
|
Li Y, Li Y, Shi H, Wei H, Li H, Funes-Ardoiz I, Yin G. Modular access to substituted cyclohexanes with kinetic stereocontrol. Science 2022; 376:749-753. [PMID: 35549424 DOI: 10.1126/science.abn9124] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Substituted six-membered cyclic hydrocarbons are common constituents of biologically active compounds. Although methods for the synthesis of thermodynamically favored, disubstituted cyclohexanes are well established, a reliable and modular protocol for the synthesis of their stereoisomers is still elusive. Herein, we report a general strategy for the modular synthesis of disubstituted cyclohexanes with excellent kinetic stereocontrol from readily accessible substituted methylenecyclohexanes by the implementation of chain-walking catalysis. Mechanistically, the initial introduction of a sterically demanding boron ester group adjacent to the cyclohexane is key to guiding the stereochemical outcome. The synthetic potential of this methodology has been highlighted in late-stage modification of complex bioactive molecules and in comparison with current cross-coupling techniques.
Collapse
Affiliation(s)
- Yangyang Li
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuqiang Li
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Hongjin Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Hong Wei
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Haoyang Li
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
31
|
Hong SY, Radosevich AT. Chemoselective Primary Amination of Aryl Boronic Acids by P III/P V═O-Catalysis: Synthetic Capture of the Transient Nef Intermediate HNO. J Am Chem Soc 2022; 144:8902-8907. [PMID: 35549268 DOI: 10.1021/jacs.2c02922] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A catalytic approach to intercept the transient HNO for a chemoselective primary amination of arylboronic acids is reported. A phosphetane-based catalyst operating within PIII/PV═O redox cycling is shown to capture HNO, generated in situ by Nef decomposition of 2-nitropropane, to selectively install the primary amino group at aryl Csp2 centers. The method furnishes versatile primary arylamines from arylboronic acid substrates with the preservation of otherwise reactive functional groups.
Collapse
Affiliation(s)
- Seung Youn Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Dong W, Ye Z, Zhao W. Enantioselective Cobalt‐Catalyzed Hydroboration of Ketone‐Derived Silyl Enol Ethers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenke Dong
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Zhiyang Ye
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Wanxiang Zhao
- Hunan University chemistry Yuelushan, Changsha 410082 changsha CHINA
| |
Collapse
|
33
|
Jadhav SB, Dash SR, Maurya S, Nanubolu JB, Vanka K, Chegondi R. Enantioselective Cu(I)-catalyzed borylative cyclization of enone-tethered cyclohexadienones and mechanistic insights. Nat Commun 2022; 13:854. [PMID: 35165287 PMCID: PMC8844005 DOI: 10.1038/s41467-022-28288-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
The catalytic asymmetric borylation of conjugated carbonyls followed by stereoselective intramolecular cascade cyclizations with in situ generated chiral enolates are extremely rare. Herein, we report the enantioselective Cu(I)-catalyzed β-borylation/Michael addition on prochiral enone-tethered 2,5-cyclohexadienones. This asymmetric desymmetrization strategy has a broad range of substrate scope to generate densely functionalized bicyclic enones bearing four contiguous stereocenters with excellent yield, enantioselectivity, and diastereoselectivity. One-pot borylation/cyclization/oxidation via the sequential addition of sodium perborate reagent affords the corresponding alcohols without affecting yield and enantioselectivity. The synthetic potential of this reaction is explored through gram-scale reactions and further chemoselective transformations on products. DFT calculations explain the requirement of the base in an equimolar ratio in the reaction, as it leads to the formation of a lithium-enolate complex to undergo C-C bond formation via a chair-like transition state, with a barrier that is 22.5 kcal/mol more favourable than that of the copper-enolate complex. Rapidly building molecular structures with both elements of complexity and flexibility is a key goal of organic synthesis. Here the authors show a tandem copper-catalyzed β-borylation/Michael addition on prochiral enone-tethered 2,5-cyclohexadienones, to generate bicyclic borylated products in high yield and enantioselectivity.
Collapse
|
34
|
Xu J, Chen D, Liu C. Recent advances of aminoazanium salts as amination reagents in organic synthesis. Org Biomol Chem 2022; 20:8353-8365. [DOI: 10.1039/d2ob01312f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review summarizes the utilization of aminoazaniums as amination reagents in organic synthesis, including the amination of aldehydes, boronic esters, olefins, etc.
Collapse
Affiliation(s)
- Jianeng Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Du Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
35
|
Zhang F, Zhou L, Yang K, Song Q. Recent Progress on 1,2-Metallate Shift Reactions Based on Tetracoordinate Boron Intermediates. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Xu L, Hu Y, Zhu X, He L, Wu Q, Li C, Xia C, Liu C. Momentary Clicking Nitrile Synthesis Enabled by an Aminoazanium Reagent. Org Chem Front 2022. [DOI: 10.1039/d2qo00560c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Achieving fast and selective functional group interconversion is crucial for improving synthetic efficiency in nowadays chemical science. In this context, we report a momentary and selective Schmidt-type nitrile synthesis. The...
