1
|
Wang B, Han Y, Zhang L, Chen Z, Zhang W, Ren M, Shi J, Xu X, Yang Y. Surface-enhanced Raman scattering based on noble metal nanoassemblies for detecting harmful substances in food. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39388195 DOI: 10.1080/10408398.2024.2413656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Residues of harmful substances in food can severely damage human health. The content of these substances in food is generally low, making detection difficult. Surface-enhanced Raman scattering (SERS), based on noble metal nanomaterials, mainly gold (Au) and silver (Ag), has exhibited excellent capabilities for trace detection of various substances. Noble metal nanoassemblies, in particular, have extraordinary flexibility and tunable optical properties, which cannot be offered by single nanoparticles (NPs). These nanoassemblies, with their various morphologies synthesized using NPs through artificially induced self-assembly or template-driven preparation, can significantly enhance the local electric field and create "hot spots" due to the gaps between adjacent NPs. Consequently, the SERS properties of NPs become more prominent, leading to improved performance in the trace detection of various substances and detection limits that are considerably lower than the current relevant standards. Noble metal nanoassemblies show promising potential in ensuring food safety. This review discusses the synthesis methods and SERS properties of noble metal nanoassemblies and then concentrates on their application in detecting biotoxins, drug residues, illegal additives, and heavy metals. The study provides valuable references for further research into the application of nanoassemblies in food safety detection.
Collapse
Affiliation(s)
- Baojun Wang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Lu Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Zikuo Chen
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Wenqi Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Mengyu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiaoguang Xu
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| |
Collapse
|
2
|
Zhang Y, Liu X, Hou S, Wu R, Yang J, Zhang C. Enzyme-Programmed Self-Assembly of Nanoparticles. Chembiochem 2024; 25:e202400384. [PMID: 38819745 DOI: 10.1002/cbic.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Nanoparticles are a hot topic in the field of nanomaterial research due to their excellent physical and chemical properties. In recent years, DNA-directed nanoparticle self-assembly technology has been widely applied to the development of numerous complex nanoparticle superstructures. Due to the inherent stability and surface electric repulsion of nanoparticles, it is difficult to make nanoparticle superstructures respond to molecular signals in the external environment. In fact, enzyme-programmed molecular systems are developed to allow diverse functions, including logical operations, signal amplification, and dynamic assembly control. Therefore, combining enzyme-controlled DNA systems may endow nanoparticle assembly systems with more flexibility in program design, allowing them to respond to a variety of external signals. In this review, we summarize the basic principles of enzyme-controlled DNA/nanoparticle self-assembly and introduce its applications in heavy metal detection, gene expression, proteins inside living cells, cancer cell therapy, and drug delivery. With the continuous development of new nanoparticle materials and the increasing functionality of enzyme DNA circuits, enzyme-directed DNA/nanoparticle self-assembled probe technology is expected to see significant future development.
Collapse
Affiliation(s)
- Yongpeng Zhang
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Xuan Liu
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Siqi Hou
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Ranfeng Wu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Cheng Zhang
- School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China
| |
Collapse
|
3
|
Esmailzadeh F, Taheri-Ledari R, Salehi MM, Zarei-Shokat S, Ganjali F, Mohammadi A, Zare I, Kashtiaray A, Jalali F, Maleki A. Bonding states of gold/silver plasmonic nanostructures and sulfur-containing active biological ingredients in biomedical applications: a review. Phys Chem Chem Phys 2024; 26:16407-16437. [PMID: 38807475 DOI: 10.1039/d3cp04131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
As one of the most instrumental components in the architecture of advanced nanomedicines, plasmonic nanostructures (mainly gold and silver nanomaterials) have been paid a lot of attention. This type of nanomaterial can absorb light photons with a specific wavelength and generate heat or excited electrons through surface resonance, which is a unique physical property. In innovative biomaterials, a significant number of theranostic (therapeutic and diagnostic) materials are produced through the conjugation of thiol-containing ingredients with gold and silver nanoparticles (Au and Ag NPs). Hence, it is essential to investigate Au/Ag-S interfaces precisely and determine the exact bonding states in the active nanobiomaterials. This study intends to provide useful insights into the interactions between Au/Ag NPs and thiol groups that exist in the structure of biomaterials. In this regard, the modeling of Au/Ag-S bonding in active biological ingredients is precisely reviewed. Then, the physiological stability of Au/Ag-based plasmonic nanobioconjugates in real physiological environments (pharmacokinetics) is discussed. Recent experimental validation and achievements of plasmonic theranostics and radiolabelled nanomaterials based on Au/Ag-S conjugation are also profoundly reviewed. This study will also help researchers working on biosensors in which plasmonic devices deal with the thiol-containing biomaterials (e.g., antibodies) inside blood serum and living cells.
