1
|
Yadav A, Gładysiak A, Song AY, Gan L, Simons CR, Alghoraibi NM, Alahmed AH, Younes M, Reimer JA, Huang H, Planas JG, Stylianou KC. Sequential Pore Functionalization in MOFs for Enhanced Carbon Dioxide Capture. JACS AU 2024; 4:4833-4843. [PMID: 39735925 PMCID: PMC11672129 DOI: 10.1021/jacsau.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/31/2024]
Abstract
The capture of carbon dioxide (CO2) is crucial for reducing greenhouse emissions and achieving net-zero emission goals. Metal-organic frameworks (MOFs) present a promising solution for carbon capture due to their structural adaptability, tunability, porosity, and pore modification. In this research, we explored the use of a copper (Cu(II))-based MOF called m CBMOF-1. After activation, m CBMOF-1 generates one-dimensional channels with square cross sections, featuring sets of four Cu(II) open metal sites spaced by 6.042 Å, allowing strong interactions with coordinating molecules. To investigate this capability, m CBMOF-1 was exposed to ammonia (NH3) gas, resulting in hysteretic NH3 isotherms indicative of strong interactions between Cu(II) and NH3. At 150 mbar and 298 K, the NH3-loaded (∼1 mmol/g) material exhibited a 106% increase in CO2 uptake compared to that of the pristine m CBMOF-1. Carbon-13 solid-state nuclear magnetic resonance spectra and density functional theory calculations confirmed that the sequential loading of NH3 followed by CO2 adsorption generated a copper-carbamic acid complex within the pores of m CBMOF-1. Our study highlights the effectiveness of sequential pore functionalization in MOFs as an attractive strategy for enhancing the interactions of MOFs with small molecules such as CO2.
Collapse
Affiliation(s)
- Ankit
K. Yadav
- Materials
Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Andrzej Gładysiak
- Materials
Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Ah-Young Song
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley 94720, United States
| | - Lei Gan
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra 08193, Spain
- School of
Chemistry and Materials Science, Nanjing
Normal University, Nanjing 210023, P. R. China
| | - Casey R. Simons
- Center
for
Advanced Materials Characterization in Oregon, University of Oregon, 1443 E, 13th Ave, Eugene, Oregon 97403, United States
| | - Nawal M. Alghoraibi
- ARAMCO, R-GC 335, Floor 3, Research and
Development Center (Building 2297), Dhahran 31311, Saudi Arabia
| | - Ammar H. Alahmed
- ARAMCO, R-GC 335, Floor 3, Research and
Development Center (Building 2297), Dhahran 31311, Saudi Arabia
| | - Mourad Younes
- ARAMCO, R-GC 335, Floor 3, Research and
Development Center (Building 2297), Dhahran 31311, Saudi Arabia
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley 94720, United States
| | - Hongliang Huang
- State
Key
Laboratory of Separation Membranes and Membrane Processes, School
of Chemistry and Chemical Engineering, Tiangong
University, Tianjin 300387, China
| | - José G. Planas
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra 08193, Spain
| | - Kyriakos C. Stylianou
- Materials
Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
2
|
Owens JR, Feng B, Liu J, Moore D. Understanding the effect of density functional choice and van der Waals treatment on predicting the binding configuration, loading, and stability of amine-grafted metal organic frameworks. J Chem Phys 2024; 160:164711. [PMID: 38656447 DOI: 10.1063/5.0202963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Metal organic frameworks (MOFs) are crystalline, three-dimensional structures with high surface areas and tunable porosities. Made from metal nodes connected by organic linkers, the exact properties of a given MOF are determined by node and linker choice. MOFs hold promise for numerous applications, including gas capture and storage. M2(4,4'-dioxidobiphenyl-3,3'-dicarboxylate)-henceforth simply M2(dobpdc), with M = Mg, Mn, Fe, Co, Ni, Cu, or Zn-is regarded as one of the most promising structures for CO2 capture applications. Further modification of the MOF with diamines or tetramines can significantly boost gas species selectivity, a necessity for the ultra-dilute CO2 concentrations in the direct-air capture of CO2. There are countless potential diamines and tetramines, paving the way for a vast number of potential sorbents to be probed for CO2 adsorption properties. The number of amines and their configuration in the MOF pore are key drivers of CO2 adsorption capacity and kinetics, and so a validation of computational prediction of these quantities is required to suitably use computational methods in the discovery and screening of amine-functionalized sorbents. In this work, we study the predictive accuracy of density functional theory and related calculations on amine loading and configuration for one diamine and two tetramines. In particular, we explore the Perdew-Burke-Ernzerhof (PBE) functional and its formulation for solids (PBEsol) with and without the Grimme-D2 and Grimme-D3 pairwise corrections (PBE+D2/3 and PBEsol+D2/3), two revised PBE functionals with the Grimme-D2 and Grimme-D3 pairwise corrections (RPBE+D2/3 and revPBE+D2/3), and the nonlocal van der Waals correlation (vdW-DF2) functional. We also investigate a universal graph deep learning interatomic potential's (M3GNet) predictive accuracy for loading and configuration. These results allow us to identify a useful screening procedure for configuration prediction that has a coarse component for quick evaluation and a higher accuracy component for detailed analysis. Our general observation is that the neural network-based potential can be used as a high-level and rapid screening tool, whereas PBEsol+D3 gives a completely qualitatively predictive picture across all systems studied, and can thus be used for high accuracy motif predictions. We close by briefly exploring the predictions of relative thermal stability for the different functionals and dispersion corrections.
Collapse
Affiliation(s)
- Jonathan R Owens
- Material Chemistry and Physics Lab, GE Vernova Advanced Research, Niskayuna, New York 12309, USA
| | - Bojun Feng
- AI, Software, and Robotics Lab, GE Vernova Advanced Research, Niskayuna, New York 12309, USA
| | - Jie Liu
- Material Chemistry and Physics Lab, GE Vernova Advanced Research, Niskayuna, New York 12309, USA
| | - David Moore
- Decarbonization Lab, GE Vernova Advanced Research, Niskayuna, New York 12309, USA
| |
Collapse
|
3
|
Cai S, Yu L, Huo E, Ren Y, Liu X, Chen Y. Adsorption and Diffusion Properties of Functionalized MOFs for CO 2 Capture: A Combination of Molecular Dynamics Simulation and Density Functional Theory Calculation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6869-6877. [PMID: 38498690 DOI: 10.1021/acs.langmuir.3c03782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The capture of carbon dioxide (CO2) from fuel gases is a significant method to solve the global warming problem. Metal-organic frameworks (MOFs) are considered to be promising porous materials and have shown great potential for CO2 adsorption and separation applications. However, the adsorption and diffusion mechanisms of CO2 in functionalized MOFs from the perspective of binding energies are still not clear. Actually, the adsorption and diffusion mechanisms can be revealed more intuitively by the binding energies of CO2 with the functionalized MOFs. In this work, a combination of molecular dynamics simulation and density functional theory calculation was performed to study CO2 adsorption and diffusion mechanisms in five different functionalized isoreticular MOFs (IRMOF-1 through -5), considering the influence of functionalized linkers on the adsorption capacity of functionalized MOFs. The results show that the CO2 uptake is determined by two elements: the binding energy and porosity of MOFs. The porosity of the MOFs plays a dominant role in IRMOF-5, resulting in the lowest level of CO2 uptake. The potential of mean force (PMF) of CO2 is strongest at the CO2/functionalized MOFs interface, which is consistent with the maximum CO2 density distribution at the interface. IRMOF-3 with the functionalized linker -NH2 shows the highest CO2 uptake due to the higher porosity and binding energy. Although IRMOF-5 with the functionalized linker -OC5H11 exhibits the lowest diffusivity of CO2 and the highest binding energy, it shows the lowest CO2 uptake. Accordingly, among the five simulated functionalized MOFs, IRMOF-3 is an excellent CO2 adsorbent and IRMOF-5 can be used to separate CO2 from other gases, which will be helpful for the designing of CO2 capture devices. This work will contribute to the design and screening of materials for CO2 adsorption and separation in practical applications.
