1
|
Guo N, Wang K, Chen J, Chang J, Gan H, Xie G, Zhang L, Wu Z, Liu Y. Fluorescent alginate fiber with super-strong and super-tough mechanical performances for biomedical applications. Carbohydr Polym 2025; 347:122764. [PMID: 39486991 DOI: 10.1016/j.carbpol.2024.122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 11/04/2024]
Abstract
Emerging research attentions are focused on the development of fluorescent biomaterials for various biomedical applications, including fluorescence-guided surgery. However, it is still challenging to prepare biomolecules-based fluorescent fibers with both satisfactory biocompatibility and optimal mechanical properties. Here, we develop a fluorescent robust biofiber through using a tetraphenylethene-containing surfactant as the contact points between polysaccharide chains of alginate. This newly developed contact points not only strengthen the cross-linking network of polysaccharide chains, but also afford enough energy-dissipating slippage for polysaccharide chains. Consequently, the generated fluorescent fiber is endowed with highly improved mechanical performances from plastic strain stage. The experimental results indicate that the fluorescent fiber shows good mechanical properties of breaking strength of 1.10 GPa (12.09 cN/dtex), Young's modulus of 39.81 GPa and toughness of 137.26 MJ/m3, which are comparable to those of dragline silk and outperforming spider silk proteins and other artificial materials. More importantly, its satisfactory biosafety and wound healing-promoting ability as a fluorescent suture are solidly proved by both in vitro and in vivo assays, which opens an opportunity for its biological and biomedical applications. This study provides a novel strategy for the development of robust fluorescent biomaterials.
Collapse
Affiliation(s)
- Ning Guo
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Kang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jia Chen
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jiahao Chang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Huixuan Gan
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Guolie Xie
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Lei Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhongtao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yun Liu
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
2
|
Hendrich CM, Reinschmidt M, Büllmann SM, Kolmar T, Jäschke A. Synthesis and Development of Inverse-Type Nucleoside Diarylethene Photoswitches. Chemistry 2024; 30:e202401537. [PMID: 39045626 DOI: 10.1002/chem.202401537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024]
Abstract
Nucleosidic diarylethenes (DAEs) have evolved from an emerging class of photochromes into a well-established option for integrating photochromic functionalities into biological systems. However, a comprehensive understanding of how chemical structure influences their photochromic properties remains essential. While structural features, such as an inverse connection between the aryl residues and the ethene bridge, are well-documented for classical DAEs, their application to nucleosidic DAEs has been underexplored. In this study, we address this gap by developing three distinct types of inverse nucleosidic DAEs-semi-inverse thiophenes, semi-inverse uridines and inverse uridines. We successfully synthesized these compounds and conducted comprehensive analyses of their photostationary states, thermal stability, reversibility, and reaction quantum yields. Additionally, we conducted an in-depth comparison of their photochromic properties with those of their normal-type counterparts. Among the synthesized compounds, seven semi-inverse thiophenes exhibited the most promising characteristics. Notably, these compounds demonstrated excellent fatigue resistance, with up to 96 % retention of photochromic activity over 40 switching cycles, surpassing the performance of all comparable nucleosidic DAEs reported to date. These findings hold significant promise for future applications in various fields.
