1
|
Díaz-Ruiz M, Nieto-Rodríguez M, Maseras F. Revealing the Mechanistic Features of an Electrosynthetic Catalytic Reaction and the Role of Redox Mediators through DFT Calculations and Microkinetic Modeling. Chemphyschem 2024; 25:e202400402. [PMID: 38739104 DOI: 10.1002/cphc.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Organic electrosynthesis is an emerging field that provides original selectivity while adding features of atom economy, sustainability, and selectivity. Electrosynthesis is often enhanced by redox mediators or electroauxiliaries. The mechanistic understanding of organic electrosynthesis is however often limited by the low lifetime of intermediates and its difficult detection. In this work, we report a computational analysis of the mechanism of an appealing reaction previously reported by Mei and co-workers which is catalyzed by copper and employs iodide as redox mediator. Our scheme combines DFT calculations with microkinetic modeling and covers both the reaction in solution and the electrodic steps. A detailed mechanistic scheme is obtained which reproduces well experimental data and opens perspectives for the general treatment of these processes.
Collapse
Affiliation(s)
- Marina Díaz-Ruiz
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països, Catalans 16, 43007, Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, Tarragona, 43007, Spain
| | - Marc Nieto-Rodríguez
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països, Catalans 16, 43007, Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, Tarragona, 43007, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països, Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
2
|
Chen XH, Xu YQ, Huang MG, Dong ZB, Li JW, Liu YJ. Cobalt/Salicylaldehyde-Enabled C-H Alkoxylation of Benzamides with Secondary Alcohols under Solvothermal Conditions. J Org Chem 2024; 89:9011-9018. [PMID: 38847456 DOI: 10.1021/acs.joc.4c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
C-O bond formation via C-H alkoxylation remains a challenge, especially coupling with a secondary alcohol, due to its low activity and sterically encumbered property. Here, we report a general and effective cobalt-catalyzed oxidative cross-coupling of benzamides with secondary alcohols via C-H alkoxylation reaction under solvothermal conditions, enabled by a salicylaldehyde/cobalt complex. The protocol features easy operation without additives, broad substrate scope, and excellent functional tolerance. The applicability is proven by the gram-scale synthesis and modification of natural products.
Collapse
Affiliation(s)
- Xiao-Hong Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yi-Qing Xu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Mao-Gui Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhi-Bing Dong
- School of Chemistry Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jia-Wei Li
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Yue-Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
3
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
4
|
Bera S, Kabadwal LM, Banerjee D. Harnessing alcohols as sustainable reagents for late-stage functionalisation: synthesis of drugs and bio-inspired compounds. Chem Soc Rev 2024; 53:4607-4647. [PMID: 38525675 DOI: 10.1039/d3cs00942d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Alcohol is ubiquitous with unparalleled structural diversity and thus has wide applications as a native functional group in organic synthesis. It is highly prevalent among biomolecules and offers promising opportunities for the development of chemical libraries. Over the last decade, alcohol has been extensively used as an environmentally friendly chemical for numerous organic transformations. In this review, we collectively discuss the utilisation of alcohol from 2015 to 2023 in various organic transformations and their application toward intermediates of drugs, drug derivatives and natural product-like molecules. Notable features discussed are as follows: (i) sustainable approaches for C-X alkylation (X = C, N, or O) including O-phosphorylation of alcohols, (ii) newer strategies using methanol as a methylating reagent, (iii) allylation of alkenes and alkynes including allylic trifluoromethylations, (iv) alkenylation of N-heterocycles, ketones, sulfones, and ylides towards the synthesis of drug-like molecules, (v) cyclisation and annulation to pharmaceutically active molecules, and (vi) coupling of alcohols with aryl halides or triflates, aryl cyanide and olefins to access drug-like molecules. We summarise the synthesis of over 100 drugs via several approaches, where alcohol was used as one of the potential coupling partners. Additionally, a library of molecules consisting over 60 fatty acids or steroid motifs is documented for late-stage functionalisation including the challenges and opportunities for harnessing alcohols as renewable resources.
Collapse
Affiliation(s)
- Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Lalit Mohan Kabadwal
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
5
|
Huang MG, Tan YY, Ai MT, Chen XH, Xu HB, Liu YJ. Salicylaldehyde-Cobalt(II)-Catalyzed C-H Alkoxylation of Indoles with Secondary Alcohols. J Org Chem 2024; 89:4438-4443. [PMID: 38471105 DOI: 10.1021/acs.joc.3c02582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
A straight and efficient protocol for the synthesis of hindered indole-ethers via C-H alkoxylation of indoles was developed by a cobalt-catalyzed cross-dehydrogenative coupling reaction with secondary alcohols. The selection of the salicylaldehyde-Co(II) catalyst enables the reaction to proceed under conditions without acid or base addition in the presence of limited alcohols. The protocol has broad substrate scope for both indole and secondary alcohols and exhibits good functional tolerance. The synthetic applications are proven by gram-scale reaction and further diversification of the product. Preliminary mechanistic investigations indicate that the activation of C-H bonds is not the rate-determining step of the reaction.