Collapse
Affiliation(s)
- Shouyin Cai
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, P.R. China
| | - Lin Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225127, P.R. China
| | - Erguang Huo
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Yunxiu Ren
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, P.R. China
- College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, P.R. China
| | - Xiangdong Liu
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, P.R. China
| | - Yongping Chen
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, P.R. China
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| |
Collapse
|
4
|
Svensson Grape E, Davenport AM, Brozek CK. Dynamic metal-linker bonds in metal-organic frameworks. Dalton Trans 2024; 53:1935-1941. [PMID: 38226850 DOI: 10.1039/d3dt04164f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-linker bonds serve as the "glue" that binds metal ions to multitopic organic ligands in the porous materials known as metal-organic frameworks (MOFs). Despite ample evidence of bond lability in molecular and polymeric coordination compounds, the metal-linker bonds of MOFs were long assumed to be rigid and static. Given the importance of ligand fields in determining the behaviour of metal species, labile bonding in MOFs would help explain outstanding questions about MOF behaviour, while providing a design tool for controlling dynamic and stimuli-responsive optoelectronic, magnetic, catalytic, and mechanical phenomena. Here, we present emerging evidence that MOF metal-linker bonds exist in dynamic equilibria between weakly and tightly bond conformations, and that these equilibria respond to guest-host chemistry, drive phase change behavior, and exhibit size-dependence in MOF nanoparticles.
Collapse
Affiliation(s)
- Erik Svensson Grape
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, OR 97403, USA.
- Department of Chemistry - Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Audrey M Davenport
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, OR 97403, USA.
| | - Carl K Brozek
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
5
|
Choe JH, Kim H, Yun H, Kang M, Park S, Yu S, Hong CS. Boc Protection for Diamine-Appended MOF Adsorbents to Enhance CO 2 Recyclability under Realistic Humid Conditions. J Am Chem Soc 2024; 146:646-659. [PMID: 38151051 DOI: 10.1021/jacs.3c10475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Among the various metal-organic framework (MOF) adsorbents, diamine-functionalized Mg2(dobpdc) (dobpdc4- = 4,4-dioxidobiphenyl-3,3'-dicarboxylate) shows remarkable carbon dioxide removal performance. However, applying diamine-functionalized Mg2(dobpdc) in practical applications is premature because it shows persistent performance degradation under real flue gas conditions containing water vapor owing to diamine loss during wet cycles. To address this issue, we employed hydrophobic carbonate compounds to protect diamine groups in een-Mg2(dobpdc) (een-MOF, een = N-ethylethylenediamine). tert-Butyl dicarbonate (Boc) reacted rapidly with diamines at the pore openings of MOF particles to form dense secondary and tertiary hydrophobic amines, effectively preventing moisture ingress. The Boc-protected een-MOF-Boc1 maintained excellent CO2 adsorption even under simulated flue gas conditions containing 10% H2O. This observation indicates that Boc protection renders een groups intact during repeated wet cycles, suggesting that Boc-protected een groups are resistant to replacement by water molecules. To increase the practicability of the MOF adsorbent, we fabricated een-MOF/PAN-Boc1 composite beads by shaping MOF particles with polyacrylonitrile (PAN). Notably, the composite beads maintained their CO2 adsorption performance even after repeating the temperature swing adsorption process more than 150 times in 10% water vapor. Furthermore, breakthrough tests showed that the dynamic CO2 separation performance was retained under humid conditions. These results demonstrate that Boc protection provides an easy and effective way to develop promising adsorbents with high CO2 adsorption capacity, long-term durability, and the properties required for postcombustion applications.
Collapse
Affiliation(s)
- Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hongryeol Yun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sookyung Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sumin Yu
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Li W, Liu X, Yu X, Zhang B, Ji C, Shi Z, Zhang L, Liu Y. Three Robust Isoreticular Metal-Organic Frameworks with High-Performance Selective CO 2 Capture and Separation. Inorg Chem 2023; 62:18248-18256. [PMID: 37870805 DOI: 10.1021/acs.inorgchem.3c02851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Based on the hard-soft acid base (HSAB) theory, three robust isoreticular metal-organic frameworks (MOFs) with nia topology were successfully synthesized by solvothermal reaction {[In3O(BHB)(H2O)3]NO3·3DMA (JLU-MOF110(In)), [Fe3O(BHB)(H2O)3]NO3 (JLU-MOF110(Fe)), and [Fe2NiO(BHB)(H2O)3] (JLU-MOF110(FeNi)) (DMA = N,N-dimethylacetamide, H6BHB = 4,4″-benzene-1,3,5-triyl-hexabenzoic acid)}. Both JLU-MOF110(In) and JLU-MOF110(Fe) are cationic frameworks, and their BET surface areas are 301 and 446 m2/g, respectively. By modification of the components of metal clusters, JLU-MOF110(FeNi) features a neutral framework, and the BET surface area is increased up to 808 m2/g. All three MOF materials exhibit high chemical and thermal stability. JLU-MOF110(In) remains stable for 24 h at pH values ranging from 1 to 11, while JLU-MOF110(Fe) and JLU-MOF110(FeNi) persist to be stable for 24 h at pH from 1 to 12. JLU-MOF110(In) exhibits thermal stability up to 350 °C, whereas JLU-MOF110(Fe) and JLU-MOF(FeNi) can be stable up to 300 °C. Thanks to the microporous cage-based structure and abundant open metal sites, JLU-MOF110(In), JLU-MOF110(Fe), and JLU-MOF110(FeNi) have excellent CO2 capture capacity (28.0, 51.5, and 99.6 cm3/g, respectively, under 298 K and 1 bar). Interestingly, the ideal adsorption solution theory results show that all three MOFs exhibit high separation selectivity toward CO2 over N2 (35.2, 43.2, and 43.2 for CO2/N2 = 0.15/0.85) and CO2 over CH4 (14.4, 11.5, and 10.1 for CO2/CH4 = 0.5/0.5) at 298 K and 1 bar. Thus, all three MOFs are potential candidates for CO2 capture and separation. Among them, JLU-MOF110(FeNi) displays the best separation potential, as revealed by dynamic column breakthrough experiments.