Collapse
Affiliation(s)
- Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd, Shiraz 7178795844, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
4
|
Wu R, Chen Y, Zhang Y, Liu R, Zhang Q, Zhang C. Catalytic Gold Nanoparticle Assembly Programmed by DNAzyme Circuits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307107. [PMID: 38191832 DOI: 10.1002/smll.202307107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Assembled gold nanoparticle (AuNP) superstructures can generate unique physicochemical characteristics and be used in various applications, thus becoming an attractive research field. Recently, several DNA-assisted gold nanoparticle assembly methods have been rigorously developed that typically require a non-catalytic equimolar molecular assembly to guarantee the designed assembly. Although efficient and accurate, exploring such non-catalytic nanoparticle assemblies in the complex cellular milieu under low trigger concentrations remains challenging. Therefore, developing a catalytic method that facilitates gold nanoparticle assemblies with relatively low DNA trigger concentrations is desirable. In this report, a catalytic method to program gold nanoparticle assemblies by DNAzyme circuits is presented, where only a small number of DNA triggers are able to induce the production of a large number of the desired nanoparticle assemblies. The feasibility of using logic DNAzyme circuits to control catalytic nanoparticle assemblies is experimentally verified. Additionally, catalytic AuNP assembly systems are established with cascading and feedback functions. The work provides an alternative research direction to enrich the tool library of nanoparticle assembly and their application in biosensing and nanomedicine.
Collapse
Affiliation(s)
- Ranfeng Wu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yiming Chen
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing, 100871, China
| | - Yongpeng Zhang
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 100096, China
| | - Rongming Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Cheng Zhang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Zhou Y, Zhang J, Sun S, Chen W, Wang Y, Shi H, Yang R, Qing Z. Amplified Biosensors Powered by Endogenous Molecules for Intracellular Fluorescence Imaging. Anal Chem 2024; 96:8078-8090. [PMID: 38622818 DOI: 10.1021/acs.analchem.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Affiliation(s)
- Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Jun Zhang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Shuanghong Sun
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Weiju Chen
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Yuping Wang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Huiqiu Shi
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Ronghua Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| |
Collapse
|
6
|
Choi J, Kim J, Park JY, Hyun JK, Park SJ. Domain-Selective Enzymatic Cross-linking and Etching for Shape-Morphing DNA-Linked Nanoparticle Films. NANO LETTERS 2024; 24:2574-2580. [PMID: 38349338 DOI: 10.1021/acs.nanolett.3c04637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The highly programmable and responsive molecular recognition properties of DNA provide unparalleled opportunities for fabricating dynamic nanostructures capable of structural transformation in response to various external stimuli. However, they typically operate in tightly controlled environments because certain conditions (ionic strength, pH, temperature, etc.) must be met for DNA duplex formation. In this study, we adopted site-specific enzymatic ligation and DNA-based layer-by-layer thin film fabrication to build shape-morphing DNA-linked nanoparticle films operational in a broad range of environments. The ligated films remained intact in unusual conditions such as pure water and high temperature causing dissociation of DNA duplexes and showed predictable and reversible shape morphing in response to various environmental changes and DNA exchange reactions. Furthermore, domain-selective ligation combined with photoinduced interlayer mixing allowed for the fabrication of unusual edge-sealed double-layered films through midlayer etching, which is difficult to realize by other methods.
Collapse
Affiliation(s)
- Jisu Choi
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jongwook Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jin-Young Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jerome Kartham Hyun
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
7
|
Clarke B, Ghandi K. The Interplay of Growth Mechanism and Properties of ZnO Nanostructures for Different Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302864. [PMID: 37403280 DOI: 10.1002/smll.202302864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Indexed: 07/06/2023]
Abstract
This review provides a background on the structure and properties of ZnO nanostructures. ZnO nanostructures are advantageous for many applications in sensing, photocatalysis, functional textiles, and cosmetic industries, which are described in this review. Previous work using UV Visible (UV-vis) spectroscopy and scanning electron microscopy (SEM) for ZnO nanorod growth analysis in-solution and on a substrate for determination of optical properties and morphology is discussed, as well as their results in determining the kinetics and growth mechanisms. From this literature review, it is understood that the synthesis process greatly affects nanostructures and properties; and hence, their applications. In addition, in this review, the mechanism of ZnO nanostructure growth is unveiled, and it is shown that by having greater control over their morphology and size through such mechanistic understanding, the above-mentioned applications can be affected. The contradictions and gaps in knowledge are summarized in order to highlight the variations in results, followed by suggestions for how to answer these gaps and future outlooks for ZnO nanostructure research.
Collapse
|
8
|
Yang J, Liang Y, Li X, Zhang Y, Qian L, Ke Y, Zhang C. A Spatially Programmable DNA Nanorobot Arm to Modulate Anisotropic Gold Nanoparticle Assembly by Enzymatic Excision. Angew Chem Int Ed Engl 2023; 62:e202308797. [PMID: 37691009 DOI: 10.1002/anie.202308797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Programmable assembly of gold nanoparticle superstructures with precise spatial arrangement has drawn much attention for their unique characteristics in plasmonics and biomedicine. Bio-inspired methods have already provided programmable, molecular approaches to direct AuNP assemblies using biopolymers. The existing methods, however, predominantly use DNA as scaffolds to directly guide the AuNP interactions to produce intended superstructures. New paradigms for regulating AuNP assembly will greatly enrich the toolbox for DNA-directed AuNP manipulation and fabrication. Here, we developed a strategy of using a spatially programmable enzymatic nanorobot arm to modulate anisotropic DNA surface modifications and assembly of AuNPs. Through spatial controls of the proximity of the reactants, the locations of the modifications were precisely regulated. We demonstrated the control of the modifications on a single 15 nm AuNP, as well as on a rectangular DNA origami platform, to direct unique anisotropic AuNP assemblies. This method adds an alternative enzymatic manipulation to DNA-directed AuNP superstructure assembly.
