1
|
Zhang RZ, Niu KK, Bi YS, Liu H, Han N, Xing LB. Artificial Light-Harvesting Systems with a Three-Step Sequential Energy Transfer Mechanism for Efficient Photocatalytic Minisci-Type Late-Stage Functionalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405564. [PMID: 39498721 DOI: 10.1002/smll.202405564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/13/2024] [Indexed: 11/07/2024]
Abstract
The natural process of photosynthesis involves a series of consecutive energy transfers, but achieving more steps of efficient energy transfer and photocatalytic organic conversion in artificial light-harvesting systems (ALHSs) continues to pose a significant challenge. In the present investigation, a range of ALHSs showcasing a sophisticated three-step energy transfer mechanism is designed, which are meticulously crafted using pillar[5]arene (WP[5]) and p-phenylenevinylene derivative (PPTPy), utilizing host-guest interactions as energy donors. Three distinct types of fluorescent dyes, namely Rhodamine B (RhB), Sulforhodamine 101 (SR101), and Cyanine 5 (Cy5), are employed as acceptors of energy. Starting from PPTPy-2WP[5], energy is sequentially transferred to RhB, SR101, and Cy5, successfully constructing a multi-step continuous energy transfer system with high energy transfer efficiency. More interestingly, as energy is progressively transferred, the efficiency of superoxide anion radical (O2 •-) generation gradually increased, while the efficiency of singlet oxygen (1O2) generation decreased, achieving the transformation from type II photosensitizer to type I photosensitizer. Furthermore, in order to fully utilize the energy harvested and reactive oxygen species (ROS) obtained, the ALHSs employ a multi-step sequential energy transfer process to enhance Minisci-type alkylation reactions with aldehydes through photocatalysis for late-stage functionalization in an aqueous environment, achieving a 91% yield.
Collapse
Affiliation(s)
- Rong-Zhen Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Yu-Song Bi
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| |
Collapse
|
2
|
Lau CY, Yeung CS, Tse HY, Luk HL, Yu CY, Yuen CB, Phillips DL, Leu SY. Macrocyclic porphyrin photocatalysts without metal chelation: A novel pathway for complete degradation of tough halophenols with longwave visible LED light source. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135342. [PMID: 39126850 DOI: 10.1016/j.jhazmat.2024.135342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Halophenols are toxic and persistent pollutants in water environments which poses harm to various organisms. Due to their high stability and long residence time, ultraviolet radiation, heavy metals and oxidizing agents have been largely adopted on treating these compounds. However, these treatment methods could pose toxicity or hazardous risks to the marine environment and plant operators. In this study, a water-soluble porphyrin photocatalyst was synthesized and introduced for halophenol treatment using UV-free LED white light. The porphyrin catalyst is a macrocyclic ring consisting of pyrroles linked with methine bridges, the highly conjugated ring provided the superior functionality of visible light absorption. Surprisingly, over 99 % degradation of halophenols and over 90 % dehalogenation have been achieved without metal chelation, even higher than those of transition metal porphyrins with inclusion of Fe3+, Zn2+, Cu2+, Co2+, Ni2+, and Mn2+. Ring-opening reactions were confirmed with the formation of carboxylic acids; dicarboxylic acids like acrylic acid, and malonic acid; while fumaric acid was the main product. Total organic carbon results indicated no CO2 produced during the reaction. Triplet absorbance and scavenger studies also indicated that singlet oxygen and conduction band electrons are the main radical species for halophenol degradation. The 100-fold singlet emission quenching over triplet absorption quenching indicated that the excited electrons tend to be transferred via singlet state. This concept brings along new approaches detoxifying halophenol-related wastewater without UV, metals and other additives, which is more environmentally-friendly and sheds light to the conversion of toxic materials into useful chemical precursors.
Collapse
Affiliation(s)
- Chun-Yin Lau
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong
| | - Chi Shun Yeung
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong
| | - Ho-Yin Tse
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong; Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA; Yale School of the Environment, 195 Prospect St, New Haven, CT, USA
| | - Hoi Ling Luk
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong
| | - Chung Yin Yu
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong
| | - Chun Bong Yuen
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong
| | - David Lee Phillips
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong
| | - Shao-Yuan Leu
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong; Research Institute for Sustainable Urban Development (RISUD), The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
3
|
Shi J, Li K, Yu H, Han N, Yang T, Jiang X, Hao XQ, Chen Z, Wu G, Zhang H, Li B, Wang M. Ultra-High Metal-Ion Selectivity Induced by Intramolecular Cation-π Interactions for the One-Pot Synthesis of Precise Heterometallic Architectures. Angew Chem Int Ed Engl 2024:e202416150. [PMID: 39325549 DOI: 10.1002/anie.202416150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Heterometallic supramolecules, known for their unique synergistic effects, have shown broad applications in photochemistry, host-guest chemistry, and catalysis. However, there are great challenges to precisely construct heterometallic supramolecules rather than a statistical mixture, due to the limited metal-ion selectivity of coordination units. In particular, heterometallic architectures precisely encoded with different metal ions usually fail to form in a one-pot method when only one type of coordinated motif exists due to its poor metal-ion selectivity. Herein, we propose an effective intramolecular cation-π (ICπ) strategy and successfully constructed the heterometallic supramolecule Zn2Cu4L34 by the one-pot self-assembly of tritopic terpyridyl ligand L3 with Zn(II) and Cu(II), following a clear self-assembly mechanism in which only thermodynamic dimers ZnL12 and Cu2L22 were constructed with model ligands L1, L2, Zn(II) and Cu(II) with perfect self-sorting and an ultra-high metal-selectivity feature. The successful construction of the heterometallic supramolecule Zn2Cu4L34, in which the definite sequence of metal ions Zn(II) and Cu(II) is encoded in the one-pot method, will offer a novel approach to precisely construct heterometallic architectures.
