1
|
Abdel-Rahman SA, Gabr MT. Small molecules from antibody pharmacophores (SMAbPs) as a hit identification workflow for immune checkpoints. SCIENCE ADVANCES 2024; 10:eadq5540. [PMID: 39413175 PMCID: PMC11482313 DOI: 10.1126/sciadv.adq5540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Small-molecule modulators of immune checkpoints are poised to revolutionize cancer immunotherapy. However, efficient strategies for hit identification are lacking. We introduce small molecules from antibody pharmacophores (SMAbPs), a workflow leveraging cocrystal structures of checkpoints with antibodies to create pharmacophore maps for virtual screening. Applying SMAbPs to five immune checkpoints yielded hits with submicromolar potency in both cell-free and cellular assays. Notably, SMAbPs identified the most potent T cell immunoglobulin and mucin-domain containing-3 and V-domain immunoglobulin suppressor of T cell activation (VISTA) inhibitors reported to date and first-in-class modulators of B and T lymphocyte attenuator, 4-IBB, and CD27. Targeting inhibitory and costimulatory checkpoints with hits identified through SMAbPs demonstrated remarkable in vivo antitumor activity, exemplified by MG-V-53 (VISTA inhibitor) and MG-C-30 (CD27 agonist), which significantly reduced tumor volumes in MC38 and EG7-OVA mouse models, respectively.
Collapse
Affiliation(s)
- Somaya A. Abdel-Rahman
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Moustafa T. Gabr
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Ahamad S, Abdulla M, Saquib M, Kamil Hussain M. Pseudo-Natural Products: Expanding chemical and biological space by surpassing natural constraints. Bioorg Chem 2024; 150:107525. [PMID: 38852308 DOI: 10.1016/j.bioorg.2024.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
This review explores the recent advancements in the design and synthesis of pseudo-natural products (pseudo-NPs) by employing innovative principles and strategies, heralding a transformative era in chemistry and biology. Pseudo-NPs, produced through in silico fragmentation and the de novo recombination of natural product fragments, reveal compounds endowed with distinct biological activities. Their advantage lies in transcending natural product structures, fostering diverse possibilities. Research in this area over the past decade has yielded unconventional combinations of natural product fragments, leading to the identification of novel compounds possessing unique scaffolds and biological significance, thereby contributing to the discovery of new therapeutics. The pseudo-NPs exert potent biological effects through various signaling pathways. In chemical biology and medicinal chemistry, designing pseudo-NPs is an important strategy, harnessing molecular hybridization and bioinspired synthesis to generate diverse compounds with remarkable biological activities, underscoring their immense potential in drug discovery and development.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India.
| | - Mohd Abdulla
- Babasaheb Bhimrao Ambedkar University, Lucknow-226025, India
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad), 211002, UP, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad), 211010, UP, India.
| | - Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur-244901, UP, India.
| |
Collapse
|
3
|
Tandon A, Santura A, Waldmann H, Pahl A, Czodrowski P. Identification of lysosomotropism using explainable machine learning and morphological profiling cell painting data. RSC Med Chem 2024; 15:2677-2691. [PMID: 39149097 PMCID: PMC11324048 DOI: 10.1039/d4md00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/09/2024] [Indexed: 08/17/2024] Open
Abstract
Lysosomotropism is a phenomenon of diverse pharmaceutical interests because it is a property of compounds with diverse chemical structures and primary targets. While it is primarily reported to be caused by compounds having suitable lipophilicity and basicity values, not all compounds that fulfill such criteria are in fact lysosomotropic. Here, we use morphological profiling by means of the cell painting assay (CPA) as a reliable surrogate to identify lysosomotropism. We noticed that only 35% of the compound subset with matching physicochemical properties show the lysosomotropic phenotype. Based on a matched molecular pair analysis (MMPA), no key substructures driving lysosomotropism could be identified. However, using explainable machine learning (XML), we were able to highlight that higher lipophilicity, basicity, molecular weight, and lower topological polar surface area are among the important properties that induce lysosomotropism in the compounds of this subset.
Collapse
Affiliation(s)
- Aishvarya Tandon
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 Dortmund Germany
| | - Anna Santura
- Department of Chemistry, Johannes Gutenberg University Mainz Mainz Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 Dortmund Germany
| | - Axel Pahl
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 Dortmund Germany
| | - Paul Czodrowski
- Department of Chemistry, Johannes Gutenberg University Mainz Mainz Germany
| |
Collapse
|
4
|
Pahl A, Grygorenko OO, Kondratov IS, Waldmann H. Identification of readily available pseudo-natural products. RSC Med Chem 2024; 15:2709-2717. [PMID: 39149091 PMCID: PMC11324060 DOI: 10.1039/d4md00310a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024] Open
Abstract
Pseudo-natural products (PNPs) combine fragments derived from NPs in ways that are not found in nature, and may lead to the discovery of novel chemotypes for unexpected targets or the identification of unprecedented bioactivities. PNPs have increasingly been explored in recent drug discovery programs, and are strongly enriched in clinical compounds. We describe how a large number of structurally different PNPs can be accessed readily and without the need to execute labor- and time intensive synthesis programs. We employed an improved version of the previously reported natural product fragment combination (NPFC) tool to analyze the full library of 3.5 M synthetic small molecules and screening libraries from Enamine for PNP content, assessed the spatial complexity of Enamine-PNPs using the recently developed normalized spatial score (nSPS) and evaluated the bioactivity of a selected subset of Enamine-PNPs in the unbiased morphological cell painting assay. A major fraction (32%; 1.1 million compounds) of the Enamine library are PNPs which contain a significant number of compounds with unexpected and probably new bioactivity.
Collapse
Affiliation(s)
- Axel Pahl
- Compound Management and Screening Center (COMAS), Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Oleksandr O Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyïv 02094 Ukraine https://enamine.net
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyïv 01601 Ukraine
| | - Ivan S Kondratov
- Enamine Ltd. Chervonotkatska Street 78 Kyïv 02094 Ukraine https://enamine.net
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry, NAS of Ukraine Akademik Kukhar Street 1 Kyïv 02660 Ukraine
- Enamine Germany GmbH, Industriepark Hoechst G837 65926 Frankfurt am Main Germany https://www.enamine.de
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
5
|
Zhou X, Medina-Ramirez IE, Su G, Liu Y, Yan B. All Roads Lead to Rome: Comparing Nanoparticle- and Small Molecule-Driven Cell Autophagy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310966. [PMID: 38616767 DOI: 10.1002/smll.202310966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Autophagy, vital for removing cellular waste, is triggered differently by small molecules and nanoparticles. Small molecules, like rapamycin, non-selectively activate autophagy by inhibiting the mTOR pathway, which is essential for cell regulation. This can clear damaged components but may cause cytotoxicity with prolonged use. Nanoparticles, however, induce autophagy, often causing oxidative stress, through broader cellular interactions and can lead to a targeted form known as "xenophagy." Their impact varies with their properties but can be harnessed therapeutically. In this review, the autophagy induced by nanoparticles is explored and small molecules across four dimensions: the mechanisms behind autophagy induction, the outcomes of such induction, the toxicological effects on cellular autophagy, and the therapeutic potential of employing autophagy triggered by nanoparticles or small molecules. Although small molecules and nanoparticles each induce autophagy through different pathways and lead to diverse effects, both represent invaluable tools in cell biology, nanomedicine, and drug discovery, offering unique insights and therapeutic opportunities.