Collapse
Affiliation(s)
- Jing Yang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing, 100871, China
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yuan Liang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing, 100871, China
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Xiang Li
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yongpeng Zhang
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Long Qian
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Cheng Zhang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| |
Collapse
|
9
|
Qin Y, Ouyang Y, Wang J, Chen X, Sohn YS, Willner I. Transient Dynamic Operation of G-Quadruplex-Gated Glucose Oxidase-Loaded ZIF-90 Metal-Organic Framework Nanoparticle Bioreactors. NANO LETTERS 2023; 23:8664-8673. [PMID: 37669541 PMCID: PMC10540265 DOI: 10.1021/acs.nanolett.3c02542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/27/2023] [Indexed: 09/07/2023]
Abstract
Glucose oxidase-loaded ZIF-90 metal-organic framework nanoparticles conjugated to hemin-G-quadruplexes act as functional bioreactor hybrids operating transient dissipative biocatalytic cascaded transformations consisting of the glucose-driven H2O2-mediated oxidation of Amplex-Red to resorufin or the glucose-driven generation of chemiluminescence by the H2O2-mediated oxidation of luminol. One system involves the fueled activation of a reaction module leading to the temporal formation and depletion of the bioreactor conjugate operating the nickase-guided transient biocatalytic cascades. The second system demonstrates the fueled activation of a reaction module yielding a bioreactor conjugate operating the exonuclease III-dictated transient operation of the two biocatalytic cascades. The temporal operations of the bioreactor circuits are accompanied by kinetic models and computational simulations enabling us to predict the dynamic behavior of the systems subjected to different auxiliary conditions.
Collapse
Affiliation(s)
- Yunlong Qin
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Yu Ouyang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Jianbang Wang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Xinghua Chen
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Yang Sung Sohn
- The
Institute of Life Science, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
10
|
Li Z, Wang J, Willner I. Alternate Strategies to Induce Dynamically Modulated Transient Transcription Machineries. ACS NANO 2023; 17:18266-18279. [PMID: 37669432 PMCID: PMC10540262 DOI: 10.1021/acsnano.3c05336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Emulating native transient transcription machineries modulating temporal gene expression by synthetic circuits is a major challenge in the area of systems chemistry. Three different methods to operate transient transcription machineries and to modulate the gated transcription processes of target RNAs are introduced. One method involves the design of a reaction module consisting of transcription templates being triggered by promoter fuel strands transcribing target RNAs and in parallel generating functional DNAzymes in the transcription templates, modulating the dissipative depletion of the active templates and the transient operation of transcription circuits. The second approach involves the application of a reaction module consisting of two transcription templates being activated by a common fuel promoter strand. While one transcription template triggers the transcription of the target RNA, the second transcription template transcribes the anti-fuel strand, displacing the promoter strand associated with the transcription templates, leading to the depletion of the transcription templates and to the dynamic transient modulation of the transcription process. The third strategy involves the assembly of a reaction module consisting of a reaction template triggered by a fuel promoter strand transcribing the target RNA. The concomitant nickase-stimulated depletion of the promoter strand guides the transient modulation of the transcription process. Via integration of two parallel fuel-triggered transcription templates in the three transcription reaction modules and application of template-specific blocker units, the parallel and gated transiently modulated transcription of two different RNA aptamers is demonstrated. The nickase-stimulated transiently modulated transcription reaction module is applied as a functional circuit guiding the dynamic expression of gated, transiently operating, catalytic DNAzymes.
Collapse
Affiliation(s)
| | | | - Itamar Willner
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
11
|
Lang X, Huang Y, He L, Wang Y, Thumu U, Chu Z, Huck WTS, Zhao H. Mechanosensitive non-equilibrium supramolecular polymerization in closed chemical systems. Nat Commun 2023; 14:3084. [PMID: 37248275 DOI: 10.1038/s41467-023-38948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Chemical fuel-driven supramolecular systems have been developed showing out-of-equilibrium functions such as transient gelation and oscillations. However, these systems suffer from undesired waste accumulation and they function only in open systems. Herein, we report non-equilibrium supramolecular polymerizations in a closed system, which is built by viologens and pyranine in the presence of hydrazine hydrate. On shaking, the viologens are quickly oxidated by air followed by self-assembly of pyranine into micrometer-sized nanotubes. The self-assembled nanotubes disassemble spontaneously over time by the reduced agent, with nitrogen as the only waste product. Our mechanosensitive dissipative system can be extended to fabricate a chiral transient supramolecular helix by introducing chiral-charged small molecules. Moreover, we show that shaking induces transient fluorescence enhancement or quenching depending on substitution of viologens. Ultrasound is introduced as a specific shaking way to generate template-free reproducible patterns. Additionally, the shake-driven transient polymerization of amphiphilic naphthalenetetracarboxylic diimide serves as further evidence of the versatility of our mechanosensitive non-equilibrium system.