Collapse
Affiliation(s)
- Mao-Gui Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yu-Yan Tan
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Meng-Ting Ai
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiao-Hong Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Hai-Bing Xu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yue-Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
6
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
7
|
Hu CH, Kim ST, Baik MH, Mirica LM. Nickel-Carbon Bond Oxygenation with Green Oxidants via High-Valent Nickel Species. J Am Chem Soc 2023; 145:11161-11172. [PMID: 37183827 DOI: 10.1021/jacs.3c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Described herein is the synthesis of the NiII complex (tBuMe2tacn)NiII(cycloneophyl) (tBuMe2tacn = 1-tert-butyl-4,7-dimethyl-1,4,7-triazacyclononane, cycloneophyl = -CH2CMe2-o-C6H4-) and its reactivity with dioxygen and peroxides. The new tBuMe2tacn ligand is designed to enhance the oxidatively induced bond-forming reactivity of high-valent Ni intermediates. Tunable chemoselectivity for Csp2-O vs Csp2-Csp3 bond formation was achieved by selecting the appropriate solvent and reaction conditions. Importantly, the use of cumene hydroperoxide and meta-chloroperbenzoic acid suggests a heterolytic O-O bond cleavage upon reaction with (tBuMe2tacn)NiII(cycloneophyl). Mechanistic studies using isotopically labeled H2O2 support the generation of a high-valent Ni-oxygen species via an inner-sphere mechanism and subsequent reductive elimination to form the Csp2-O bond. Kinetic studies of the exceptionally fast Csp2-O bond-forming reaction reveal a first-order dependence on both (tBuMe2tacn)NiII(cycloneophyl) and H2O2, and thus an overall second-order reaction. Eyring analysis further suggests that the oxidation of the NiII complex by H2O2 is the rate-determining step, which can be modulated by the presence of coordinating solvents. Moreover, computational studies fully support the conclusions drawn from experimental results. Overall, this study reveals for the first time the ability to control the oxidatively induced C-C vs C-O bond formation reactions at a Ni center. Importantly, the described system merges the known organometallic reactivity of Ni with the biomimetic oxidative transformations resembling oxygenases and peroxidases, and involving high-valent metal-oxygen intermediates, which is a novel approach that should lead to unprecedented oxidative catalytic transformations.
Collapse
Affiliation(s)
- Chi-Herng Hu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Seoung-Tae Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Green KA, Honeycutt AP, Ciccone SR, Grice KA, Baur A, Petersen JL, Hoover JM. A Redox Transmetalation Step in Nickel-Catalyzed C-C Coupling Reactions. ACS Catal 2023; 13:6375-6381. [PMID: 37180967 PMCID: PMC10167653 DOI: 10.1021/acscatal.2c06015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/11/2023] [Indexed: 05/16/2023]
Abstract
Ni-catalyzed C-H functionalization reactions are becoming efficient routes to access a variety of functionalized arenes, yet the mechanisms of these catalytic C-C coupling reactions are not well understood. Here, we report the catalytic and stoichiometric arylation reactions of a nickel(II) metallacycle. Treatment of this species with silver(I)-aryl complexes results in facile arylation, consistent with a redox transmetalation step. Additionally, treatment with electrophilic coupling partners generates C-C and C-S bonds. We anticipate that this redox transmetalation step may be relevant to other coupling reactions that employ silver salts as additives.
Collapse
Affiliation(s)
- Kerry-Ann Green
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Aaron P. Honeycutt
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sierra R. Ciccone
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Kyle A. Grice
- Department
of Chemistry and Biochemistry, DePaul University, Chicago, Illinois 60614, United States
| | - Andreas Baur
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jeffrey L. Petersen
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jessica M. Hoover
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
9
|
Changmai S, Sultana S, Saikia AK. Review of electrochemical transition‐metal‐catalyzed C−H functionalization reactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202203530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Sumi Changmai
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology 785006 Jorhat India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | | | - Anil K. Saikia
- Indian Institute of Technology-Guwahati Department of Chemistry Guwahati 781039 Assam India
| |
Collapse
|
10
|
Milbauer MW, Kampf JW, Sanford MS. Nickel(IV) Intermediates in Aminoquinoline-Directed C(sp 2)–C(sp 3) Coupling. J Am Chem Soc 2022; 144:21030-21034. [DOI: 10.1021/jacs.2c10778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael W. Milbauer
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jeff W. Kampf
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Aggarwal Y, Padmavathi R, Singh P, Arulananda Babu S. Pd(II)‐Catalyzed, γ‐C(sp2)‐H Alkoxylation in α‐Methylbenzylamine, Phenylglycinol, 3‐Amino‐3‐Phenylpropanol Toward Enantiopure Aryl Alkyl Ethers. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yashika Aggarwal
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | | | - Prabhakar Singh
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | - Srinivasarao Arulananda Babu
- Indian Institute of Science Education and Research Mohali Department of Chemical Sciences Knowledge City, Sector 81, SAS Nagar,Mohali, Manauli P.O., 140306 Mohali INDIA
| |
Collapse
|
12
|
Affiliation(s)
- Chunzhe Pei
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 People's Republic of China
| |
Collapse
|
13
|