Collapse
Affiliation(s)
- Xiaofei Zhou
- College of Science & Technology, Hebei Agricultural University, Baoding, 071001, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, 071100, China
| | - Iliana E Medina-Ramirez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av Universidad 940, Aguascalientes, Aguascalientes, México
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 10024, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Seal S, Trapotsi MA, Spjuth O, Singh S, Carreras-Puigvert J, Greene N, Bender A, Carpenter AE. A Decade in a Systematic Review: The Evolution and Impact of Cell Painting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592531. [PMID: 38766203 PMCID: PMC11100607 DOI: 10.1101/2024.05.04.592531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
High-content image-based assays have fueled significant discoveries in the life sciences in the past decade (2013-2023), including novel insights into disease etiology, mechanism of action, new therapeutics, and toxicology predictions. Here, we systematically review the substantial methodological advancements and applications of Cell Painting. Advancements include improvements in the Cell Painting protocol, assay adaptations for different types of perturbations and applications, and improved methodologies for feature extraction, quality control, and batch effect correction. Moreover, machine learning methods recently surpassed classical approaches in their ability to extract biologically useful information from Cell Painting images. Cell Painting data have been used alone or in combination with other - omics data to decipher the mechanism of action of a compound, its toxicity profile, and many other biological effects. Overall, key methodological advances have expanded Cell Painting's ability to capture cellular responses to various perturbations. Future advances will likely lie in advancing computational and experimental techniques, developing new publicly available datasets, and integrating them with other high-content data types.
Collapse
Affiliation(s)
- Srijit Seal
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Maria-Anna Trapotsi
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, United Kingdom
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Shantanu Singh
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, United Kingdom
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Nigel Greene
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Andreas Bender
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Anne E. Carpenter
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
| |
Collapse
|
8
|
Seal S, Trapotsi MA, Spjuth O, Singh S, Carreras-Puigvert J, Greene N, Bender A, Carpenter AE. A Decade in a Systematic Review: The Evolution and Impact of Cell Painting. ARXIV 2024:arXiv:2405.02767v1. [PMID: 38745696 PMCID: PMC11092692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
High-content image-based assays have fueled significant discoveries in the life sciences in the past decade (2013-2023), including novel insights into disease etiology, mechanism of action, new therapeutics, and toxicology predictions. Here, we systematically review the substantial methodological advancements and applications of Cell Painting. Advancements include improvements in the Cell Painting protocol, assay adaptations for different types of perturbations and applications, and improved methodologies for feature extraction, quality control, and batch effect correction. Moreover, machine learning methods recently surpassed classical approaches in their ability to extract biologically useful information from Cell Painting images. Cell Painting data have been used alone or in combination with other -omics data to decipher the mechanism of action of a compound, its toxicity profile, and many other biological effects. Overall, key methodological advances have expanded Cell Painting's ability to capture cellular responses to various perturbations. Future advances will likely lie in advancing computational and experimental techniques, developing new publicly available datasets, and integrating them with other high-content data types.
Collapse
Affiliation(s)
- Srijit Seal
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Maria-Anna Trapotsi
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, United Kingdom
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Shantanu Singh
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, United Kingdom
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Nigel Greene
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Andreas Bender
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Anne E. Carpenter
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
| |
Collapse
|
9
|
Chen L, Gao T, Zhou P, Xia W, Yao H, Xu S, Xu J. Recent advances of vacuolar protein-sorting 34 inhibitors targeting autophagy. Bioorg Chem 2024; 143:107039. [PMID: 38134519 DOI: 10.1016/j.bioorg.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Autophagy is a ubiquitous pathological/physiological antioxidant cellular reaction in eukaryotic cells. Vacuolar protein sorting 34 (Vps34 or PIK3C3), which plays a crucial role in autophagy, has received much attention. As the only Class III phosphatidylinositol-3 kinase in mammals, Vps34 participates in vesicular transport, nutrient signaling and autophagy. Dysfunctionality of Vps34 induces carcinogenesis, and abnormal autophagy mediated by dysfunction of Vps34 is closely related to the pathological progression of various human diseases, which makes Vps34 a novel target for tumor immunotherapy. In this review, we summarize the molecular mechanisms underlying macroautophagy, and further discuss the structure-activity relationship of Vps34 inhibitors that have been reported in the past decade as well as their potential roles in anticancer immunotherapy to better understand the antitumor mechanism underlying the effects of these inhibitors.
Collapse
Affiliation(s)
- Long Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tian Gao
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Pijun Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenxuan Xia
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hong Yao
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China; Shenzhen Research Institute of China Pharmaceutical University, Nanshan District, Shenzhen 518052, PR China.
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China; Shenzhen Research Institute of China Pharmaceutical University, Nanshan District, Shenzhen 518052, PR China.
| |
Collapse
|
10
|
Liu Y, Yang Q, Chen S, Li Z, Fu L. Targeting VPS34 in autophagy: An update on pharmacological small-molecule compounds. Eur J Med Chem 2023; 256:115467. [PMID: 37178482 DOI: 10.1016/j.ejmech.2023.115467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
VPS34 is well-known to be the unique member of the class III phosphoinositide 3-kinase (PI3K) family, forming VPS34 complex 1 and complex 2, which are involved in several key physiological processes. Of note, VPS34 complex 1 is an important node of autophagosome generation, which controls T cell metabolism and maintains cellular homeostasis through the autophagic pathway. And, VPS34 complex 2 is involved in endocytosis as well as vesicular transport, and is closely related to neurotransmission, antigen presentation and brain development. Due to the two important biological functions of VPS34, its dysregulation can lead to the development of cardiovascular disease, cancer, neurological disorders, and many types of human diseases by altering normal human physiology. Thus, in this review, we not only summarize the molecular structure and function of VPS34, but demonstrate the relationships between VPS34 and human diseases. Moreover, we further discuss the current small molecule inhibitors targeting VPS34 based upon the structure and function of VPS34, which may provide an insight into the future targeted drug development.
Collapse
Affiliation(s)
- Yuan Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qilin Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zixiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
11
|
Dahlin JL, Hua BK, Zucconi BE, Nelson SD, Singh S, Carpenter AE, Shrimp JH, Lima-Fernandes E, Wawer MJ, Chung LPW, Agrawal A, O'Reilly M, Barsyte-Lovejoy D, Szewczyk M, Li F, Lak P, Cuellar M, Cole PA, Meier JL, Thomas T, Baell JB, Brown PJ, Walters MA, Clemons PA, Schreiber SL, Wagner BK. Reference compounds for characterizing cellular injury in high-content cellular morphology assays. Nat Commun 2023; 14:1364. [PMID: 36914634 PMCID: PMC10011410 DOI: 10.1038/s41467-023-36829-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Robust, generalizable approaches to identify compounds efficiently with undesirable mechanisms of action in complex cellular assays remain elusive. Such a process would be useful for hit triage during high-throughput screening and, ultimately, predictive toxicology during drug development. Here we generate cell painting and cellular health profiles for 218 prototypical cytotoxic and nuisance compounds in U-2 OS cells in a concentration-response format. A diversity of compounds that cause cellular damage produces bioactive cell painting morphologies, including cytoskeletal poisons, genotoxins, nonspecific electrophiles, and redox-active compounds. Further, we show that lower quality lysine acetyltransferase inhibitors and nonspecific electrophiles can be distinguished from more selective counterparts. We propose that the purposeful inclusion of cytotoxic and nuisance reference compounds such as those profiled in this resource will help with assay optimization and compound prioritization in complex cellular assays like cell painting.
