1
|
Fu Q, Wang L, Chen X, Pan S, Chen C, Jiang L, Gao J. Highly Selective and Excitable Artificial Ion Channel for Spike Generation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:71030-71037. [PMID: 39668636 DOI: 10.1021/acsami.4c15366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Cation channels of the neuron can be excited by neurotransmitters and have high ionic selectivity, which are crucial for the generation of spikes. Intuitively, if a channel has both a high ionic selectivity and excitability, it may be used to generate spikes. However, integrating the high selectivity and excitability in a single channel remains highly challenging. In this work, we demonstrate an artificial ion channel based on a wetting film between an oil droplet and a glass substrate. The channel height is dominated by the repulsive electrostatic interaction between the glass/water and water/oil interfaces and is therefore highly adaptable to ambient ions and charged surfactant, setting the basis for flexible control of the open/close state and ion selectivity. The channel stays in a closed state unless excited by an anionic surfactant. Once excited, the channel opens wide for monovalent ions but narrows for divalent ions, exhibiting a selectivity up to >6800. By exploiting such excitability and selectivity, we constructed a prototype artificial neuron for spike generation. Using the anionic surfactant to simulate the neurotransmitter, our artificial neuron can automatically and step-wisely open and close the channel, generating a current spike with adjustable magnitude. We expect our work to inspire the development of biomimetic devices for potential neuromorphic computing applications.
Collapse
Affiliation(s)
- Qianqian Fu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Lin Wang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Xiaolei Chen
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Shangfa Pan
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Chang Chen
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jun Gao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
| |
Collapse
|
2
|
Huang Y, Wu C, Cao Y, Zheng J, Zeng B, Li X, Li M, Tang J. Scalable integration of photoresponsive highly aligned nanochannels for self-powered ionic devices. SCIENCE ADVANCES 2024; 10:eads5591. [PMID: 39705341 DOI: 10.1126/sciadv.ads5591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
Artificial ionic nanochannels with light perception capabilities hold promise for creating ionic devices. Nevertheless, most research primarily focuses on regulating single nanochannels, leaving the cumulative effect of numerous nanochannels and their integration underexplored. We herein develop a biomimetic photoreceptor based on photoresponsive highly aligned nanochannels (pHANCs), which exhibit uniform channel heights, phototunable surface properties, and excellent compatibility with microfabrication techniques, enabling the scalable fabrication and integration into functional ionic devices. These pHANCs demonstrate exceptional ion selectivity and permeability due to the high surface charges and well-ordered conduits, resulting in outstanding energy harvesting from concentration gradients. Large-scale fabrication of pHANCs has been successfully realized, wherein hundreds of biomimetic photoreceptors produce an ultrahigh voltage over 76 volts, which has not been achieved previously. In addition, we demonstrate that the biomimetic photoreceptor can be further upscaled to be a self-powered ionic image sensor, capable of sensing and decoding incident light information.
Collapse
Affiliation(s)
- Yaxin Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Changjin Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Yingnan Cao
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jing Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Binglin Zeng
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Xiaofeng Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Mingliang Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong 999077, China
- HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, Hong Kong 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), The University of Hong Kong, Hong Kong, 999077 China
| |
Collapse
|
3
|
Jia P, Han Z, Chen J, Liu J, Wang L, Zhang X, Guo Y, Zhou J. Pt@WS 2 Mott-Schottky Heterojunction Boosts Light-Driven Active Ion Transport for Enhanced Ionic Power Harvesting. ACS NANO 2024. [PMID: 39680712 DOI: 10.1021/acsnano.4c15723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Bioinspired light-driven ion transport in two-dimensional (2D) nanofluidics offers exciting prospects for solar energy harvesting. Current single-component nanofluidic membranes often suffer from low light-induced driving forces due to the easy recombination of photogenerated electron-hole pairs. Herein, we present a Pt@WS2 Mott-Schottky heterojunction-based 2D nanofluidic membrane for boosting light-driven active ion transport and solar enhanced ionic power harvesting. The photovoltaic effect in the Mott-Schottky heterojunctions and photoconductance effect in WS2 multilayers account for more efficient charge separation across the nanofluidic membrane. In an equilibrium electrolyte solution, we observe directional cationic transport from the WS2 to the Pt region under visible-light illumination. In 10-3 M KCl electrolyte, the photocurrent and photovoltage reach 11.84 μA cm-2 and 30.67 mV, respectively. Moreover, the output power can reach up to 5.02 W m-2 under light illumination, compared to a value of 2.56 W m-2 without irradiation. This work not only introduces a driving mechanism for boosting ion transport but also offers a pathway for integrating multiple energy sources.
Collapse
Affiliation(s)
- Pan Jia
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Zhitong Han
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Jiansheng Chen
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Junchao Liu
- School of Sciences, Xi'an University of Technology, Xi'an 710048, P. R. China
| | - Lina Wang
- Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Xinyi Zhang
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Yue Guo
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Jinming Zhou
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| |
Collapse
|
4
|
Xian W, Xu X, Ge Y, Xing Z, Lai Z, Meng QW, Dai Z, Wang S, Chen R, Huang N, Ma S, Sun Q. Efficient Light-Driven Ion Pumping for Deep Desalination via the Vertical Gradient Protonation of Covalent Organic Framework Membranes. J Am Chem Soc 2024; 146:33973-33982. [PMID: 39607814 DOI: 10.1021/jacs.4c12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Traditional desalination methods face criticism due to high energy requirements and inadequate trace ion removal, whereas natural light-driven ion pumps offer superior efficiency. Current synthetic systems are constrained by short exciton lifetimes, which limit their ability to generate sufficient electric fields for effective ion pumping. We introduce an innovative approach utilizing covalent-organic framework membranes that enhance light absorption and reduce charge recombination through vertical gradient protonation of imine linkages during acid-catalyzed liquid-liquid interfacial polymerization. This technique creates intralayer and interlayer heterojunctions, facilitating interlayer hybridization and establishing a robust built-in electric field under illumination. These improvements enable the membranes to achieve remarkable ion transport across extreme concentration gradients (2000:1), with a transport rate of approximately 3.2 × 1012 ions per second per square centimeter and reduce ion concentrations to parts per billion. This performance significantly surpasses that of conventional reverse osmosis systems, representing a major advancement in solar-powered desalination technology by substantially reducing energy consumption and secondary waste.
Collapse
Affiliation(s)
- Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyi Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yongxin Ge
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Xing
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuozhi Lai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou 325802, China
| | - Sai Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 310015, China
| | - Ruotian Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Wang J, Jiang Y, Xiong T, Lu J, He X, Yu P, Mao L. Optically Modulated Nanofluidic Ionic Transistor for Neuromorphic Functions. Angew Chem Int Ed Engl 2024:e202418949. [PMID: 39588687 DOI: 10.1002/anie.202418949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 11/27/2024]
Abstract
Neuromorphic systems that can emulate the behavior of neurons have garnered increasing interest across interdisciplinary fields due to their potential applications in neuromorphic computing, artificial intelligence and brain-machine interfaces. However, the optical modulation of nanofluidic ion transport for neuromorphic functions has been scarcely reported. Herein, inspired by biological systems that rely on ions as signal carriers for information perception and processing, we present a nanofluidic transistor based on a metal-organic framework membrane (MOFM) with optically modulated ion transport properties, which can mimic the functions of biological synapses. Through the dynamic modulation of synaptic weight, we successfully replicate intricate learning-experience behaviors and Pavlovian associate learning processes by employing sequential optical stimuli. Additionally, we demonstrate the application of the International Morse Code with the nanofluidic device using patterned optical pulse signals, showing its encoding and decoding capabilities in information processing process. This study would largely advance the development of nanofluidic neuromorphic devices for biomimetic iontronics integrated with sensing, memory and computing functions.
Collapse
Affiliation(s)
- Jiao Wang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yanan Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahao Lu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiulan He
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
6
|
Wang Y, Deng D, Lin Q, Li S, Chen Z, Periyasami G, Li H, Zhang S, Liu Y, Sun Y. Gadolinium-Sensitive Artificial Nanochannel Membrane for Information Encryption. ACS NANO 2024; 18:32226-32234. [PMID: 39501759 DOI: 10.1021/acsnano.4c12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Inspired from ion channels in the myelinated axon of Xenopus laevis found to be affected by gadolinium on axonal currents, we present a solid nanochannel membrane sensitive to gadolinium (Gd3+), which can be achieved via the use of the macrocyclic triacetic acid derivative in the host-guest chemistry approach. The macrocyclic nanochannel has good responsiveness toward Gd3+, even at the nanomolar concentration level, evidenced by discernible changes in rectification, ionic conductance, and XPS analyses. Notably, the Gd3+-sensitive nanochannel membrane can be switched by the addition of a diethylenetriaminepentaacetic acid (DTPA) derivative. Further studies have indicated that the gated behavior of Gd3+ in the nanochannel can be attributed to the strong binding strength between DO3A and Gd3+, which induces a surface charge reversal within the nanochannel. The mechanism has been confirmed through several experimental techniques, including isothermal titration calorimetry (ITC) experiments, fluorescence titration experiments, and finite element analysis. Based on its Gd3+ responsiveness of the constructed ion channel, we successfully developed an advanced multilevel information encryption application of the artificial solid nanochannel membrane. Furthermore, it is anticipated that a more effective encryption system will be built by utilizing the bionic ion channel system's ease of use and straightforward functionalization.