Collapse
Affiliation(s)
- Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Kehuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ningxu Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Tianyi Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xin Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 637553, Singapore
| | - Xin-Qi Hao
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Guanglu Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
4
|
Wang X, Wu P, Wang Y, Cui T, Jia M, He X, Wang W, Pan H, Sun Z, Yang HB, Chen J. Unraveling the Origin of Multichannel Circularly Polarized Luminescence in a Pyrene-Functionalized Topologically Chiral [2]Catenane. Angew Chem Int Ed Engl 2024; 63:e202407929. [PMID: 38837292 DOI: 10.1002/anie.202407929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Mechanically interlocked molecules (MIMs) are promising platforms for developing functionalized artificial molecular machines. The construction of chiral MIMs with appealing circularly polarized luminescence (CPL) properties has boosted their potential application in biomedicine and the optical industry. However, there is currently little knowledge about the CPL emission mechanism or the emission dynamics of these related MIMs. Herein, we demonstrate that time-resolved circularly polarized luminescence (TRCPL) spectroscopy combined with transient absorption (TA) spectroscopy offers a feasible approach to elucidate the origins of CPL emission in pyrene-functionalized topologically chiral [2]catenane as well as in a series of pyrene-functionalized chiral molecules. For the first time, direct evidence differentiating the chiroptical signals originating from either topological (local state emission) or Euclidean chirality (excimer state emission) in these pyrene-functionalized chiral molecules has been discovered. Our work not only establishes a novel and ideal approach to study CPL mechanism, but also provides a theoretical foundation for the rational design of novel chiral materials in the future.
Collapse
Affiliation(s)
- Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Peicong Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes &, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Tong Cui
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Menghui Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Xiaoxiao He
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes &, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Haifeng Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes &, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
5
|
Chen D, Xiao T, Monflier É, Wang L. Multi-step FRET systems based on discrete supramolecular assemblies. Commun Chem 2024; 7:88. [PMID: 38637669 PMCID: PMC11026437 DOI: 10.1038/s42004-024-01175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
Fluorescence resonance energy transfer (FRET) from the excited state of the donor to the ground state of the acceptor is one of the most important fluorescence mechanisms and has wide applications in light-harvesting systems, light-mediated therapy, bioimaging, optoelectronic devices, and information security fields. The phenomenon of sequential energy transfer in natural photosynthetic systems provides great inspiration for scientists to make full use of light energy. In recent years, discrete supramolecular assemblies (DSAs) have been successively constructed to incorporate donor and multiple acceptors, and to achieve multi-step FRET between them. This perspective describes recent advances in the fabrication and application of DSAs with multi-step FRET. These DSAs are categorized based on the non-covalent scaffolds, such as amphiphilic nanoparticles, host-guest assemblies, metal-coordination scaffolds, and biomolecular scaffolds. This perspective will also outline opportunities and future challenges in this research area.
Collapse
Affiliation(s)
- Dengli Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, China.
| | - Éric Monflier
- Unité de Catalyse et Chimie du Solide (UCCS), Faculté des Sciences Jean Perrin, Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Lens, France.
| | - Leyong Wang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Wu K, Benchimol E, Baksi A, Clever GH. Non-statistical assembly of multicomponent [Pd 2ABCD] cages. Nat Chem 2024; 16:584-591. [PMID: 38243023 DOI: 10.1038/s41557-023-01415-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024]
Abstract
Self-assembled hosts, inspired by biological receptors and catalysts, show application potential in sustainable synthesis, energy conversion and medicine. Implementing multiple functionalities in the form of distinguishable building blocks, however, is difficult without risking narcissistic self-sorting or a statistical mess. Here we report a systematic series of integratively self-assembled heteroleptic cages in which two square-planar PdII cations are bridged by four different bis-pyridyl ligands, A, B, C and D, via synergistic effects to exclusively form a single isomer-the lantern-shaped cage [Pd2ABCD]. This self-sorting goal-forming just one out of 55 possible structures-is reached under full thermodynamic control and can be realized progressively (by combining progenitors, such as [Pd2A2C2] with [Pd2B2D2]), directly from ligands and PdII cations or by mixing all four corresponding homoleptic cages. The rational design of complex multicomponent assemblies that enables the modular incorporation of diverse chemical moieties will advance their applicability in functional nanosystems.