Collapse
Grants
- R35 GM127045 NIGMS NIH HHS
- U01 CA272612 NCI NIH HHS
- T32 HL007627 NHLBI NIH HHS
- R37 GM062437 NIGMS NIH HHS
- S10 OD026839 NIH HHS
- R35 GM122481 NIGMS NIH HHS
- U01 DK123717 NIDDK NIH HHS
- Wellcome Trust
- R35 GM122547 NIGMS NIH HHS
- U01 CA217848 NCI NIH HHS
- K99 GM124357 NIGMS NIH HHS
- R35 GM149229 NIGMS NIH HHS
- This study was supported by the Ono Pharma Breakthrough Science Initiative Award (to BKW). Authors acknowledge the following financial support: JLD (NIH NHLBI, T32-HL007627); BKH (National Science Foundation, DGE1144152 and DGE1745303); BEZ (NIH NIGMS, K99-GM124357); SDN (Harvard University’s Graduate Prize Fellowship, Eli Lilly Graduate Fellowship in Chemistry); PA Cole (NIH NIGMS, R37-GM62437); SLS (NIGMS, R35-GM127045); BKW (Ono Pharma Foundation; NIH NIDDK, U01-DK123717); SS (NIH NIGMS, R35-GM122547). The authors gratefully acknowledge the use of the Opera Phenix High-Content/High-Throughput imaging system at the Broad Institute, funded by the NIH S10 grant OD026839. This research was supported in part by the Intramural/Extramural research program of the NCATS, NIH.
Collapse
Affiliation(s)
- Jayme L Dahlin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA.
| | - Bruce K Hua
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Beth E Zucconi
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Jonathan H Shrimp
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | | | - Mathias J Wawer
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Lawrence P W Chung
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Ayushi Agrawal
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | | | | | - Magdalena Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Parnian Lak
- Department of Pharmaceutical Chemistry and Quantitative Biology Institute, University of California San Francisco, San Francisco, CA, USA
| | - Matthew Cuellar
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Philip A Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Tim Thomas
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jonathan B Baell
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Paul A Clemons
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
12
|
Grigalunas M, Patil S, Krzyzanowski A, Pahl A, Flegel J, Schölermann B, Xie J, Sievers S, Ziegler S, Waldmann H. Unprecedented Combination of Polyketide Natural Product Fragments Identifies the New Hedgehog Signaling Pathway Inhibitor Grismonone. Chemistry 2022; 28:e202202164. [PMID: 36083197 PMCID: PMC10091983 DOI: 10.1002/chem.202202164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Pseudo-natural products (pseudo-NPs) are de novo combinations of natural product (NP) fragments that define novel bioactive chemotypes. For their discovery, new design principles are being sought. Previously, pseudo-NPs were synthesized by the combination of fragments originating from biosynthetically unrelated NPs to guarantee structural novelty and novel bioactivity. We report the combination of fragments from biosynthetically related NPs in novel arrangements to yield a novel chemotype with activity not shared by the guiding fragments. We describe the synthesis of the polyketide pseudo-NP grismonone and identify it as a structurally novel and potent inhibitor of Hedgehog signaling. The insight that the de novo combination of fragments derived from biosynthetically related NPs may also yield new biologically relevant compound classes with unexpected bioactivity may be considered a chemical extension or diversion of existing biosynthetic pathways and greatly expands the opportunities for exploration of biologically relevant chemical space by means of the pseudo-NP principle.
Collapse
Affiliation(s)
- Michael Grigalunas
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Sohan Patil
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Adrian Krzyzanowski
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| | - Axel Pahl
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Compound Management and Screening CenterDortmund44227Germany
| | - Jana Flegel
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Beate Schölermann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Jianing Xie
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Compound Management and Screening CenterDortmund44227Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| |
Collapse
|
13
|
Davies C, Dötsch L, Ciulla MG, Hennes E, Yoshida K, Gasper R, Scheel R, Sievers S, Strohmann C, Kumar K, Ziegler S, Waldmann H. Identification of a Novel Pseudo-Natural Product Type IV IDO1 Inhibitor Chemotype. Angew Chem Int Ed Engl 2022; 61:e202209374. [PMID: 35959923 DOI: 10.1002/anie.202209374] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Natural product (NP)-inspired design principles provide invaluable guidance for bioactive compound discovery. Pseudo-natural products (PNPs) are de novo combinations of NP fragments to target biologically relevant chemical space not covered by NPs. We describe the design and synthesis of apoxidoles, a novel pseudo-NP class, whereby indole- and tetrahydropyridine fragments are linked in monopodal connectivity not found in nature. Apoxidoles are efficiently accessible by an enantioselective [4+2] annulation reaction. Biological evaluation revealed that apoxidoles define a new potent type IV inhibitor chemotype of indoleamine 2,3-dioxygenase 1 (IDO1), a heme-containing enzyme considered a target for the treatment of neurodegeneration, autoimmunity and cancer. Apoxidoles target apo-IDO1, prevent heme binding and induce unique amino acid positioning as revealed by crystal structure analysis. Novel type IV apo-IDO1 inhibitors are in high demand, and apoxidoles may provide new opportunities for chemical biology and medicinal chemistry research.
Collapse
Affiliation(s)
- Caitlin Davies
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Lara Dötsch
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Maria Gessica Ciulla
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Current address: Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Elisabeth Hennes
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kei Yoshida
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Raphael Gasper
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Rebecca Scheel
- Technical University of Dortmund, Department of Inorganic Chemistry, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS), Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Technical University of Dortmund, Department of Inorganic Chemistry, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kamal Kumar
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Current address: AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str. 475, 42117, Wuppertal, Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
14
|
Rohban MH, Fuller AM, Tan C, Goldstein JT, Syangtan D, Gutnick A, DeVine A, Nijsure MP, Rigby M, Sacher JR, Corsello SM, Peppler GB, Bogaczynska M, Boghossian A, Ciotti GE, Hands AT, Mekareeya A, Doan M, Gale JP, Derynck R, Turbyville T, Boerckel JD, Singh S, Kiessling LL, Schwarz TL, Varelas X, Wagner FF, Kafri R, Eisinger-Mathason TSK, Carpenter AE. Virtual screening for small-molecule pathway regulators by image-profile matching. Cell Syst 2022; 13:724-736.e9. [PMID: 36057257 PMCID: PMC9509476 DOI: 10.1016/j.cels.2022.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023]
Abstract
Identifying the chemical regulators of biological pathways is a time-consuming bottleneck in developing therapeutics and research compounds. Typically, thousands to millions of candidate small molecules are tested in target-based biochemical screens or phenotypic cell-based screens, both expensive experiments customized to each disease. Here, our uncustomized, virtual, profile-based screening approach instead identifies compounds that match to pathways based on the phenotypic information in public cell image data, created using the Cell Painting assay. Our straightforward correlation-based computational strategy retrospectively uncovered the expected, known small-molecule regulators for 32% of positive-control gene queries. In prospective, discovery mode, we efficiently identified new compounds related to three query genes and validated them in subsequent gene-relevant assays, including compounds that phenocopy or pheno-oppose YAP1 overexpression and kill a Yap1-dependent sarcoma cell line. This image-profile-based approach could replace many customized labor- and resource-intensive screens and accelerate the discovery of biologically and therapeutically useful compounds.