Collapse
Affiliation(s)
- Yumei Wang
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Diandian Deng
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Qian Lin
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Shulan Li
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Zhao Chen
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Haibing Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Siyun Zhang
- North China University of Science and Technology, Tangshan 063210, P. R. China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
7
|
Yang ZJ, Yeh LH, Peng YH, Chuang YP, Wu KCW. Enhancing Ionic Selectivity and Osmotic Energy by Using an Ultrathin Zr-MOF-Based Heterogeneous Membrane with Trilayered Continuous Porous Structure. Angew Chem Int Ed Engl 2024; 63:e202408375. [PMID: 38847272 DOI: 10.1002/anie.202408375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 07/23/2024]
Abstract
Designing a nanofluidic membrane with high selectivity and fast ion transport property is the key towards high-performance osmotic energy conversion. However, most of reported membranes can produce power density less than commercial benchmark (5 W/m2), due to the imbalance between ion selectivity and permeability. Here, we report a novel nanoarchitectured design of a heterogeneous membrane with an ultrathin and dense zirconium-based UiO-66-NH2 metal-organic framework (MOF) layer and a highly aligned and interconnected branched alumina nanochannel membrane. The design leads to a continuous trilayered pore structure of large geometry gradient in the sequence from angstrom-scale to nano-scale to sub-microscale, which enables the enhanced directional ion transport, and the angstrom-sized (~6.6-7 Å) UiO-66-NH2 windows render the membrane with high ion selectivity. Consequently, the novel heterogeneous membrane can achieve a high-performance power of ~8 W/m2 by mixing synthetic seawater and river water. The power density can be largely upgraded to an ultrahigh ~17.1 W/m2 along with ~48.5 % conversion efficiency at a 50-fold KCl gradient. This work not only presents a new membrane design approach but also showcases the great potential of employing the zirconium-based MOF channels as ion-channel-mimetic membranes for highly efficient blue energy harvesting.
Collapse
Affiliation(s)
- Zhen-Jie Yang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Li-Hsien Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yu-Hsiang Peng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yi-Ping Chuang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City, 350, Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
8
|
Jin X, Zeng Y, Zhou M, Quan D, Jia M, Liu B, Cai K, Kang L, Kong XY, Wen L, Jiang L. Photo-Driven Ion Directional Transport across Artificial Ion Channels: Band Engineering of WS 2 via Peptide Modification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401264. [PMID: 38634249 DOI: 10.1002/smll.202401264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Biological photo-responsive ion channels play important roles in the important metabolic processes of living beings. To mimic the unique functions of biological prototypes, the transition metal dichalcogenides, owing to their excellent mechanical, electrical, and optical properties, are already used for artificial intelligent channel constructions. However, there remain challenges to building artificial bio-semiconductor nanochannels with finely tuned band gaps for accurately simulating or regulating ion transport. Here, two well-designed peptides are employed for the WS2 nanosheets functionalization with the sequences of PFPFPFPFC and DFDFDFDFC (PFC and DFC; P: proline, D: aspartate, and F: phenylalanine) through cysteine (Cys, C) linker, and an asymmetric peptide-WS2 membrane (AP-WS2M) could be obtained via self-assembly of peptide-WS2 nanosheets. The AP-WS2M could realize the photo-driven anti-gradient ion transport and vis-light enhanced osmotic energy conversion by well-designed working patterns. The photo-driven ion transport mechanism stems from a built-in photovoltaic motive force with the help of formed type II band alignment between the PFC-WS2 and DFC-WS2. As a result, the ions would be driven across the channels of the membrane for different applications. The proposed system provides an effective solution for building photo-driven biomimetic 2D bio-semiconductor ion channels, which could be extensively applied in the fields of drug delivery, desalination, and energy conversion.
Collapse
Affiliation(s)
- Xiaoyan Jin
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yabing Zeng
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Min Zhou
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Di Quan
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Meijuan Jia
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Biying Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, 350007, P. R. China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, 361005, P. R. China
| | - Lei Kang
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
9
|
Nie X, Li L, Sun M, Xiao T, Hu Z, Liu Z. Photosynthetic-Membrane-Like Ion Translocation in Visible-Light-Harvesting Nanofluidic Channels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311531. [PMID: 38326095 DOI: 10.1002/smll.202311531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Indexed: 02/09/2024]
Abstract
The selective uphill and downhill movement of protons in and out of photosynthetic membrane enabled by ion pumps and ion channels is key to photosynthesis. Reproducing the functions of photosynthetic membranes in artificial systems has been a persistent goal. Here, a visible-light-harvesting nanofluidic channels is reported which experimentally demonstrates the ion translocation functions of photosynthetic membranes. A molecular junction consisting of photosensitive ruthenium complexes linked to TiO2 electron acceptors forms the reaction centers in the nanofluidic channels. The visible-light-triggered vectorial electron injection into TiO2 establishes a difference in transmembrane potential across the channels, which enables uphill transport of ions against a 5-fold concentration gradient. In addition, the asymmetric charge distribution across the channels enables the unidirectional downhill movement of ions, demonstrating an ion rectification effect with a ratio of 18:1. This work, for the first time, mimics both the uphill and downhill ion translocation functions of photosynthetic membranes, which lays a foundation for nanofluidic energy conversion.
Collapse
Affiliation(s)
- Xiaoyan Nie
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Li Li
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mingyan Sun
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tianliang Xiao
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-Biotechnology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Zhaoyue Liu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
10
|
Baldo AP, Ilgen AG, Leung K. Deprotonation of formic, acetic acids and bicarbonate ion in slit silica nanopores at infinite dilution and in the presence of electrolytes. J Colloid Interface Sci 2024; 674:482-489. [PMID: 38941940 DOI: 10.1016/j.jcis.2024.05.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/30/2024]
Abstract
Dielectric effects and the coupled electrostatics between the nanoconfined and the internal/external aqueous media contribute to the observed deviations of chemistry within the nanoconfined environment when compared with unconfined systems. A systematic understanding has remained elusive, especially with respect to background salt concentration and boundary condition effects like the nanopore surface chemistry and the reference state used to calculate free energies. We utilize molecular dynamics simulations along with thermodynamic integration to determine the free energy difference associated with acid-base chemistry in 2 nm and 4 nm slit pores open to a bulk-like reservoir. pKa increases are predicted when confining acetic acid, formic acid, and bicarbonate in the slits at infinite dilution conditions. We find that confinement weakens the acids, and the modulation of outer pore surface dipole magnitudes can tune the pKa shift values, suggesting that purely "intrinsic" electrostatic effect on confinement may not exist. At sufficiently high salt concentrations, the dielectric/electrostatic effects on pKa values diminish due to charge screening effects. These discoveries enable future modifications of nanopore chemistries to achieve desirable properties for industrial applications.
Collapse
Affiliation(s)
- Anthony P Baldo
- Geochemistry Department, Sandia National Laboratories, Albuquerque, NM 87123, USA.
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, NM 87123, USA
| | - Kevin Leung
- Geochemistry Department, Sandia National Laboratories, Albuquerque, NM 87123, USA
| |
Collapse
|
11
|
Liu J, Li B, Lu G, Wang G, Zheng J, Huang L, Feng Y, Xu S, Jiang Y, Liu N. Toward Selective Transport of Monovalent Metal Ions with High Permeability Based on Crown Ether-Encapsulated Metal-Organic Framework Sub-Nanochannels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26634-26642. [PMID: 38722947 DOI: 10.1021/acsami.4c05672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Achieving selective transport of monovalent metal ions with high precision and permeability analogues to biological protein ion channels has long been explored for fundamental research and various applications, such as ion sieving, mineral extraction, and energy harvesting and conversion. However, it still remains a significant challenge to construct artificial nanofluidic devices to realize the trade-off effects between selective ion transportation and high ion permeability. In this work, we report a bioinspired functional micropipet with in situ growth of crown ether-encapsulated metal-organic frameworks (MOFs) inside the tip and realize selective transport of monovalent metal ions. The functional ion-selective micropipet with sub-nanochannels was constructed by the interfacial growth method with the formation of composite MOFs consisting of ZIF-8 and 15-crown-5. The resulting micropipet device exhibited obvious monovalent ion selectivity and high flux of Li+ due to the synergistic effects of size sieving in subnanoconfined space and specific coordination of 15-crown-5 toward Na+. The selectivity of Li+/Na+, Li+/K+, Li+/Ca2+, and Li+/Mg2+ with 15-crown-5@ZIF-8-functionalized micropipet reached 3.9, 5.2, 105.8, and 122.4, respectively, which had an obvious enhancement compared to that with ZIF-8. Notably, the ion flux of Li+ can reach up to 93.8 ± 3.6 mol h-1·m-2 that is much higher than previously reported values. Furthermore, the functional micropipet with 15-crown-5@ZIF-8 sub-nanochannels exhibited stable Li+ selectivity under various conditions, such as different ion concentrations, pH values, and mixed ion solutions. This work not only provides new opportunities for the development of MOF-based nanofluidic devices for selective ion transport but also facilitates the promising practical applications in lithium extraction from salt-like brines, sewage treatment, and other related aspects.