Collapse
Affiliation(s)
- Christoph M Hendrich
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Martin Reinschmidt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Simon M Büllmann
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Zhang L, Du Q, Zhang Z, Chen J, Liu Y, Luo X, Wang Z, Wu Z. Being Smarter, Azobenzene-Containing Biomaterial Showing Triple Stimuli-Responsive Phase Change Property to Light, Humidity and Force at Room Temperature. Adv Healthc Mater 2024:e2402081. [PMID: 39363799 DOI: 10.1002/adhm.202402081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Indexed: 10/05/2024]
Abstract
Multiple stimuli-responsiveness is an attractive property that is studied in physical chemistry and materials chemistry. While, multiple stimuli-responsive phase change in an isothermal way is rarely addressed for functional materials at room temperature. In this study, one azobenzene-containing surfactant AZO is designed for the fabrication of triple stimuli-responsive phase change biomaterial (Alg-AZO) through the electrostatic complexation with natural alginate. Thanks to the photoisomerization ability, molecular flexibility and hydrophilicity of AZO, together with the tailoring effect of alginate on AZO, Alg-AZO could perform reversible isothermal phase transition between liquid crystalline and isotropic liquid states under the stimuli of either light or humidity at room temperature. Furthermore, the humidity-induced isotropic state can also fast transit to ordered state under shear force, owing to the π-π interactions between planar trans-AZO in Alg-AZO material. With good biocompatibility, self-healing property and in vivo wound healing promoting capacity that is promoted by light, humidity and force, Alg-AZO would be suitable for working as a new smart biomaterial in biological and biomedical areas. This work provides a designing strategy for gaining multiple stimuli-responsive smart materials based on biomacromolecules, and also opening a new opportunity for gaining self-healing biomaterials capable of working in various conditions.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Optic-electric Sensing and Analystical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qianyao Du
- Key Laboratory of Optic-electric Sensing and Analystical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Ziying Zhang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| | - Jia Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yun Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analystical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhongtao Wu
- Key Laboratory of Optic-electric Sensing and Analystical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
4
|
Liu Y, Zhang G, Chen J, Zhang Z, Wu Q, Zhang L, Zhu S, Liang Q, Wu Z, Luo X, Wang Z, Zeng W. Photoresponsive protamine ionic complex towards a smart hemostatic biomaterial. Int J Biol Macromol 2024; 281:136212. [PMID: 39362436 DOI: 10.1016/j.ijbiomac.2024.136212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Protamine (PA) is the only licensed antidote for reversing heparin anticoagulation by electrostatically binding with heparin. Efforts have been made on designing various heparin-scavengers, while, it remains a great challenge for gaining the external-stimuli responsive PA-release material. In this study, a generic strategy is developed for fabricating photoresponsive protein materials with the designed azobenzene-containing surfactant. For the first time, based on the isomerization of azobenzene, both cationic and anionic proteins could be phase change biomaterials which are capable of transiting to isotropic state under UV irradiation at room temperature. The formation of isotropic state could set the proteins free from the binding state, activating their intrinsic biological functions. Employing this mechanism, one smart PA material for inhibiting heparin is developed, which could effectively photo-modulate the heparin concentration by turning on-and-off the free state of PA from the binding state. With good biocompatibility, the PA material addresses photoresponsive hemostatic activity in biological studies, confirming its great potential clinical values. This work provides a new designing strategy for gaining photocontrollable hemostasis materials, also opening new opportunities for developing photoresponsive protein drugs and biomedical materials.
Collapse
Affiliation(s)
- Yun Liu
- Dongguan Children's Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Guoqiang Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jia Chen
- Dongguan Children's Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Ziying Zhang
- Dongguan Children's Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Quanxin Wu
- Dongguan Children's Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Lei Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shanhui Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qikai Liang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhongtao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Weishen Zeng
- Dongguan Children's Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China.
| |
Collapse
|
5
|
Zhang L, Du Q, Chen J, Liu Y, Chang J, Wu Z, Luo X. Highly-Strong and Highly-Tough Alginate Fibers with Photo-Modulating Mechanical Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402949. [PMID: 39206754 PMCID: PMC11516064 DOI: 10.1002/advs.202402949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The good combination of high strength and high toughness is a long-standing challenge in the design of robust biomaterials. Meanwhile, robust biomaterials hardly perform fast and significant mechanical property changes under the trigger of light at room temperature. These limit the application of biomaterials in some specific areas. Here, photoresponsive alginate fibers are fabricated by using the designed azobenzene-containing surfactant as flexible contact point for cross-linking polysaccharide chains of alginate, which gain high mechanics through reinforced plastic strain and photo-modulating mechanics through isomerization of azobenzene. By transferring molecular motion into macro-scale mechanical property changes, such alginate fibers achieve reversible photo-modulations on the mechanics. Their breaking strength and toughness can be photo-modulated from 732 MPa and 112 MJ m-3 to 299 MPa and 27 MJ m-3, respectively, leading to record high mechanical changes among the developed smart biomaterials. With merits of good tolerance to pH and temperature, fast response to light, and good biocompatibility, the reported fibers will be suitable for working in various application scenarios as new smart biomaterials. This study provides a new design strategy for gaining highly-strong and highly-tough photoresponsive biomaterials.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life ScienceMOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Qianyao Du