Collapse
Affiliation(s)
- Xianhua Lang
- School of Chemical Engineering, State Key Lab of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Yingjie Huang
- School of Chemical Engineering, State Key Lab of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Lirong He
- School of Chemical Engineering, State Key Lab of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Yixi Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Udayabhaskararao Thumu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Zonglin Chu
- College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, China
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Hui Zhao
- School of Chemical Engineering, State Key Lab of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China.
| |
Collapse
|
12
|
Shen Y, Yuan H, Guo Z, Li XQ, Yang Z, Zong C. Exonuclease III Can Efficiently Cleave Linear Single-Stranded DNA: Reshaping Its Experimental Applications in Biosensors. BIOSENSORS 2023; 13:581. [PMID: 37366946 DOI: 10.3390/bios13060581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Exonuclease III (Exo III) has been generally used as a double-stranded DNA (dsDNA)-specific exonuclease that does not degrade single-stranded DNA (ssDNA). Here, we demonstrate that Exo III at concentrations above 0.1 unit/μL can efficiently digest linear ssDNA. Moreover, the dsDNA specificity of Exo III is the foundation of many DNA target recycling amplification (TRA) assays. We demonstrate that with 0.3 and 0.5 unit/μL Exo III, the degradation of an ssDNA probe, free or fixed on a solid surface, was not discernibly different, regardless of the presence or absence of target ssDNA, indicating that Exo III concentration is critical in TRA assays. The study has expanded the Exo III substrate scope from dsDNA to both dsDNA and ssDNA, which will reshape its experimental applications.
Collapse
Affiliation(s)
- Yi Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Haoyu Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zixuan Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xiu-Qing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 4Z7, Canada
- NutraHealth Products and Technologies Inc., Fredericton, NB E3B 6J5, Canada
| | - Zhiqing Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Rizhao Science and Technology Innovation Service Center, Rizhao 276825, China
| | - Chengli Zong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
14
|
Li Z, Wang J, Willner B, Willner I. Topologically Triggered Dynamic DNA Frameworks. Isr J Chem 2023. [DOI: 10.1002/ijch.202300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zhenzhen Li
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Jianbang Wang
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Bilha Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Itamar Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
15
|
Zhang J, Song C, Wang L. DNA-mediated dynamic plasmonic nanostructures: assembly, actuation, optical properties, and biological applications. Phys Chem Chem Phys 2022; 24:23959-23979. [PMID: 36168789 DOI: 10.1039/d2cp02100e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in DNA technology have made it possible to combine with the plasmonics to fabricate reconfigurable dynamic nanodevices with extraordinary property and function. These DNA-mediated plasmonic nanostructures have been investigated for a variety of unique and beneficial physicochemical properties and their dynamic behavior has been controlled by endogenous or exogenous stimuli for a variety of interesting biological applications. In this perspective, the recent efforts to use the DNA nanostructures as molecular linkers for fabricating dynamic plasmonic nanostructures are reviewed. Next, the actuation media for triggering the dynamic behavior of plasmonic nanostructures and the dynamic response in optical features are summarized. Finally, the applications, remaining challenges and perspectives of the DNA-mediated dynamic plasmonic nanostructures are discussed.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Chunyuan Song
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Lianhui Wang
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
16
|
Ouyang Y, Zhang P, Willner I. Dynamic Catalysis Guided by Nucleic Acid Networks and DNA Nanostructures. Bioconjug Chem 2022; 34:51-69. [PMID: 35973134 PMCID: PMC9853509 DOI: 10.1021/acs.bioconjchem.2c00233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nucleic acid networks conjugated to native enzymes and supramolecular DNA nanostructures modified with enzymes or DNAzymes act as functional reaction modules for guiding dynamic catalytic transformations. These systems are exemplified with the assembly of constitutional dynamic networks (CDNs) composed of nucleic acid-functionalized enzymes, as constituents, undergoing triggered structural reconfiguration, leading to dynamically switched biocatalytic cascades. By coupling two nucleic acid/enzyme networks, the intercommunicated feedback-driven dynamic biocatalytic operation of the system is demonstrated. In addition, the tailoring of a nucleic acid/enzyme reaction network driving a dissipative, transient, biocatalytic cascade is introduced as a model system for out-of-equilibrium dynamically modulated biocatalytic transformation in nature. Also, supramolecular nucleic acid machines or DNA nanostructures, modified with DNAzyme or enzyme constituents, act as functional reaction modules driving temporal dynamic catalysis. The design of dynamic supramolecular machines is exemplified with the introduction of an interlocked two-ring catenane device that is dynamically reversibly switched between two states operating two different DNAzymes, and with the tailoring of a DNA-tweezers device functionalized with enzyme/DNAzyme constituents that guides the dynamic ON/OFF operation of a biocatalytic cascade by opening and closing the molecular device. In addition, DNA origami nanostructures provide functional scaffolds for the programmed positioning of enzymes or DNAzyme for the switchable operation of catalytic transformations. This is introduced by the tailored functionalization of the edges of origami tiles with nucleic acids guiding the switchable formation of DNAzyme catalysts through the dimerization/separation of the tiles. In addition, the programmed deposition of two-enzyme/cofactor constituents on the origami raft allowed the dynamic photochemical activation of the cofactor-mediated biocatalytic cascade on the spatially biocatalytic assembly on the scaffold. Furthermore, photoinduced "mechanical" switchable and reversible unlocking and closing of nanoholes in the origami frameworks allow the "ON" and "OFF" operation of DNAzyme units in the nanoholes, confined environments. The future challenges and potential applications of dynamic nucleic acid/enzyme and DNAzyme conjugates are discussed in the conclusion paragraph.