Collapse
Affiliation(s)
- Jiahao Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Baijun Li
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guangwen Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofeng Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Juanjuan Zheng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Liying Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yueyue Feng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Shiwei Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yanan Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Nannan Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| |
Collapse
|
12
|
Xu S, Wang G, Feng Y, Zheng J, Huang L, Liu J, Jiang Y, Wang Y, Liu N. PNA-Functionalized, Silica Nanowires-Filled Glass Microtube for Ultrasensitive and Label-Free Detection of miRNA-21. Anal Chem 2024; 96:7470-7478. [PMID: 38696229 DOI: 10.1021/acs.analchem.3c05839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
MicroRNAs (miRNAs) are endogenous and noncoding single-stranded RNA molecules with a length of approximately 18-25 nucleotides, which play an undeniable role in early cancer screening. Therefore, it is very important to develop an ultrasensitive and highly specific method for detecting miRNAs. Here, we present a bottom-up assembly approach for modifying glass microtubes with silica nanowires (SiNWs) and develop a label-free sensing platform for miRNA-21 detection. The three-dimensional (3D) networks formed by SiNWs make them abundant and highly accessible sites for binding with peptide nucleic acid (PNA). As a receptor, PNA has no phosphate groups and exhibits an overall electrically neutral state, resulting in a relatively small repulsion between PNA and RNA, which can improve the hybridization efficiency. The SiNWs-filled glass microtube (SiNWs@GMT) sensor enables ultrasensitive, label-free detection of miRNA-21 with a detection limit as low as 1 aM at a detection range of 1 aM-100 nM. Noteworthy, the sensor can still detect miRNA-21 in the range of 102-108 fM in complex solutions containing 1000-fold homologous interference of miRNAs. The high anti-interference performance of the sensor enables it to specifically recognize target miRNA-21 in the presence of other miRNAs and distinguish 1-, 3-mismatch nucleotide sequences. Significantly, the sensor platform is able to detect miRNA-21 in the lysate of breast cancer cell lines (e.g., MCF-7 cells and MDA-MB-231 cells), indicating that it has good potential in the screening of early breast cancers.
Collapse
Affiliation(s)
- Shiwei Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Guofeng Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Yueyue Feng
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Juanjuan Zheng
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Liying Huang
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Jiahao Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Yisha Jiang
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Yajun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| |
Collapse
|
13
|
Hou J, Zhao C, Zhang H. Bio-Inspired Subnanofluidics: Advanced Fabrication and Functionalization. SMALL METHODS 2024; 8:e2300278. [PMID: 37203269 DOI: 10.1002/smtd.202300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Biological ion channels can realize high-speed and high-selective ion transport through the protein filter with the sub-1-nanometer channel. Inspired by biological ion channels, various kinds of artificial subnanopores, subnanochannels, and subnanoslits with improved ion selectivity and permeability are recently developed for efficient separation, energy conversion, and biosensing. This review article discusses the advanced fabrication and functionalization methods for constructing subnanofluidic pores, channels, tubes, and slits, which have shown great potential for various applications. Novel fabrication methods for producing subnanofluidics, including top-down techniques such as electron beam etching, ion irradiation, and electrochemical etching, as well as bottom-up approaches starting from advanced microporous frameworks, microporous polymers, lipid bilayer embedded subnanochannels, and stacked 2D materials are well summarized. Meanwhile, the functionalization methods of subnanochannels are discussed based on the introduction of functional groups, which are classified into direct synthesis, covalent bond modifications, and functional molecule fillings. These methods have enabled the construction of subnanochannels with precise control of structure, size, and functionality. The current progress, challenges, and future directions in the field of subnanofluidic are also discussed.
Collapse
Affiliation(s)
- Jue Hou
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
14
|
Liu SH, Hu CK, Lu JL, Lu X, Lu CX, Yao J, Chen XC, Jiang L. Superstructured Optoionic Heterojunctions for Promoting Ion Pumping Inspired by Photoreceptor Cells. ACS NANO 2024; 18:9053-9062. [PMID: 38465964 DOI: 10.1021/acsnano.3c12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Photoreceptor cells of vertebrates feature ultrastructural membranes interspersed with abundant photosensitive ion pumps to boost signal generation and realize high gain in dim light. In light of this, superstructured optoionic heterojunctions (SSOHs) with cation-selective nanochannels are developed for manipulating photo-driven ion pumping. A template-directed bottom-up strategy is adopted to sequentially assemble graphene oxide (GO) and PEDOT:PSS into heterogeneous membranes with sculptured superstructures, which feature programmable variation in membrane topography and contain a donor-acceptor interface capable of maintaining electron-hole separation upon photoillumination. Such elaborate design endows SSOHs with a much higher magnitude of photo-driven ion flux against a concentration gradient in contrast to conventional optoionic membranes with planar configuration. This can be ascribed to the buildup of an enhanced transmembrane potential owing to the effective separation of photogenerated carriers at the heterojunction interface and the increase of energy input from photoillumination due to a synergistic effect of reflection reduction, broad-angle absorption, and wide-waveband absorption. This work unlocks the significance of membrane topographies in photo-driven transmembrane transportation and proposes such a universal prototype that could be extended to other optoionic membranes to develop high-performance artificial ion pumps for energy conversion and sensing.
Collapse
Affiliation(s)
- Sheng-Hua Liu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Chun-Kui Hu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jia-Li Lu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiaoxiao Lu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Chun-Xin Lu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, People's Republic of China
| | - Juming Yao
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xia-Chao Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
15
|
Liu P, Kong XY, Jiang L, Wen L. Ion transport in nanofluidics under external fields. Chem Soc Rev 2024; 53:2972-3001. [PMID: 38345093 DOI: 10.1039/d3cs00367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Nanofluidic channels with tailored ion transport dynamics are usually used as channels for ion transport, to enable high-performance ion regulation behaviors. The rational construction of nanofluidics and the introduction of external fields are of vital significance to the advancement and development of these ion transport properties. Focusing on the recent advances of nanofluidics, in this review, various dimensional nanomaterials and their derived homogeneous/heterogeneous nanofluidics are first briefly introduced. Then we discuss the basic principles and properties of ion transport in nanofluidics. As the major part of this review, we focus on recent progress in ion transport in nanofluidics regulated by external physical fields (electric field, light, heat, pressure, etc.) and chemical fields (pH, concentration gradient, chemical reaction, etc.), and reveal the advantages and ion regulation mechanisms of each type. Moreover, the representative applications of these nanofluidic channels in sensing, ionic devices, energy conversion, and other areas are summarized. Finally, the major challenges that need to be addressed in this research field and the future perspective of nanofluidics development and practical applications are briefly illustrated.
Collapse
Affiliation(s)
- Pei Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| |
Collapse
|
16
|
Lei D, Zhang Z, Jiang L. Bioinspired 2D nanofluidic membranes for energy applications. Chem Soc Rev 2024; 53:2300-2325. [PMID: 38284167 DOI: 10.1039/d3cs00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Bioinspired two-dimensional (2D) nanofluidic membranes have been explored for the creation of high-performance ion transport systems that can mimic the delicate transport functions of living organisms. Advanced energy devices made from these membranes show excellent energy storage and conversion capabilities. Further research and development in this area are essential to unlock the full potential of energy devices and facilitate the development of high-performance equipment toward real-world applications and a sustainable future. However, there has been minimal review and summarization of 2D nanofluidic membranes in recent years. Thus, it is necessary to carry out an extensive review to provide a survey library for researchers in related fields. In this review, the classification and the raw materials that are used to construct 2D nanofluidic membranes are first presented. Second, the top-down and bottom-up methods for constructing 2D membranes are introduced. Next, the applications of bioinspired 2D membranes in osmotic energy, hydraulic energy, mechanical energy, photoelectric conversion, lithium batteries, and flow batteries are discussed in detail. Finally, the opportunities and challenges that 2D nanofluidic membranes are likely to face in the future are envisioned. This review aims to provide a broad knowledge base for constructing high-performance bioinspired 2D nanofluidic membranes for advanced energy applications.