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life ScienceMOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Jia Chen
- Guangdong Key Laboratory for Research and Development of Natural DrugsGuangdong Medical UniversityZhanjiang524023China
| | - Yun Liu
- Guangdong Key Laboratory for Research and Development of Natural DrugsGuangdong Medical UniversityZhanjiang524023China
| | - Jiahao Chang
- School of Clinical MedicineShandong Second Medical UniversityWeifang261053China
| | - Zhongtao Wu
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life ScienceMOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Xiliang Luo
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life ScienceMOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042China
| |
Collapse
|
6
|
Dutta A, Karamikamkar S, Nofar M, Behzadfar E. Nanoporous air filtering systems made from renewable sources: benefits and challenges. NANOSCALE 2024; 16:15059-15077. [PMID: 39072362 DOI: 10.1039/d4nr01688b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
There is a crucial need for air purification systems due to increasing air contamination, while conventional air-filtering materials face challenges in eliminating gaseous and particulate pollutants. This review examines the development and characteristics of nanoporous polymeric materials developed from renewable resources, which have rapidly advanced in recent years. These materials offer more sustainable alternatives for nanoporous structures made out of conventional polymers and significantly impact the properties of porous polymers. The review explores nanoporous materials' production from renewable sources, filtering mechanisms, physicochemical makeup, and sensing capabilities. The recent advancements in this field aim to enhance production techniques, lower pressure drop, and improve adsorption efficiency. Currently, supporting approaches include using adsorbent layers and binders to immobilize nanoporous materials. Furthermore, the prospects and challenges of nanoporous materials obtained from renewable sources used for air purification are discussed.
Collapse
Affiliation(s)
- Arnab Dutta
- Sustainable Polymers Research Lab (SPRL), The Creative School, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
- Chemical Engineering Department, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA.
| | - Mohammadreza Nofar
- Sustainable & Green Plastics Laboratory, Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ehsan Behzadfar
- Sustainable Polymers Research Lab (SPRL), The Creative School, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
- Chemical Engineering Department, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
7
|
Wang XQ, Xie AQ, Cao P, Yang J, Ong WL, Zhang KQ, Ho GW. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309952. [PMID: 38389497 DOI: 10.1002/adma.202309952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
8
|
Bargstedt J, Reinschmidt M, Tydecks L, Kolmar T, Hendrich CM, Jäschke A. Photochromic Nucleosides and Oligonucleotides. Angew Chem Int Ed Engl 2024; 63:e202310797. [PMID: 37966433 DOI: 10.1002/anie.202310797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Photochromism is a reversible phenomenon wherein a material undergoes a change in color upon exposure to light. In organic photochromes, this effect often results from light-induced isomerization reactions, leading to alterations in either the spatial orientation or electronic properties of the photochrome. The incorporation of photochromic moieties into biomolecules, such as proteins or nucleic acids, has become a prevalent approach to render these biomolecules responsive to light stimuli. Utilizing light as a trigger for the manipulation of biomolecular structure and function offers numerous advantages compared to other stimuli, such as chemical or electrical treatments, due to its non-invasive nature. Consequently, light proves particularly advantageous in cellular and tissue applications. In this review, we emphasize recent advancements in the field of photochromic nucleosides and oligonucleotides. We provide an overview of the design principles of different classes of photochromes, synthetic strategies, critical analytical challenges, as well as structure-property relationships. The applications of photochromic nucleic acid derivatives encompass diverse domains, ranging from the precise photoregulation of gene expression to the controlled modulation of the three-dimensional structures of oligonucleotides and the development of DNA-based fluorescence modulators. Moreover, we present a future perspective on potential modifications and applications.
Collapse
Affiliation(s)
- Jörn Bargstedt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Martin Reinschmidt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Leon Tydecks
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Christoph M Hendrich
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Beckham JL, Bradford TS, Ayala-Orozco C, Santos AL, Arnold D, van Venrooy AR, García-López V, Pal R, Tour JM. Distinguishing Molecular Mechanical Action from Photothermal and Photodynamic Behavior. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306669. [PMID: 38062893 DOI: 10.1002/adma.202306669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/11/2023] [Indexed: 02/16/2024]
Abstract
Molecular motors (MM) are molecular machines, or nanomachines, that rotate unidirectionally upon photostimulation and perform mechanical work on their environment. In the last several years, it has been shown that the photomechanical action of MM can be used to permeabilize lipid bilayers, thereby killing cancer cells and pathogenic microorganisms and controlling cell signaling. The work contributes to a growing acknowledgement that the molecular actuation characteristic of these systems is useful for various applications in biology. However, the mechanical effects of molecular motion on biological materials are difficult to disentangle from photodynamic and photothermal action, which are also present when a light-absorbing fluorophore is irradiated with light. Here, an overview of the key methods used by various research groups to distinguish the effects of photomechanical, photodynamic, and photothermal action is provided. It is anticipated that this discussion will be helpful to the community seeking to use MM to develop new and distinctive medical technologies that result from mechanical disruption of biological materials.