Gu XS, Xiong Y, Yang F, Yu N, Yan PC, Xie JH, Zhou QL. Enantioselective Hydrogenation toward Chiral 3-Aryloxy Tetrahydrofurans Enabled by Spiro Ir-PNN Catalysts Containing an Unusual 5-Substituted Chiral Oxazoline Unit. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xue-Song Gu
- State Key Laboratory and Institute of Elemento-organic Chemistry College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Xiong
- State Key Laboratory and Institute of Elemento-organic Chemistry College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fan Yang
- State Key Laboratory and Institute of Elemento-organic Chemistry College of Chemistry, Nankai University, Tianjin 300071, China
| | - Na Yu
- State Key Laboratory and Institute of Elemento-organic Chemistry College of Chemistry, Nankai University, Tianjin 300071, China
| | - Pu-Cha Yan
- Raybow (Hangzhou) Pharmaceutical CO., Ltd. Hangzhou 310018, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-organic Chemistry College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-organic Chemistry College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Electrochemical Oxidative C H Phosphonylation of thiazole derivatives in ambient conditions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Ma C, Fang P, Liu ZR, Xu SS, Xu K, Cheng X, Lei A, Xu HC, Zeng C, Mei TS. Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. Sci Bull (Beijing) 2021; 66:2412-2429. [PMID: 36654127 DOI: 10.1016/j.scib.2021.07.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023]
Abstract
Organic electrosynthesis has been widely used as an environmentally conscious alternative to conventional methods for redox reactions because it utilizes electric current as a traceless redox agent instead of chemical redox agents. Indirect electrolysis employing a redox catalyst has received tremendous attention, since it provides various advantages compared to direct electrolysis. With indirect electrolysis, overpotential of electron transfer can be avoided, which is inherently milder, thus wide functional group tolerance can be achieved. Additionally, chemoselectivity, regioselectivity, and stereoselectivity can be tuned by the redox catalysts used in indirect electrolysis. Furthermore, electrode passivation can be avoided by preventing the formation of polymer films on the electrode surface. Common redox catalysts include N-oxyl radicals, hypervalent iodine species, halides, amines, benzoquinones (such as DDQ and tetrachlorobenzoquinone), and transition metals. In recent years, great progress has been made in the field of indirect organic electrosynthesis using transition metals as redox catalysts for reaction classes including C-H functionalization, radical cyclization, and cross-coupling of aryl halides-each owing to the diverse reactivity and accessible oxidation states of transition metals. Although various reviews of organic electrosynthesis are available, there is a lack of articles that focus on recent research progress in the area of indirect electrolysis using transition metals, which is the impetus for this review.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shi-Shuo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Xu Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| | - Hai-Chao Xu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chengchu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
16
|
Pei C, Zong J, Li B, Wang B. Ni‐Catalyzed Direct Carboxylation of Aryl C−H Bonds in Benzamides with CO
2. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chunzhe Pei
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Jiarui Zong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 People's Republic of China
| |
Collapse
|
17
|
Saraswat A, Sharma A. Mini-review on the functionalization of C–H bond to C-X linkage via metalla-electrocatalyzed tool. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Abstract
Acetoxylation of arenes is an important reaction and an unmet need in chemistry. We report a metal-free, direct acetoxylation reaction using sodium nitrate under an anhydrous environment of trifluoroacetic acid, acetic acid, and acetic anhydride. Arenes (31 examples), with oxidation potentials (Eox, in V vs SCE) lower than benzene (2.48 V), were acetoxylated with good yields and regioselectivity. A stepwise, single electron-transfer mechanism is proposed.
Collapse
Affiliation(s)
- Thi Anh Hong Nguyen
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan Taiwan 32001
| | - Duen-Ren Hou
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan Taiwan 32001
| |
Collapse
|
19
|
Zakis JM, Smejkal T, Wencel-Delord J. Cyclometallated complexes as catalysts for C-H activation and functionalization. Chem Commun (Camb) 2021; 58:483-490. [PMID: 34735563 DOI: 10.1039/d1cc05195d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of novel catalysts for C-H activation reactions with increased reactivity and improved selectivities has been attracting significant interest over the last two decades. More recently, promising results have been developed using tridentate pincer ligands, which form a stable C-M bond. Furthermore, based on mechanistic studies, the unique catalytic role of some metallacyclic intermediate species has been revealed. These experimental observations have subsequently translated into the rational design of advanced C-H activation catalysts in both Ru- and Ir-based systems. Recent breakthroughs in the field of C-H activation catalysed by metallacyclic intermediates are thus discussed.
Collapse
Affiliation(s)
- Janis Mikelis Zakis
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, Stein AG 4332, Switzerland. .,Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, Strasbourg 67087, France.
| | - Tomas Smejkal
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, Stein AG 4332, Switzerland.
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, Strasbourg 67087, France.