Collapse
Affiliation(s)
- Kai Wu
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Elie Benchimol
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Ananya Baksi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- Department of Chemistry, Jadavpur University, Kolkata, India
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
7
|
Xu WT, Li X, Wu P, Li WJ, Wang Y, Xu XQ, Wang XQ, Chen J, Yang HB, Wang W. Dual Stimuli-Responsive [2]Rotaxanes with Tunable Vibration-Induced Emission and Switchable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024; 63:e202319502. [PMID: 38279667 DOI: 10.1002/anie.202319502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Aiming at the construction of novel stimuli-responsive fluorescent system with precisely tunable emissions, the typical 9,14-diphenyl-9,14-dihydrodibenzo[a, c]phenazine (DPAC) luminogen with attractive vibration-induced emission (VIE) behavior has been introduced into [2]rotaxane as a stopper. Taking advantage of their unique dual stimuli-responsiveness towards solvent and anion, the resultant [2]rotaxanes reveal both tunable VIE and switchable circularly polarized luminescence (CPL). Attributed to the formation of mechanical bonds, DPAC-functionalized [2]rotaxanes display interesting VIE behaviors including white-light emission upon the addition of viscous solvent, as evaluated in detail by femtosecond transient absorption (TA) spectra. In addition, ascribed to the regulation of chirality information transmission through anion-induced motions of chiral wheel, the resolved chiral [2]rotaxanes reveal unique switchable CPL upon the addition of anion, leading to significant increase in the dissymmetry factors (glum ) values with excellent reversibility. Interestingly, upon doping the chiral [2]rotaxanes in stretchable polymer, the blend films reveal remarkable emission change from white light to light blue with significant 6.5-fold increase in glum values up to -0.035 under external tensile stresses. This work provides not only a new design strategy for developing molecular systems with fluorescent tunability but also a novel platform for the construction of smart chiral luminescent materials for practical use.
Collapse
Affiliation(s)
- Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xue Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Peicong Wu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xiao-Qin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), Sinopec Research Institute of Petroleum Processing Co. LTD., Beijing, 100083, China
- East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
8
|
Mondal S, Chowdhury U, Dey S, Habib M, Mora Perez C, Frauenheim T, Sarkar R, Pal S, Prezhdo OV. Controlling Charge Carrier Dynamics in Porphyrin Nanorings by Optically Active Templates. J Phys Chem Lett 2023; 14:11384-11392. [PMID: 38078872 PMCID: PMC10749466 DOI: 10.1021/acs.jpclett.3c03304] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Understanding the dynamics of photogenerated charge carriers is essential for enhancing the performance of solar and optoelectronic devices. Using atomistic quantum dynamics simulations, we demonstrate that a short π-conjugated optically active template can be used to control hot carrier relaxation, charge carrier separation, and carrier recombination in light-harvesting porphyrin nanorings. Relaxation of hot holes is slowed by 60% with an optically active template compared to that with an analogous optically inactive template. Both systems exhibit subpicosecond electron transfer from the photoactive core to the templates. Notably, charge recombination is suppressed 6-fold by the optically active template. The atomistic time-domain simulations rationalize these effects by the extent of electron and hole localization, modification of the density of states, participation of distinct vibrational motions, and changes in quantum coherence. Extension of the hot carrier lifetime and reduction of charge carrier recombination, without hampering charge separation, demonstrate a strategy for enhancing efficiencies of energy materials with optically active templates.
Collapse
Affiliation(s)
- Shrabanti Mondal
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
| | - Uttam Chowdhury
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
| | - Subhajit Dey
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
| | - Md Habib
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
- Department
of Chemistry, Sripat Singh College, Jiaganj 742122, India
| | - Carlos Mora Perez
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Thomas Frauenheim
- Bremen
Center
for Computational Materials Science, Universität
Bremen, Bremen 28359, Germany
- Beijing
Computational Science Research Center, Beijing 100193, China
- Shenzhen
JL Computational Science and Applied Research Institute, Shenzhen 518109, China
| | - Ritabrata Sarkar
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
- Bremen
Center
for Computational Materials Science, Universität
Bremen, Bremen 28359, Germany
| | - Sougata Pal
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
9
|
Yuan X, Gao X, Liu C, Liang W, Xue H, Li Z, Jin H. Application of Nanomaterials in the Production of Biomolecules in Microalgae: A Review. Mar Drugs 2023; 21:594. [PMID: 37999418 PMCID: PMC10672109 DOI: 10.3390/md21110594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Nanomaterials (NMs) are becoming more commonly used in microalgal biotechnology to empower the production of algal biomass and valuable metabolites, such as lipids, proteins, and exopolysaccharides. It provides an effective and promising supplement to the existing algal biotechnology. In this review, the potential for NMs to enhance microalgal growth by improving photosynthetic utilization efficiency and removing reactive oxygen species is first summarized. Then, their positive roles in accumulation, bioactivity modification, and extraction of valuable microalgal metabolites are presented. After the application of NMs in microalgae cultivation, the extracted metabolites, particularly exopolysaccharides, contain trace amounts of NM residues, and thus, the impact of these residues on the functional properties of the metabolites is also evaluated. Finally, the methods for removing NM residues from the extracted metabolites are summarized. This review provides insights into the application of nanotechnology for sustainable production of valuable metabolites in microalgae and will contribute useful information for ongoing and future practice.