Collapse
Affiliation(s)
- Wen Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinyao Liu
- Sinochem Holdings Corporation Ltd., Beijing 100031, P. R. China
| | - Xueyue Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Borong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chao Ji
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhaohui Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lirong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
7
|
Song D, Jiang F, Yuan D, Chen Q, Hong M. Optimizing Sieving Effect for CO 2 Capture from Humid Air Using an Adaptive Ultramicroporous Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302677. [PMID: 37357172 DOI: 10.1002/smll.202302677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Indexed: 06/27/2023]
Abstract
Excessive CO2 in the air can not only lead to serious climate problems but also cause serious damage to humans in confined spaces. Here, a novel metal-organic framework (FJI-H38) with adaptive ultramicropores and multiple active sites is prepared. It can sieve CO2 from air with the very high adsorption capacity/selectivity but the lowest adsorption enthalpy among the reported physical adsorbents. Such excellent adsorption performances can be retained even at high humidity. Mechanistic studies show that the polar ultramicropore is very suitable for molecular sieving of CO2 from N2 , and the distinguishable adsorption sites for H2 O and CO2 enable them to be co-adsorbed. Notably, the adsorbed-CO2 -driven pore shrinkage can further promote CO2 capture while the adsorbed-H2 O-induced phase transitions in turn inhibit H2 O adsorption. Moreover, FJI-H38 has excellent stability and recyclability and can be synthesized on a large scale, making it a practical trace CO2 adsorbent. This will provide a new strategy for developing practical adsorbents for CO2 capture from the air.
Collapse
Affiliation(s)
- Danhua Song
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| |
Collapse
|
8
|
Jose R, Bangar G, Pal S, Rajaraman G. Role of molecular modelling in the development of metal-organic framework for gas adsorption applications. J CHEM SCI 2023; 135:19. [PMID: 36938494 PMCID: PMC10011768 DOI: 10.1007/s12039-022-02130-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 03/21/2023]
Abstract
More than 47,000 articles have been published in the area of Metal-Organic Framework since its seminal discovery in 1995, exemplifying the intense research carried out in this short span of time. Among other applications, gas adsorption and storage are perceived as central to the MOFs research, and more than 10,000 MOFs structures are reported to date to utilize them for various gas storage/separation applications. Molecular modeling, particularly based on density functional theory, played a key role in (i) understanding the nature of interactions between the gas and the MOFs geometry (ii) establishing various binding pockets and relative binding energies, and (iii) offering design clues to improve the gas uptake capacity of existing MOF architectures. In this review, we have looked at various MOFs that are studied thoroughly using DFT/periodic DFT (pDFT) methods for CO2, H2, O2, and CH4 gases to provide a birds-eye-view on how various exchange-correlation functionals perform in estimating the binding energy for various gases and how factors such as nature of the (i) metal ion, (ii) linkers, (iii) ligand, (iv) spin state and (v) spin-couplings play a role in this process with selected examples. While there is still room for improvement, the rewards offered by the molecular modelling of MOFs were already substantial that we advocate experimental and theoretical studies to go hand-in-hand to undercut the trial-and-error approach that is often perceived in the selection of MOFs and gas partners in this area. Graphical abstract The importance of density functional theory-based molecular modeling studies in offering design clues to improve the gas adsorption and storage capacity of existing MOF architectures is discussed here. The use of DFT-based investigation in conjunction with experimental synthesis is an imperative tool in designing new-generation MOFs with enhanced uptake capacity.
Collapse
Affiliation(s)
- Reshma Jose
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Garima Bangar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Sourav Pal
- Department of Chemistry, Ashoka University, Sonepat, Haryana 131029 India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| |
Collapse
|
9
|
Xu R, Ahn H, Kim S, Lee JW, Kang YT. CO2 capture enhancement by encapsulation of nanoparticles in metal–organic frameworks suspended in physical absorbents. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Pereira D, Fonseca R, Marin-Montesinos I, Sardo M, Mafra L. Understanding CO2 adsorption mechanisms in porous adsorbents: a solid-state NMR survey. Curr Opin Colloid Interface Sci 2023. [DOI: 10.1016/j.cocis.2023.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
11
|
Mao J, Meng Q, Xu Z, Xu L, Fan Z, Zhang G. MOF-on-MOF heterojunction-derived Co 3O 4-CuCo 2O 4 microflowers for low-temperature catalytic oxidation. Chem Commun (Camb) 2022; 58:13600-13603. [PMID: 36398682 DOI: 10.1039/d2cc04954f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Through the exchange-extended growth method (EEGM), MOF-on-MOF heteroarchitectures with distinct crystallography were produced and pyrolyzed into hybrid metal oxides. The strong exchange ability of organometallic compounds realized the component reconstruction of the MOF matrix and enhanced the interfacial forces between MOFs, showing an excellent performance in low-temperature catalytic oxidation.
Collapse
Affiliation(s)
- Jingwen Mao
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science &Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Qin Meng
- College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zehai Xu
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science &Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Lusheng Xu
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science &Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zheng Fan
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science &Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science &Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
12
|
DeWitt SJA, Lively RP. MIL-101(Cr) Polymeric Fiber Adsorbents for Sub-Ambient Post-Combustion CO 2 Capture. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ryan P. Lively
- Georgia Institute of Technology, Atlanta, Georgia 30308, United States
| |
Collapse
|
13
|
Mao H, Tang J, Day GS, Peng Y, Wang H, Xiao X, Yang Y, Jiang Y, Chen S, Halat DM, Lund A, Lv X, Zhang W, Yang C, Lin Z, Zhou HC, Pines A, Cui Y, Reimer JA. A scalable solid-state nanoporous network with atomic-level interaction design for carbon dioxide capture. SCIENCE ADVANCES 2022; 8:eabo6849. [PMID: 35921416 PMCID: PMC9348791 DOI: 10.1126/sciadv.abo6849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Carbon capture and sequestration reduces carbon dioxide emissions and is critical in accomplishing carbon neutrality targets. Here, we demonstrate new sustainable, solid-state, polyamine-appended, cyanuric acid-stabilized melamine nanoporous networks (MNNs) via dynamic combinatorial chemistry (DCC) at the kilogram scale toward effective and high-capacity carbon dioxide capture. Polyamine-appended MNNs reaction mechanisms with carbon dioxide were elucidated with double-level DCC where two-dimensional heteronuclear chemical shift correlation nuclear magnetic resonance spectroscopy was performed to demonstrate the interatomic interactions. We distinguished ammonium carbamate pairs and a mix of ammonium carbamate and carbamic acid during carbon dioxide chemisorption. The coordination of polyamine and cyanuric acid modification endows MNNs with high adsorption capacity (1.82 millimoles per gram at 1 bar), fast adsorption time (less than 1 minute), low price, and extraordinary stability to cycling by flue gas. This work creates a general industrialization method toward carbon dioxide capture via DCC atomic-level design strategies.