| |
Collapse
|
20
|
Liu J, Johnson SA. Mechanism of 8-Aminoquinoline-Directed Ni-Catalyzed C(sp 3)–H Functionalization: Paramagnetic Ni(II) Species and the Deleterious Effect of Carbonate as a Base. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Junyang Liu
- Department of Chemistry and Biochemistry, University of Windsor, Sunset Avenue 401, Windsor, Ontario N9B 3P4, Canada
| | - Samuel A. Johnson
- Department of Chemistry and Biochemistry, University of Windsor, Sunset Avenue 401, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
21
|
Massignan L, Zhu C, Hou X, Oliveira JCA, Salamé A, Ackermann L. Manganaelectro-Catalyzed Azine C–H Arylations and C–H Alkylations by Assistance of Weakly Coordinating Amides. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Leonardo Massignan
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Cuiju Zhu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Aude Salamé
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| |
Collapse
|
22
|
Murali K, Machado LA, Carvalho RL, Pedrosa LF, Mukherjee R, Da Silva Júnior EN, Maiti D. Decoding Directing Groups and Their Pivotal Role in C-H Activation. Chemistry 2021; 27:12453-12508. [PMID: 34038596 DOI: 10.1002/chem.202101004] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Synthetic organic chemistry has witnessed a plethora of functionalization and defunctionalization strategies. In this regard, C-H functionalization has been at the forefront due to the multifarious applications in the development of simple to complex molecular architectures and holds a brilliant prospect in drug development and discovery. Despite been explored tremendously by chemists, this functionalization strategy still enjoys the employment of novel metal catalysts as well metal-free organic ligands. Moreover, the switch to photo- and electrochemistry has widened our understanding of the alternative pathways via which a reaction can proceed and these strategies have garnered prominence when applied to C-H activation. Synthetic chemists have been foraging for new directing groups and templates for the selective activation of C-H bonds from a myriad of carbon-hydrogen bonds in aromatic as well as aliphatic systems. As a matter of fact, by varying the templates and directing groups, scientists found the answer to the challenge of distal C-H bond activation which remained an obstacle for a very long time. These templates have been frequently harnessed for selectively activating C-H bonds of natural products, drugs, and macromolecules decorated with multiple C-H bonds. This itself was a challenge before the commencement of this field as functionalization of a site other than the targeted site could modify and hamper the biological activity of the pharmacophore. Total synthesis and pharmacophore development often faces the difficulty of superfluous reaction steps towards selective functionalization. This obstacle has been solved by late-stage functionalization simply by harnessing C-H bond activation. Moreover, green chemistry and metal-free reaction conditions have seen light in the past few decades due to the rising concern about environmental issues. Therefore, metal-free catalysts or the usage of non-toxic metals have been recently showcased in a number of elegant works. Also, research groups across the world are developing rational strategies for directing group free or non-directed protocols that are just guided by ligands. This review encapsulates the research works pertinent to C-H bond activation and discusses the science devoted to it at the fundamental level. This review gives the readers a broad understanding of how these strategies work, the execution of various metal catalysts, and directing groups. This not only helps a budding scientist towards the commencement of his/her research but also helps a matured mind searching out for selective functionalization. A detailed picture of this field and its progress with time has been portrayed in lucid scientific language with a motive to inculcate and educate scientific minds about this beautiful strategy with an overview of the most relevant and significant works of this era. The unique trait of this review is the detailed description and classification of various directing groups and their utility over a wide substrate scope. This allows an experimental chemist to understand the applicability of this domain and employ it over any targeted substrate.
Collapse
Affiliation(s)
- Karunanidhi Murali
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Luana A Machado
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.,Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Renato L Carvalho
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Leandro F Pedrosa
- Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Rishav Mukherjee
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| | | | - Debabrata Maiti
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
23
|
Carvalho RL, de Miranda AS, Nunes MP, Gomes RS, Jardim GAM, Júnior ENDS. On the application of 3d metals for C-H activation toward bioactive compounds: The key step for the synthesis of silver bullets. Beilstein J Org Chem 2021; 17:1849-1938. [PMID: 34386103 PMCID: PMC8329403 DOI: 10.3762/bjoc.17.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Several valuable biologically active molecules can be obtained through C-H activation processes. However, the use of expensive and not readily accessible catalysts complicates the process of pharmacological application of these compounds. A plausible way to overcome this issue is developing and using cheaper, more accessible, and equally effective catalysts. First-row transition (3d) metals have shown to be important catalysts in this matter. This review summarizes the use of 3d metal catalysts in C-H activation processes to obtain potentially (or proved) biologically active compounds.
Collapse
Affiliation(s)
- Renato L Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Amanda S de Miranda
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Roberto S Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, CEP 13565-905, São Carlos, SP, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
24
|
Zhu C, Kale AP, Yue H, Rueping M. Redox-Neutral Cross-Coupling Amination with Weak N-Nucleophiles: Arylation of Anilines, Sulfonamides, Sulfoximines, Carbamates, and Imines via Nickelaelectrocatalysis. JACS AU 2021; 1:1057-1065. [PMID: 34467349 PMCID: PMC8395614 DOI: 10.1021/jacsau.1c00148] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 06/13/2023]
Abstract
A nickel-catalyzed cross-coupling amination with weak nitrogen nucleophiles is described. Aryl halides as well as aryl tosylates can be efficiently coupled with a series of weak N-nucleophiles, including anilines, sulfonamides, sulfoximines, carbamates, and imines via concerted paired electrolysis. Notably, electron-deficient anilines and sulfonamides are also suitable substrates. Interestingly, when benzophenone imine is applied in the arylation, the product selectivity toward the formation of amine and imine product can be addressed by a base switch. In addition, the alternating current mode can be successfully applied. DFT calculations support a facilitated reductive elimination pathway.
Collapse
|
25
|
Yuan Y, Zhou Z, Zhang L, Li LS, Lei A. Electrochemical Oxidative C3 Acyloxylation of Imidazo[1,2- a]pyridines with Hydrogen Evolution. Org Lett 2021; 23:5932-5936. [PMID: 34296890 DOI: 10.1021/acs.orglett.1c02032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The C3-functionalized imidazo[1,2-a]pyridines are versatile nitrogen-fused heterocycles; however, the methods for the C3 acyloxylation of imidazo[1,2-a]pyridines have never been reported. Herein we demonstrate the electrochemical oxidative C3 acyloxylation of imidazo[1,2-a]pyridines for the first time. Notably, by using electricity, the electrochemical oxidative C3 acyloxylation of imidazo[1,2-a]pyridines was carried out under mild conditions. Moreover, in addition to aromatic carboxylic acids, alkyl carboxylic acids were also competent substrates.