Collapse
Affiliation(s)
- Jacob L Beckham
- Department of Chemistry, Rice University, 6100 Main Street MS 222, Houston, TX, 77005, USA
| | - Thomas S Bradford
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Ciceron Ayala-Orozco
- Department of Chemistry, Rice University, 6100 Main Street MS 222, Houston, TX, 77005, USA
| | - Ana L Santos
- Department of Chemistry, Rice University, 6100 Main Street MS 222, Houston, TX, 77005, USA
- IdISBA-Fundación de Investigación Sanitaria de las Islas Baleares, Palma, 07120, Spain
| | - Dallin Arnold
- Department of Chemistry, Rice University, 6100 Main Street MS 222, Houston, TX, 77005, USA
| | - Alexis R van Venrooy
- Department of Chemistry, Rice University, 6100 Main Street MS 222, Houston, TX, 77005, USA
| | - Víctor García-López
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Robert Pal
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - James M Tour
- Department of Chemistry, Smalley-Curl Institute, NanoCarbon Center, Rice Advanced Materials Institute, Department of Materials Science and Nanoengineering, Department of Computer Science, Rice University, 6100 Main Street MS 222, Houston, TX, 77005, USA
| |
Collapse
|
10
|
von Seggern N, Oehlsen N, Moudrakovski I, Stegbauer L. Photomodulation of the Mechanical Properties and Photo-Actuation of Chitosan-Based Thin Films Modified with an Azobenzene-Derivative. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308939. [PMID: 38037759 DOI: 10.1002/smll.202308939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Indexed: 12/02/2023]
Abstract
A sophisticated comprehension of the impacts of photoisomerization and photothermal phenomena on biogenic and responsive materials can provide a guiding framework for future applications. Herein, the procedure to manufacture homogeneous chitosan-based smart thin films are reported by incorporating the light-responsive azobenzene-derivative Sodium-4-[(4-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl)diazen-yl]-benzenesulfonate (TEGABS) in the biopolymer through electrostatic interactions. When irradiated with UV-light the TEGABS/chitosan films show a biresponse, comprising the E→Z photoisomerization with a half-life of 13 - 20 h and the light-induced evaporation of residual moisture leading to an increase in the reduced indentation modulus (up to 49%) and hardness. Freestanding films of TEGABS/chitosan show actuation up to 13° while irradiated with UV-light. This work shows the potential of biogenic polysaccharides in the design of biresponsive materials with photomodulated mechanical properties and unveils the link between the humidity of the environment, residual moisture, and the photomodulation of the mechanical properties.
Collapse
Affiliation(s)
- Nils von Seggern
- Bioinspired Structural Material Chemistry, Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Nina Oehlsen
- Bioinspired Structural Material Chemistry, Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
- Now at: Biogenic engineering materials, Tu Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599, Freiberg, Germany
| | - Igor Moudrakovski
- Physical Chemistry of Solids, Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Linus Stegbauer
- Bioinspired Structural Material Chemistry, Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
- Now at: Biogenic engineering materials, Tu Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599, Freiberg, Germany
| |
Collapse
|
11
|
Sun J, He H, Zhao K, Cheng W, Li Y, Zhang P, Wan S, Liu Y, Wang M, Li M, Wei Z, Li B, Zhang Y, Li C, Sun Y, Shen J, Li J, Wang F, Ma C, Tian Y, Su J, Chen D, Fan C, Zhang H, Liu K. Protein fibers with self-recoverable mechanical properties via dynamic imine chemistry. Nat Commun 2023; 14:5348. [PMID: 37660126 PMCID: PMC10475138 DOI: 10.1038/s41467-023-41084-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
The manipulation of internal interactions at the molecular level within biological fibers is of particular importance but challenging, severely limiting their tunability in macroscopic performances and applications. It thus becomes imperative to explore new approaches to enhance biological fibers' stability and environmental tolerance and to impart them with diverse functionalities, such as mechanical recoverability and stimulus-triggered responses. Herein, we develop a dynamic imine fiber chemistry (DIFC) approach to engineer molecular interactions to fabricate strong and tough protein fibers with recoverability and actuating behaviors. The resulting DIF fibers exhibit extraordinary mechanical performances, outperforming many recombinant silks and synthetic polymer fibers. Remarkably, impaired DIF fibers caused by fatigue or strong acid treatment are quickly recovered in water directed by the DIFC strategy. Reproducible mechanical performance is thus observed. The DIF fibers also exhibit exotic mechanical stability at extreme temperatures (e.g., -196 °C and 150 °C). When triggered by humidity, the DIFC endows the protein fibers with diverse actuation behaviors, such as self-folding, self-stretching, and self-contracting. Therefore, the established DIFC represents an alternative strategy to strengthen biological fibers and may pave the way for their high-tech applications.