Collapse
Affiliation(s)
- Haiyan Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jing Tang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Gregory S. Day
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Yucan Peng
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Haoze Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xin Xiao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yufei Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Shuo Chen
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David M. Halat
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA
| | - Alicia Lund
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xudong Lv
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wenbo Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chongqing Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zhou Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Alexander Pines
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jeffrey A. Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Zhu X, Xie W, Wu J, Miao Y, Xiang C, Chen C, Ge B, Gan Z, Yang F, Zhang M, O'Hare D, Li J, Ge T, Wang R. Recent advances in direct air capture by adsorption. Chem Soc Rev 2022; 51:6574-6651. [PMID: 35815699 DOI: 10.1039/d1cs00970b] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.
Collapse
Affiliation(s)
- Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wenwen Xie
- Institute of Technical Thermodynamics, Karlsruhe Institute of Technology, 76131, Germany
| | - Junye Wu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yihe Miao
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China
| | - Chengjie Xiang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhuozhen Gan
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Fan Yang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Man Zhang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jia Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China.,Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China.,The Hong Kong University of Science and Technology (Guangzhou), No. 2 Huan Shi Road South, Nansha, Guangzhou, 511458, China
| | - Tianshu Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ruzhu Wang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
15
|
Choe JH, Kim H, Kang M, Yun H, Kim SY, Lee SM, Hong CS. Functionalization of Diamine-Appended MOF-Based Adsorbents by Ring Opening of Epoxide: Long-Term Stability and CO 2 Recyclability under Humid Conditions. J Am Chem Soc 2022; 144:10309-10319. [PMID: 35657696 DOI: 10.1021/jacs.2c01488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although diamine-appended metal-organic framework (MOF) adsorbents exhibit excellent CO2 adsorption performance, a continuous decrease in long-term capacity during repeated wet cycles remains a formidable challenge for practical applications. Herein, we present the fabrication of diamine-appended Mg2(dobpdc)-alumina beads (een-MOF/Al-Si-Cx; een = N-ethylethylenediamine; x = number of carbon atoms attached to epoxide) coated with hydrophobic silanes and alkyl epoxides. The reaction of epoxides with diamines in the portal of the pore afforded sufficient hydrophobicity, hindered the penetration of water vapor into the pores, and rendered the modified diamines less volatile. een-MOF/Al-Si-C17-200 (een-MOF/Al-Si-C17-y; y = 50, 100, and 200, denoting wt % of C17 with respect to the bead, respectively), with substantial hydrophobicity, showed a significant uptake of 2.82 mmol g-1 at 40 °C and 15% CO2, relevant to flue gas concentration, and a reduced water adsorption. The modified beads maintained a high CO2 capacity for over 100 temperature-swing adsorption cycles in the presence of 5% H2O and retained CO2 separation performance in breakthrough tests under humid conditions. This result demonstrates that the epoxide coating provides a facile and effective method for developing promising adsorbents with high CO2 adsorption capacity and long-term durability, which is a required property for postcombustion applications.
Collapse
Affiliation(s)
- Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hongryeol Yun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Su Min Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
16
|
Peng J, Liu Z, Wu Y, Xian S, Li Z. High-Performance Selective CO 2 Capture on a Stable and Flexible Metal-Organic Framework via Discriminatory Gate-Opening Effect. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21089-21097. [PMID: 35477298 DOI: 10.1021/acsami.2c04779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective CO2 capture is of great significance for environmental protection and industrial demand. Here, we report a stable and flexible metal-organic framework (MOF) with excellent water/moisture stability, namely, ZnDatzBdc, that enables high-performance selective CO2 capture from N2 and CH4 via a discriminatory gate-opening effect. ZnDatzBdc shows reversible structural transformation between the open-phase (OP) state and the close-phase (CP) state, owing to the synergistic effect of breakage/re-formation of intraframework hydrogen bonds and the rotation of the phenyl rings. Significantly, ZnDatzBdc exhibits S-shaped isotherms toward CO2, resulting in a large CO2 theoretical working capacity of 94.9 cm3/cm3 under typical pressure vacuum swing adsorption (PVSA) operations, which outperforms other flexible MOFs showing the CO2 selective gate-opening effect except for the miosture-sensitive ELM-11. In addition, CO2 uptake of ZnDatzBdc is well maintained upon multiple water/moisture exposure, indicating its excellent stability. Moreover, ZnDatzBdc establishes remarkable CO2 selectivity with ultrahigh uptake ratios of CO2/N2 (107 at 273 K and 129 at 298 K) and CO2/CH4 (35 at 273 K and 44 at 298 K) at 100 kPa. The in situ gas sorption PXRD experiment verifies that the gate-opening effect takes place in the atmospheric environment of CO2 but not for N2 or CH4. Molecular simulation suggests the selective gate-opening of CO2 comes from its strong electrostatic interactions with the amino groups. Furthermore, effective breakthrough performance and easy regeneration are further confirmed. Hence, combined with excellent separation performance and remarkable stability, ZnDatzBdc can serve as a potential industrial adsorbent for selective CO2 capture.
Collapse
Affiliation(s)
- Junjie Peng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zewei Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ying Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shikai Xian
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Xili, Nanshan, Shenzhen 518055, P. R. China
| | - Zhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- The Key Laboratory of Enhanced Heat Transfer and Energy Conversation Ministry of Education, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
17
|
Lee JH, Hyldgaard P, Neaton JB. An Assessment of Density Functionals for Predicting CO2 Adsorption in Diamine-Functionalized Metal-Organic Frameworks. J Chem Phys 2022; 156:154113. [DOI: 10.1063/5.0084539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diamine-functionalized M2(dobpdc) (M = Mg, Mn, Fe, Co, Zn) metal-organic frameworks (MOFs) are growing class of crystalline solids currently being intensively investigated for carbon capture, as they exhibit a novel cooperative and selective CO2 absorption mechanism and a step-shaped isotherm. To understand their CO2 adsorption behavior, ab initio calculations with near-chemical accuracy are required. Here, we present DFT calculations of CO2 adsorption in m-2-m-Zn2(dobpdc) with different exchange-correlation functionals, including semilocal functionals (PBE and two revised PBE functionals), semiempirical pairwise corrections (D3 and TS), nonlocal van der Waals correlation functionals (vdW-optB88, vdW-DF1, vdW-DF2, vdW-DF2-B86R, vdW-DF-cx, and revised VV10), and a meta-GGA (SCAN). Overall, we find that revPBE+D3 and RPBE+D3 show the best balance of performance for both the lattice parameters and the CO2 binding enthalpy of m-2-m-Zn2(dobpdc). The superior performance of revPBE+D3 and RPBE+D3 is sustained for the formation enthalpy and the lattice parameters of ammonium carbamate, a primary product of the cooperative CO2 insertion in diamine-functionalized M2(dobpdc) MOFs. Moreover, we find that their performance is derived from their larger repulsive exchange contributions to the CO2 binding enthalpy than the other functionals at the relevant range of reduced density gradient value for the energetics of CO2 adsorption in the m-2-m-Zn2(dobpdc) MOF. The results of our benchmarking study can help guide the further development of versatile vdW-corrected DFT methods with predictive accuracy.