Collapse
Affiliation(s)
- Yong Yuan
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China.,Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Zhilin Zhou
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Lin Zhang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Liang-Sen Li
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China.,College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
26
|
Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Electrocatalysis as an enabling technology for organic synthesis. Chem Soc Rev 2021; 50:7941-8002. [PMID: 34060564 PMCID: PMC8294342 DOI: 10.1039/d1cs00223f] [Citation(s) in RCA: 420] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. Electrochemistry's unique ability to generate highly reactive radical and radical ion intermediates in a controlled fashion under mild conditions has inspired the development of a number of new electrochemical methodologies for the preparation of valuable chemical motifs. Particularly, recent developments in electrosynthesis have featured an increased use of redox-active electrocatalysts to further enhance control over the selective formation and downstream reactivity of these reactive intermediates. Furthermore, electrocatalytic mediators enable synthetic transformations to proceed in a manner that is mechanistically distinct from purely chemical methods, allowing for the subversion of kinetic and thermodynamic obstacles encountered in conventional organic synthesis. This review highlights key innovations within the past decade in the area of synthetic electrocatalysis, with emphasis on the mechanisms and catalyst design principles underpinning these advancements. A host of oxidative and reductive electrocatalytic methodologies are discussed and are grouped according to the classification of the synthetic transformation and the nature of the electrocatalyst.
Collapse
Affiliation(s)
- Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Late-stage C–H functionalization offers new opportunities in drug discovery. Nat Rev Chem 2021; 5:522-545. [PMID: 37117588 DOI: 10.1038/s41570-021-00300-6] [Citation(s) in RCA: 291] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
Over the past decade, the landscape of molecular synthesis has gained major impetus by the introduction of late-stage functionalization (LSF) methodologies. C-H functionalization approaches, particularly, set the stage for new retrosynthetic disconnections, while leading to improvements in resource economy. A variety of innovative techniques have been successfully applied to the C-H diversification of pharmaceuticals, and these key developments have enabled medicinal chemists to integrate LSF strategies in their drug discovery programmes. This Review highlights the significant advances achieved in the late-stage C-H functionalization of drugs and drug-like compounds, and showcases how the implementation of these modern strategies allows increased efficiency in the drug discovery process. Representative examples are examined and classified by mechanistic patterns involving directed or innate C-H functionalization, as well as emerging reaction manifolds, such as electrosynthesis and biocatalysis, among others. Structurally complex bioactive entities beyond small molecules are also covered, including diversification in the new modalities sphere. The challenges and limitations of current LSF methods are critically assessed, and avenues for future improvements of this rapidly expanding field are discussed. We, hereby, aim to provide a toolbox for chemists in academia as well as industrial practitioners, and introduce guiding principles for the application of LSF strategies to access new molecules of interest.
Collapse
|
28
|
Luo X, Wang P. Ynonylation of Acyl Radicals by Electroinduced Homolysis of 4-Acyl-1,4-dihydropyridines. Org Lett 2021; 23:4960-4965. [PMID: 34155886 DOI: 10.1021/acs.orglett.1c01243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein we report the conversion of 4-acyl-1,4-dihydropyridines (DHPs) into ynones under electrochemical conditions. The reaction proceeds via the homolysis of acyl-DHP under electron activation. The resulting acyl radicals react with hypervalent iodine(III) reagents to form the target ynones or ynamides in acceptable yields. This mild reaction condition allows wider functionality tolerance that includes halides, carboxylates, or alkenes. The synthetic utility of this methodology is further demonstrated by the late-stage modification of complex molecules.
Collapse
Affiliation(s)
- Xiaosheng Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. C–H activation. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00041-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Tan X, Massignan L, Hou X, Frey J, Oliveira JCA, Hussain MN, Ackermann L. Rhodaelektrokatalysierte bimetallische C‐H‐Oxygenierung durch schwache
O
‐Koordination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xuefeng Tan
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Leonardo Massignan
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Johanna Frey
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Masoom Nasiha Hussain
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
- Wöhler Research Institute for Sustainable Chemistry Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
31
|
Tan X, Massignan L, Hou X, Frey J, Oliveira JCA, Hussain MN, Ackermann L. Rhoda-Electrocatalyzed Bimetallic C-H Oxygenation by Weak O-Coordination. Angew Chem Int Ed Engl 2021; 60:13264-13270. [PMID: 33651910 PMCID: PMC8252749 DOI: 10.1002/anie.202017359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/28/2021] [Indexed: 12/20/2022]
Abstract
Rhodium-electrocatalyzed arene C-H oxygenation by weakly O-coordinating amides and ketones have been established by bimetallic electrocatalysis. Likewise, diverse dihydrooxazinones were selectively accessed by the judicious choice of current, enabling twofold C-H functionalization. Detailed mechanistic studies by experiment, mass spectroscopy and cyclovoltammetric analysis provided support for an unprecedented electrooxidation-induced C-H activation by a bimetallic rhodium catalysis manifold.
Collapse
Affiliation(s)
- Xuefeng Tan
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Leonardo Massignan
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Johanna Frey
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Masoom Nasiha Hussain
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
32
|
Samanta RC, Ackermann L. Evolution of Earth-Abundant 3 d-Metallaelectro-Catalyzed C-H Activation: From Chelation-Assistance to C-H Functionalization without Directing Groups. CHEM REC 2021; 21:2430-2441. [PMID: 34028175 DOI: 10.1002/tcr.202100096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 01/15/2023]
Abstract
Catalyzed C-H functionalizations have emerged as a transformative platform for molecular syntheses. Despite of indisputable advances, oxidative C-H activations have been largely restricted to precious transition metals and stoichiometric amounts of chemical oxidants. In contrast, we herein discuss the potential of earth-abundant, environmentally-benign 3d transition metals for C-H activation, which has recently gained major momentum. Thus, a strategy for full resource economy has been established in our group, with green electricity as a renewable redox agent, giving valuable hydrogen as the sole byproduct under redox mediator-free conditions. In this account, we detail our accomplishments in 3d metallaelectrocatalysis towards green syntheses until March 2021.