Collapse
Affiliation(s)
- Mohammad H Rohban
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashley M Fuller
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ceryl Tan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Deepsing Syangtan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amos Gutnick
- FM Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ann DeVine
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Madhura P Nijsure
- Departments of Orthopaedic Surgery & Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan Rigby
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joshua R Sacher
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven M Corsello
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Grace B Peppler
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Marta Bogaczynska
- Departments of Cell/Tissue Biology and Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew Boghossian
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabrielle E Ciotti
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison T Hands
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aroonroj Mekareeya
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Minh Doan
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer P Gale
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rik Derynck
- Departments of Cell/Tissue Biology and Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas Turbyville
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joel D Boerckel
- Departments of Orthopaedic Surgery & Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas L Schwarz
- FM Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Xaralabos Varelas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florence F Wagner
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ran Kafri
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - T S Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
15
|
Lu G, Wang Y, Shi Y, Zhang Z, Huang C, He W, Wang C, Shen H. Autophagy in health and disease: From molecular mechanisms to therapeutic target. MedComm (Beijing) 2022; 3:e150. [PMID: 35845350 PMCID: PMC9271889 DOI: 10.1002/mco2.150] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionally conserved catabolic process in which cytosolic contents, such as aggregated proteins, dysfunctional organelle, or invading pathogens, are sequestered by the double-membrane structure termed autophagosome and delivered to lysosome for degradation. Over the past two decades, autophagy has been extensively studied, from the molecular mechanisms, biological functions, implications in various human diseases, to development of autophagy-related therapeutics. This review will focus on the latest development of autophagy research, covering molecular mechanisms in control of autophagosome biogenesis and autophagosome-lysosome fusion, and the upstream regulatory pathways including the AMPK and MTORC1 pathways. We will also provide a systematic discussion on the implication of autophagy in various human diseases, including cancer, neurodegenerative disorders (Alzheimer disease, Parkinson disease, Huntington's disease, and Amyotrophic lateral sclerosis), metabolic diseases (obesity and diabetes), viral infection especially SARS-Cov-2 and COVID-19, cardiovascular diseases (cardiac ischemia/reperfusion and cardiomyopathy), and aging. Finally, we will also summarize the development of pharmacological agents that have therapeutic potential for clinical applications via targeting the autophagy pathway. It is believed that decades of hard work on autophagy research is eventually to bring real and tangible benefits for improvement of human health and control of human diseases.
Collapse
Affiliation(s)
- Guang Lu
- Department of Physiology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yin Shi
- Department of BiochemistryZhejiang University School of MedicineHangzhouChina
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn ResearchSouthwest HospitalArmy Medical UniversityChongqingChina
| | - Chuang Wang
- Department of Pharmacology, Provincial Key Laboratory of PathophysiologyNingbo University School of MedicineNingboZhejiangChina
| | - Han‐Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision OncologyUniversity of MacauMacauChina
| |
Collapse
|
16
|
Li Y, Cheng S, Tian Y, Zhang Y, Zhao Y. Recent ring distortion reactions for diversifying complex natural products. Nat Prod Rep 2022; 39:1970-1992. [PMID: 35972343 DOI: 10.1039/d2np00027j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2013-2022.Chemical diversification of natural products is an efficient way to generate natural product-like compounds for modern drug discovery programs. Utilizing ring-distortion reactions for diversifying natural products would directly alter the core ring systems of small molecules and lead to the production of structurally complex and diverse compounds for high-throughput screening. We review the ring distortion reactions recently used in complexity-to-diversity (CtD) and pseudo natural products (pseudo-NPs) strategies for diversifying complex natural products. The core ring structures of natural products are altered via ring expansion, ring cleavage, ring edge-fusion, ring spiro-fusion, ring rearrangement, and ring contraction. These reactions can rapidly provide natural product-like collections with properties suitable for a wide variety of biological and medicinal applications. The challenges and limitations of current ring distortion reactions are critically assessed, and avenues for future improvements of this rapidly expanding field are discussed. We also provide a toolbox for chemists for the application of ring distortion reactions to access natural product-like molecules.
Collapse
Affiliation(s)
- Yu Li
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Shihao Cheng
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yun Tian
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yanan Zhang
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
17
|
Davies C, Dötsch L, Ciulla MG, Hennes E, Yoshida K, Gasper R, Scheel R, Sievers S, Strohmann C, Kumar K, Ziegler S, Waldmann H. Identification of a Novel Pseudo‐Natural Product Type IV IDO1 Inhibitor Chemotype. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Caitlin Davies
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Lara Dötsch
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Maria Gessica Ciulla
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Elisabeth Hennes
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Kei Yoshida
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Raphael Gasper
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Crystallography and Biophysics Facility GERMANY
| | - Rebecca Scheel
- Technische Universität Dortmund: Technische Universitat Dortmund Inorganic Chemistry GERMANY
| | - Sonja Sievers
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Compound Management and Screening Center GERMANY
| | - Carsten Strohmann
- Technische Universität Dortmund: Technische Universitat Dortmund Inorganic Chemistry GERMANY
| | - Kamal Kumar
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Slava Ziegler
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Herbert Waldmann
- Max-Planck-Institute of Molecular Physiology: Max-Planck-Institut fur molekulare Physiologie Chemical Biology Otto-Hahn-Str. 11 44227 Dortmund GERMANY
| |
Collapse
|
18
|
Foley DJ, Waldmann H. Ketones as strategic building blocks for the synthesis of natural product-inspired compounds. Chem Soc Rev 2022; 51:4094-4120. [PMID: 35506561 DOI: 10.1039/d2cs00101b] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Natural product-inspired compound collections serve as excellent sources for the identification of new bioactive compounds to treat disease. However, such compounds must necessarily be more structurally-enriched than traditional screening compounds, therefore inventive synthetic strategies and reliable methods are needed to prepare them. Amongst the various possible starting materials that could be considered for the synthesis of natural product-inspired compounds, ketones can be especially valuable due to the vast variety of complexity-building synthetic transformations that they can take part in, their high prevalence as commercial building blocks, and relative ease of synthesis. With a view towards developing a unified synthetic strategy for the preparation of next generation bioactive compound collections, this review considers whether ketones could serve as general precursors in this regard, and summarises the opulence of synthetic transformations available for the annulation of natural product ring-systems to ketone starting materials.
Collapse
Affiliation(s)
- Daniel J Foley
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand. .,Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
19
|
Niggemeyer G, Knyazeva A, Gasper R, Corkery D, Bodenbinder P, Holstein JJ, Sievers S, Wu Y, Waldmann H. Synthesis of 20-Membered Macrocyclic Pseudo-Natural Products Yields Inducers of LC3 Lipidation. Angew Chem Int Ed Engl 2022; 61:e202114328. [PMID: 34978373 PMCID: PMC9303634 DOI: 10.1002/anie.202114328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 01/02/2023]
Abstract
Design and synthesis of pseudo-natural products (PNPs) through recombination of natural product (NP) fragments in unprecedented arrangements enables the discovery of novel biologically relevant chemical matter. With a view to wider coverage of NP-inspired chemical and biological space, we describe the combination of this principle with macrocycle formation. PNP-macrocycles were synthesized efficiently in a stereoselective one-pot procedure including the 1,3-dipolar cycloadditions of different dipolarophiles with dimeric cinchona alkaloid-derived azomethine ylides formed in situ. The 20-membered bis-cycloadducts embody 18 stereocenters and an additional fragment-sized NP-structure. After further functionalization, a collection of 163 macrocyclic PNPs was obtained. Biological investigation revealed potent inducers of the lipidation of the microtubule associated protein 1 light chain 3 (LC3) protein, which plays a prominent role in various autophagy-related processes.