Collapse
Affiliation(s)
- Jing Sun
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, China
| | - Haonan He
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kelu Zhao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Wenhao Cheng
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Yuanxin Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Peng Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Sikang Wan
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Mengyao Wang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Ming Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Zheng Wei
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Bo Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yi Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Cong Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yao Sun
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jianlei Shen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, China
| | - Juanjuan Su
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dong Chen
- College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
| |
Collapse
|
12
|
Sun J, Monreal Santiago G, Zhou W, Portale G, Kamperman M. Water-Processable, Stretchable, and Ion-Conducting Coacervate Fibers from Keratin Associations with Polyelectrolytes. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:15968-15977. [PMID: 36507097 PMCID: PMC9727776 DOI: 10.1021/acssuschemeng.2c05411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Keratin is one of the most abundant biopolymers, produced on a scale of millions of tons per year but often simply discarded as waste. Due to its abundance, biocompatibility, and excellent mechanical properties, there is an extremely high interest in developing protocols for the recycling of keratin and its conversion into protein-based materials. In this work, we describe a novel protocol for the conversion of keratin from wool into hybrid fibers. Our protocol uses a synthetic polyanion, which undergoes complex coacervation with keratin, leading to a viscous liquid phase that can be used directly as a dope for dry-spinning. The use of polyelectrolyte complexation allows us to use all of the extracted keratin, unlike previous works that were limited to the fraction with the highest molecular weight. The fibers prepared by this protocol show excellent mechanical properties, humidity responsiveness, and ion conductivity, which makes them promising candidates for applications as a strain sensor.
Collapse
Affiliation(s)
- Jianwu Sun
- Polymer
Science, Zernike Institute for Advanced
Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Guillermo Monreal Santiago
- Polymer
Science, Zernike Institute for Advanced
Materials, University of Groningen, Groningen 9747 AG, The
Netherlands
| | - Wen Zhou
- Products
and Processes for Biotechnology, Engineering
and Technology Institute Groningen, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Giuseppe Portale
- Macromolecular
Chemistry and New Polymeric Material, Zernike
Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Marleen Kamperman
- Polymer
Science, Zernike Institute for Advanced
Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
13
|
Su J, Liu B, He H, Ma C, Wei B, Li M, Li J, Wang F, Sun J, Liu K, Zhang H. Engineering High Strength and Super-Toughness of Unfolded Structural Proteins and their Extraordinary Anti-Adhesion Performance for Abdominal Hernia Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200842. [PMID: 35262209 DOI: 10.1002/adma.202200842] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The utility of unfolded structural proteins with diverse sequences offers multiple potentials to create functional biomaterials. However, it is challenging to overcome their structural defects for the development of biological fibers with a combination of high strength and high toughness. Herein, robust fibers from a recombinant unfolded protein consisting of resilin and supercharged polypeptide are fabricated via wet-spinning approaches. Particularly, the highly ordered structures induced by supramolecular complexation significantly improve the fiber's mechanical performance. In contrast to chemical fibers with high strength and low toughness (or vice versa), the present fibers demonstrate exceptional high strength and super-toughness, showing a breaking strength of ≈550 MPa and a toughness of ≈250 MJ m-3 , respectively, surpassing many polymers and artificial protein fibers. Remarkably, the outstanding biocompatibility and superior mechanical properties allow application of the constructed fiber patches for efficient abdominal hernia repair in rat models. In stark contrast to clinical patches, there is no observed tissue adhesion by this treatment. Therefore, this work provides a new type of engineered protein material for surgical applications.
