1
|
Sysoeva AA, Safinskaya YV, Il'in MV, Novikov AS, Bolotin DS. Halonium and chalconium salt-catalyzed Schiff condensation: kinetics and DFT insights into organocatalyst activity parameters. Org Biomol Chem 2025. [PMID: 39834308 DOI: 10.1039/d4ob01798f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The Schiff condensation between 4-methylbenzaldehyde and 2-aminopyridine, catalyzed by chloronium, bromonium, and iodonium triflates, as well as sulfonium, selenonium, and telluronium triflates, was investigated. 1H NMR monitoring revealed that the catalytic activity increased significantly with heavier σ-hole-bearing heteroatoms. DFT calculations showed that the maximum electrostatic potential at the σ-hole was a more reliable predictor of the catalytic activity of these organoelement species. In contrast, the equilibrium concentrations of the activated form of the electrophile and the electrophile-to-onium cation charge transfer values did not accurately reflect the catalytic activity of the onium salts.
Collapse
Affiliation(s)
- Alexandra A Sysoeva
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Yana V Safinskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street, 6, Moscow, 117198, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
2
|
Singh G, Rajeshkumar V. CBr 4-Catalyzed Substituent-Dependent Michael Addition/Paal-Knorr Cyclization of Indole with α,β-Unsaturated Ketones. Chem Asian J 2025:e202401445. [PMID: 39828601 DOI: 10.1002/asia.202401445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
We report CBr4 catalyzed Michael addition of indole to α,β-unsaturated ketones for the synthesis of β-indolylketones through halogen bonding catalysis. This reaction is compatible with a diverse range of chalcones, including drug-derived chalcones containing sensitive functional groups such as amides, yielding the addition products in good yields. Additionally, 3-indolyl furanoid motifs have been synthesized through the Michael addition followed by Paal-Knorr cyclization by utilizing various unsymmetrical 1,4-enediones in a one-pot process with good yields.
Collapse
Affiliation(s)
- Gargi Singh
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Telangana, Hanumakonda, 506004, India
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Telangana, Hanumakonda, 506004, India
| |
Collapse
|
3
|
Mehmood A, Janesko BG. An orbital-overlap complement to σ-hole electrostatic potentials. Phys Chem Chem Phys 2025; 27:861-867. [PMID: 39661027 DOI: 10.1039/d4cp03851g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A σ-hole is an electron-deficient region of positive electrostatic potential (ESP) opposite from a half-filled p orbital involved in forming a covalent bond. The σ-hole concept helps rationalize directional noncovalent interactions, known as σ-hole bonds, between covalently bonded group V-VII atoms and electron-pair donors. The magnitude and orientation of σ-holes are correlated with the strength and geometry of halogen bonds. However, ESP computed for isolated σ-holes are not always predictive of interaction energies. For example, the σ-holes of isolated CHFBr2 and isolated CH2FI have identical ESP on the molecule surface, but halogen bonds to these molecules generally have different strengths. Here we show that the compact/diffuse nature of the orbitals involved plays an important role. Our orbital overlap distance quantifies the compact/diffuse nature of the "test orbital" that best overlaps with a systems orbitals at each point. The overlap distance captures the response properties of σ-holes: diffuse σ-holes with large overlap distance are typically "softer" and more polarizable. This aids visualization and interpretation. A linear fit to overlap distance and ESP is predictive of the halogen bond strengths of CH3X and CF3X (X = Cl, Br and I). We suggest that the overlap distance will be a useful partner to ESP for characterizing σ-holes.