Collapse
Affiliation(s)
- Georg Niggemeyer
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Anastasia Knyazeva
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Raphael Gasper
- Max Planck Institute of Molecular PhysiologyCrystallography and Biophysics UnitOtto-Hahn-Strasse 1144227DortmundGermany
| | - Dale Corkery
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Pia Bodenbinder
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Julian J. Holstein
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
- Technical University DortmundFaculty of Chemistry, Inorganic ChemistryOtto-Hahn-Strasse 644221DortmundGermany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS)Otto-Hahn-Strasse 1144221DortmundGermany
| | - Yao‐Wen Wu
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| |
Collapse
|
20
|
Davies C, Shaaban S, Waldmann H. Asymmetric catalysis with chiral cyclopentadienyl complexes to access privileged scaffolds. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Niggemeyer G, Knyazeva A, Gasper R, Corkery D, Bodenbinder P, Holstein JJ, Sievers S, Wu Y, Waldmann H. Synthesis of 20‐Membered Macrocyclic Pseudo‐Natural Products Yields Inducers of LC3 Lipidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Georg Niggemeyer
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Anastasia Knyazeva
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Raphael Gasper
- Max Planck Institute of Molecular Physiology Crystallography and Biophysics Unit Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Dale Corkery
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Pia Bodenbinder
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Julian J. Holstein
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS) Otto-Hahn-Strasse 11 44221 Dortmund Germany
| | - Yao‐Wen Wu
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
22
|
Gally JM, Pahl A, Czodrowski P, Waldmann H. Pseudonatural Products Occur Frequently in Biologically Relevant Compounds. J Chem Inf Model 2021; 61:5458-5468. [PMID: 34669418 PMCID: PMC8611719 DOI: 10.1021/acs.jcim.1c01084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
A new methodology
for classifying fragment combinations and characterizing
pseudonatural products (PNPs) is described. The source code is based
on open-source tools and is organized as a Python package. Tasks can
be executed individually or within the context of scalable, robust
workflows. First, structures are standardized and duplicate entries
are filtered out. Then, molecules are probed for the presence of predefined
fragments. For molecules with more than one match, fragment combinations
are classified. The algorithm considers the pairwise relative position
of fragments within the molecule (fused atoms, linkers, intermediary
rings), resulting in 18 different possible fragment combination categories.
Finally, all combinations for a given molecule are assembled into
a fragment combination graph, with fragments as nodes and combination
types as edges. This workflow was applied to characterize PNPs in
the ChEMBL database via comparison of fragment combination graphs
with natural product (NP) references, represented by the Dictionary
of Natural Products. The Murcko fragments extracted from 2000 structures
previously described were used to define NP fragments. The results
indicate that ca. 23% of the biologically relevant compounds listed
in ChEMBL comply to the PNP definition and that, therefore, PNPs occur
frequently among known biologically relevant small molecules. The
majority (>95%) of PNPs contain two to four fragments, mainly (>95%)
distributed in five different combination types. These findings may
provide guidance for the design of new PNPs.
Collapse
Affiliation(s)
- José-Manuel Gally
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Axel Pahl
- Compound Management and Screening Center, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Paul Czodrowski
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
23
|
Zhang X, Zhang S, Zhao S, Wang X, Liu B, Xu H. Click Chemistry in Natural Product Modification. Front Chem 2021; 9:774977. [PMID: 34869223 PMCID: PMC8635925 DOI: 10.3389/fchem.2021.774977] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
Click chemistry is perhaps the most powerful synthetic toolbox that can efficiently access the molecular diversity and unique functions of complex natural products up to now. It enables the ready synthesis of diverse sets of natural product derivatives either for the optimization of their drawbacks or for the construction of natural product-like drug screening libraries. This paper showcases the state-of-the-art development of click chemistry in natural product modification and summarizes the pharmacological activities of the active derivatives as well as the mechanism of action. The aim of this paper is to gain a deep understanding of the fruitful achievements and to provide perspectives, trends, and directions regarding further research in natural product medicinal chemistry.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Songfeng Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuan Wang
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Liu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
24
|
Jin PR, Ta YNN, Chen IT, Yu YN, Hsieh HT, Nguyen VAT, Hsieh SY, Hsia T, Liu H, Hsu CW, Han JL, Chen Y. Cinchona Alkaloid-Inspired Urea-Containing Autophagy Inhibitor Shows Single-Agent Anticancer Efficacy. J Med Chem 2021; 64:14513-14525. [PMID: 34558909 DOI: 10.1021/acs.jmedchem.1c01036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Autophagy is upregulated in response to metabolic stress, a hypoxic tumor microenvironment, and therapeutic stress in various cancers and mediates tumor progression and resistance to cancer therapy. Herein, we identified a cinchona alkaloid derivative containing urea (C1), which exhibited potential cytotoxicity and inhibited autophagy in hepatocellular carcinoma (HCC) cells. We showed that C1 not only induced apoptosis but also blocked autophagy in HCC cells, as indicated by the increased expression of LC3-II and p62, inhibition of autophagosome-lysosome fusion, and suppression of the Akt/mTOR/S6k pathway in the HCC cells. Finally, to improve its solubility and efficacy, we encapsulated C1 into PEGylated lipid-poly(lactic-co-glycolic acid) (PLGA) nanoscale drug carriers. Systemic administration of nanoscale C1 significantly suppressed primary tumor growth and prevented distant metastasis while maintaining a desirable safety profile. Our findings demonstrate that C1 combines autophagy modulation and apoptosis induction in a single molecule, making it a promising therapeutic option for HCC.
Collapse
Affiliation(s)
- Pei-Ru Jin
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yen-Nhi Ngoc Ta
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - I-Ting Chen
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South District, Taichung City 40227, Taiwan
| | - Yan-Ning Yu
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin Tzu Hsieh
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Van-Anh Thi Nguyen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shang-Ying Hsieh
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tiffaney Hsia
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan.,Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Hao Liu
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Chan-Wei Hsu
- Department of Chemistry, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
| | - Jeng-Liang Han
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South District, Taichung City 40227, Taiwan.,Department of Chemistry, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
25
|
Burhop A, Bag S, Grigalunas M, Woitalla S, Bodenbinder P, Brieger L, Strohmann C, Pahl A, Sievers S, Waldmann H. Synthesis of Indofulvin Pseudo-Natural Products Yields a New Autophagy Inhibitor Chemotype. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102042. [PMID: 34346568 PMCID: PMC8498912 DOI: 10.1002/advs.202102042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/14/2021] [Indexed: 06/01/2023]
Abstract
Chemical and biological limitations in bioactive compound design based on natural product (NP) structure can be overcome by the combination of NP-derived fragments in unprecedented arrangements to afford "pseudo-natural products" (pseudo-NPs). A new pseudo-NP design principle is described, i.e., the combination of NP-fragments by transformations that are not part of current biosynthesis pathways. A collection of indofulvin pseudo-NPs is obtained from 2-hydroxyethyl-indoles and ketones derived from the fragment-sized NP griseofulvin by means of an iso-oxa-Pictet-Spengler reaction. Cheminformatic analysis indicates that the indofulvins reside in an area of chemical space sparsely covered by NPs, drugs, and drug-like compounds and they may combine favorable properties of these compound classes. Biological evaluation of the compound collection in different cell-based assays and the unbiased high content cell painting assay reveal that the indofulvins define a new autophagy inhibitor chemotype that targets mitochondrial respiration.