Collapse
Affiliation(s)
- Juanjuan Su
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baimei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Haonan He
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bo Wei
- Department of General Surgery, The First Medical Center of PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, China
| | - Ming Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Sun
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Zhang L, Liu H, Liu Y, Wu Z. Thermodynamic stability of cis-azobenzene containing DNA materials based on van der Waals forces. Chem Commun (Camb) 2022; 58:3811-3814. [PMID: 35234239 DOI: 10.1039/d2cc00035k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Taking advantage of van der Waals forces, an azobenzene-containing surfactant with a stable cis-state was designed and synthesized to fabricate photoresponsive DNA material. The reported DNA material exhibited reversible liquid crystalline-to-isotropic liquid transition under UV/Vis illuminations via the trans-cis isomerization of azobenzene. It also gained the ability to maintain the isotropic liquid state after UV light had ceased thanks to the thermodynamic stability of the cis-isomer of the azobenzene-containing surfactant. This work provides a design strategy for fabricating photoresponsive phase-change biomaterials.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Han Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yun Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| | - Zhongtao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
15
|
Zhang L, Gu J, Luo X, Tang Z, Qu Y, Zhang C, Liu H, Liu J, Xie C, Wu Z. Photoregulative phase change biomaterials showing thermodynamic and mchanical stabilities. NANOSCALE 2022; 14:976-983. [PMID: 34989736 DOI: 10.1039/d1nr06000g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Azobenzenes are great photochromic molecules for switching the physical properties of various materials via trans-cis isomerization. However, the UV light resulted cis-azobenzene is metastable and thermodynamically gets back to trans-azobenzene after ceasing UV irradiation, which causes an unwanted property change of azobenzene-containing materials. Additionally, thermal and mechanical conditions would accelerate this process dramatically. In this present work, a new type of azobenzene-containing surfactant is designed for the fabrication of photoresponsive phase change biomaterials. With a "locked" cis-azobenzene conformation, the resulting biomaterials could maintain their disordered state after ceasing UV light, which exhibit great resistance to thermal and piezo conditions. Interestingly, the "locked" cis-azobenzene could be unlocked by Vis light in high efficiency, which opens a new way for the design of phase change materials only responding to light. By showing stable cis-azobenzene maintained physical state, the newly fabricated biomaterials provide new potential for the construction of advanced materials, like self-healing materials, with less use of long time UV irradiation for maintaining their disordered states.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Jingjing Gu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Zhenyu Tang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yang Qu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Chenghao Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Han Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Jishuai Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Congxia Xie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Zhongtao Wu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
16
|
Deng Y, Lu T, Cui J, Keshari Samal S, Xiong R, Huang C. Bio-based electrospun nanofiber as building blocks for a novel eco-friendly air filtration membrane: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119623] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Du N, Ye F, Sun J, Liu K. Stimuli-Responsive Natural Proteins and Their Applications. Chembiochem 2021; 23:e202100416. [PMID: 34773331 DOI: 10.1002/cbic.202100416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Natural proteins are essential biomacromolecules that fulfill versatile functions in the living organism, such as their usage as cytoskeleton, nutriment transporter, homeostasis controller, catalyzer, or immune guarder. Due to the excellent mechanical properties and good biocompatibility/biodegradability, natural protein-based biomaterials are well equipped for prospective applications in various fields. Among these natural proteins, stimuli-responsive proteins can be reversibly and precisely manipulated on demand, rendering the protein-based biomaterials promising candidates for numerous applications, including disease detection, drug delivery, bio-sensing, and regenerative medicine. Therefore, we present some typical natural proteins with diverse physical stimuli-responsive properties, including temperature, light, force, electrical, and magnetic sensing in this review. The structure-function mechanism of these proteins is discussed in detail. Finally, we give a summary and perspective for the development of stimuli-responsive proteins.