Collapse
Affiliation(s)
- Dandan Lei
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
| | - Zhen Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
| | - Lei Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
17
|
Ma Q, Chu W, Nong X, Zhao J, Liu H, Du Q, Sun J, Shen J, Lu SM, Lin M, Huang Y, Xia F. Local Electric Potential-Driven Nanofluidic Ion Transport for Ultrasensitive Biochemical Sensing. ACS NANO 2024; 18:6570-6578. [PMID: 38349220 DOI: 10.1021/acsnano.3c12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Nanofluidic biosensors have been widely used for detection of analytes based on the change of system resistance before and after target-probe interactions. However, their sensitivity is limited when system resistance barely changes toward low-concentration targets. Here, we proposed a strategy to address this issue by means of target-induced change of local membrane potential under relatively unchanged system resistance. The local membrane potential originated from the directional diffusion of photogenerated carriers across nanofluidic biosensors and gated photoinduced ionic current signal before and after target-probe interactions. The sensitivity of such biosensors for the detection of biomolecules such as circulating tumor DNA (ctDNA) and lysozyme exceeds that of applying a traditional strategy by more than 3 orders of magnitude under unchanged system resistance. Such biosensors can specifically detect the small molecule biomarker in the blood sample between prostate cancer patients and healthy humans. The key advantages of such nanofluidic biosensors are therefore complementary to traditional nanofluidic biosensors, with potential applications in a point-of-care analytical tool.
Collapse
Affiliation(s)
- Qun Ma
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Wenjing Chu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xianliang Nong
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Jing Zhao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hong Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Jielin Sun
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Si-Min Lu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
18
|
Liu J, Lu J, Ji W, Lu G, Wang J, Ye T, Jiang Y, Zheng J, Yu P, Liu N, Jiang Y, Mao L. Ion-Selective Micropipette Sensor for In Vivo Monitoring of Sodium Ion with Crown Ether-Encapsulated Metal-Organic Framework Subnanopores. Anal Chem 2024; 96:2651-2657. [PMID: 38306178 DOI: 10.1021/acs.analchem.3c05366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
In vivo sensing of the dynamics of ions with high selectivity is essential for gaining molecular insights into numerous physiological and pathological processes. In this work, we report an ion-selective micropipette sensor (ISMS) through the integration of functional crown ether-encapsulated metal-organic frameworks (MOFs) synthesized in situ within the micropipette tip. The ISMS features distinctive sodium ion (Na+) conduction and high selectivity toward Na+ sensing. The selectivity is attributed to the synergistic effects of subnanoconfined space and the specific coordination of 18-crown-6 toward potassium ions (K+), which largely increase the steric hindrance and transport resistance for K+ to pass through the ISMS. Furthermore, the ISMS exhibits high stability and sensitivity, facilitating real-time monitoring of Na+ dynamics in the living rat brain during spreading of the depression events process. In light of the diversity of crown ethers and MOFs, we believe this study paves the way for a nanofluidic platform for in vivo sensing and neuromorphic electrochemical sensing.
Collapse
Affiliation(s)
- Jiahao Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiahao Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guangwen Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiao Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tingyan Ye
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yisha Jiang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Juanjuan Zheng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yanan Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
19
|
Ghosh A, Karmakar S, Dey A, Maji TK. Modular Gating of Ion Transport by Postsynthetic Charge Transfer Complexation in a Metal-Organic Framework. J Am Chem Soc 2023. [PMID: 38051543 DOI: 10.1021/jacs.3c11024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Nature's design of biological ion channels that demonstrates efficient gating and selectivity brings to light a very promising model to mimic and design for achieving selective and tunable ion transport. Functionalized nanopores that permit modulation of the pore wall charges are a compelling approach to gain control over the ion transport mechanism through the pores. This makes way for employing a noncovalent supramolecular approach for attaining charge reversal of the MOF pore walls using donor-acceptor pairs that can demonstrate strong charge transfer interactions. Herein, robust Zr4+-based mesoporous MOF-808 was postsynthetically modified into an anion-selective nanochannel (MOF-808-MV) by modification with dicationic viologen-based motifs. Charge modulation and even reversal of the MOF-808-MV pore walls were then explored taking advantage of strong charge transfer interactions between the grafted dicationic viologen acceptor moieties and anionic, π-electron-rich donor guest molecules such as pyranine (PYR) and tetrathiafulvalene tetrabenzoic acid (TTF-TA). Tunability of the MOF pore charge from positive to neutral to negative was achieved via simple methodologies such as diffusion control in case of guest molecule like PYR and by pH modulation for pH-responsive guest like TTF-TA. This results in a concomitant modulation in the selectivity of the nanochannel, rendering it from anion-selective to ambipolar to cation-selective. Furthermore, as a real-time application of this ion channel, Na+ ion conductivity (σ = 3.5 × 10-5 S cm-1) was studied at ambient temperature.
Collapse
|
20
|
Guo Q, Lai Z, Zuo X, Xian W, Wu S, Zheng L, Dai Z, Wang S, Sun Q. Photoelectric responsive ionic channel for sustainable energy harvesting. Nat Commun 2023; 14:6702. [PMID: 37872199 PMCID: PMC10593762 DOI: 10.1038/s41467-023-42584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
Access to sustainable energy is paramount in today's world, with a significant emphasis on solar and water-based energy sources. Herein, we develop photo-responsive ionic dye-sensitized covalent organic framework membranes. These innovative membranes are designed to significantly enhance selective ion transport by exploiting the intricate interplay between photons, electrons, and ions. The nanofluidic devices engineered in our study showcase exceptional cation conductivity. Additionally, they can adeptly convert light into electrical signals due to photoexcitation-triggered ion movement. Combining the effects of salinity gradients with photo-induced ion movement, the efficiency of these devices is notably amplified. Specifically, under a salinity differential of 0.5/0.01 M NaCl and light exposure, the device reaches a peak power density of 129 W m-2, outperforming the current market standard by approximately 26-fold. Beyond introducing the idea of photoelectric activity in ionic membranes, our research highlights a potential pathway to cater to the escalating global energy needs.
Collapse
Affiliation(s)
- Qing Guo
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhuozhi Lai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xiuhui Zuo
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Shaochun Wu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Liping Zheng
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
21
|
Meng D, Li C, Hao C, Shi W, Xu J, Sun M, Kuang H, Xu C, Xu L. Interfacial Self-assembly of Chiral Selenide Nanomembrane for Enantiospecific Recognition. Angew Chem Int Ed Engl 2023; 62:e202311416. [PMID: 37677113 DOI: 10.1002/anie.202311416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Here, we report the synthesis of chiral selenium nanoparticles (NPs) using cysteine and the interfacial assembly strategy to generate a self-assembled nanomembrane on a large-scale with controllable morphology and handedness. The selenide (Se) NPs exhibited circular dichroism (CD) bands in the ultraviolet and visible region with a maximum intensity of 39.96 mdeg at 388 nm and optical anisotropy factors (g-factors) of up to 0.0013 while a self-assembled monolayer nanomembrane exhibited symmetrical CD approaching 72.8 mdeg at 391 nm and g-factors up to 0.0034. Analysis showed that a photocurrent of 20.97±1.55 nA was generated by the D-nanomembrane when irradiated under light while the L-nanomembrane generated a photocurrent of 20.58±1.36 nA. Owing to the asymmetric intensity of the photocurrent with respect to the handedness of the nanomembrane, an ultrasensitive recognition of enantioselective kynurenine (Kyn) was achieved by the ten-layer (10L) D-nanomembrane exhibiting a photocurrent for L-kynurenine (L-Kyn) that was 8.64-fold lower than that of D-Kyn, with a limit of detection (LOD) of 0.0074 nM for the L-Kyn, which was attributed to stronger affinity between L-Kyn and D-Se NPs. Noticeably, the chiral Se nanomembrane precisely distinguished L-Kyn in serum and cerebrospinal fluid samples from Alzheimer's disease patients and healthy subjects.
Collapse
Affiliation(s)
- Dan Meng
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chen Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research 8 Center for Neurological Diseases, No. 119 South 4th Ring West Road, Beijing, 100070, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
22
|
Zhou S, Zhang X, Xie L, He Y, Yan M, Liu T, Zeng H, Jiang L, Kong B. Dual-Functional Super-Assembled Mesoporous Carbon-Titania/AAO Hetero-Channels for Bidirectionally Photo-Regulated Ion Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301038. [PMID: 37069771 DOI: 10.1002/smll.202301038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Photo-regulated nanofluidic devices have attracted great attention in recent years due to their adjustable ion transport in real time. However, most of the photo-responsive nanofluidic devices can only adjust the ionic current unidirectionally, and cannot simultaneously increase or decrease the current signal intelligently by one device. Herein, a mesoporous carbon-titania/ anodized aluminum hetero-channels (MCT/AAO) is constructed by super-assembly strategy, which exhibits dual-function of cation selectivity and photo response. The polymer and TiO2 nanocrystals jointly build the MCT framework. Polymer framework with abundant negatively charged sites endows MCT/AAO with excellent cation selectivity, and TiO2 nanocrystals are responsible for the photo-regulated ion transport. High photo current densities of 1.8 mA m-2 (increase) and 1.2 mA m-2 (decrease) are realized by MCT/AAO benefiting from the ordered hetero-channels. Significantly, MCT/AAO can also achieve the bidirectionally adjustable osmotic energy by alternating the configurations of concentration gradient. Theoretical and experimental results reveal that the superior photo-generated potential is responsible for the bidirectionally adjustable ion transport. Consequently, MCT/AAO performs the function of harvesting ionic energy from the equilibrium electrolyte solution, which greatly expands its practical application field. This work provides a new strategy in constructing dual-functional hetero-channels toward bidirectionally photo-regulated ionic transport and energy harvesting.