Collapse
Affiliation(s)
- Annina Burhop
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| | - Sukdev Bag
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Michael Grigalunas
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Sophie Woitalla
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| | - Pia Bodenbinder
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| | - Lukas Brieger
- Technical University DortmundFaculty of ChemistryInorganic ChemistryDortmund44227Germany
| | - Carsten Strohmann
- Technical University DortmundFaculty of ChemistryInorganic ChemistryDortmund44227Germany
| | - Axel Pahl
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Compound Management and Screening CenterDortmund44227Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Compound Management and Screening CenterDortmund44227Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| |
Collapse
|
26
|
Liu J, Flegel J, Otte F, Pahl A, Sievers S, Strohmann C, Waldmann H. Combination of Pseudo-Natural Product Design and Formal Natural Product Ring Distortion Yields Stereochemically and Biologically Diverse Pseudo-Sesquiterpenoid Alkaloids. Angew Chem Int Ed Engl 2021; 60:21384-21395. [PMID: 34297473 PMCID: PMC8518946 DOI: 10.1002/anie.202106654] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/28/2022]
Abstract
We describe the synthesis and biological evaluation of a new natural product-inspired compound class obtained by combining the conceptually complementary pseudo-natural product (pseudo-NP) design strategy and a formal adaptation of the complexity-to-diversity ring distortion approach. Fragment-sized α-methylene-sesquiterpene lactones, whose scaffolds can formally be viewed as related to each other or are obtained by ring distortion, were combined with alkaloid-derived pyrrolidine fragments by means of highly selective stereocomplementary 1,3-dipolar cycloaddition reactions. The resulting pseudo-sesquiterpenoid alkaloids were found to be both chemically and biologically diverse, and their biological performance distinctly depends on both the structure of the sesquiterpene lactone-derived scaffolds and the stereochemistry of the pyrrolidine fragment. Biological investigation of the compound collection led to the discovery of a novel chemotype inhibiting Hedgehog-dependent osteoblast differentiation.
Collapse
Affiliation(s)
- Jie Liu
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of ChemistryChemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Jana Flegel
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of ChemistryChemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Felix Otte
- Technical University DortmundFaculty of ChemistryInorganic ChemistryOtto-Hahn-Strasse 644221DortmundGermany
| | - Axel Pahl
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Compound Management and Screening CenterDortmundGermany
| | - Sonja Sievers
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Compound Management and Screening CenterDortmundGermany
| | - Carsten Strohmann
- Technical University DortmundFaculty of ChemistryInorganic ChemistryOtto-Hahn-Strasse 644221DortmundGermany
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of ChemistryChemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| |
Collapse
|
27
|
Liu J, Flegel J, Otte F, Pahl A, Sievers S, Strohmann C, Waldmann H. Combination of Pseudo‐Natural Product Design and Formal Natural Product Ring Distortion Yields Stereochemically and Biologically Diverse Pseudo‐Sesquiterpenoid Alkaloids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jie Liu
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Jana Flegel
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Felix Otte
- Technical University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Axel Pahl
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Compound Management and Screening Center Dortmund Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Compound Management and Screening Center Dortmund Germany
| | - Carsten Strohmann
- Technical University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
28
|
Yildirim O, Grigalunas M, Brieger L, Strohmann C, Antonchick AP, Waldmann H. Dynamic Catalytic Highly Enantioselective 1,3-Dipolar Cycloadditions. Angew Chem Int Ed Engl 2021; 60:20012-20020. [PMID: 34236754 PMCID: PMC8456807 DOI: 10.1002/anie.202108072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Indexed: 11/06/2022]
Abstract
In dynamic covalent chemistry, reactions follow a thermodynamically controlled pathway through equilibria. Reversible covalent‐bond formation and breaking in a dynamic process enables the interconversion of products formed under kinetic control to thermodynamically more stable isomers. Notably, enantioselective catalysis of dynamic transformations has not been reported and applied in complex molecule synthesis. We describe the discovery of dynamic covalent enantioselective metal‐complex‐catalyzed 1,3‐dipolar cycloaddition reactions. We have developed a stereodivergent tandem synthesis of structurally and stereochemically complex molecules that generates eight stereocenters with high diastereo‐ and enantioselectivity through asymmetric reversible bond formation in a dynamic process in two consecutive Ag‐catalyzed 1,3‐dipolar cycloadditions of azomethine ylides with electron‐poor olefins. Time‐dependent reversible dynamic covalent‐bond formation gives enantiodivergent and diastereodivergent access to structurally complex double cycloadducts with high selectivity from a common set of reagents.
Collapse
Affiliation(s)
- Okan Yildirim
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technichal University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Michael Grigalunas
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Lukas Brieger
- Technichal University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Carsten Strohmann
- Technichal University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Andrey P Antonchick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technichal University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany.,Nottingham Trent University, Department of Chemistry and Forensics, Cifton Lane, NG11 8NS, Nottingham, UK
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technichal University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| |
Collapse
|
29
|
Yildirim O, Grigalunas M, Brieger L, Strohmann C, Antonchick AP, Waldmann H. Dynamic Catalytic Highly Enantioselective 1,3‐Dipolar Cycloadditions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Okan Yildirim
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technichal University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Michael Grigalunas
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Lukas Brieger
- Technichal University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Carsten Strohmann
- Technichal University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Andrey P. Antonchick
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technichal University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
- Nottingham Trent University Department of Chemistry and Forensics Cifton Lane NG11 8NS Nottingham UK
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technichal University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
30
|
Liu H, Ottosen RN, Jennet KM, Svenningsen EB, Kristensen TF, Biltoft M, Jakobsen MR, Poulsen TB. Macrodiolide Diversification Reveals Broad Immunosuppressive Activity That Impairs the cGAS‐STING Pathway. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Han Liu
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
- Current address: Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Rasmus N. Ottosen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Kira M. Jennet
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Esben B. Svenningsen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Tobias F. Kristensen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Mette Biltoft
- STipe Therapeutics ApS, c/o The Kitchen Peter Sabroes Gade 7 8000 Aarhus C Denmark
| | - Martin R. Jakobsen
- STipe Therapeutics ApS, c/o The Kitchen Peter Sabroes Gade 7 8000 Aarhus C Denmark
- Department of Biomedicine Aarhus University Høegh-Guldbergs Gade 10 8000 Aarhus C Denmark
| | - Thomas B. Poulsen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
31
|
Liu H, Ottosen RN, Jennet KM, Svenningsen EB, Kristensen TF, Biltoft M, Jakobsen MR, Poulsen TB. Macrodiolide Diversification Reveals Broad Immunosuppressive Activity That Impairs the cGAS-STING Pathway. Angew Chem Int Ed Engl 2021; 60:18734-18741. [PMID: 34124819 DOI: 10.1002/anie.202105793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 02/02/2023]
Abstract
The development of new immunomodulatory agents can impact various areas of medicine. In particular, compounds with the ability to modulate innate immunological pathways hold significant unexplored potential. Herein, we report a modular synthetic approach to the macrodiolide natural product (-)-vermiculine, an agent previously shown to possess diverse biological effects, including cytotoxic and immunosuppressive activity. The synthesis allows for a high degree of flexibility in modifying the macrocyclic framework, including the formation of all possible stereoisomers. In total, 18 analogues were prepared. Two analogues with minor structural modifications showed clearly enhanced cancer cell line selectivity and reduced toxicity. Moreover, these compounds possessed broad inhibitory activity against innate immunological pathways in human PBMCs, including the DNA-sensing cGAS-STING pathway. Initial mechanistic characterization suggests a surprising impairment of the STING-TBK1 interaction.