Collapse
Affiliation(s)
- Xiaolong Yuan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Chang Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Wensheng Liang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Huidan Xue
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Zhengke Li
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Haojie Jin
- The College of Forestry, Beijing Forestry University, Beijing 100083, China;
| |
Collapse
|
10
|
Humphries BS, Green D, Borgh MO, Jones GA. Phonon Signatures in Photon Correlations. PHYSICAL REVIEW LETTERS 2023; 131:143601. [PMID: 37862651 DOI: 10.1103/physrevlett.131.143601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/21/2023] [Indexed: 10/22/2023]
Abstract
We show that the second-order, two-time correlation functions for phonons and photons emitted from a vibronic molecule in a thermal bath result in bunching and antibunching (a purely quantum effect), respectively. Signatures relating to phonon exchange with the environment are revealed in photon-photon correlations. We demonstrate that cross-correlation functions have a strong dependence on the order of detection giving insight into how phonon dynamics influences the emission of light. This work offers new opportunities to investigate quantum effects in condensed-phase molecular systems.
Collapse
Affiliation(s)
- Ben S Humphries
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Dale Green
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Magnus O Borgh
- Physics, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
11
|
Wang X, Zhou W, Xu R, Xu Y, Song H, Li H, Wang J. Photo-induced energy transfer within donor-acceptor dipeptides: Towards an artificial light-harvesting hydrogel system. J Colloid Interface Sci 2023; 645:466-471. [PMID: 37156155 DOI: 10.1016/j.jcis.2023.04.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Well-defined relative orientations and distances between chromophores are prerequisites for high-efficiency energy transfer, which can generally be realized by regularly assembling short peptide compounds with different absorption wavelengths and luminescence positions. Herein, a series of dipeptides are designed and synthesized, where the dipeptides contain different chromophores with several absorption bands. A co-self-assembled peptide hydrogel is prepared for artificial light-harvesting systems. The photophysical properties and assembly behavior of these dipeptide-chromophore conjugates in solution and hydrogel are systematically studied. As a result of the three-dimensional (3-D) self-assembly feature, effective energy transfer between donor and acceptor in the hydrogel system is achieved. These systems exhibit high antenna effect at a high donor/acceptor ratio (2564:1), which is characterized by an increase in the fluorescence intensity. Further, multiple molecules with different absorption wavelengths can be co-assembled as energy donors in order to achieve a wide spectrum of absorption. The method allows flexible light-harvesting systems to be realized. The ratio of energy donors to acceptors can be adjusted arbitrarily, and constructive motifs can be selected based on the application.
Collapse
Affiliation(s)
- Xinxin Wang
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.
| | - Wenyuan Zhou
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Rou Xu
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yiping Xu
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Hui Song
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Hongyi Li
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Jinshu Wang
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
12
|
Chen XM, Chen X, Hou XF, Zhang S, Chen D, Li Q. Self-assembled supramolecular artificial light-harvesting nanosystems: construction, modulation, and applications. NANOSCALE ADVANCES 2023; 5:1830-1852. [PMID: 36998669 PMCID: PMC10044677 DOI: 10.1039/d2na00934j] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Artificial light-harvesting systems, an elegant way to capture, transfer and utilize solar energy, have attracted great attention in recent years. As the primary step of natural photosynthesis, the principle of light-harvesting systems has been intensively investigated, which is further employed for artificial construction of such systems. Supramolecular self-assembly is one of the feasible methods for building artificial light-harvesting systems, which also offers an advantageous pathway for improving light-harvesting efficiency. Many artificial light-harvesting systems based on supramolecular self-assembly have been successfully constructed at the nanoscale with extremely high donor/acceptor ratios, energy transfer efficiency and the antenna effect, which manifests that self-assembled supramolecular nanosystems are indeed a viable way for constructing efficient light-harvesting systems. Non-covalent interactions of supramolecular self-assembly provide diverse approaches to improve the efficiency of artificial light-harvesting systems. In this review, we summarize the recent advances in artificial light-harvesting systems based on self-assembled supramolecular nanosystems. The construction, modulation, and applications of self-assembled supramolecular light-harvesting systems are presented, and the corresponding mechanisms, research prospects and challenges are also briefly highlighted and discussed.
Collapse
Affiliation(s)
- Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Xiao-Fang Hou
- Key Lab of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Dongzhong Chen
- Key Lab of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University Kent OH 44242 USA
| |
Collapse
|
13
|
Scheil V, Holzinger R, Moreno-Cardoner M, Ritsch H. Optical Properties of Concentric Nanorings of Quantum Emitters. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050851. [PMID: 36903728 PMCID: PMC10005549 DOI: 10.3390/nano13050851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 05/04/2023]
Abstract
A ring of sub-wavelength spaced dipole-coupled quantum emitters features extraordinary optical properties when compared to a one-dimensional chain or a random collection of emitters. One finds the emergence of extremely subradiant collective eigenmodes similar to an optical resonator, which features strong 3D sub-wavelength field confinement near the ring. Motivated by structures commonly appearing in natural light-harvesting complexes (LHCs), we extend these studies to stacked multi-ring geometries. We predict that using double rings allows us to engineer significantly darker and better confined collective excitations over a broader energy band compared to the single-ring case. These enhance weak field absorption and low-loss excitation energy transport. For the specific geometry of the three rings appearing in the natural LH2 light-harvesting antenna, we show that the coupling between the lower double-ring structure and the higher energy blue-shifted single ring is very close to a critical value for the actual size of the molecule. This creates collective excitations with contributions from all three rings, which is a vital ingredient for efficient and fast coherent inter-ring transport. This geometry thus should also prove useful for the design of sub-wavelength weak field antennae.