Collapse
Affiliation(s)
- Na Du
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Jing Sun
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
18
|
Sun J, Xiao L, Li B, Zhao K, Wang Z, Zhou Y, Ma C, Li J, Zhang H, Herrmann A, Liu K. Genetically Engineered Polypeptide Adhesive Coacervates for Surgical Applications. Angew Chem Int Ed Engl 2021; 60:23687-23694. [PMID: 33886148 PMCID: PMC8596419 DOI: 10.1002/anie.202100064] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/01/2021] [Indexed: 11/20/2022]
Abstract
Adhesive hydrogels have been developed for wound healing applications. However, their adhesive performance is impaired dramatically due to their high swelling on wet tissues. To tackle this challenge, we fabricated a new type of non-swelling protein adhesive for underwater and in vivo applications. In this soft material, the electrostatic complexation between supercharged polypeptides with oppositely charged surfactants containing 3,4-dihydroxylphenylalanine or azobenzene moieties plays an important role for the formation of ultra-strong adhesive coacervates. Remarkably, the adhesion capability is superior to commercial cyanoacrylate when tested in ambient conditions. Moreover, the adhesion is stronger than other reported protein-based adhesives in underwater environment. The ex vivo and in vivo experiments demonstrate the persistent adhesive performance and outstanding behaviors for wound sealing and healing.
Collapse
Affiliation(s)
- Jing Sun
- Department of ChemistryTsinghua UniversityBeijing100084China
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Lingling Xiao
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Kelu Zhao
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Zili Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Yu Zhou
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Chao Ma
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Hongjie Zhang
- Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Andreas Herrmann
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Kai Liu
- Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| |
Collapse
|
19
|
Sun J, Han J, Wang F, Liu K, Zhang H. Bioengineered Protein-based Adhesives for Biomedical Applications. Chemistry 2021; 28:e202102902. [PMID: 34622998 DOI: 10.1002/chem.202102902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Protein-based adhesives with their robust adhesion performance and excellent biocompatibility have been extensively explored over years. In particular, the unique adhesion behaviours of mussel and sandcastle worm inspired the development of synthetic adhesives. However, the chemical synthesized adhesives often demonstrate weak underwater adhesion performance and poor biocompatibility/biodegradability, limiting their further biomedical applications. In sharp contrast, genetically engineering endows the protein-based adhesives the ability to maintain underwater adhesion property as well as biocompatibility/biodegradability. Herein, we outline recent advances in the design and development of protein-based adhesives by genetic engineering. We summarize the fabrication and adhesion performance of elastin-like polypeptide-based adhesives, followed by mussel foot protein (mfp) based adhesives and other sources protein-based adhesives, such as, spider silk spidroin and suckerin. In addition, the biomedical applications of these bioengineered protein-based adhesives are presented. Finally, we give a brief summary and perspective on the future development of bioengineered protein-based adhesives.
Collapse
Affiliation(s)
- Jing Sun
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jiaying Han
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
20
|
Genetically Engineered Polypeptide Adhesive Coacervates for Surgical Applications. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Yang Y, Wang J, Li D, Yang J, Fang M, Li Z. Tunable Photoresponsive Behaviors Based on Triphenylamine Derivatives: The Pivotal Role of π-Conjugated Structure and Corresponding Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104002. [PMID: 34499382 DOI: 10.1002/adma.202104002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Photoresponsive materials have drawn much attention and are widely applied in daily life for their reversible changes in luminous color or appearance color under light irradiation. In this work, a new photoresponsive system based on triarylamine derivatives is developed. With the changed aryl substituents, adjustable photoresponsive properties, including photoactivated phosphorescence and photochromism after being dispersed into the poly(methyl methacrylate) (PMMA) matrix, are demonstrated. According to the theoretical calculations and experimental data, the competition between the formations of triplet excitons and cationic radicals under photoirradiation should be the main reason for their different photoresponsive properties. Excitingly, the applications of rewritable photopatterning, anticounterfeiting, information encryption, and decryption are realized conveniently, in addition to the successful model of sunglasses to protect eyes away from ultraviolet radiation and strong light in the sunlight. These studies present a simple and efficient design strategy for the development of photoresponsive materials on modulating the phosphorescence and photochromic property.
Collapse
Affiliation(s)
- Yujie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jiaqiang Wang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Dan Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Manman Fang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
- Joint School of National University of Singapore, Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
22
|
Sun J, Wang F, Zhang H, Liu K. Azobenzene‐Based Photomechanical Biomaterials. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jing Sun
- Department of Chemistry Tsinghua University Zhongguancun N Street 100084 Beijing China
- Institute of Organic Chemistry University of Ulm Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences 130022 Changchun China
| | - Hongjie Zhang
- Department of Chemistry Tsinghua University Zhongguancun N Street 100084 Beijing China
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences 130022 Changchun China
| | - Kai Liu
- Department of Chemistry Tsinghua University Zhongguancun N Street 100084 Beijing China
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences 130022 Changchun China
| |
Collapse
|