Collapse
Affiliation(s)
- Han Liu
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark.,Current address: Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Rasmus N Ottosen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Kira M Jennet
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Esben B Svenningsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Tobias F Kristensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Mette Biltoft
- STipe Therapeutics ApS, c/o The Kitchen, Peter Sabroes Gade 7, 8000, Aarhus C, Denmark
| | - Martin R Jakobsen
- STipe Therapeutics ApS, c/o The Kitchen, Peter Sabroes Gade 7, 8000, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| |
Collapse
|
32
|
Karageorgis G, Foley DJ, Laraia L, Brakmann S, Waldmann H. Pseudo Natural Products-Chemical Evolution of Natural Product Structure. Angew Chem Int Ed Engl 2021; 60:15705-15723. [PMID: 33644925 PMCID: PMC8360037 DOI: 10.1002/anie.202016575] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Indexed: 01/05/2023]
Abstract
Pseudo-natural products (PNPs) combine natural product (NP) fragments in novel arrangements not accessible by current biosynthesis pathways. As such they can be regarded as non-biogenic fusions of NP-derived fragments. They inherit key biological characteristics of the guiding natural product, such as chemical and physiological properties, yet define small molecule chemotypes with unprecedented or unexpected bioactivity. We iterate the design principles underpinning PNP scaffolds and highlight their syntheses and biological investigations. We provide a cheminformatic analysis of PNP collections assessing their molecular properties and shape diversity. We propose and discuss how the iterative analysis of NP structure, design, synthesis, and biological evaluation of PNPs can be regarded as a human-driven branch of the evolution of natural products, that is, a chemical evolution of natural product structure.
Collapse
Affiliation(s)
- George Karageorgis
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
| | - Daniel J. Foley
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Current address: School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| | - Luca Laraia
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Current address: Department of ChemistryTechnical University of Denmark, kemitorvet 2072800 Kgs.LyngbyDenmark
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Strasse 4a44227DortmundGermany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Strasse 4a44227DortmundGermany
| |
Collapse
|
33
|
Umedera K, Morita T, Yoshimori A, Yamada K, Katoh A, Kouji H, Nakamura H. Synthesis of Three-Dimensional (Di)Azatricyclododecene Scaffold and Its Application to Peptidomimetics. Chemistry 2021; 27:11888-11894. [PMID: 34060167 DOI: 10.1002/chem.202101440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 11/07/2022]
Abstract
A novel sp3 carbon-rich tricyclic 3D scaffold-based peptide mimetic compound library was constructed to target protein-protein interactions. Tricyclic framework 7 was synthesized from 9-azabicyclo[3,3,1]nonan-3-one (11) via a gold(I)-catalyzed Conia-ene reaction. The electron-donating group on the pendant alkyne of cyclization precursor 12 b-e was the key to forming 6-endo-dig cyclized product 7 with complete regioselectivity. Using the synthetic strategy for regioselective construction of bridged tricyclic framework 7, a diazatricyclododecene 3D-scaffold 8 a, which enables the introduction of substituents into the scaffold to mimic amino acid side chains, was designed and synthesized. The peptide mimetics 21 a-u were synthesized via step-by-step installation of three substituents on diazatricyclododecene scaffold 8 a. Compounds 21 a-h were synthesized as α-helix peptide mimics of hydrophobic ZZxxZ and ZxxZZ sequences (Z=Leu or Phe) and subjected to cell-based assays: antiproliferative activity, HIF-1 transcriptional activity which is considered to affect cancer malignancy, and antiviral activity against rabies virus. Compound 21 a showed the strongest inhibitory activity of HIF-1 transcriptional activity (IC50 =4.1±0.8 μM), whereas compounds 21 a-g showed antiviral activity with IC50 values of 4.2-12.4 μM, suggesting that the 3D-scaffold 8 a has potential as a versatile peptide mimic skeleton.
Collapse
Affiliation(s)
- Kohei Umedera
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Taiki Morita
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, 251-0012, Japan
| | - Kentaro Yamada
- Faculty of Agriculture Department of Veterinary Sciences, University of Miyazaki, Miyazaki, 889-2192, Japan.,Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, 879-5593, Japan
| | - Akira Katoh
- Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, 879-5593, Japan.,Institute of Advanced Medcine, Inc., Oita University, 17-20, Higashi kasuga-machi, Oita-city, Oita, 870-0037, Japan
| | - Hiroyuki Kouji
- Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, 879-5593, Japan.,Institute of Advanced Medcine, Inc., Oita University, 17-20, Higashi kasuga-machi, Oita-city, Oita, 870-0037, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| |
Collapse
|
34
|
Wilke J, Kawamura T, Xu H, Brause A, Friese A, Metz M, Schepmann D, Wünsch B, Artacho-Cordón A, Nieto FR, Watanabe N, Osada H, Ziegler S, Waldmann H. Discovery of a σ 1 receptor antagonist by combination of unbiased cell painting and thermal proteome profiling. Cell Chem Biol 2021; 28:848-854.e5. [PMID: 33567254 DOI: 10.1016/j.chembiol.2021.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022]
Abstract
Phenotypic screening for bioactive small molecules is typically combined with affinity-based chemical proteomics to uncover the respective molecular targets. However, such assays and the explored bioactivity are biased toward the monitored phenotype, and target identification often requires chemical derivatization of the hit compound. In contrast, unbiased cellular profiling approaches record hundreds of parameters upon compound perturbation to map bioactivity in a broader biological context and may link a profile to the molecular target or mode of action. Herein we report the discovery of the diaminopyrimidine DP68 as a Sigma 1 (σ1) receptor antagonist by combining morphological profiling using the Cell Painting assay and thermal proteome profiling. Our results highlight that integration of complementary profiling approaches may enable both detection of bioactivity and target identification for small molecules.
Collapse
Affiliation(s)
- Julian Wilke
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany; TU Dortmund University, Emil-Figge-Str. 72, 44221 Dortmund, Germany; RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tatsuro Kawamura
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany; RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hao Xu
- Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Alexandra Brause
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Alexandra Friese
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Malte Metz
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Antonia Artacho-Cordón
- Department of Pharmacology and Institute of Neuroscience, University of Granada, Avenida de la Investigación, 11, 18016 Granada, Spain
| | - Francisco R Nieto
- Department of Pharmacology and Institute of Neuroscience, University of Granada, Avenida de la Investigación, 11, 18016 Granada, Spain
| | - Nobumoto Watanabe
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany; TU Dortmund University, Emil-Figge-Str. 72, 44221 Dortmund, Germany.
| |
Collapse
|
35
|
Small molecule probes for targeting autophagy. Nat Chem Biol 2021; 17:653-664. [PMID: 34035513 DOI: 10.1038/s41589-021-00768-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 02/08/2021] [Indexed: 02/02/2023]
Abstract
Autophagy is implicated in a wide range of (patho)physiological processes including maintenance of cellular homeostasis, neurodegenerative disorders, aging and cancer. As such, small molecule autophagy modulators are in great demand, both for their ability to act as tools to better understand this essential process and as potential therapeutics. Despite substantial advances in the field, major challenges remain in the development and comprehensive characterization of probes that are specific to autophagy. In this Review, we discuss recent developments in autophagy-modulating small molecules, including the specific challenges faced in the development of activators and inhibitors, and recommend guidelines for their use. Finally, we discuss the potential to hijack the process for targeted protein degradation, an area of great importance in chemical biology and drug discovery.