Collapse
|
37
|
Zhao P, Huang J, Li J, Zhang K, Yang W, Zhao W. Ligand-controlled cobalt-catalyzed remote hydroboration and alkene isomerization of allylic siloxanes. Chem Commun (Camb) 2021; 58:302-305. [PMID: 34889327 DOI: 10.1039/d1cc05964e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Co-catalyzed remote hydroboration and alkene isomerization of allylic siloxanes were realized by a ligand-controlled strategy. The remote hydroboration with dcype provided borylethers, while xantphos favored the formation of silyl enol ethers.
Collapse
Affiliation(s)
- Pei Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.
| | - Jiaxin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.
| | - Jie Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.
| | - Kezhuo Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.
| | - Wen Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.
| |
Collapse
|
38
|
Abstract
Classical amination methods involve the reaction of a nitrogen nucleophile with an electrophilic carbon center; however, in recent years, umpoled strategies have gained traction where the nitrogen source acts as an electrophile. A wide range of electrophilic aminating agents are now available, and these underpin a range of powerful C-N bond-forming processes. In this Review, we highlight the strategic use of electrophilic aminating agents in total synthesis.
Collapse
Affiliation(s)
- Lauren G. O'Neil
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - John F. Bower
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
39
|
Affiliation(s)
- Lauren G. O'Neil
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - John F. Bower
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
40
|
Volochnyuk DM, Gorlova AO, Grygorenko OO. Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry 2021; 27:15277-15326. [PMID: 34499378 DOI: 10.1002/chem.202102108] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/13/2022]
Abstract
This review discusses recent advances in the chemistry of saturated boronic acids, boronates, and trifluoroborates. Applications of the title compounds in the design of boron-containing drugs are surveyed, with special emphasis on α-amino boronic derivatives. A general overview of saturated boronic compounds as modern tools to construct C(sp3 )-C and C(sp3 )-heteroatom bonds is given, including recent developments in the Suzuki-Miyaura and Chan-Lam cross-couplings, single-electron-transfer processes including metallo- and organocatalytic photoredox reactions, and transformations of boron "ate" complexes. Finally, an attempt to summarize the current state of the art in the synthesis of saturated boronic acids, boronates, and trifluoroborates is made, with a brief mention of the "classical" methods (transmetallation of organolithium/magnesium reagents with boron species, anti-Markovnikov hydroboration of alkenes, and the modification of alkenyl boron compounds) and a special focus on recent methodologies (boronation of alkyl (pseudo)halides, derivatives of carboxylic acids, alcohols, and primary amines, boronative C-H activation, novel approaches to alkene hydroboration, and 1,2-metallate-type rearrangements).
Collapse
Affiliation(s)
- Dmitriy M Volochnyuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Alina O Gorlova
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
41
|
Wang B, Peng P, Ma W, Liu Z, Huang C, Cao Y, Hu P, Qi X, Lu Q. Electrochemical Borylation of Alkyl Halides: Fast, Scalable Access to Alkyl Boronic Esters. J Am Chem Soc 2021; 143:12985-12991. [PMID: 34374534 DOI: 10.1021/jacs.1c06473] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, a fast, scalable, and transition-metal-free borylation of alkyl halides (X = I, Br, Cl) enabled by electroreduction is reported. This process provides an efficient and practical access to primary, secondary, and tertiary boronic esters at a high current. More than 70 examples, including the late-stage borylation of natural products and drug derivatives, are furnished at room temperature, thereby demonstrating the broad utility and functional-group tolerance of this protocol. Mechanistic studies disclosed that B2cat2 serves as both a reagent and a cathodic mediator, enabling electroreduction of difficult-to-reduce alkyl bromides or chlorides at a low potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qingquan Lu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
42
|
Grayson JD, Dennis FM, Robertson CC, Partridge BM. Chan-Lam Amination of Secondary and Tertiary Benzylic Boronic Esters. J Org Chem 2021; 86:9883-9897. [PMID: 34169720 DOI: 10.1021/acs.joc.1c00976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report a Chan-Lam coupling reaction of benzylic and allylic boronic esters with primary and secondary anilines to form valuable alkyl amine products. Both secondary and tertiary boronic esters can be used as coupling partners, with mono-alkylation of the aniline occurring selectively. This is a rare example of a transition-metal-mediated transformation of a tertiary alkylboron reagent. Initial investigation into the reaction mechanism suggests that transmetalation from B to Cu occurs through a single-electron, rather than a two-electron process.