Collapse
|
17
|
Cascaded dissipative DNAzyme-driven layered networks guide transient replication of coded-strands as gene models. Nat Commun 2022; 13:4414. [PMID: 35906232 PMCID: PMC9338015 DOI: 10.1038/s41467-022-32148-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Dynamic, transient, out-of-equilibrium networks guide cellular genetic, metabolic or signaling processes. Designing synthetic networks emulating natural processes imposes important challenges including the ordered connectivity of transient reaction modules, engineering of the appropriate balance between production and depletion of reaction constituents, and coupling of the reaction modules with emerging chemical functions dictated by the networks. Here we introduce the assembly of three coupled reaction modules executing a cascaded dynamic process leading to the transient formation and depletion of three different Mg2+-ion-dependent DNAzymes. The transient operation of the DNAzyme in one layer triggers the dynamic activation of the DNAzyme in the subsequent layer, leading to a three-layer transient catalytic cascade. The kinetics of the transient cascade is computationally simulated. The cascaded network is coupled to a polymerization/nicking DNA machinery guiding transient synthesis of three coded strands acting as “gene models”, and to the rolling circle polymerization machinery leading to the transient synthesis of fluorescent Zn(II)-PPIX/G-quadruplex chains or hemin/G-quadruplex catalytic wires. A reaction network executing a cascaded transient formation and depletion of three different catalytic strands is introduced. The system is coupled to the secondary temporal synthesis of different coded strands as gene models.
Collapse
|
18
|
Khoris IM, Nasrin F, Chowdhury AD, Park EY. Advancement of dengue virus NS1 protein detection by 3D-nanoassembly complex gold nanoparticles utilizing competitive sandwich aptamer on disposable electrode. Anal Chim Acta 2022; 1207:339817. [DOI: 10.1016/j.aca.2022.339817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 12/25/2022]
|
19
|
Li Z, Wang J, Zhou Z, O’Hagan MP, Willner I. Gated Transient Dissipative Dimerization of DNA Tetrahedra Nanostructures for Programmed DNAzymes Catalysis. ACS NANO 2022; 16:3625-3636. [PMID: 35184545 PMCID: PMC8945371 DOI: 10.1021/acsnano.1c06117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Transient dissipative dimerization and transient gated dimerization of DNA tetrahedra nanostructures are introduced as functional modules to emulate transient and gated protein-protein interactions and emergent protein-protein guided transient catalytic functions, operating in nature. Four tetrahedra are engineered to yield functional modules that, in the presence of pre-engineered auxiliary nucleic acids and the nicking enzyme Nt.BbvCI, lead to the fueled transient dimerization of two pairs of tetrahedra. The dynamic transient formation and depletion of DNA tetrahedra are followed by transient FRET signals generated by fluorophore-labeled tetrahedra. The integration of two inhibitors within the mixture of the four tetrahedra and two auxiliary modules, fueling the transient dimerization, results in selective inhibitor-guided gated transient dimerization of two different DNA tetrahedra dimers. Kinetic models for the dynamic transient dimerization and gated transient dimerization of the DNA tetrahedra are formulated and computationally simulated. The derived rate-constants allow the prediction and subsequent experimental validation of the performance of the systems under different auxiliary conditions. In addition, by appropriate modification of the four tetrahedra structures, the triggered gated emergence of selective transient catalytic functions driven by the two pairs of DNA tetrahedra dimers is demonstrated.