Collapse
Affiliation(s)
- Jung-Hoon Lee
- Korea Institute of Science and Technology, Korea, Republic of (South Korea)
| | - Per Hyldgaard
- Microtechnology and Nanoscience, Chalmers tekniska högskola, Sweden
| | - Jeffrey B. Neaton
- Physics, University of California Berkeley, United States of America
| |
Collapse
|
18
|
Jose R, Kancharlapalli S, Ghanty TK, Pal S, Rajaraman G. The Decisive Role of Spin States and Spin Coupling in Dictating Selective O
2
Adsorption in Chromium(II) Metal–Organic Frameworks**. Chemistry 2022; 28:e202104526. [DOI: 10.1002/chem.202104526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Reshma Jose
- Department of Chemistry Indian Institute of Technology Bombay Powai, Mumbai 400076 India
| | | | - Tapan K. Ghanty
- Theoretical Chemistry Section Bhabha Atomic Research Centre Mumbai 400085 India
- Present address: Bio-Science Group Bhabha Atomic Research Centre Mumbai 400085 India
| | - Sourav Pal
- Department of Chemistry Indian Institute of Science Education and Research Kolkata, Mohanpur Nadia 741246 India
- Department of Chemistry Ashoka University Sonepat, Haryana 131029 India
| | - Gopalan Rajaraman
- Department of Chemistry Indian Institute of Technology Bombay Powai, Mumbai 400076 India
| |
Collapse
|
19
|
Feng L, Yin X, Tan S, Li C, Gong X, Fang X, Pan Y. Ammonium Bicarbonate Significantly Accelerates the Microdroplet Reactions of Amines with Carbon Dioxide. Anal Chem 2021; 93:15775-15784. [PMID: 34784192 DOI: 10.1021/acs.analchem.1c03954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The reactions between amines and carbon dioxide (CO2) are among the most commonly used and important carbon fixation reactions at present. Microdroplets generated by electrospray ionization (ESI) have been proved to increase the conversion ratio (RC) of amines. In this work, we confirmed that the presence of ammonium bicarbonate (NH4HCO3) in ESI microdroplets significantly increased the RC of amines. The RC went up remarkably with the increase in the concentration of NH4HCO3 from 0.5 to 20 mM. The RC of N,N-dibutyl-1,3-propanediamine (DBPA) reached 93.7% under 20 mM NH4HCO3, which was significantly higher than previous reports. The rise in RC became insignificant when the concentration of NH4HCO3 was increased beyond 20 mM. Further investigations were made on the mechanism of the phenomenon. According to the results, it was suggested that NH4HCO3 decomposed into CO2 and formed microbubbles within the microdroplets of ESI. The microbubbles acted as direct internal CO2 sources. The conversion reactions occurred at the liquid-gas interface. The formation of CO2 microbubbles remarkably increased the total area of the interface, thus promoting the conversion reactions. 13C-labeled experiments confirmed that NH4HCO3 acted as an internal CO2 source. Factors that influenced the RC of the reaction were optimized. Pure water was proved to be the optimal solvent. Lower temperature of the mass spectrometer's entrance capillary was beneficial to the stabilization of the product carbamic acids. The sample flow rate of ESI was crucial to the RC. It determined the initial sizes of the microdroplet. Lower flow rates ensured higher RC of amines. The present work implied that NH4HCO3 could be a superior medium for CO2 capture and utilization. It might offer an alternative choice for future CO2 conversion research studies. In addition, our study also provided evidence that NH4HCO3 decomposed and generated microbubbles in the droplets during ESI. Attention should be paid to this when using NH4HCO3 as an additive in mass spectrometry-based analysis.
Collapse
Affiliation(s)
- Lulu Feng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Xinchi Yin
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Siyuan Tan
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Chang Li
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130061, China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| |
Collapse
|
20
|
Blahut J, Lejeune AL, Ehrling S, Senkovska I, Kaskel S, Wisser FM, Pintacuda G. Untersuchung von Dynamik, Struktur und Magnetismus von schaltbaren Metall‐organischen Gerüstverbindungen mittels
1
H‐detektierter MAS‐NMR‐Spektroskopie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jan Blahut
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs UMR 5082 CNRS ENS Lyon UCBL) Université de Lyon 69100 Villeurbanne Frankreich
- NMR Laboratory Faculty of Science Charles University Hlavova 8 12842 Prag Czech Republic
| | - Arthur L. Lejeune
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs UMR 5082 CNRS ENS Lyon UCBL) Université de Lyon 69100 Villeurbanne Frankreich
- IFP Energies Nouvelles 69360 Solaize Frankreich
| | - Sebastian Ehrling
- Professur für Anorganische Chemie I Technische Universität Dresden 01069 Dresden Deutschland
- Derzeitige Adresse: 3P Instruments GmbH & Co. KG Rudolf-Diesel-Straße 12 85235 Odelzhausen Deutschland
| | - Irena Senkovska
- Professur für Anorganische Chemie I Technische Universität Dresden 01069 Dresden Deutschland
| | - Stefan Kaskel
- Professur für Anorganische Chemie I Technische Universität Dresden 01069 Dresden Deutschland
| | - Florian M. Wisser
- IRCELYON (UMR 5256 CNRS, UCBL) Université de Lyon 69100 Villeurbanne Frankreich
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Guido Pintacuda
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs UMR 5082 CNRS ENS Lyon UCBL) Université de Lyon 69100 Villeurbanne Frankreich
| |
Collapse
|
21
|
Blahut J, Lejeune AL, Ehrling S, Senkovska I, Kaskel S, Wisser FM, Pintacuda G. Monitoring Dynamics, Structure, and Magnetism of Switchable Metal-Organic Frameworks via 1 H-Detected MAS NMR. Angew Chem Int Ed Engl 2021; 60:21778-21783. [PMID: 34273230 PMCID: PMC8519119 DOI: 10.1002/anie.202107032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2021] [Indexed: 01/03/2023]
Abstract
We present a toolbox for the rapid characterisation of powdered samples of paramagnetic metal-organic frameworks at natural abundance by 1 H-detected solid-state NMR. Very fast MAS rates at room and cryogenic temperatures and a set of tailored radiofrequency irradiation schemes help overcome the sensitivity and resolution limits often associated with the characterisation of MOF materials. We demonstrate the approach on DUT-8(Ni), a framework containing Ni2+ paddle-wheel units which can exist in two markedly different architectures. Resolved 1 H and 13 C resonances of organic linkers are detected and assigned in few hours with only 1-2 mg of sample at natural isotopic abundance, and used to rapidly extract information on structure and local internal dynamics of the assemblies, as well as to elucidate the metal electronic properties over an extended temperature range. The experiments disclose new possibilities for describing local and global structural changes and correlating them to electronic and magnetic properties of the assemblies.