Collapse
|
36
|
Antimicrobial Activity of Quasi-Enantiomeric Cinchona Alkaloid Derivatives and Prediction Model Developed by Machine Learning. Antibiotics (Basel) 2021; 10:antibiotics10060659. [PMID: 34073082 PMCID: PMC8229948 DOI: 10.3390/antibiotics10060659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Bacterial infections that do not respond to current treatments are increasing, thus there is a need for the development of new antibiotics. Series of 20 N-substituted quaternary salts of cinchonidine (CD) and their quasi-enantiomer cinchonine (CN) were prepared and their antimicrobial activity was assessed against a diverse panel of Gram-positive and Gram-negative bacteria. All tested compounds showed good antimicrobial potential (minimum inhibitory concentration (MIC) values 1.56 to 125.00 μg/mL), proved to be nontoxic to different human cell lines, and did not influence the production of reactive oxygen species (ROS). Seven compounds showed very strong bioactivity against some of the tested Gram-negative bacteria (MIC for E. coli and K. pneumoniae 6.25 μg/mL; MIC for P. aeruginosa 1.56 μg/mL). To establish a connection between antimicrobial data and potential energy surfaces (PES) of the compounds, activity/PES models using principal components of the disc diffusion assay and MIC and data towards PES data were built. An extensive machine learning procedure for the generation and cross-validation of multivariate linear regression models with a linear combination of original variables as well as their higher-order polynomial terms was performed. The best possible models with predicted R2(CD derivatives) = 0.9979 and R2(CN derivatives) = 0.9873 were established and presented. This activity/PES model can be used for accurate prediction of activities for new compounds based solely on their potential energy surfaces, which will enable wider screening and guided search for new potential leads. Based on the obtained results, N-quaternary derivatives of Cinchona alkaloids proved to be an excellent scaffold for further optimization of novel antibiotic species.
Collapse
|
37
|
Nöcker C, Kaiser N, Foley D, Sievers S, Janning P, Waldmann H, Laraia L. Thermal proteome profiling efficiently identifies ribosome destabilizing oxazolidinones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Grigalunas M, Burhop A, Zinken S, Pahl A, Gally JM, Wild N, Mantel Y, Sievers S, Foley DJ, Scheel R, Strohmann C, Antonchick AP, Waldmann H. Natural product fragment combination to performance-diverse pseudo-natural products. Nat Commun 2021; 12:1883. [PMID: 33767198 PMCID: PMC7994817 DOI: 10.1038/s41467-021-22174-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Natural product structure and fragment-based compound development inspire pseudo-natural product design through different combinations of a given natural product fragment set to compound classes expected to be chemically and biologically diverse. We describe the synthetic combination of the fragment-sized natural products quinine, quinidine, sinomenine, and griseofulvin with chromanone or indole-containing fragments to provide a 244-member pseudo-natural product collection. Cheminformatic analyses reveal that the resulting eight pseudo-natural product classes are chemically diverse and share both drug- and natural product-like properties. Unbiased biological evaluation by cell painting demonstrates that bioactivity of pseudo-natural products, guiding natural products, and fragments differ and that combination of different fragments dominates establishment of unique bioactivity. Identification of phenotypic fragment dominance enables design of compound classes with correctly predicted bioactivity. The results demonstrate that fusion of natural product fragments in different combinations and arrangements can provide chemically and biologically diverse pseudo-natural product classes for wider exploration of biologically relevant chemical space.
Collapse
Affiliation(s)
- Michael Grigalunas
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Annina Burhop
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Dortmund, Germany
| | - Sarah Zinken
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Dortmund, Germany
| | - Axel Pahl
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Compound Management and Screening Center, Dortmund, Germany
| | - José-Manuel Gally
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Compound Management and Screening Center, Dortmund, Germany
| | - Niklas Wild
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Yannik Mantel
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sonja Sievers
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Compound Management and Screening Center, Dortmund, Germany
| | - Daniel J Foley
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- College of Science, University of Canterbury, Canterbury, New Zealand
| | - Rebecca Scheel
- Technical University Dortmund, Faculty of Chemistry and Inorganic Chemistry, Dortmund, Germany
| | - Carsten Strohmann
- Technical University Dortmund, Faculty of Chemistry and Inorganic Chemistry, Dortmund, Germany
| | - Andrey P Antonchick
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Dortmund, Germany
- College of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Dortmund, Germany.
| |
Collapse
|
39
|
Karageorgis G, Foley DJ, Laraia L, Brakmann S, Waldmann H. Pseudo Natural Products—Chemical Evolution of Natural Product Structure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016575] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- George Karageorgis
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
| | - Daniel J. Foley
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
- Current address: School of Physical and Chemical Sciences University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand
| | - Luca Laraia
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
- Current address: Department of Chemistry Technical University of Denmark, kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Strasse 4a 44227 Dortmund Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
40
|
Liu J, Cremosnik GS, Otte F, Pahl A, Sievers S, Strohmann C, Waldmann H. Design, Synthesis, and Biological Evaluation of Chemically and Biologically Diverse Pyrroquinoline Pseudo Natural Products. Angew Chem Int Ed Engl 2021; 60:4648-4656. [PMID: 33200868 PMCID: PMC7986669 DOI: 10.1002/anie.202013731] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/27/2022]
Abstract
Natural product (NP) structures are a rich source of inspiration for the discovery of new biologically relevant chemical matter. In natural product inspired pseudo‐NPs, NP‐derived fragments are combined de novo in unprecedented arrangements. Described here is the design and synthesis of a 155‐member pyrroquinoline pseudo‐NP collection in which fragments characteristic of the tetrahydroquinoline and pyrrolidine NP classes are combined with eight different connectivities and regioisomeric arrangements. Cheminformatic analysis and biological evaluation of the compound collection by means of phenotyping in the morphological “cell painting” assay followed by principal component analysis revealed that the pseudo‐NP classes are chemically diverse and that bioactivity patterns differ markedly, and are dependent on connectivity and regioisomeric arrangement of the fragments.
Collapse
Affiliation(s)
- Jie Liu
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technical University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Gregor S Cremosnik
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Felix Otte
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Axel Pahl
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Compound Management and Screening Center, Dortmund, Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Compound Management and Screening Center, Dortmund, Germany
| | - Carsten Strohmann
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technical University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| |
Collapse
|
41
|
Liu J, Cremosnik GS, Otte F, Pahl A, Sievers S, Strohmann C, Waldmann H. Design, Synthesis, and Biological Evaluation of Chemically and Biologically Diverse Pyrroquinoline Pseudo Natural Products. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jie Liu
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Gregor S. Cremosnik
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Felix Otte
- Technical University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Axel Pahl
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Compound Management and Screening Center Dortmund Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Compound Management and Screening Center Dortmund Germany
| | - Carsten Strohmann
- Technical University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|