Collapse
Affiliation(s)
- Arshad Mehmood
- Division of Information Technology - Research Computing, Informatics & Innovation and Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA.
| | - Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, USA
| |
Collapse
|
4
|
O'Brien J, Melnyk N, Lee RS, James M, Trujillo C. Computational Design of Bidentate Hypervalent Iodine Catalysts in Halogen Bond-Mediated Organocatalysis. Chemphyschem 2024; 25:e202400515. [PMID: 38973286 DOI: 10.1002/cphc.202400515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
In recent years, halogen bond-based organocatalysis has garnered significant attention as an alternative to hydrogen-based catalysis, capturing considerable interest within the scientific community. This transition has witnessed the evolution of catalytic scaffolds from monodentate to bidentate architectures, and from monovalent to hypervalent species. In this DFT-based study, we explored a bidentate hypervalent iodine(III)-based system that has already undergone experimental validation. Additionally, we explore various functionalisations (-CF3, -CH3, -tBu, -OH, -OMe, -NO2, -CN) and scaffold modifications, such as sulfur oxidation, theoretically proposed for an indole-based Michael addition. The investigated systems favour bidentate O-type binding, underlining the importance of ligand coordination in catalytic activity. Electron-deficient scaffolds exhibited stronger binding and lower activation energies, indicating the pivotal role of electronic properties for σ-hole-based catalysis. Of these groups, Lewis-base-like moieties formed stabilising intramolecular interactions with hypervalent iodines when in the ortho-position. Furthermore, inductive electron withdrawal was deemed more effective than mesomeric withdrawal in enhancing catalytic efficacy for these systems. Lastly, increasing sulfur oxidation was theoretically proven to improve catalytic activity significantly.
Collapse
Affiliation(s)
- James O'Brien
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M139PL, UK
| | - Nika Melnyk
- School of Chemistry, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Rico Shing Lee
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M139PL, UK
| | - Michael James
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M139PL, UK
| | - Cristina Trujillo
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M139PL, UK
| |
Collapse
|
5
|
Reinhard DL, Schmidt A, Sons M, Wolf J, Engelage E, Huber SM. Evaluating the halogen bonding strength of a iodoloisoxazolium(III) salt. Beilstein J Org Chem 2024; 20:2401-2407. [PMID: 39355855 PMCID: PMC11443664 DOI: 10.3762/bjoc.20.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Diaryliodonium(III) salts have been established as powerful halogen-bond donors in recent years. Herein, a new structural motif for this compound class was developed: iodoloisoxazolium salts, bearing a cyclic five-membered iodolium core fused with an isoxazole ring. A derivative of this class was synthesized and investigated in the solid state by X-ray crystallography. Finally, the potential as halogen-bonding activator was benchmarked in solution in the gold-catalyzed cyclization of a propargyl amide.
Collapse
Affiliation(s)
- Dominik L Reinhard
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Anna Schmidt
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Marc Sons
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Julian Wolf
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Elric Engelage
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
6
|
Jovanovic D, Poliyodath Mohanan M, Huber SM. Halogen, Chalcogen, Pnictogen, and Tetrel Bonding in Non-Covalent Organocatalysis: An Update. Angew Chem Int Ed Engl 2024; 63:e202404823. [PMID: 38728623 DOI: 10.1002/anie.202404823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
The use of noncovalent interactions based on electrophilic halogen, chalcogen, pnictogen, or tetrel centers in organocatalysis has gained noticeable attention. Herein, we provide an overview on the most important developments in the last years with a clear focus on experimental studies and on catalysts which act via such non-transient interactions.
Collapse
Affiliation(s)
- Dragana Jovanovic
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Meghana Poliyodath Mohanan
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Stefan M Huber
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
7
|
Javaly N, McCormick TM, Stuart DR. A comparison of structure, bonding and non-covalent interactions of aryl halide and diarylhalonium halogen-bond donors. Beilstein J Org Chem 2024; 20:1428-1435. [PMID: 38952957 PMCID: PMC11216093 DOI: 10.3762/bjoc.20.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
Halogen bonding permeates many areas of chemistry. A wide range of halogen-bond donors including neutral, cationic, monovalent, and hypervalent have been developed and studied. In this work we used density functional theory (DFT), natural bond orbital (NBO) theory, and quantum theory of atoms in molecules (QTAIM) to analyze aryl halogen-bond donors that are neutral, cationic, monovalent and hypervalent and in each series we include the halogens Cl, Br, I, and At. Within this diverse set of halogen-bond donors, we have found trends that relate halogen bond length with the van der Waals radii of the halogen and the non-covalent or partial covalency of the halogen bond. We have also developed a model to calculate ΔG of halogen-bond formation by the linear combination of the % p-orbital character on the halogen and energy of the σ-hole on the halogen-bond donor.