Collapse
Affiliation(s)
- Verena Scheil
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria
| | - Raphael Holzinger
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria
| | - Maria Moreno-Cardoner
- Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Helmut Ritsch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
14
|
Li Y, Xia C, Tian R, Zhao L, Hou J, Wang J, Luo Q, Xu J, Wang L, Hou C, Yang B, Sun H, Liu J. "On/Off" Switchable Sequential Light-Harvesting Systems Based on Controllable Protein Nanosheets for Regulation of Photocatalysis. ACS NANO 2022; 16:8012-8021. [PMID: 35510764 DOI: 10.1021/acsnano.2c00960] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A controllable protein nanostructures-based "On/Off" switchable artificial light-harvesting system (LHS) with sequential multistep energy transfer and photocatalysis was reported herein for mimicking the natural LHS in both structure and function. Single-layered protein nanosheets were first constructed via a reversible covalent self-assembly strategy using cricoid stable protein one (SP1) as building blocks to realize an ordered arrangement of pigments. Fluorescent chromophores like carbon dots (CDs) can be precisely distributed on the protein nanosheets superficially via electrostatic interactions and make the ratio between donors and acceptors adjustable. After being anchored with a photocatalysis center (eosin-5-isothiocyanate, EY), the constructed LHS could sequentially transfer energy between two kinds of chromophores (CD1 and CD2), and further transfer to EY center with a high efficiency of 84%. Interestingly, the Förster resonance energy transfer (FRET) process of our LHS could be reversibly "On/Off" switched by the redox regulated assembly and disassembly of SP1 building blocks. Moreover, the LHS has been further proved to promote the yield of a model cross-coupling hydrogen evolution reaction and regulate the process of the reaction with the FRET process "On/Off" state.
Collapse
Affiliation(s)
- Yijia Li
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chunlei Xia
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ruizhen Tian
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Linlu Zhao
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jinxing Hou
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jieqiong Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Quan Luo
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiayun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Liang Wang
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chunxi Hou
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bai Yang
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongcheng Sun
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Junqiu Liu
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
15
|
Moreno-Cardoner M, Holzinger R, Ritsch H. Efficient nano-photonic antennas based on dark states in quantum emitter rings. OPTICS EXPRESS 2022; 30:10779-10791. [PMID: 35473037 DOI: 10.1364/oe.437396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Nanoscopic arrays of quantum emitters can feature highly sub-radiant collective excitations with a lifetime exponentially growing with emitter number. Adding an absorptive impurity as an energy dump in the center of a ring shaped polygon allows to exploit this feature to create highly efficient single photon antennas. Here among regular polygons with an identical center absorbing emitter, a nonagon exhibits a distinct optimum of the absorption efficiency. This special enhancement originates from the unique emergence of a subradiant eigenstate with dominant center occupation. Only for nine emitters the sum of coupling strengths of each emitter to all others matches the center to the ring coupling. Analogous to a parabolic mirror the antenna ring then concentrates incoming radiation at its center without being significantly excited itself. Similar large efficiency enhancements, which even prevail for broadband excitation, can also be engineered for other antenna sizes by tailoring the frequency and magnitude of the central absorber. Interestingly, for very small structures a quantum treatment predicts an even stronger enhancement for the single photon absorption enhancement than a classical dipole model. As natural light harvesting structures are often based on ring shaped structures, the underlying principle might be exploited there as well.
Collapse
|
16
|
Li D, Han Y, Jiang Y, Jiang G, Sun H, Sun Z, Zhang QW, Tian Y. Achieving Adjustable Multifunction Based on Host-Guest Interaction-Manipulated Reversible Molecular Conformational Switching. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1807-1816. [PMID: 34955010 DOI: 10.1021/acsami.1c22172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Small molecules that are capable of toggling between multiple and definite conformational states under external stimuli have great potential for use in molecular switches or sensors. However, currently developed regulation approaches for these switchable molecules mostly involve covalent bond-breaking/reforming processes, thereby inevitably producing byproducts or causing fatigue accumulation. Herein, we report a simple but successful model whose molecular conformation can be precisely manipulated between stretched and folded forms by employing host-guest interactions with rigid macrocycles, thus avoiding possible side reactions and fatigue accumulation and possessing excellent reversibility. Moreover, the conformation states of this molecule can be visualized and identified by luminous readout, endowing it with real-time self-reporting features. Furthermore, this controllable and reversible conformational conversion is accompanied by various valuable functions, including controllable multicolor emission; ratiometric fluorescent thermosensing with high temperature resolution, excellent reversibility, lock/unlock switching, and especially linear detection range tunability; and in addition real-time intracellular temperature sensing and imaging, disclosing the intriguing microscopic "conformation-function" relationship based on a single molecule.