Collapse
Affiliation(s)
- Jan Blahut
- Centre de Résonance Magnétique Nucléaire à Très Hauts ChampsUMR 5082 CNRSENS LyonUCBL)Université de Lyon69100VilleurbanneFrance
- NMR LaboratoryFaculty of ScienceCharles UniversityHlavova 812842PragueCzech Republic
| | - Arthur L. Lejeune
- Centre de Résonance Magnétique Nucléaire à Très Hauts ChampsUMR 5082 CNRSENS LyonUCBL)Université de Lyon69100VilleurbanneFrance
- IFP Energies Nouvelles69360SolaizeFrance
| | - Sebastian Ehrling
- Chair of Inorganic Chemistry ITechnische Universität Dresden01069DresdenGermany
- Present address: 3P Instruments GmbH & Co. KGRudolf-Diesel-Strasse 1285235OdelzhausenGermany
| | - Irena Senkovska
- Chair of Inorganic Chemistry ITechnische Universität Dresden01069DresdenGermany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry ITechnische Universität Dresden01069DresdenGermany
| | - Florian M. Wisser
- IRCELYON (UMR 5256 CNRS, UCBL)Université de Lyon69100VilleurbanneFrance
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Guido Pintacuda
- Centre de Résonance Magnétique Nucléaire à Très Hauts ChampsUMR 5082 CNRSENS LyonUCBL)Université de Lyon69100VilleurbanneFrance
| |
Collapse
|
22
|
Choi DS, Kim DW, Lee JH, Chae YS, Kang DW, Hong CS. Diamine Functionalization of a Metal-Organic Framework by Exploiting Solvent Polarity for Enhanced CO 2 Adsorption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38358-38364. [PMID: 34342422 DOI: 10.1021/acsami.1c10659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diamine-appended metal-organic frameworks (MOFs) exhibit exceptional CO2 adsorption capacities over a wide pressure range because of the strong interaction between basic amine groups and acidic CO2. Given that their high CO2 working capacity is governed by solvent used during amine functionalization, a systematic investigation on solvent effect is essential but not yet demonstrated. Herein, we report a facile one-step solvent exchange route for the diamine functionalization of MOFs with open metal sites, using an efficient method to maximize diamine loading. We employed an MOF, Mg2(dobpdc) (dobpdc4- = 4,4'-dioxido-3,3'-biphenyldicarboxylate), which contains high-density open metal sites. Indirect grafting with N-ethylethylenediamine (een) was performed with a minimal amount of methanol (MeOH) via multiple MeOH exchanges and diamine functionalization, resulting in a top-tier CO2 adsorption capacity of 16.5 wt %. We established the correlation between N,N-dimethylformamide (DMF) loading and infrared peaks, which provides a simple method for determining the amount of the remaining DMF in Mg2(dobpdc). All interactions among Mg, DMF, diamine, and solvent were analyzed by van der Waals (vdw)-corrected density functional theory (DFT) calculations to elucidate the effect of chemical potential on diamine grafting.
Collapse
Affiliation(s)
- Doo San Choi
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Dae Won Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yun Seok Chae
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
23
|
Xiao Y, Chu Y, Li S, Chen F, Gao W, Xu J, Deng F. Host-Guest Interaction in Ethylene and Ethane Separation on Zeolitic Imidazolate Frameworks as Revealed by Solid-State NMR Spectroscopy. Chemistry 2021; 27:11303-11308. [PMID: 34109690 DOI: 10.1002/chem.202101779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 11/07/2022]
Abstract
The separation of ethane/ethylene mixture by using metal-organic frameworks (MOFs) as adsorbents is strongly associated with the pore size-sieving effect and the adsorbent-adsorbate interaction. Herein, solid-state NMR spectroscopy is utilized to explore the host-guest interaction and ethane/ethylene separation mechanism on zeolitic imidazolate frameworks (ZIFs). Preferential access to the ZIF-8 and ZIF-8-90 frameworks by ethane compared to ethylene is directly visualized from two-dimensional 1 H-1 H spin diffusion MAS NMR spectroscopy and further verified by computational density distributions. The 1 H MAS NMR spectroscopy provides an alternative for straightforwardly extracting the adsorption selectivity of ethane/ethylene mixture at 1.1∼9.6 bar in ZIFs, which is consistent with the IAST predictions.
Collapse
Affiliation(s)
- Yuqing Xiao
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yueying Chu
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Fang Chen
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Wei Gao
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| |
Collapse
|
24
|
Abstract
This introduction to the Faraday Discussion on carbon dioxide utilization (CDU) provides a framework to lay out the need for CDU, the opportunities, boundary conditions, potential pitfalls, and critical needs to advance the required technologies in the time needed. CDU as a mainstream climate-relevant solution is gaining rapid traction as measured by the increase in the number of related publications, the investment activity, and the political action taken in various countries.
Collapse
Affiliation(s)
- Volker Sick
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Wang X, Yan N, Xie M, Liu P, Bai P, Su H, Wang B, Wang Y, Li L, Cheng T, Guo P, Yan W, Yu J. The inorganic cation-tailored "trapdoor" effect of silicoaluminophosphate zeolite for highly selective CO 2 separation. Chem Sci 2021; 12:8803-8810. [PMID: 34257880 PMCID: PMC8246083 DOI: 10.1039/d1sc00619c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/13/2021] [Indexed: 11/21/2022] Open
Abstract
Functional nanoporous materials are widely explored for CO2 separation, in particular, small-pore aluminosilicate zeolites having a "trapdoor" effect. Such an effect allows the specific adsorbate to push away the sited cations inside the window followed by exclusive admission to the zeolite pores, which is more advantageous for highly selective CO2 separation. Herein, we demonstrated that the protonated organic structure-directing agent in the small-pore silicoaluminophosphate (SAPO) RHO zeolite can be directly exchanged with Na+, K+, or Cs+ and that the Na+ form of SAPO-RHO exhibited unprecedented separation for CO2/CH4, superior to all of the nanoporous materials reported to date. Rietveld refinement revealed that Na+ is sited in the center of the single eight-membered ring (s8r), while K+ and Cs+ are sited in the center of the double 8-rings (d8rs). Theoretical calculations showed that the interaction between Na+ and the s8r in SAPO-RHO was stronger than that in aluminosilicate RHO, giving an enhanced "trapdoor" effect and record high selectivity for CO2 with the separation factor of 2196 for CO2/CH4 (0.02/0.98 bar). The separation factor of Na-SAPO-RHO for CO2/N2 was 196, which was the top level among zeolitic materials. This work opens a new avenue for gas separation by using diverse silicoaluminophosphate zeolites in terms of the cation-tailored "trapdoor" effect.