Collapse
Affiliation(s)
- Shan Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Xin Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Lei Xie
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yanjun He
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Miao Yan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Tianyi Liu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Hui Zeng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Kong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, P. R. China
- Shandong Research Institute, Fudan University, Jinan, Shandong, 250103, P. R. China
| |
Collapse
|
23
|
Wu MY, Mo RJ, Ding XL, Huang LQ, Li ZQ, Xia XH. Homochiral Zeolitic Imidazolate Framework with Defined Chiral Microenvironment for Electrochemical Enantioselective Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301460. [PMID: 37081282 DOI: 10.1002/smll.202301460] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/02/2023] [Indexed: 05/03/2023]
Abstract
The recognition and separation of chiral molecules with similar structure are of great industrial and biological importance. Development of highly efficient chiral recognition systems is crucial for the precise application of these chiral molecules. Herein, a homochiral zeolitic imidazolate frameworks (c-ZIF) functionalized nanochannel device that exhibits an ideal platform for electrochemical enantioselective recognition is reported. Its distinct chiral binding cavity enables more sensitive discrimination of tryptophan (Trp) enantiomer pairs than other smaller chiral amino acids owing to its size matching to the target molecule. It is found that introducing neighboring aldehyde groups into the chiral cavity will result in an inferior chiral Trp recognition due to the decreased adsorption-energy difference of D- and L-Trp on the chiral sites. This study may provide an alternative strategy for designing efficient chiral recognition devices by utilizing the homochiral reticular materials and tailoring their chiral environments.
Collapse
Affiliation(s)
- Ming-Yang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ri-Jian Mo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Li-Qiu Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
24
|
Yao B, Hussain S, Ye Z, Peng X. Electrodeposited MOFs Membrane with In Situ Incorporation of Charged Molecules for Osmotic Energy Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207559. [PMID: 36725315 DOI: 10.1002/smll.202207559] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/12/2023] [Indexed: 05/04/2023]
Abstract
Ion-selective membranes are considered as the promising candidates for osmotic energy harvesting. However, the fabrication of highly perm-selective membrane is the major challenge. Metal-organic frameworks (MOFs) with well-defined nanochannels along functional charged groups show great importance to tackle this problem. Here, a series of dense sodium polystyrene sulfonate (PSS) incorporated MOFs composite membranes (PSS@MOFs) on a porous anodic aluminum oxide (AAO) membrane via in situ anodic electrodeposition process are developed. Benefiting to the novel structural design of the confined Ag layer, PSS@MOFs dense composite membrane with less defects formed. The sulfonated nanochannels of the PSS@MOFs composite membrane provided rapid and selective transport of cations due to the enhanced electrostatic interaction between the permeating ions and MOFs. While osmotic energy conversion, 860 nm thick negatively charged PSS@MOFs composite membrane achieves an ultrahigh cation transfer number of 0.993 and energy conversion efficiency of 48.8% at a 100-fold salinity gradient. Moreover, a large output power of 2.90 µW has been achieved with an ultra-low internal resistance of 999 Ω, employing an effective area of 12.56 mm2 . This work presents a promising strategy to construct a high-performance MOFs-based osmotic energy harvesting system for practical applications.
Collapse
Affiliation(s)
- Bing Yao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, ERC of Membrane and Water Treatment, MOE, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shabab Hussain
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, ERC of Membrane and Water Treatment, MOE, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, ERC of Membrane and Water Treatment, MOE, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Xinsheng Peng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, ERC of Membrane and Water Treatment, MOE, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| |
Collapse
|
25
|
Cervera J, Ramirez P, Nasir S, Ali M, Ensinger W, Siwy ZS, Mafe S. Cation pumping against a concentration gradient in conical nanopores characterized by load capacitors. Bioelectrochemistry 2023; 152:108445. [PMID: 37086711 DOI: 10.1016/j.bioelechem.2023.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023]
Abstract
We study the cation transport against an external concentration gradient (cation pumping) that occurs in conical nanopores when zero-average oscillatory and white noise potentials are externally applied. This pumping, based on the electrically asymmetric nanostructure, is characterized here by a load capacitor arrangement. In the case of white noise signals, the conical nanopore acts as an electrical valve that allows extraction of order from chaos. No molecular carriers, specific ion pumps, and competitive ion-binding phenomena are required. The nanopore conductance on/off states mimic those of the voltage-gated ion channels in the cell membrane. These channels allow modulating membrane potentials and ionic concentration gradients along oscillatory pulses in circadian rhythms and the cell cycle. We show that the combination of asymmetric nanostructures with load capacitors can be useful for the understanding of nanofluidic processes based on bioelectrochemical gradients.
Collapse
Affiliation(s)
- Javier Cervera
- Departament de Física de la Terra i Termodinàmica, Universitat de València, E-46100 Burjassot, Spain.
| | - Patricio Ramirez
- Departament de Física Aplicada, Universitat Politècnica de València, E-46022 València, Spain
| | - Saima Nasir
- Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany; Department of Material- and Geo-Sciences, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | - Mubarak Ali
- Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany; Department of Material- and Geo-Sciences, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | - Wolfgang Ensinger
- Department of Material- and Geo-Sciences, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | - Zuzanna S Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Salvador Mafe
- Departament de Física de la Terra i Termodinàmica, Universitat de València, E-46100 Burjassot, Spain.
| |
Collapse
|
26
|
Li X, Jiang G, Jian M, Zhao C, Hou J, Thornton AW, Zhang X, Liu JZ, Freeman BD, Wang H, Jiang L, Zhang H. Construction of angstrom-scale ion channels with versatile pore configurations and sizes by metal-organic frameworks. Nat Commun 2023; 14:286. [PMID: 36653373 PMCID: PMC9849445 DOI: 10.1038/s41467-023-35970-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Controllable fabrication of angstrom-size channels has been long desired to mimic biological ion channels for the fundamental study of ion transport. Here we report a strategy for fabricating angstrom-scale ion channels with one-dimensional (1D) to three-dimensional (3D) pore structures by the growth of metal-organic frameworks (MOFs) into nanochannels. The 1D MIL-53 channels of flexible pore sizes around 5.2 × 8.9 Å can transport cations rapidly, with one to two orders of magnitude higher conductivities and mobilities than MOF channels of hybrid pore configurations and sizes, including Al-TCPP with 1D ~8 Å channels connected by 2D ~6 Å interlayers, and 3D UiO-66 channels of ~6 Å windows and 9 - 12 Å cavities. Furthermore, the 3D MOF channels exhibit better ion sieving properties than those of 1D and 2D MOF channels. Theoretical simulations reveal that ion transport through 2D and 3D MOF channels should undergo multiple dehydration-rehydration processes, resulting in higher energy barriers than pure 1D channels. These findings offer a platform for studying ion transport properties at angstrom-scale confinement and provide guidelines for improving the efficiency of ionic separations and nanofluidics.