Collapse
Affiliation(s)
- Dong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Yujie Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Guanyu Jiang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Qi-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
17
|
Bold K, Stolte M, Shoyama K, Holzapfel M, Schmiedel A, Lambert C, Würthner F. Macrocyclic Donor–Acceptor Dyads Composed of a Perylene Bisimide Dye Surrounded by Oligothiophene Bridges. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kevin Bold
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Matthias Stolte
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Marco Holzapfel
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexander Schmiedel
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Christoph Lambert
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
18
|
Bold K, Stolte M, Shoyama K, Holzapfel M, Schmiedel A, Lambert C, Würthner F. Macrocyclic Donor-Acceptor Dyads Composed of a Perylene Bisimide Dye Surrounded by Oligothiophene Bridges. Angew Chem Int Ed Engl 2022; 61:e202113598. [PMID: 34669254 PMCID: PMC9299635 DOI: 10.1002/anie.202113598] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 12/03/2022]
Abstract
Two macrocyclic architectures comprising oligothiophene strands that connect the imide positions of a perylene bisimide (PBI) dye have been synthesized via a platinum-mediated cross-coupling strategy. The crystal structure of the double bridged PBI reveals all syn-arranged thiophene units that completely enclose the planar PBI chromophore via a 12-membered macrocycle. The target structures were characterized by steady-state UV/Vis absorption, fluorescence and transient absorption spectroscopy, as well as cyclic and differential pulse voltammetry. Both donor-acceptor dyads show ultrafast Förster Resonance Energy Transfer and photoinduced electron transfer, thereby leading to extremely low fluorescence quantum yields even in the lowest polarity cyclohexane solvent.
Collapse
Affiliation(s)
- Kevin Bold
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Matthias Stolte
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Kazutaka Shoyama
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Marco Holzapfel
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Alexander Schmiedel
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Christoph Lambert
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Frank Würthner
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| |
Collapse
|
19
|
Borodin O, Shchukin Y, Robertson CC, Richter S, von Delius M. Self-Assembly of Stimuli-Responsive [2]Rotaxanes by Amidinium Exchange. J Am Chem Soc 2021; 143:16448-16457. [PMID: 34559523 PMCID: PMC8517971 DOI: 10.1021/jacs.1c05230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 01/29/2023]
Abstract
Advances in supramolecular chemistry are often underpinned by the development of fundamental building blocks and methods enabling their interconversion. In this work, we report the use of an underexplored dynamic covalent reaction for the synthesis of stimuli-responsive [2]rotaxanes. The formamidinium moiety lies at the heart of these mechanically interlocked architectures, because it enables both dynamic covalent exchange and the binding of simple crown ethers. We demonstrated that the rotaxane self-assembly follows a unique reaction pathway and that the complex interplay between crown ether and thread can be controlled in a transient fashion by addition of base and fuel acid. Dynamic combinatorial libraries, when exposed to diverse nucleophiles, revealed a profound stabilizing effect of the mechanical bond as well as intriguing reactivity differences between seemingly similar [2]rotaxanes.
Collapse
Affiliation(s)
- Oleg Borodin
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yevhenii Shchukin
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Craig C. Robertson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Stefan Richter
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
20
|
Nakamura T. Development of Artificial Receptors Based on Assembly of Metal Complex Units and Desymmetrization of Molecular Components. CHEM LETT 2021. [DOI: 10.1246/cl.210418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Takashi Nakamura
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
21
|
Xiao T, Shen Y, Bao C, Diao K, Ren D, Qian H, Zhang L. Efficient artificial light-harvesting system constructed from supramolecular polymers with AIE property. RSC Adv 2021; 11:30041-30045. [PMID: 35480273 PMCID: PMC9041127 DOI: 10.1039/d1ra06239e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Supramolecular luminescent materials in water have attracted much interest due to their excellent tunability, multi-color emission, and environment-friendly behavior. However, hydrophobic chromophores are often affected by poor solubility and aggregation-caused quenching effects in aqueous media. Herein, we report a water-phase artificial light-harvesting system based on an AIE-type supramolecular polymer. Specifically, dispersed nanoparticles in water were prepared from an AIE chromophore-bridged ditopic ureidopyrimidinone (M) based supramolecular polymer with the assistance of surfactants. By co-assembling the hydrophobic chromophores NDI as energy acceptor into the nanocarriers, artificial light-harvesting systems (M-NDI) could be successfully constructed, exhibiting efficient energy transfer and high antenna effects. Furthermore, the spectral emission of the system could be continuously tuned with a relatively small number of acceptors. This work develops an efficient supramolecular light-harvesting system in water, which has potential applications in dynamic luminescent materials.
Collapse
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Yong Shen
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Cheng Bao
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Kai Diao
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Dongxing Ren
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Hongwei Qian
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Liangliang Zhang
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| |
Collapse
|
22
|
Ding G, Zuo Y, Gai F, Wang X, Gou Z, Lin W. A POSS-assisted fluorescent probe for the rapid detection of HClO in mitochondria with a large emission wavelength in dual channels. J Mater Chem B 2021; 9:6836-6843. [PMID: 34382057 DOI: 10.1039/d1tb01235e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypochlorous acid (HClO) is closely related to many diseases and is an inevitable part of the physiological processes. It is significant to detect HClO in mitochondria for getting meaningful physiological and pathological information. However, adequate tools to detect HClO with emissions in two channels are rarely reported. To achieve this target, in this work, a "turn-off" visual and near infrared (NIR) fluorescent dual emission probe D6 based on polyhedral oligomeric silsesquioxanes (POSS) was successfully designed and synthesized. D6 showed high selectivity and sensitivity to HClO. Notably, the emission wavelength of D6 reached 820 nm due to the assistance of the POSS cage. In addition, bioimaging experiments clearly showed that probe D6 promoted the visualization of exogenous and endogenous HClO in living HepG2 cells and zebrafish models.