Collapse
Affiliation(s)
- Xiaohe Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Nana Yan
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Miao Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou 215123 China
| | - Puxu Liu
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology Taiyuan 030024 Shanxi China
| | - Pu Bai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Haopeng Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Binyu Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Yunzheng Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Libo Li
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology Taiyuan 030024 Shanxi China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou 215123 China
| | - Peng Guo
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
- International Center of Future Science, Jilin University Changchun 130012 China
| |
Collapse
|
26
|
Anila S, Suresh CH. Guanidine as a strong CO 2 adsorbent: a DFT study on cooperative CO 2 adsorption. Phys Chem Chem Phys 2021; 23:13662-13671. [PMID: 34121106 DOI: 10.1039/d1cp00754h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among the various carbon capture and storage (CCS) technologies, the direct air capture (DAC) of CO2 by engineered chemical reactions on suitable adsorbents has attained more attention in recent times. Guanidine (G) is one of such promising adsorbent molecules for CO2 capture. Recently Lee et al. (Phys. Chem. Chem. Phys., 2015, 17, 10925-10933) reported an interaction energy (ΔE) of -5.5 kcal mol-1 for the GCO2 complex at the CCSD(T)/CBS level, which was one of the best non-covalent interactions observed for CO2 among several functional molecules. Here we show that the non-covalent GCO2 complex can transform to a strongly interacting G-CO2 covalent complex under the influence of multiple molecules of G and CO2. The study, conducted at M06-2X/6-311++G** level density functional theory, shows ΔE = -5.7 kcal mol-1 for GCO2 with an NC distance of 2.688 Å while almost a five-fold increase in ΔE (-27.5 kcal mol-1) is observed for the (G-CO2)8 cluster wherein the N-C distance is 1.444 Å. All the (G-CO2)n clusters (n = 2-10) show a strong N-CO2 covalent interaction with the N-C distance gradually decreasing from 1.479 Å for n = 2 to 1.444 Å for n = 8 ≅ 9, 10. The N-CO2 bonding gives (G+)-(CO2-) zwitterion character for G-CO2 and the charge-separated units preferred a cyclic arrangement in (G-CO2)n clusters due to the support of three strong intermolecular OHN hydrogen bonds from every CO2. The OHN interaction is also enhanced with an increase in the size of the cluster up to n = 8. The high ΔE is attributed to the large cooperativity associated with the N-CO2 and OHN interactions. The quantum theory of atoms in molecules (QTAIM) analysis confirms the nature and strength of such interactions, and finds that the total interaction energy is directly related to the sum of the electron density at the bond critical points of N-CO2 and OHN interactions. Further, molecular electrostatic potential analysis shows that the cyclic cluster is stabilized due to the delocalization of charges accumulated on the (G+)-(CO2-) zwitterion via multiple OHN interactions. The cyclic (G-CO2)n cluster formation is a highly exergonic process, which reveals the high CO2 adsorption capability of guanidine.
Collapse
Affiliation(s)
- Sebastian Anila
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695 019, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Cherumuttathu H Suresh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695 019, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
27
|
Ju SE, Choe JH, Kang M, Kang DW, Kim H, Lee JH, Hong CS. Understanding Correlation Between CO 2 Insertion Mechanism and Chain Length of Diamine in Metal-Organic Framework Adsorbents. CHEMSUSCHEM 2021; 14:2426-2433. [PMID: 33871138 DOI: 10.1002/cssc.202100582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Although CO2 insertion is a predominant phenomenon in diamine-functionalized Mg2 (dobpdc) (dobpdc4- =4,4-dioxidobiphenyl-3,3'-dicarboxylate) adsorbents, a high-performance metal-organic framework for capturing CO2 , the fundamental function of the diamine carbon chain length in the mechanism remains unclear. Here, Mg2 (dobpdc) systems with open metal sites grafted by primary diamines NH2 -(CH2 )n -NH2 were developed, with en (n=2), pn (n=3), bn (n=4), pen (n=5), hn (n=6), and on (n=8). Based on CO2 adsorption and IR results, CO2 insertion is involved in frameworks with n=2 and 3 but not in systems with n≥5. According to NMR data, bn-appended Mg2 (dobpdc) exhibited three different chemical environments of carbamate units, attributed to different relative conformations of carbon chains upon CO2 insertion, as validated by first-principles density functional theory (DFT) calculations. For 1-hn and 1-on, DFT calculations indicated that diamine inter-coordinated open metal sites in adjacent chains bridged by carboxylates and phenoxides of dobpdc4- . Computed CO2 binding enthalpies for CO2 insertion (-27.8 kJ mol-1 for 1-hn and -20.2 kJ mol-1 for 1-on) were comparable to those for CO2 physisorption (-19.3 kJ mol-1 for 1-hn and -20.8 kJ mol-1 for 1-on). This suggests that CO2 insertion is likely to compete with CO2 physisorption on diamines of the framework when n≥5.
Collapse
Affiliation(s)
- Susan E Ju
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| |
Collapse
|
28
|
Park J, Chae YS, Kang DW, Kang M, Choe JH, Kim S, Kim JY, Jeong YW, Hong CS. Shaping of a Metal-Organic Framework-Polymer Composite and Its CO 2 Adsorption Performances from Humid Indoor Air. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25421-25427. [PMID: 34002604 DOI: 10.1021/acsami.1c06089] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Diamine-functionalized metal-organic frameworks (MOFs) are known as desirable adsorbents that can capture CO2 even at low pressures, but the humidity instability of bare MOF powders as well as their shaping have not yet adequately addressed for practical applications. Herein, we report an effective synthetic strategy for fabricating millimeter-sized MOF/poly(vinylidene fluoride) (PVDF) composite beads with different amounts of PVDF binders (30, 40, and 50 wt %) via a phase inversion method, followed by the postfunctionalization of 1-ethylpropane-1,3-diamine (epn). Compared with the pristine MOF powder, the diamine-grafted bead, epn-MOF/PVDF40, upon mixing with 40% binder polymers, exhibited a superior long-term performance without structural collapse for up to 1 month. The existence of the hydrophobic PVDF polymer in the composite material is responsible for such durability. This work provides a promising preparative route toward developing stable and shaped MOFs for the removal of indoor CO2.