Collapse
Affiliation(s)
- Xingya Li
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Gengping Jiang
- grid.412787.f0000 0000 9868 173XCollege of Science, Wuhan University of Science and Technology, Wuhan, 430072 China
| | - Meipeng Jian
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Chen Zhao
- grid.1017.70000 0001 2163 3550Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000 Australia
| | - Jue Hou
- grid.1017.70000 0001 2163 3550Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000 Australia
| | - Aaron W. Thornton
- grid.1016.60000 0001 2173 2719Manufacturing, CSIRO, Clayton, VIC 3168 Australia
| | - Xinyi Zhang
- grid.34418.3a0000 0001 0727 9022Hubei Key Laboratory of Ferro- & Piezoelectric Materials and Devices, Faculty of Physics & Electronic Science, Hubei University, Wuhan, 430062 China
| | - Jefferson Zhe Liu
- grid.1008.90000 0001 2179 088XDepartment of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Benny D. Freeman
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia ,grid.89336.370000 0004 1936 9924Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Huanting Wang
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Lei Jiang
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Huacheng Zhang
- grid.1017.70000 0001 2163 3550Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000 Australia
| |
Collapse
|
27
|
Li C, Jiang Y, Wu Z, Zhang Y, Huang C, Cheng S, You Y, Zhang P, Chen W, Mao L, Jiang L. Mixed Matrix Membrane with Penetrating Subnanochannels: A Versatile Nanofluidic Platform for Selective Metal Ion Conduction. Angew Chem Int Ed Engl 2023; 62:e202215906. [PMID: 36374215 DOI: 10.1002/anie.202215906] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 11/16/2022]
Abstract
Biological ion channels penetrated through cell membrane form unique transport pathways for selective ionic conductance. Replicating the success of ion selectivity with mixed matrix membranes (MMMs) will enable new separation technologies but remains challenging. Herein, we report a soft substrate-assisted solution casting method to develop MMMs with penetrating subnanochannels for selective metal ion conduction. The MMMs are composed of penetrating Prussian white (PW) microcubes with subnanochannels in dense polyimide (PI) matrices, achieving selective monovalent metal ion conduction. The ion selectivity of K+ /Mg2+ is up to 14.0, and the ion conductance of K+ can reach 45.5 μS with the testing diameter of 5 mm, which can be further improved by increasing the testing area. Given the diversity of nanoporous materials and polymer matrices, we expect that the MMMs with penetrating subnanochannels could be developed into a versatile nanofluidic platform for various emerging applications.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yanan Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zihan Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Youcai Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Cheng Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Sha Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ya You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China.,Hubei Longzhong Laboratory, Xiangyang, 441000, P. R. China
| | - Pengchao Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China.,Hubei Longzhong Laboratory, Xiangyang, 441000, P. R. China
| | - Wen Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
28
|
Ren Y, Qi P, Wan Y, Chen C, Chen X, Feng S, Luo J. Planting Anion Channels in a Negatively Charged Polyamide Layer for Highly Selective Nanofiltration Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:18018-18029. [PMID: 36445263 DOI: 10.1021/acs.est.2c06582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A nanofiltration (NF) membrane with high salt permeation and high retention of small organics is appealing for the treatment of high-salinity organic wastewater. However, the conventional negatively charged NF membranes commonly show high retention of divalent anions (e.g., SO42-), and the reported positively charged NF membranes normally suffer super low selectivity for small organics/Na2SO4 and high fouling potential. In this work, we propose a novel "etching-swelling-planting" strategy assisted by interfacial polymerization and mussel-inspired catecholamine chemistry to prepare a mix-charged NF membrane. By X-ray photoelectron spectroscopy depth profiling and pore size distribution analysis, it was found that such a strategy could not only deepen the positive charge distribution but also narrow the pore size. Molecular dynamics confirm that the planted polyethyleneimine chains play an important role to relay SO42- ions to facilitate their transport across the membrane, thus reversing the retention of Na2SO4 and glucose (43 vs 71%). Meanwhile, due to the high surface hydrophilicity and smoothness as well as the preservation of abundant negatively charged groups (-OH and -COOH) inside the separation layer, the obtained membrane exhibited excellent antifouling performance, even for the coking wastewater. This study advances the importance of vertical charge distribution of NF membranes in separation selectivity and antifouling performance.
Collapse
Affiliation(s)
- Yuling Ren
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
| | - Pengfei Qi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin300387, China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou341119, China
| | - Chulong Chen
- ZheJiang MEY Membrane Technology Co., Ltd., Hangzhou310012, China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
| | - Shichao Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
29
|
Qin H, Ding X, Cheng SQ, Qin SY, Han X, Sun Y, Liu Y. An H 2S-Regulated Artificial Nanochannel Fabricated by a Supramolecular Coordination Strategy. J Phys Chem Lett 2022; 13:9232-9237. [PMID: 36173107 DOI: 10.1021/acs.jpclett.2c02233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Hydrogen sulfide (H2S), as the third gasotransmitter, has an important impact on physiological and pathological activities. Herein, we fabricated an artificial nanochannel with a conductance value of 2.01 nS via a supramolecular coordination strategy. Benefiting from the unique H2S-mediated covalent reaction, the nanochannel biosensor could change from ON to OFF states with the addition of H2S. Furthermore, this nanochannel directed the ion transport, showing a high rectification ratio as well as gating ratio. Subsequently, theoretical simulations were conducted to help to reveal the possible mechanism of the functionalized nanochannel. This study can provide insights for better understanding the process of H2S-regulated biological channels and fabricating gas gated nanofluids.
Collapse
Affiliation(s)
- Huan Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiaolong Ding
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Anhui, 243002, China
| | - Shi-Qi Cheng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Si-Yong Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Anhui, 243002, China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
30
|
Abstract
Ion pumps are important membrane-spanning transporters that pump ions against the electrochemical gradient across the cell membrane. In biological systems, ion pumping is essential to maintain intracellular osmotic pressure, to respond to external stimuli, and to regulate physiological activities by consuming adenosine triphosphate. In recent decades, artificial ion pumping systems with diverse geometric structures and functions have been developing rapidly with the progress of advanced materials and nanotechnology. In this Review, bioinspired artificial ion pumps, including four categories: asymmetric structure-driven ion pumps, pH gradient-driven ion pumps, light-driven ion pumps, and electron-driven ion pumps, are summarized. The working mechanisms, functions, and applications of those artificial ion pumping systems are discussed. Finally, a brief conclusion of underpinning challenges and outlook for future research are tentatively discussed.
Collapse
Affiliation(s)
- Tingting Mei
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| | - Hongjie Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| | - Kai Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| |
Collapse
|
31
|
Li L, Sun M, Hu Z, Nie X, Xiao T, Liu Z. Cation-Selective Oxide Semiconductor Mesoporous Membranes for Biomimetic Ion Rectification and Light-Powered Ion Pumping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202910. [PMID: 35931463 DOI: 10.1002/smll.202202910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Artificial membranes precisely imitating the biological functions of ion channels and ion pumps have attracted significant attention to explore nanofluidic energy conversion. Herein, inspired by the cyclic ion transport for the photosynthesis in purple bacteria, a bilayer inorganic membrane (TiO2 /AAO) composed of oxide semiconductor (TiO2 ) mesopores on anodic alumina (AAO) macropores is we developed. This inorganic membrane achieves the functions of ion channels and ion pumps, including the ion rectification and light-powered ion pumping. The asymmetric charge distribution across the bilayer membrane contributes to the cationic selectivity and ion rectification characteristics. The electrons induced by ultraviolet irradiation introduce a built-in electric field across TiO2 /AAO membrane, which pumps the active ion transport from a low to a high concentration. This work integrates the functions of biological ion channels and ion pumps within an artificial membrane for the first time, which paves the way to explore multifunctional membranes analogous to its biological counterpart.
Collapse
Affiliation(s)
- Li Li
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mingyan Sun
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaoyan Nie
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tianliang Xiao
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Zhaoyue Liu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
32
|
Zhang Y, Lin Y, Ying J, Zhang W, Jin Y, Matsuyama H, Yu J. Highly Efficient Monovalent Ion Transport Enabled by Ionic
Crosslinking‐Induced
Nanochannels. AIChE J 2022. [DOI: 10.1002/aic.17825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yiren Zhang
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering East China University of Science and Technology Shanghai China
| | - Yuqing Lin
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering East China University of Science and Technology Shanghai China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai China
| | - Jiadi Ying
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering East China University of Science and Technology Shanghai China
| | - Wei Zhang
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering East China University of Science and Technology Shanghai China
| | - Yan Jin
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering East China University of Science and Technology Shanghai China
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering Kobe University Kobe Japan
| | - Jianguo Yu
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
33
|
Zeng S, Wang Y, Zhou Y, Li W, Zhou W, Zhou X, Wang M, Zhao X, Ren L. Mixed-linker synthesis of L-histidine@zeolitic imidazole framework-8 on amyloid nanofibrils-modified polyacrylonitrile membrane with high separation and antifouling properties. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Li ZQ, Zhu GL, Mo RJ, Wu MY, Ding XL, Huang LQ, Wu ZQ, Xia XH. Light-Enhanced Osmotic Energy Harvester Using Photoactive Porphyrin Metal-Organic Framework Membranes. Angew Chem Int Ed Engl 2022; 61:e202202698. [PMID: 35293120 DOI: 10.1002/anie.202202698] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/11/2022]
Abstract
High ion selectivity and permeability, as two contradictory aspects for the membrane design, highly hamper the development of osmotic energy harvesting technologies. Metal-organic frameworks (MOFs) with ultra-small and high-density pores and functional surface groups show great promise in tackling these problems. Here, we propose a facile and mild cathodic deposition method to directly prepare crack-free porphyrin MOF membranes on a porous anodic aluminum oxide for osmotic energy harvesting. The abundant carboxyl groups of the functionalized porphyrin ligands together with the nanoporous structure endows the MOF membrane with high cation selectivity and ion permeability, thus a large output power density of 6.26 W m-2 is achieved. The photoactive porphyrin ligands further lead to an improvement of the power density to 7.74 W m-2 upon light irradiation. This work provides a promising strategy for the design of high-performance osmotic energy harvesting systems.