Collapse
|
20
|
Wang C, O'Hagan MP, Li Z, Zhang J, Ma X, Tian H, Willner I. Photoresponsive DNA materials and their applications. Chem Soc Rev 2022; 51:720-760. [PMID: 34985085 DOI: 10.1039/d1cs00688f] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoresponsive nucleic acids attract growing interest as functional constituents in materials science. Integration of photoisomerizable units into DNA strands provides an ideal handle for the reversible reconfiguration of nucleic acid architectures by light irradiation, triggering changes in the chemical and structural properties of the nanostructures that can be exploited in the development of photoresponsive functional devices such as machines, origami structures and ion channels, as well as environmentally adaptable 'smart' materials including nanoparticle aggregates and hydrogels. Moreover, photoresponsive DNA components allow control over the composition of dynamic supramolecular ensembles that mimic native networks. Beyond this, the modification of nucleic acids with photosensitizer functionality enables these biopolymers to act as scaffolds for spatial organization of electron transfer reactions mimicking natural photosynthesis. This review provides a comprehensive overview of these exciting developments in the design of photoresponsive DNA materials, and showcases a range of applications in catalysis, sensing and drug delivery/release. The key challenges facing the development of the field in the coming years are addressed, and exciting emergent research directions are identified.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Ziyuan Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
21
|
Li N, Zhao Y, Liu Y, Yin Z, Liu R, Zhang L, Ma L, Dai X, Zhou D, Su X. Self-resetting molecular probes for nucleic acids detection enabled by fuel dissipative systems. NANO TODAY 2021; 41:101308. [PMID: 34630625 PMCID: PMC8486598 DOI: 10.1016/j.nantod.2021.101308] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/04/2021] [Accepted: 09/22/2021] [Indexed: 05/02/2023]
Abstract
A once-in-a-century global public health crisis, the COVID-19 pandemic has damaged human health and world economy greatly. To help combat the virus, we report a self-resetting molecular probe capable of repeatedly detecting SARS-CoV-2 RNA, developed by orchestrating a fuel dissipative system via DNA nanotechnology. A set of simulation toolkits was utilized to design the probe, permitting highly consistent signal amplitudes across cyclic detections. Uniquely, full width at half maximum regulated by dissipative kinetics exhibits a fingerprint signal suitable for high confidential identifications of single-nucleotide variants. Further examination on multiple human-infectious RNA viruses, including ZIKV, MERS-CoV, and SARS-CoV, demonstrates the generic detection capability and superior orthogonality of the probe. It also correctly classified all the clinical samples from 55 COVID-19 patients and 55 controls. Greatly enhancing the screening capability for COVID-19 and other infectious diseases, this probe could help with disease control and build a broader global public health agenda.
Collapse
Affiliation(s)
- Na Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuee Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yu Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Rui Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liang Ma
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaochuan Dai
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
22
|
Ouyang Y, Zhang P, Manis-Levy H, Paltiel Y, Willner I. Transient Dissipative Optical Properties of Aggregated Au Nanoparticles, CdSe/ZnS Quantum Dots, and Supramolecular Nucleic Acid-Stabilized Ag Nanoclusters. J Am Chem Soc 2021; 143:17622-17632. [PMID: 34643387 DOI: 10.1021/jacs.1c07895] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transient, dissipative, aggregation and deaggregation of Au nanoparticles (NPs) or semiconductor quantum dots (QDs) leading to control over their transient optical properties are introduced. The systems consist of nucleic acid-modified pairs of Au NPs or pairs of CdSe/ZnS QDs, an auxiliary duplex L1/T1, and the nicking enzyme Nt.BbvCI as functional modules yielding transient aggregation/deaggregation of the NPs and dynamically controlling over their optical properties. In the presence of a fuel strand L1', the duplex L1/T1 is separated, leading to the release of T1 and the formation of duplex L1/L1'. The released T1 leads to aggregation of the Au NPs or to the T1-induced G-quadruplex bridged aggregated CdSe/ZnS QDs. Biocatalytic nicking of the L1/L1' duplex fragments L1' and the released L1 displaces T1 bridging the aggregated NPs or QDs, resulting in the dynamic recovery of the original NPs or QDs modules. The dynamic aggregation/deaggregation of the Au NPs is followed by the transient interparticle plasmon coupling spectral changes. The dynamic aggregation/deaggregation of the CdSe/ZnS QDs is probed by following the transient chemiluminescence generated by the hemin/G-quadruplexes bridging the QDs and by the accompanying transient chemiluminescence resonance energy transfer proceeding in the dynamically formed QDs aggregates. A third system demonstrating transient, dissipative, luminescence properties of a reaction module consisting of nucleic acid-stabilized Ag nanoclusters (NCs) is introduced. Transient dynamic formation and depletion of the supramolecular luminescent Ag NCs system via strand displacement accompanied by a nicking process are demonstrated.
Collapse
Affiliation(s)
- Yu Ouyang
- The Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Pu Zhang
- The Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Hadar Manis-Levy
- Department of Applied Physics, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yossi Paltiel
- Department of Applied Physics, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
23
|
Deng J, Walther A. Autonomous DNA nanostructures instructed by hierarchically concatenated chemical reaction networks. Nat Commun 2021; 12:5132. [PMID: 34446724 PMCID: PMC8390752 DOI: 10.1038/s41467-021-25450-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Concatenation and communication between chemically distinct chemical reaction networks (CRNs) is an essential principle in biology for controlling dynamics of hierarchical structures. Here, to provide a model system for such biological systems, we demonstrate autonomous lifecycles of DNA nanotubes (DNTs) by two concatenated CRNs using different thermodynamic principles: (1) ATP-powered ligation/restriction of DNA components and (2) input strand-mediated DNA strand displacement (DSD) using energy gains provided in DNA toeholds. This allows to achieve hierarchical non-equilibrium systems by concurrent ATP-powered ligation-induced DSD for activating DNT self-assembly and restriction-induced backward DSD reactions for triggering DNT degradation. We introduce indirect and direct activation of DNT self-assemblies, and orthogonal molecular recognition allows ATP-fueled self-sorting of transient multicomponent DNTs. Coupling ATP dissipation to DNA nanostructures via programmable DSD is a generic concept which should be widely applicable to organize other DNA nanostructures, and enable the design of automatons and life-like systems of higher structural complexity.