Collapse
Affiliation(s)
- Jinkyoung Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Yun Seok Chae
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Saemi Kim
- Samsung Research, Seoul 06765, Republic of Korea
| | - Jee Yeon Kim
- Samsung Research, Seoul 06765, Republic of Korea
| | | | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
29
|
Martin CR, Leith GA, Shustova NB. Beyond structural motifs: the frontier of actinide-containing metal-organic frameworks. Chem Sci 2021; 12:7214-7230. [PMID: 34163816 PMCID: PMC8171348 DOI: 10.1039/d1sc01827b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
In this perspective, we feature recent advances in the field of actinide-containing metal-organic frameworks (An-MOFs) with a main focus on their electronic, catalytic, photophysical, and sorption properties. This discussion deviates from a strictly crystallographic analysis of An-MOFs, reported in several reviews, or synthesis of novel structural motifs, and instead delves into the remarkable potential of An-MOFs for evolving the nuclear waste administration sector. Currently, the An-MOF field is dominated by thorium- and uranium-containing structures, with only a few reports on transuranic frameworks. However, some of the reported properties in the field of An-MOFs foreshadow potential implementation of these materials and are the main focus of this report. Thus, this perspective intends to provide a glimpse into the challenges, triumphs, and future directions of An-MOFs in sectors ranging from the traditional realm of gas sorption and separation to recently emerging areas such as electronics and photophysics.
Collapse
Affiliation(s)
- Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| |
Collapse
|
30
|
Liu RS, Shi XD, Wang CT, Gao YZ, Xu S, Hao GP, Chen S, Lu AH. Advances in Post-Combustion CO 2 Capture by Physical Adsorption: From Materials Innovation to Separation Practice. CHEMSUSCHEM 2021; 14:1428-1471. [PMID: 33403787 DOI: 10.1002/cssc.202002677] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption-based separation, which shows easy regeneration and high cycle stability, and thus reduced energy penalties and cost. The extensive research on this topic is evidenced by the growing body of scientific and technical literature. The progress spans from the innovation of novel porous adsorbents to practical separation practices. Major CO2 capture materials include the most widely used industrially relevant porous carbons, zeolites, activated alumina, mesoporous silica, and the newly emerging metal-organic frameworks (MOFs) and covalent-organic framework (COFs). The key intrinsic properties such as pore structure, surface chemistry, preferable adsorption sites, and other structural features that would affect CO2 capture capacity, selectivity, and recyclability are first discussed. The industrial relevant variables such as particle size of adsorbents, the mechanical strength, adsorption heat management, and other technological advances are equally important, even more crucial when scaling up from bench and pilot-scale to demonstration and commercial scale. Therefore, we aim to bring a full picture of the adsorption-based CO2 separation technologies, from adsorbent design, intrinsic property evaluation to performance assessment not only under ideal equilibrium conditions but also in realistic pressure swing adsorption processes.
Collapse
Affiliation(s)
- Ru-Shuai Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiao-Dong Shi
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Cheng-Tong Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yu-Zhou Gao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shuang Xu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Guang-Ping Hao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shaoyun Chen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
31
|
Hazra A, Bonakala S, Adalikwu SA, Balasubramanian S, Maji TK. Fluorocarbon-Functionalized Superhydrophobic Metal-Organic Framework: Enhanced CO 2 Uptake via Photoinduced Postsynthetic Modification. Inorg Chem 2021; 60:3823-3833. [PMID: 33655749 DOI: 10.1021/acs.inorgchem.0c03575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The design and synthesis of porous materials for selective capture of CO2 in the presence of water vapor is of paramount importance in the context of practical separation of CO2 from the flue gas stream. Here, we report the synthesis and structural characterization of a photoresponsive fluorinated MOF {[Cd(bpee)(hfbba)]·EtOH}n (1) constructed by using 4,4'-(hexafluoroisopropylidene)bis(benzoic acid) (hfbba), Cd(NO3)2, and 1,2-bis(4-pyridyl)ethylene (bpee) as building units. Due to the presence of the fluoroalkyl -CF3 functionality, compound 1 exhibits superhydrophobicity, which is validated by both water vapor adsorption and contact angle measurements (152°). The parallel arrangement of the bpee linkers makes compound 1 a photoresponsive material that transforms to {[Cd2(rctt-tpcb)(hfbba)2]·2EtOH}n (rctt-tpcb = regio cis,trans,trans-tetrakis(4-pyridyl)cyclobutane; 1IR) after a [2 + 2] cycloaddition reaction. The photomodified framework 1IR exhibits increased uptake of CO2 in comparison to 1 under ambient conditions due to alteration of the pore surface that leads to additional weak electron donor-acceptor interactions with the -CF3 groups, as examined through periodic density functional theory calculations. The enhanced uptake is also aided by an expansion of the pore window, which contributes to increasing the rotational entropy of CO2, as demonstrated through force field based free energy calculations.
Collapse
Affiliation(s)
- Arpan Hazra
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| | - Satyanarayana Bonakala
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| | - Stephen Adie Adalikwu
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| |
Collapse
|
32
|
Huang KH, Wei Z, Cooks RG. Accelerated reactions of amines with carbon dioxide driven by superacid at the microdroplet interface. Chem Sci 2020; 12:2242-2250. [PMID: 34163990 PMCID: PMC8179320 DOI: 10.1039/d0sc05625a] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C–N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas–liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO2 followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines. Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk.![]()
Collapse
Affiliation(s)
- Kai-Hung Huang
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Zhenwei Wei
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
33
|
Park J, Park JR, Choe JH, Kim S, Kang M, Kang DW, Kim JY, Jeong YW, Hong CS. Metal-Organic Framework Adsorbent for Practical Capture of Trace Carbon Dioxide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50534-50540. [PMID: 33131271 DOI: 10.1021/acsami.0c16224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Control of indoor CO2 concentration to a safe level is important to human health. Metal-organic-framework-based adsorbents show superior adsorption performance at moderate CO2 concentration compared to other solid adsorbents but suffer from low capacities and high regeneration temperature at indoor CO2 concentrations and poor humidity stability. Herein, we report epn-grafted Mg2(dobpdc) (epn = 1-ethylpropane-1,3-diamine) showing a CO2 capacity of 12.2 wt % at an acceptable concentration of 1000 ppm and a practically low desorption temperature of 70 °C, which surpasses the performance of conventional solid adsorbents under the given conditions. After poly(dimethylsiloxane) coating, this material reveals a significant adsorption amount (∼10 wt %) in humid conditions (up to 98% relative humidity) with structural durability.
Collapse
Affiliation(s)
- Jinkyoung Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jeoung Ryul Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Saemi Kim
- Samsung Research, SEC 33, Seongchon-gil, Seocho-gu, Seoul 06765, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jee Yeon Kim
- Samsung Research, SEC 33, Seongchon-gil, Seocho-gu, Seoul 06765, Republic of Korea
| | - Yong Won Jeong
- Samsung Research, SEC 33, Seongchon-gil, Seocho-gu, Seoul 06765, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
34
|
Andreeva AB, Le KN, Chen L, Kellman ME, Hendon CH, Brozek CK. Soft Mode Metal-Linker Dynamics in Carboxylate MOFs Evidenced by Variable-Temperature Infrared Spectroscopy. J Am Chem Soc 2020; 142:19291-19299. [DOI: 10.1021/jacs.0c09499] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anastasia B. Andreeva
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Khoa N. Le
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lihaokun Chen
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael E. Kellman
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Christopher H. Hendon
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Carl K. Brozek
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|