Collapse
Affiliation(s)
- Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
33
|
Hu Y, Luo H, Tu X, Xue H, Jin H, Liu Y, Zhou B. Selective cine-arylation of tert-cyclobutanols with indoles enabled by nickel catalysis. Chem Commun (Camb) 2021; 57:4686-4689. [PMID: 33977975 DOI: 10.1039/d1cc01233a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In previous literature, tert-cyclobutanols are widely studied for C-C bond activation exclusively leading to the formation of ordinary γ-substituted ketones. Herein, we first report a nickel-catalyzed cine-arylation of tert-cyclobutanols with indoles to access β-aryl ketones with an unusual site-selectivity at the C3-position of tert-cyclobutanols. The reaction features earth-abundant nickel catalysis, excellent regioselectivity, high atom-economy, and broad substrate scope.
Collapse
Affiliation(s)
- Yuanyuan Hu
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Honggen Luo
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xiangtu Tu
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Han Xue
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hongwei Jin
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yunkui Liu
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Bingwei Zhou
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
34
|
|
35
|
Zhu C, Ang NWJ, Meyer TH, Qiu Y, Ackermann L. Organic Electrochemistry: Molecular Syntheses with Potential. ACS CENTRAL SCIENCE 2021; 7:415-431. [PMID: 33791425 PMCID: PMC8006177 DOI: 10.1021/acscentsci.0c01532] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 05/05/2023]
Abstract
Efficient and selective molecular syntheses are paramount to inter alia biomolecular chemistry and material sciences as well as for practitioners in chemical, agrochemical, and pharmaceutical industries. Organic electrosynthesis has undergone a considerable renaissance and has thus in recent years emerged as an increasingly viable platform for the sustainable molecular assembly. In stark contrast to early strategies by innate reactivity, electrochemistry was recently merged with modern concepts of organic synthesis, such as transition-metal-catalyzed transformations for inter alia C-H functionalization and asymmetric catalysis. Herein, we highlight the unique potential of organic electrosynthesis for sustainable synthesis and catalysis, showcasing key aspects of exceptional selectivities, the synergism with photocatalysis, or dual electrocatalysis, and novel mechanisms in metallaelectrocatalysis until February of 2021.
Collapse
Affiliation(s)
- Cuiju Zhu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nate W. J. Ang
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tjark H. Meyer
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Youai Qiu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|
36
|
Wang Y, Oliveira JCA, Lin Z, Ackermann L. Electrooxidative Rhodium-Catalyzed [5+2] Annulations via C-H/O-H Activations. Angew Chem Int Ed Engl 2021; 60:6419-6424. [PMID: 33471952 PMCID: PMC7986427 DOI: 10.1002/anie.202016895] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Indexed: 01/28/2023]
Abstract
Electrooxidative annulations involving mild transition metal-catalyzed C-H activation have emerged as a transformative strategy for the rapid construction of five- and six-membered heterocycles. In contrast, we herein describe the first electrochemical metal-catalyzed [5+2] cycloadditions to assemble valuable seven-membered benzoxepine skeletons by C-H/O-H activation. The efficient alkyne annulation featured ample substrate scope, using electricity as the only oxidant. Mechanistic studies provided strong support for a rhodium(III/I) regime, involving a benzoxepine-coordinated rhodium(I) sandwich complex as the catalyst resting state, which was re-oxidized to rhodium(III) by anodic oxidation.
Collapse
Affiliation(s)
- Yulei Wang
- Institut für Organische und Biomolekulare Chemie, and Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie, and Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Zhipeng Lin
- Institut für Organische und Biomolekulare Chemie, and Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, and Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
37
|
Ang NWJ, Ackermann L. Electroreductive Nickel-Catalyzed Thiolation: Efficient Cross-Electrophile Coupling for C-S Formation. Chemistry 2021; 27:4883-4887. [PMID: 33370483 PMCID: PMC7986068 DOI: 10.1002/chem.202005449] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Sulfur-containing molecules are of utmost topical importance towards the effective development of pharmaceuticals and functional materials. Herein, we present an efficient and mild electrochemical thiolation by cross-electrophile coupling of alkyl bromides with functionalized bench-stable thiosulfonates to access alkyl sulfides with excellent efficacy and broad functional group tolerance. Cyclic voltammetry and potentiostatic analysis were performed to elucidate mechanistic insights into this electrocatalytic thiolation reaction.