Collapse
Affiliation(s)
- Jie Deng
- A3BMS Lab, Department of Chemistry, University of Mainz, Mainz, Germany.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Mainz, Germany.
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
24
|
Wang J, Li Z, Zhou Z, Ouyang Y, Zhang J, Ma X, Tian H, Willner I. DNAzyme- and light-induced dissipative and gated DNA networks. Chem Sci 2021; 12:11204-11212. [PMID: 34522318 PMCID: PMC8386649 DOI: 10.1039/d1sc02091a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Nucleic acid-based dissipative, out-of-equilibrium systems are introduced as functional assemblies emulating transient dissipative biological transformations. One system involves a Pb2+-ion-dependent DNAzyme fuel strand-driven network leading to the transient cleavage of the fuel strand to “waste” products. Applying the Pb2+-ion-dependent DNAzyme to two competitive fuel strand-driven systems yields two parallel operating networks. Blocking the competitively operating networks with selective inhibitors leads, however, to gated transient operation of dictated networks, yielding gated catalytic operations. A second system introduces a “non-waste” generating out-of-equilibrium, dissipative network driven by light. The system consists of a trans-azobenzene-functionalized photoactive module that is reconfigured by light to an intermediary state consisting of cis-azobenzene units that are thermally recovered to the original trans-azobenzene-modified module. The cyclic transient photoinduced operation of the device is demonstrated. The kinetic simulation of the systems allows the prediction of the transient behavior of the networks under different auxiliary conditions. Functional DNA modules are triggered in the presence of appropriate inhibitors to yield transient gated catalytic functions, and a photoresponsive DNA module leads to “waste-free” operation of transient, dissipative dynamic transitions.![]()
Collapse
Affiliation(s)
- Jianbang Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Zhenzhen Li
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Zhixin Zhou
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Yu Ouyang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Junji Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology Shanghai 200237 P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
25
|
Wang C, Zhou Z, Ouyang Y, Wang J, Neumann E, Nechushtai R, Willner I. Gated Dissipative Dynamic Artificial Photosynthetic Model Systems. J Am Chem Soc 2021; 143:12120-12128. [PMID: 34338509 DOI: 10.1021/jacs.1c04097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gated dissipative artificial photosynthetic systems modeling dynamically modulated environmental effects on the photosynthetic apparatus are presented. Two photochemical systems composed of a supramolecular duplex scaffold, a photosensitizer-functionalized strand (photosensitizer is Zn(II)protoporphyrin IX, Zn(II)PPIX, or pyrene), an electron acceptor bipyridinium (V2+)-modified strand, and a nicking enzyme (Nt.BbvCI) act as functional assemblies driving transient photosynthetic-like processes. In the presence of a fuel strand, the transient electron transfer quenching of the photosensitizers, in each of the photochemical systems, is activated. In the presence of a sacrificial electron donor (mercaptoethanol) and continuous irradiation, the resulting electron transfer process in the Zn(II)PPIX/V2+ photochemical module leads to the transient accumulation and depletion of the bipyridinium radical-cation (V·+) product, and in the presence of ferredoxin-NADP+ reductase and NADP+, to the kinetically modulated photosynthesis of NADPH. By subjecting the mixture of two photochemical modules to one of two inhibitors, the gated transient photoinduced electron transfer in the two modules is demonstrated. Such gated dissipative process highlights its potential as an important pathway to protect artificial photosynthetic module against overdose of irradiance and to minimize photodamage.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhixin Zhou
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yu Ouyang
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jianbang Wang
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ehud Neumann
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
26
|
Lang X, Thumu U, Yuan L, Zheng C, Zhang H, He L, Zhao H, Zhao C. Chemical fuel-driven transient polymeric micelle nanoreactors toward reversible trapping and reaction acceleration. Chem Commun (Camb) 2021; 57:5786-5789. [PMID: 33998623 DOI: 10.1039/d1cc00726b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In most synthetic nanoreactor systems, catalysed products do not promptly diffuse away from the nanoreactor, which leads to lower than expected catalytic efficiencies. To address the diffusion problem, transient polymer micelle nanoreactor systems were achieved using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as the fuel and activated esters as the energy dissipating units. These demonstrated pathway-dependent catalytic properties for transient micelles: product inhibition was observed or efficiently eliminated depending on EDC reloading in the metastable stage or after full dissipation for transient micelles.