Collapse
Affiliation(s)
- Guowei Ding
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, P. R. China.
| | | | | | | | | | | |
Collapse
|
23
|
Li WJ, Wang XQ, Zhang DY, Hu YX, Xu WT, Xu L, Wang W, Yang HB. Artificial Light-Harvesting Systems Based on AIEgen-branched Rotaxane Dendrimers for Efficient Photocatalysis. Angew Chem Int Ed Engl 2021; 60:18761-18768. [PMID: 34125487 DOI: 10.1002/anie.202106035] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 12/20/2022]
Abstract
Aiming at the construction of novel platform for efficient light harvesting, the precise synthesis of a new family of AIEgen-branched rotaxane dendrimers was successful realized from an AIEgen-functionalized [2]rotaxane through a controllable divergent approach. In the resultant AIE macromolecules, up to twenty-one AIEgens located at the tails of each branches, thus making them the first successful example of AIEgen-branched dendrimers. Attributed to the solvent-induced switching feature of the rotaxane branches, the integrated rotaxane dendrimers displayed interesting dynamic feature upon the aggregation-induced emission (AIE) process. Moreover, novel artificial light-harvesting systems were further constructed based on these AIEgen-branched rotaxane dendrimers, which revealed impressive generation-dependent photocatalytic performances for both photooxidation reaction and aerobic cross-dehydrogenative coupling (CDC) reaction.
Collapse
Affiliation(s)
- Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Dan-Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
24
|
Li W, Wang X, Zhang D, Hu Y, Xu W, Xu L, Wang W, Yang H. Artificial Light‐Harvesting Systems Based on AIEgen‐branched Rotaxane Dendrimers for Efficient Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Dan‐Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Yi‐Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Wei‐Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
25
|
Mirzaei S, Castro E, Hernández Sánchez R. Conjugated Molecular Nanotubes. Chemistry 2021; 27:8642-8655. [PMID: 33780560 DOI: 10.1002/chem.202005408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Indexed: 01/09/2023]
Abstract
Molecular compounds with permanent tubular architectures displaying radial π-conjugation are exceedingly rare. Their radial and axial delocalization presents them with unique optical and electronic properties, such as remarkable tuning of their Stokes shifts, and redox switching between global and local aromaticity. Although these tubular compounds display large internal void spaces, these attributes have not been extensively explored, thus presenting future opportunities in the development of materials. By using cutting-edge synthetic methodologies to bend aromatic surfaces, large opportunities in synthesis, property discovery, and applications are expected in new members of this family of conjugated molecular nanotubes.
Collapse
Affiliation(s)
- Saber Mirzaei
- Department of Chemistry, Dietrich School of Arts & Sciences, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| | - Edison Castro
- Department of Chemistry, Dietrich School of Arts & Sciences, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| | - Raúl Hernández Sánchez
- Department of Chemistry, Dietrich School of Arts & Sciences, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| |
Collapse
|
26
|
Yu S, Kupryakov A, Lewis JEM, Martí-Centelles V, Goldup SM, Pozzo JL, Jonusauskas G, McClenaghan ND. Damming an electronic energy reservoir: ion-regulated electronic energy shuttling in a [2]rotaxane. Chem Sci 2021; 12:9196-9200. [PMID: 34276950 PMCID: PMC8261707 DOI: 10.1039/d1sc02225c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
We demonstrate the first example of bidirectional reversible electronic energy transfer (REET) between the mechanically bonded components of a rotaxane. Our prototypical system was designed such that photoexcitation of a chromophore in the axle results in temporary storage of electronic energy in a quasi-isoenergetic “reservoir” chromophore in the macrocycle. Over time, the emissive state of the axle is repopulated from this reservoir, resulting in long-lived, delayed luminescence. Importantly, we show that cation binding in the cavity formed by the mechanical bond perturbs the axle chromophore energy levels, modulating the REET process, and ultimately providing a luminescence read-out of cation binding. Modulation of REET processes represents an unexplored mechanism in luminescent molecular sensor development. Delayed emission due to reversible electronic energy transfer (REET) between chromophores in the axle and macrocycle components of a rotaxane is demonstrated. The REET process can be modulated by metal ion binding in the cavity of the rotaxane.![]()
Collapse
Affiliation(s)
- Shilin Yu
- Institut des Sciences Moléculaires, University of Bordeaux/CNRS Talence France .,Department of Chemistry, University of Jyvaskyla 40014 Jyväskylä Finland
| | - Arkady Kupryakov
- Laboratoire Ondes et Matière d'Aquitaine, University of Bordeaux/CNRS Talence France
| | - James E M Lewis
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK .,Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | | | - Stephen M Goldup
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Jean-Luc Pozzo
- Institut des Sciences Moléculaires, University of Bordeaux/CNRS Talence France
| | - Gediminas Jonusauskas
- Laboratoire Ondes et Matière d'Aquitaine, University of Bordeaux/CNRS Talence France
| | | |
Collapse
|
27
|
Rajamalli P, Rizzi F, Li W, Jinks MA, Gupta AK, Laidlaw BA, Samuel IDW, Penfold TJ, Goldup SM, Zysman‐Colman E. Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter*. Angew Chem Int Ed Engl 2021; 60:12066-12073. [PMID: 33666324 PMCID: PMC8251797 DOI: 10.1002/anie.202101870] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 12/12/2022]
Abstract
We report the characterization of rotaxanes based on a carbazole-benzophenone thermally activated delayed fluorescence luminophore. We find that the mechanical bond leads to an improvement in key photophysical properties of the emitter, notably an increase in photoluminescence quantum yield and a decrease in the energy difference between singlet and triplet states, as well as fine tuning of the emission wavelength, a feat that is difficult to achieve when using covalently bound substituents. Computational simulations, supported by X-ray crystallography, suggest that this tuning of properties occurs due to weak interactions between the axle and the macrocycle that are enforced by the mechanical bond. This work highlights the benefits of using the mechanical bond to refine existing luminophores, providing a new avenue for emitter optimization that can ultimately increase the performance of these molecules.