Collapse
Affiliation(s)
- Nate W. J. Ang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
38
|
Huang S, Ouyang T, Zheng B, Dan M, Liu Z. Enhanced Photoelectrocatalytic Activities for CH
3
OH‐to‐HCHO Conversion on Fe
2
O
3
/MoO
3
: Fe‐O‐Mo Covalency Dominates the Intrinsic Activity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sheng Huang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Bang‐Feng Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Meng Dan
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Zhao‐Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| |
Collapse
|
39
|
Huang S, Ouyang T, Zheng B, Dan M, Liu Z. Enhanced Photoelectrocatalytic Activities for CH
3
OH‐to‐HCHO Conversion on Fe
2
O
3
/MoO
3
: Fe‐O‐Mo Covalency Dominates the Intrinsic Activity. Angew Chem Int Ed Engl 2021; 60:9546-9552. [DOI: 10.1002/anie.202101058] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Sheng Huang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Bang‐Feng Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Meng Dan
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Zhao‐Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| |
Collapse
|
40
|
Budnikova YH. Electrochemical Insight into Mechanisms and Metallocyclic Intermediates of C-H Functionalization. CHEM REC 2021; 21:2148-2163. [PMID: 33629800 DOI: 10.1002/tcr.202100009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/19/2022]
Abstract
Transition metal-catalyzed C-H activation has emerged as a powerful tool in organic synthesis and electrosynthesis as well as in the development of new methodologies for producing fine chemicals. In order to achieve efficient and selective C-H functionalization, different strategies have been used to accelerate the C-H activation step, including the incorporation of directing groups in the substrate that facilitate coordination to the catalyst. In this review, we try to underscore that the understanding the mechanisms of the catalytic cycle and the reactivity or redox activity of the key metal cyclic intermediates in these reactions is the basis for controlling the selectivity of synthesis and electrosynthesis. Combination of the electrosynthesis and voltammetry with traditional synthetic and physico-chemical methods allows one to achieve selective transformation of C-H bonds to functionalized C-C or C-X (X=heteroatom or halogen) bonds which may encourage organic chemists to use it in the future more often. The possibilities and the benefits of electrochemical techniques are analyzed and summarized.
Collapse
Affiliation(s)
- Yulia H Budnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088, Kazan, Russia.,Kazan National Research Technological University, Karl Marx street, 68, 420015, Kazan, Russia
| |
Collapse
|
41
|
Dalton T, Faber T, Glorius F. C-H Activation: Toward Sustainability and Applications. ACS CENTRAL SCIENCE 2021; 7:245-261. [PMID: 33655064 PMCID: PMC7908034 DOI: 10.1021/acscentsci.0c01413] [Citation(s) in RCA: 280] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Indexed: 05/14/2023]
Abstract
Since the definition of the "12 Principles of Green Chemistry" more than 20 years ago, chemists have become increasingly mindful of the need to conserve natural resources and protect the environment through the judicious choice of synthetic routes and materials. The direct activation and functionalization of C-H bonds, bypassing intermediate functional group installation is, in abstracto, step and atom economic, but numerous factors still hinder the sustainability of large-scale applications. In this Outlook, we highlight the research areas seeking to overcome the sustainability challenges of C-H activation: the pursuit of abundant metal catalysts, the avoidance of static directing groups, the replacement of metal oxidants, and the introduction of bioderived solvents. We close by examining the progress made in the subfield of aryl C-H borylation from its origins, through highly efficient but precious Ir-based systems, to emerging 3d metal catalysts. The future growth of this field will depend on industrial uptake, and thus we urge researchers to strive toward sustainable C-H activation.
Collapse
Affiliation(s)
- Toryn Dalton
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 4048149 Münster, Germany
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 4048149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 4048149 Münster, Germany
| |
Collapse
|
42
|
Wang Y, Oliveira JCA, Lin Z, Ackermann L. Elektrooxidative Rhodium‐katalysierte [5+2]‐Anellierung durch C‐H/O‐H‐Aktivierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yulei Wang
- Institut für Organische und Biomolekulare Chemie, und Wöhler Research Institute for Sustainable Chemistry Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie, und Wöhler Research Institute for Sustainable Chemistry Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Zhipeng Lin
- Institut für Organische und Biomolekulare Chemie, und Wöhler Research Institute for Sustainable Chemistry Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, und Wöhler Research Institute for Sustainable Chemistry Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
43
|
Chen J, Yang H, Zhang M, Chen H, Liu J, Yin K, Chen S, Shao A. Electrochemical-induced regioselective C-3 thiocyanation of imidazoheterocycles with hydrogen evolution. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Zhong JS, Yu Y, Shi Z, Ye KY. An electrochemical perspective on the roles of ligands in the merger of transition-metal catalysis and electrochemistry. Org Chem Front 2021. [DOI: 10.1039/d0qo01227k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A perspective on the roles of ligands in transition-metal catalysis under electrochemical conditions is provided.
Collapse
Affiliation(s)
- Jun-Song Zhong
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Yi Yu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Zhaojiang Shi
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| |
Collapse
|
45
|
Sakurai S, Kano T, Maruoka K. Cu-Catalyzed O-alkylation of phenol derivatives with alkylsilyl peroxides. Chem Commun (Camb) 2021; 57:81-84. [DOI: 10.1039/d0cc07305a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A Cu-catalyzed O-alkylation of phenol derivatives using alkylsilyl peroxides as alkyl radical precursors is described.
Collapse
Affiliation(s)
- Shunya Sakurai
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Sakyo
- Japan
| | - Taichi Kano
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Sakyo
- Japan
| | - Keiji Maruoka
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Sakyo
- Japan
| |
Collapse
|
46
|
Dhawa U, Kaplaneris N, Ackermann L. Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Org Chem Front 2021. [DOI: 10.1039/d1qo00727k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sustainable strategies for the activation of inert C–H bonds towards improved resource-economy.