Collapse
Affiliation(s)
- Xianhua Lang
- Institute of Fundamental and Frontier Sciences (IFFS), University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Fan X, Walther A. pH Feedback Lifecycles Programmed by Enzymatic Logic Gates Using Common Foods as Fuels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
28
|
Fan X, Walther A. pH Feedback Lifecycles Programmed by Enzymatic Logic Gates Using Common Foods as Fuels. Angew Chem Int Ed Engl 2021; 60:11398-11405. [PMID: 33682231 PMCID: PMC8252529 DOI: 10.1002/anie.202017003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Artificial temporal signaling systems, which mimic living out-of-equilibrium conditions, have made large progress. However, systems programmed by enzymatic reaction networks in multicomponent and unknown environments, and using biocompatible components remain a challenge. Herein, we demonstrate an approach to program temporal pH signals by enzymatic logic gates. They are realized by an enzymatic disaccharide-to-monosaccharide-to-sugar acid reaction cascade catalyzed by two metabolic chains: invertase-glucose oxidase and β-galactosidase-glucose oxidase, respectively. Lifetimes of the transient pH signal can be programmed from less than 15 min to more than 1 day. We study enzymatic kinetics of the reaction cascades and reveal the underlying regulatory mechanisms. Operating with all-food grade chemicals and coupling to self-regulating hydrogel, our system is quite robust to work in a complicated medium with unknown components and in a biocompatible fashion.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Str. 3179104FreiburgGermany
| | - Andreas Walther
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Str. 3179104FreiburgGermany
- ABMS LabDepartment of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
29
|
Luo D, Wang X, Burda C, Basilion JP. Recent Development of Gold Nanoparticles as Contrast Agents for Cancer Diagnosis. Cancers (Basel) 2021; 13:1825. [PMID: 33920453 PMCID: PMC8069007 DOI: 10.3390/cancers13081825] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/27/2022] Open
Abstract
The last decade has witnessed the booming of preclinical studies of gold nanoparticles (AuNPs) in biomedical applications, from therapeutics delivery, imaging diagnostics, to cancer therapies. The synthetic versatility, unique optical and electronic properties, and ease of functionalization make AuNPs an excellent platform for cancer theranostics. This review summarizes the development of AuNPs as contrast agents to image cancers. First, we briefly describe the AuNP synthesis, their physical characteristics, surface functionalization and related biomedical uses. Then we focus on the performances of AuNPs as contrast agents to diagnose cancers, from magnetic resonance imaging, CT and nuclear imaging, fluorescence imaging, photoacoustic imaging to X-ray fluorescence imaging. We compare these imaging modalities and highlight the roles of AuNPs as contrast agents in cancer diagnosis accordingly, and address the challenges for their clinical translation.
Collapse
Affiliation(s)
- Dong Luo
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Xinning Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James P. Basilion
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
30
|
Zhou Z, Ouyang Y, Wang J, Willner I. Dissipative Gated and Cascaded DNA Networks. J Am Chem Soc 2021; 143:5071-5079. [DOI: 10.1021/jacs.1c00486] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhixin Zhou
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jianbang Wang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
31
|
Zhou M, Han S, Aras O, An F. Recent Advances in Paclitaxel-based Self-Delivery Nanomedicine for Cancer Therapy. Curr Med Chem 2021; 28:6358-6374. [PMID: 33176629 PMCID: PMC9878464 DOI: 10.2174/0929867327666201111143725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 01/28/2023]
Abstract
Paclitaxel (PTX) is the first natural plant-derived chemotherapeutic drug approved by the Food and Drug Administration. However, the clinical applications of PTX are limited by some drawbacks, such as poor water solubility, rapid blood clearance, nonspecific distribution, and adverse side effects. Nanocarriers have made important contributions to drug delivery and cancer therapy in recent years. However, low drug loading capacity, nanocarrier excipients-induced toxicity or immunogenicity, and complicated synthesis technologies pose a challenge for the clinical application of nanocarriers. To address these issues, the self-delivery nanomedicine (SDNs), in which pure drug molecules directly self-assemble into nanomedicine, have been developed for drug delivery and enhancing antitumor efficacy. In this review, we comprehensively summarize the recent advances in PTX-based SDNs for cancer therapy. First, the self-assembly strategies to develop pure PTX nanodrugs are discussed. Then, the emerging strategies of co-assembly PTX and other therapeutic agents for effective combination therapy are presented, composing of combination chemotherapy, chemo-photothermal therapy, chemo-photodynamic therapy, chemo-immunotherapy, and chemo-gene therapy. Finally, the limitations and future outlook of SDNs are discussed. The rational design of these unique nanoplatforms may make a new direction to develop highly efficient drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226000, Jiangsu, PR China
| | - Shupeng Han
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061, Shaanxi, PR China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer, New York, NY, USA, 10065,Address correspondence to this author at the Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061, Shaanxi, China; ; Or at Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States;
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061, Shaanxi, PR China,Address correspondence to this author at the Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061, Shaanxi, China; ; Or at Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States;
| |
Collapse
|