Collapse
Affiliation(s)
- James D Grayson
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, United Kingdom
| | - Francesca M Dennis
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, United Kingdom
| | - Craig C Robertson
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, United Kingdom
| | - Benjamin M Partridge
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, United Kingdom
| |
Collapse
|
43
|
Xu P, Zhang M, Ingoglia B, Allais C, Dechert-Schmitt AMR, Singer RA, Morken JP. Construction of Azacycles by Intramolecular Amination of Organoboronates and Organobis(boronates). Org Lett 2021; 23:3379-3383. [PMID: 33852313 DOI: 10.1021/acs.orglett.1c00856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intramolecular amination of organoboronates occurs with a 1,2-metalate shift of an aminoboron "ate" complex to form azetidines, pyrrolidines, and piperidines. Bis(boronates) undergo site-selective amination to form boronate-containing azacycles. Enantiomerically enriched azacycles are formed with high stereospecificity.
Collapse
Affiliation(s)
- Peilin Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Mingkai Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Bryan Ingoglia
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Christophe Allais
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | | | - Robert A Singer
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - James P Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
44
|
Du R, Liu L, Xu S. Iridium‐Catalyzed Regio‐ and Enantioselective Borylation of Unbiased Methylene C(sp
3
)−H Bonds at the Position β to a Nitrogen Center. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rongrong Du
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Luhua Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 China
| |
Collapse
|
45
|
Du R, Liu L, Xu S. Iridium-Catalyzed Regio- and Enantioselective Borylation of Unbiased Methylene C(sp 3 )-H Bonds at the Position β to a Nitrogen Center. Angew Chem Int Ed Engl 2021; 60:5843-5847. [PMID: 33325578 DOI: 10.1002/anie.202016009] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 11/11/2022]
Abstract
Reported herein is the pyrazole-directed iridium-catalyzed enantioselective borylation of unbiased methylene C-H bonds at the position β to a nitrogen center. The combination of a chiral bidentate boryl ligand, iridium precursor, and pyrazole directing group was responsible for the high regio- and enantioselectivity observed. The method tolerated a vast array of functional groups to afford the corresponding C(sp3 )-H functionalization products with good to excellent enantioselectivity.
Collapse
Affiliation(s)
- Rongrong Du
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luhua Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
46
|
Kim M, Park B, Shin M, Kim S, Kim J, Baik MH, Cho SH. Copper-Catalyzed Enantiotopic-Group-Selective Allylation of gem-Diborylalkanes. J Am Chem Soc 2021; 143:1069-1077. [DOI: 10.1021/jacs.0c11750] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minjae Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Bohyun Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Minkyeong Shin
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Suyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Junghoon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
47
|
Yang Y, Chen L, Xu S. Iridium‐Catalyzed Enantioselective Unbiased Methylene C(sp
3
)–H Borylation of Acyclic Amides. Angew Chem Int Ed Engl 2020; 60:3524-3528. [DOI: 10.1002/anie.202013568] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yuhuan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lili Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 China
| |
Collapse
|
48
|
Yang Y, Chen L, Xu S. Iridium‐Catalyzed Enantioselective Unbiased Methylene C(sp
3
)–H Borylation of Acyclic Amides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuhuan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lili Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 China
| |
Collapse
|
49
|
You C, Studer A. Synthesis of 1,3-Bis-(boryl)alkanes through Boronic Ester Induced Consecutive Double 1,2-Migration. Angew Chem Int Ed Engl 2020; 59:17245-17249. [PMID: 32579295 PMCID: PMC7540398 DOI: 10.1002/anie.202007541] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 01/03/2023]
Abstract
A general and efficient approach for the preparation of 1,3-bis-(boryl)alkanes is introduced. It is shown that readily generated vinylboron ate complexes react with commercially available ICH2 Bpin to valuable 1,3-bis-(boryl)alkanes. The introduced transformation, which is experimentally easy to conduct, shows broad substrate scope and high functional-group tolerance. Mechanistic studies reveal that the reaction does not proceed via radical intermediates. Instead, an unprecedented boronic ester induced sequential bis-1,2-migration cascade is suggested.
Collapse
Affiliation(s)
- Cai You
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
50
|
Reyes RL, Sato M, Iwai T, Suzuki K, Maeda S, Sawamura M. RETRACTED: Asymmetric remote C-H borylation of aliphatic amides and esters with a modular iridium catalyst. Science 2020; 369:970-974. [PMID: 32820123 DOI: 10.1126/science.abc8320] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/29/2020] [Indexed: 01/14/2023]
Abstract
Site selectivity and stereocontrol remain major challenges in C-H bond functionalization chemistry, especially in linear aliphatic saturated hydrocarbon scaffolds. We report the highly enantioselective and site-selective catalytic borylation of remote C(sp3)-H bonds γ to the carbonyl group in aliphatic secondary and tertiary amides and esters. A chiral C-H activation catalyst was modularly assembled from an iridium center, a chiral monophosphite ligand, an achiral urea-pyridine receptor ligand, and pinacolatoboryl groups. Quantum chemical calculations support an enzyme-like structural cavity formed by the catalyst components, which bind the substrate through multiple noncovalent interactions. Versatile synthetic utility of the enantioenriched γ-borylcarboxylic acid derivatives was demonstrated.
Collapse
Affiliation(s)
- Ronald L Reyes
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Miyu Sato
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomohiro Iwai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kimichi Suzuki
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan. .,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|