Collapse
Affiliation(s)
- Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
47
|
Le Vaillant F, Reijerse EJ, Leutzsch M, Cornella J. Dialkyl Ether Formation at High-Valent Nickel. J Am Chem Soc 2020; 142:19540-19550. [PMID: 33143423 PMCID: PMC7677934 DOI: 10.1021/jacs.0c07381] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/15/2022]
Abstract
In this article, we investigated the I2-promoted cyclic dialkyl ether formation from 6-membered oxanickelacycles originally reported by Hillhouse. A detailed mechanistic investigation based on spectroscopic and crystallographic analysis revealed that a putative reductive elimination to forge C(sp3)-OC(sp3) using I2 might not be operative. We isolated a paramagnetic bimetallic NiIII intermediate featuring a unique Ni2(OR)2 (OR = alkoxide) diamond-like core complemented by a μ-iodo bridge between the two Ni centers, which remains stable at low temperatures, thus permitting its characterization by NMR, EPR, X-ray, and HRMS. At higher temperatures (>-10 °C), such bimetallic intermediate thermally decomposes to afford large amounts of elimination products together with iodoalkanols. Observation of the latter suggests that a C(sp3)-I bond reductive elimination occurs preferentially to any other challenging C-O bond reductive elimination. Formation of cyclized THF rings is then believed to occur through cyclization of an alcohol/alkoxide to the recently forged C(sp3)-I bond. The results of this article indicate that the use of F+ oxidants permits the challenging C(sp3)-OC(sp3) bond formation at a high-valent nickel center to proceed in good yields while minimizing deleterious elimination reactions. Preliminary investigations suggest the involvement of a high-valent bimetallic NiIII intermediate which rapidly extrudes the C-O bond product at remarkably low temperatures. The new set of conditions permitted the elusive synthesis of diethyl ether through reductive elimination, a remarkable feature currently beyond the scope of Ni.
Collapse
Affiliation(s)
- Franck Le Vaillant
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Edward J. Reijerse
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34−36, Mülheim an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
48
|
Ye X, Wang C, Zhang S, Wei J, Shan C, Wojtas L, Xie Y, Shi X. Facilitating Ir-Catalyzed C-H Alkynylation with Electrochemistry: Anodic Oxidation-Induced Reductive Elimination. ACS Catal 2020; 10:11693-11699. [PMID: 38107025 PMCID: PMC10723742 DOI: 10.1021/acscatal.0c03207] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An electrochemical approach in promoting directed C-H alkynylation with terminal alkyne via iridium catalysis is reported. This work employed anodic oxidation of Ir(III) intermediate (characterized by X-ray crystallography) to promote reductive elimination, giving the desired coupling products in good yields (up to 95%) without the addition of any other external oxidants. This transformation is suitable for various directing groups with H2 as the only by-product, which warrants a high atom economy and practical oxidative C-C bond formation under mild conditions.
Collapse
Affiliation(s)
- Xiaohan Ye
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Chenhuan Wang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Shuyao Zhang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Jingwen Wei
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Chuan Shan
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Yan Xie
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, P.R.China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
49
|
Müller V, Ghorai D, Capdevila L, Messinis AM, Ribas X, Ackermann L. C-F Activation for C(sp 2)-C(sp 3) Cross-Coupling by a Secondary Phosphine Oxide (SPO)-Nickel Complex. Org Lett 2020; 22:7034-7040. [PMID: 32816494 DOI: 10.1021/acs.orglett.0c02609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A secondary phosphine oxide (SPO)-nickel catalyst allowed the activation of otherwise inert C-F bonds of unactivated arenes in terms of challenging couplings with primary and secondary alkyl Grignard reagents. The C-F activation is characterized by mild reaction conditions and high levels of branched selectivity. Electron-rich and electron-deficient arenes were suitable electrophiles for this transformation. In addition, this strategy also proved suitable to heterocycles and for the activation of C-O bonds under slightly modified conditions.
Collapse
Affiliation(s)
- Valentin Müller
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Debasish Ghorai
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lorena Capdevila
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Dep. Quı́mica, Universitat de Girona, Campus de Montilivi, E-17003 Girona, Catalonia, Spain
| | - Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Xavi Ribas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Dep. Quı́mica, Universitat de Girona, Campus de Montilivi, E-17003 Girona, Catalonia, Spain
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
50
|
Zhang S, Samanta RC, Del Vecchio A, Ackermann L. Evolution of High-Valent Nickela-Electrocatalyzed C-H Activation: From Cross(-Electrophile)-Couplings to Electrooxidative C-H Transformations. Chemistry 2020; 26:10936-10947. [PMID: 32329534 PMCID: PMC7497266 DOI: 10.1002/chem.202001318] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Indexed: 12/19/2022]
Abstract
C-H activation has emerged as one of the most efficient tools for the formation of carbon-carbon and carbon-heteroatom bonds, avoiding the use of prefunctionalized materials. In spite of tremendous progress in the field, stoichiometric quantities of toxic and/or costly chemical redox reagents, such as silver(I) or copper(II) salts, are largely required for oxidative C-H activations. Recently, electrosynthesis has experienced a remarkable renaissance that enables the use of storable, safe and waste-free electric current as a redox equivalent. While major recent momentum was gained in electrocatalyzed C-H activations by 4d and 5d metals, user-friendly and inexpensive nickela-electrocatalysis has until recently proven elusive for oxidative C-H activations. Herein, the early developments of nickela-electrocatalyzed reductive cross-electrophile couplings as well as net-redox-neutral cross-couplings are first introduced. The focus of this Minireview is, however, the recent emergence of nickel-catalyzed electrooxidative C-H activations until April 2020.
Collapse
Affiliation(s)
- Shou‐Kun Zhang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Ramesh C. Samanta
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Antonio Del Vecchio
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|