Collapse
Affiliation(s)
- Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guan-Long Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ri-Jian Mo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ming-Yang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Li-Qiu Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zeng-Qiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
35
|
Yao L, Li Q, Pan S, Cheng J, Liu X. Bio-Inspired Salinity-Gradient Power Generation With UiO-66-NH2 Metal-Organic Framework Based Composite Membrane. Front Bioeng Biotechnol 2022; 10:901507. [PMID: 35528210 PMCID: PMC9068881 DOI: 10.3389/fbioe.2022.901507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
Salinity-gradient directed osmotic energy between seawater and river water has been widely considered as a promising clean and renewable energy source, as there are numerous river estuaries on our planet. In the past few decades, reverse electrodialysis (RED) technique based on cation-selective membranes has been used as the key strategy to convert osmotic energy into electricity. From this aspect, developing high-efficiency anion-selective membranes will also have great potential for capturing osmotic energy, however, remains systematically unexplored. In nature, electric eels can produce electricity from ionic gradients by using their “sub-nanoscale” protein ion channels to transport ions selectively. Inspired by this, here we developed a UiO-66-NH2 metal-organic framework (MOF) based anion-selective composite membrane with sub-nanochannels, and achieved high-performance salinity-gradient power generation by mixing artificial seawater (0.5 M NaCl) and river water (0.01 M NaCl). The UiO-66-NH2 metal-organic framework based composite membranes can be easily and economically fabricated with dense structure and long-term working stability in saline, and its performance of power generation can also be adjusted by pH to enhance the surface charge density of the MOF sub-nanochannels. This study will inspire the exploitation of MOFs for investigating the sub-nanochannel directed high-performance salinity-gradient energy harvesting systems based on anion-selective ion transport.
Collapse
Affiliation(s)
- Lu Yao
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao, China
| | - Qi Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Shangfa Pan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Junmei Cheng
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao, China
- *Correspondence: Junmei Cheng, ; Xueli Liu,
| | - Xueli Liu
- College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao, China
- *Correspondence: Junmei Cheng, ; Xueli Liu,
| |
Collapse
|
36
|
Nie X, Hu Z, Xiao T, Li L, Jin J, Liu K, Liu Z. Light-Powered Ion Pumping in a Cation-Selective Conducting Polymer Membrane. Angew Chem Int Ed Engl 2022; 61:e202201138. [PMID: 35133687 DOI: 10.1002/anie.202201138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/09/2022]
Abstract
The simulation of the ion pumping against a proton gradient energized by light in photosynthesis is of significant importance for the energy conversion in a non-biological environment. Herein, we report light-powered ion pumping in a polystyrene sulfonate anion (PSS) doped polypyrrole (PPy) conducting polymer membrane (PSS-PPy) with a symmetric geometry. This PSS-PPy conducting polymer membrane exhibits a cationic selectivity and a light-responsive surface-charge-governed ion transport attributed to the negatively charged PSS groups. An asymmetric visible irradiation on one side of the PSS-PPy membrane induces a built-in electric field across the membrane due to the intrinsic photoelectronic property of PPy, which drives the cationic transport against the concentration gradient, demonstrating an ion-pumping effect. This work is a prototype that uses a geometry-symmetric conducting polymer membrane as a light-powered artificial ion pump for active ion transport, which exhibits potential applications in nanofluidic energy conversion.
Collapse
Affiliation(s)
- Xiaoyan Nie
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Tianliang Xiao
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Li Li
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jiao Jin
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Kesong Liu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zhaoyue Liu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
37
|
Two-dimensional lamellar MXene/three-dimensional network bacterial nanocellulose nanofiber composite Janus membranes as nanofluidic osmotic power generators. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Kan X, Wu C, Wen L, Jiang L. Biomimetic Nanochannels: From Fabrication Principles to Theoretical Insights. SMALL METHODS 2022; 6:e2101255. [PMID: 35218163 DOI: 10.1002/smtd.202101255] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Biological nanochannels which can regulate ionic transport across cell membranes intelligently play a significant role in physiological functions. Inspired by these nanochannels, numerous artificial nanochannels have been developed during recent years. The exploration of smart solid-state nanochannels can lay a solid foundation, not only for fundamental studies of biological systems but also practical applications in various fields. The basic fabrication principles, functional materials, and diverse applications based on artificial nanochannels are summarized in this review. In addition, theoretical insights into transport mechanisms and structure-function relationships are discussed. Meanwhile, it is believed that improvements will be made via computer-guided strategy in designing more efficient devices with upgrading accuracy. Finally, some remaining challenges and perspectives for developments in both novel conceptions and technology of this inspiring research field are stated.
Collapse
Affiliation(s)
- Xiaonan Kan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
39
|
Li Z, Zhu G, Mo R, Wu M, Ding X, Huang L, Wu Z, Xia X. Light‐Enhanced Osmotic Energy Harvester Using Photoactive Porphyrin Metal–Organic Framework Membranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhong‐Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Guan‐Long Zhu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Ri‐Jian Mo
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Ming‐Yang Wu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xin‐Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Li‐Qiu Huang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Zeng‐Qiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xing‐Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
40
|
Lu J, Jiang Y, Yu P, Jiang W, Mao L. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels. Chem Asian J 2022; 17:e202200158. [PMID: 35324076 DOI: 10.1002/asia.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Indexed: 11/10/2022]
Abstract
Biological nanochannels perfectly operate in organisms and exquisitely control mass transmembrane transport for complex life process. Inspired by biological nanochannels, plenty of intelligent artificial solid-state nanopores and nanochannels are constructed based on various materials and methods with the development of nanotechnology. Specially, the light-controlled nanopores/nanochannels have attracted much attention due to the unique advantages in terms of that ion and molecular transport can be regulated remotely, spatially and temporally. According to the structure and function of biological ion channels, light-controlled solid-state nanopores/nanochannels can be divided into light-regulated ion channels with ion gating and ion rectification functions, and light-driven ion pumps with active ion transport property. In this review, we present a systematic overview of light-controlled ion channels and ion pumps according to the photo-responsive components in the system. Then, the related applications of solid-state nanopores/nanochannels for molecular sensing, water purification and energy conversion are discussed. Finally, a brief conclusion and short outlook are offered for future development of the nanopore/nanochannel field.
Collapse
Affiliation(s)
- Jiahao Lu
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yanan Jiang
- Beijing Normal University, College of Chemistry, CHINA
| | - Ping Yu
- Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Wei Jiang
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Lanqun Mao
- Beijing Normal University, College of Chemistry, No.19, Xinjiekouwai St, Haidian District, 100875, Beijing, CHINA
| |
Collapse
|
41
|
Lu J, Jiang Y, Xiong T, Yu P, Jiang W, Mao L. Light-Regulated Nanofluidic Ionic Diodes with Heterogeneous Channels Stemming from Asymmetric Growth of Metal-Organic Frameworks. Anal Chem 2022; 94:4328-4334. [PMID: 35245019 DOI: 10.1021/acs.analchem.1c05025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanofluidic ionic diodes have attracted much attention, because of the unique property of asymmetric ion transport and promising applications in molecular sensing and biosensing. However, it remains a challenge to fabricate diode-like nanofluidic system with molecular-size pores. Herein, we report a new and facile approach to construct nanofluidic ionic diode by in situ asymmetric growth of metal-organic frameworks (MOFs) in nanochannels. We implement microwave-assisted strategy to obtain asymmetric distribution of MOFs in porous anodic aluminum oxide with barrier layer on one side. After etching the barrier layer and modifying with positively charged molecules, the nanofluidic device possesses asymmetric geometry and surface charge, performing the ionic current rectification (ICR) behavior in different electrolyte concentrations. Moreover, the ICR ratio is readily regulated with visible light illumination mainly due to the enhancement of surface charge of MOFs, which is further confirmed by finite element simulation. This study provides a reliable way to build the nanofluidic platform for investigating the asymmetric ion transport through the molecular-size pores, which is envisaged to be important for molecular sensing based on ICR with molecular-size pores.
Collapse
Affiliation(s)
- Jiahao Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Yanan Jiang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.,College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
42
|
Cheng SQ, Zhang SY, Min XH, Tao MJ, Han XL, Sun Y, Liu Y. Photoresponsive Solid Nanochannels Membranes: Design and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105019. [PMID: 34910848 DOI: 10.1002/smll.202105019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Indexed: 06/14/2023]
Abstract
Light stimuli have notable advantages over other environmental stimuli, such as more precise spatial and temporal regulation, and the ability to serve as an energy source to power the system. In nature, photoresponsive nanochannels are important components of organisms, with examples including the rhodopsin channels in optic nerve cells and photoresponsive protein channels in the photosynthesis system of plants. Inspired by biological channels, scientists have constructed various photoresponsive, smart solid-state nanochannels membranes for a range of applications. In this review, the methods and applications of photosensitive nanochannels membranes are summarized. The authors believe that this review will inspire researchers to further develop multifunctional artificial nanochannels for applications in the fields of biosensors, stimuli-responsive smart devices, and nanofluidic devices, among others.