Collapse
Affiliation(s)
- Pachaiyappan Rajamalli
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
- Materials Research CentreIndian Institute of ScienceBangalore560012India
| | - Federica Rizzi
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Wenbo Li
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Michael A. Jinks
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Abhishek Kumar Gupta
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Beth A. Laidlaw
- Chemistry, School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Ifor D. W. Samuel
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | | | - Eli Zysman‐Colman
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| |
Collapse
|
28
|
Rajamalli P, Rizzi F, Li W, Jinks MA, Gupta AK, Laidlaw BA, Samuel IDW, Penfold TJ, Goldup SM, Zysman‐Colman E. Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pachaiyappan Rajamalli
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
- Materials Research Centre Indian Institute of Science Bangalore 560012 India
| | - Federica Rizzi
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Wenbo Li
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Michael A. Jinks
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Beth A. Laidlaw
- Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Stephen M. Goldup
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Eli Zysman‐Colman
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
29
|
Abstract
ConspectusMacrocycles have had a profound influence on the establishment of supramolecular chemistry because of their abundant molecular recognition and self-assembly characteristics. The design of new macrocyclic receptors that can be tailored by synthesis to display new and exotic properties is an important research objective for chemists and materials scientists. Rigid macrocycles with π-conjugated aromatic units, in contrast with flexible ones, tend to possess large interior and exterior π-surfaces in addition to persistent shapes. These features not only endow these macrocycles with a wide range of host-guest properties but also render them ideal building blocks for constructing a diverse variety of supramolecular architectures. The incorporation of π-conjugated units into macrocycles also imbues them with a wealth of optical, electronic, and magnetic properties, resulting in their broad application in materials science and molecular nanotechnology.Recently, we have designed and synthesized a new class of macrocycles, namely, molecular triangles, which have rigid structures with triangular geometries. They consist of three chiral trans-1,2-cyclohexano apexes and three aromatic tetracarboxylic diimide linkers, such as pyromellitic diimide, naphthalene diimide, and perylene diimide. Benefiting from the availability of facile synthetic protocols, the geometries and properties of these rigid molecular triangles can be altered at will. By combining these tetracarboxylic diimide linkers, we have been able to synthesize both molecular equilateral and isosceles triangles. During the past few years, we have conducted research in a systematic manner on the structural features and self-assembly characteristics of these molecular triangles. The following points are worthy of note regarding these molecular triangles: (i) They possess shape-persistent inner cavities of a highly electron-deficient nature. These features endow them with the ability to complex with anions and electron-rich molecules, forming supramolecular nanotubes and two-dimensional tilings. (ii) Those with intrinsic chirality are able to self-assemble into solid-state nonhelical or single-handed helical superstructures, inducing selective chirality transfer from the macrocycles to their crystalline supramolecular assemblies. (iii) The triangular arrangement of aromatic tetracarboxylic diimide linkers contributes to through-space electron delocalization encompassing the entire macrocycle, conferring exotic electronic and spin properties. To date, the family of molecular triangles has exhibited a range of physicochemical properties, such as anion recognition, chiral assembly, supramolecular gelation, energy storage, solid-state luminescence, and nonlinear optical response.In this Account, we summarize our recent progress in research into these molecular triangles. We present an overview of their design and synthesis, as well as a general summary of their structural features. Thereafter, we discuss state-of-the-art developments in relation to their molecular recognition properties and their assembly characteristics. In addition, we highlight the potential applications of these molecular triangles and their complexes with a range of solvents and electron-rich molecules. Finally, we speculate on further structural modifications and application-oriented explorations based on this class of molecular triangles.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
30
|
Xiao T, Wu H, Sun G, Diao K, Wei X, Li ZY, Sun XQ, Wang L. An efficient artificial light-harvesting system with tunable emission in water constructed from a H-bonded AIE supramolecular polymer and Nile Red. Chem Commun (Camb) 2020; 56:12021-12024. [PMID: 32901631 DOI: 10.1039/d0cc05077f] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the aid of CTAB amphiphile, water-phase artificial light-harvesting systems were fabricated as nanoparticles by the self-assembly of two low-molecular-weight organic molecules: a UPy-functionalized TPE derivative 1 with both supramolecular polymerization and AIE capabilities as a donor and a fluorescent chromophore NiR as an acceptor. Owing to the flexibility of supramolecular self-assembly, tunable emissions including white-light emission could be easily realized with high energy transfer efficiency and the antenna effect.
Collapse
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | | | | | | | | | | | | | | |
Collapse
|