Collapse
Affiliation(s)
- Shi-Qi Cheng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Si-Yun Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, P. R. China
| | - Xue-Hong Min
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Ming-Jie Tao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Xiao-Le Han
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Yue Sun
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, P. R. China
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
43
|
Zhang H, Li X, Hou J, Jiang L, Wang H. Angstrom-scale ion channels towards single-ion selectivity. Chem Soc Rev 2022; 51:2224-2254. [PMID: 35225300 DOI: 10.1039/d1cs00582k] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Artificial ion channels with ion permeability and selectivity comparable to their biological counterparts are highly desired for efficient separation, biosensing, and energy conversion technologies. In the past two decades, both nanoscale and sub-nanoscale ion channels have been successfully fabricated to mimic biological ion channels. Although nanoscale ion channels have achieved intelligent gating and rectification properties, they cannot realize high ion selectivity, especially single-ion selectivity. Artificial angstrom-sized ion channels with narrow pore sizes <1 nm and well-defined pore structures mimicking biological channels have accomplished high ion conductivity and single-ion selectivity. This review comprehensively summarizes the research progress in the rational design and synthesis of artificial subnanometer-sized ion channels with zero-dimensional to three-dimensional pore structures. Then we discuss cation/anion, mono-/di-valent cation, mono-/di-valent anion, and single-ion selectivities of the synthetic ion channels and highlight their potential applications in high-efficiency ion separation, energy conversion, and biological therapeutics. The gaps of single-ion selectivity between artificial and natural channels and the connections between ion selectivity and permeability of synthetic ion channels are covered. Finally, the challenges that need to be addressed in this research field and the perspective of angstrom-scale ion channels are discussed.
Collapse
Affiliation(s)
- Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Xingya Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria 3168, Australia
| | - Lei Jiang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
44
|
Nie X, Hu Z, Xiao T, Li L, Jin J, Liu K, Liu Z. Light‐Powered Ion Pumping in a Cation‐Selective Conducting Polymer Membrane. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoyan Nie
- School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics Northwestern University Evanston IL 60208 USA
| | - Tianliang Xiao
- School of Energy and Power Engineering Beihang University Beijing 100191 P. R. China
| | - Li Li
- School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Jiao Jin
- School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Kesong Liu
- School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Zhaoyue Liu
- School of Chemistry Beihang University Beijing 100191 P. R. China
| |
Collapse
|
45
|
Zhou S, Xie L, Yan M, Zeng H, Zhang X, Zeng J, Liang Q, Liu T, Chen P, Jiang L, Kong B. Super-assembly of freestanding graphene oxide-aramid fiber membrane with T-mode subnanochannels for sensitive ion transport. Analyst 2022; 147:652-660. [PMID: 35060575 DOI: 10.1039/d1an02232f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomimetic nacre-like membranes composed of two-dimensional lamellar sheets and one-dimensional nanofibers exhibit high mechanical strength and excellent stability. Thus, they show substantial application in the field of membrane science and water purification. However, the limited techniques for the assembly of two-dimensional lamellar membranes and one-dimensional nanofibers hamper their development and application. Herein, we developed a nacre-like and freestanding graphene oxide/aramid fiber membrane with abundant T-mode subnanochannels by introducing aramid fibers into graphene oxide interlamination via the super-assembly interaction between graphene oxide and aramid fibers. Benefiting from the presence of stable and adjustable sub-nanometer-size ion transport channels, the graphene oxide/aramid fiber composite membrane exhibited excellent mono/divalent ion selectivity of 3.51 (K+/Mg2+), which is superior to that of the pure graphene oxide membrane. The experimental results suggest that the mono/divalent ion selectivity is ascribed to the subnanochannels in the graphene oxide/aramid fiber composite membrane, electrostatic repulsion interaction and strong interaction between the divalent metal ion and carboxyl groups. Moreover, the composite membrane exhibited remarkable charge selectivity with a K+/Cl- ratio of up to ∼158, indicating that this graphene oxide/aramid fiber composite membrane has great potential for application in energy conversion. This study provides an avenue to prepare freestanding and nacre-like composite membranes with abundant T-mode ion transport channels for ion recognition and energy conversion, which also shows great application prospects in the field of membrane science and water purification.
Collapse
Affiliation(s)
- Shan Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Lei Xie
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Miao Yan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Hui Zeng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Xin Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Jie Zeng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Qirui Liang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Tianyi Liu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Pu Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Biao Kong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
46
|
Two-dimensional metal-organic framework nanosheet composites: Preparations and applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Tan S, Liang C, Zhu Y, Liu N, Zhang J, Ye T, Yi K, Tang X, Shi Q. Metal-organic framework-based micropipette is a metal ion responsive nanochannel after adsorbing H 2S. Chem Commun (Camb) 2021; 57:7152-7155. [PMID: 34184013 DOI: 10.1039/d1cc02411f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glass micropipettes are easy to fabricate, have excellent flexibility and stable properties. HKUST-1 and MIL-68(In) are in situ grown in the tip of a micropipette to construct porous nanochannels. After absorbing H2S, the MIL-68(In)-based nanochannel shows effective metal ion responsiveness for Hg2+-detection.
Collapse
Affiliation(s)
- Shiyi Tan
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China. and College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.
| | - Chenglong Liang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.
| | - Yue Zhu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China. and College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China. and Institute of New Materials and Industrial Technology, Wenzhou University, Wenzhou 325000, P. R. China
| | - Jinzheng Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China. and College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.
| | - Tingyan Ye
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China. and College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.
| | - Kangyan Yi
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China. and College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.
| | - Xingxing Tang
- College of Optoelectronic Manufacturing, Zhejiang Industry and Trade Vocational College, Wenzhou 325003, China
| | - Qian Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.
| |
Collapse
|
48
|
Artificial sodium-selective ionic device based on crown-ether crystals with subnanometer pores. Nat Commun 2021; 12:5231. [PMID: 34471132 PMCID: PMC8410819 DOI: 10.1038/s41467-021-25597-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Biological sodium channels ferry sodium ions across the lipid membrane while rejecting potassium ions and other metal ions. Realizing such ion selectivity in an artificial solid-state ionic device will enable new separation technologies but remains highly challenging. In this work, we report an artificial sodium-selective ionic device, built on synthesized porous crown-ether crystals which consist of densely packed 0.26-nm-wide pores. The Na+ selectivity of the artificial sodium-selective ionic device reached 15 against K + , which is comparable to the biological counterpart, 523 against Ca2 + , which is nearly two orders of magnitude higher than the biological one, and 1128 against Mg2 + . The selectivity may arise from the size effect and molecular recognition effect. This work may contribute to the understanding of the structure-performance relationship of ion selective nanopores.
Collapse
|
49
|
Dai Z, Guo J, Zhao C, Gao Z, Song YY. Fabrication of Homochiral Metal-Organic Frameworks in TiO 2 Nanochannels for In Situ Identification of 3,4-Dihydroxyphenylalanine Enantiomers. Anal Chem 2021; 93:11515-11524. [PMID: 34378917 DOI: 10.1021/acs.analchem.1c01903] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enantioselective identification of chiral molecules is important for biomedical and pharmaceutical research. However, owing to identical molecular formulas and chemical properties of enantiomers, signal transduction and amplification are still the two major challenges in chiral sensing. In this study, we developed an enantioselective membrane by integrating homochiral metal-organic frameworks (MOFs) with nanochannels for the sensitive identification and quantification of chiral compounds. The membrane was designed using a TiO2 nanochannel membrane (TiNM) as the metal ion precursor of MOFs (using MIL-125(Ti)) and incorporating l-glutamine (l-Glu) into the framework of MIL-125(Ti). Using 3,4-dihydroxyphenylalanine (DOPA) as the model analyte, the as-prepared homochiral l-Glu/MIL-125(Ti)/TiNM exhibits a remarkable chiral recognition to d-DOPA than l-DOPA. More importantly, benefiting from the highly enlarged surface area and confinement effect provided by the MOFs-in-nanochannel architecture, the discrimination for chiral recognition is largely amplified through the chelation interaction of Fenton-like activity of Fe3+ onto DOPA. Using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as the substrate, the positively charged ABTS•+ product via Fenton-like reaction induces significant ionic transport changes in nanochannels, which in turn provides information about chiral recognition. This innovative signal amplification strategy on homochiral nanochannels might pave a new way for sensitive monitoring and chiral recognition.
Collapse
Affiliation(s)
- Zhenqing Dai
- College of Science, Northeastern University, Shenyang 110004, China
| | - Junli Guo
- College of Science, Northeastern University, Shenyang 110004, China
| | - Chenxi Zhao
- College of Science, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Science, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Science, Northeastern University, Shenyang 110004, China
| |
Collapse
|
50
|
Xue J, Liu J, Yong J, Liang K. Biomedical Applications of Metal–Organic Frameworks at the Subcellular Level. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jueyi Xue
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Jian Liu
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
- Graduate School of Biomedical Engineering University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|