Collapse
Affiliation(s)
- Nicole Javaly
- Department of Chemistry, Portland State University, 1719 SW 10th Ave, Portland OR 97201, United States
| | - Theresa M McCormick
- Department of Chemistry, Portland State University, 1719 SW 10th Ave, Portland OR 97201, United States
| | - David R Stuart
- Department of Chemistry, Portland State University, 1719 SW 10th Ave, Portland OR 97201, United States
| |
Collapse
|
8
|
Zhao Z, Liu Y, Wang Y. Weak Interaction Activates Esters: Reconciling Catalytic Activity and Turnover Contradiction by Tailored Chalcogen Bonding. J Am Chem Soc 2024; 146:13296-13305. [PMID: 38695301 DOI: 10.1021/jacs.4c01541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The activation of esters by strong Lewis acids via the formation of covalent adducts is a classic strategy to give reactivity; however, this approach frequently incurs limited turnover due to the low efficiency in the dissociation of catalyst from a stable catalyst-product complex. While the use of some weak interaction catalysts that can easily dissociate from any bonding complexes in the reaction system would solve this catalyst turnover problem, the poor catalytic activity in the ester activation that can be provided by these noncovalent forces in turn sets up a formidable challenge. Herein, we describe the activation and catalytic transformation of esters by weak interactions, which provides a promising platform to reconcile the catalytic activity and turnover problems. Several tailored chalcogen-bonding catalysts were developed for the activation of esters, enabling achieving several inherently low reactive Diels-Alder reactions as well as the ring-opening polymerization of lactones through weak chalcogen bonding interactions. This supramolecular catalysis approach is particularly highlighted by its capability to promote some uncommon Diels-Alder reactions involving using dienes bearing electron-withdrawing groups coupled by α,β-unsaturated ester as dienophiles and substrate incorporating competitive Lewis basic sites, in which typical strong Lewis acids showed low catalytic efficiency, while representative hydrogen and halogen bonding catalysts were inactive.
Collapse
Affiliation(s)
- Ziqiang Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, P. R. China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, P. R. China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
9
|
Beckmann JL, Neumann B, Stammler HG, Mitzel NW. Selectivity in Adduct Formation of a Bidentate Boron Lewis Acid. Chemistry 2024; 30:e202400081. [PMID: 38421238 DOI: 10.1002/chem.202400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
A bidentate boron Lewis acid based on 1,8-diethynylanthracene has been studied in detail with respect to its adduct formation with diamines and diphosphanes of different linker lengths between the donor functions. A clear correlation between the linker length of the bifunctional base and the formation of 1 : 1 adducts, 1 : 2 adducts or oligomers was found. The adducts were characterized in solution by NMR titration experiments and structurally by X-ray diffraction. In addition, adduct formation and competition experiments of the host system with ZR3 (Z=N, P; R=H, Me) demonstrated the generally higher stability of alkylphosphane adducts compared to alkylamine adducts with boron functions. The results provide a general insight into the adduct formation of bidentate Lewis acids with guests of different sizes as well as the differences in stability between borane-amine and borane-phosphane adducts.
Collapse
Affiliation(s)
- J Louis Beckmann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Norbert W Mitzel
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
10
|
Calabrese M, Pizzi A, Daolio A, Beccaria R, Lo Iacono C, Scheiner S, Resnati G. Osme Bond: Geometric and Energetic Features in the Adducts between OsO 4 and Lewis Bases. Chemistry 2024; 30:e202304240. [PMID: 38258620 DOI: 10.1002/chem.202304240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/24/2024]
Abstract
Adducts between OsO4 and Lewis bases exert a role in important oxidation processes such as epoxidation and dihydroxylation. It has been shown that the attractive interaction driving the formation of these adducts is a σ-hole bond involving the metal as the electrophilic species; the term Osme Bond (OmB) was proposed for designating it. Here some new adducts between OsO4 and various bases have been characterized through single crystal x-ray diffraction (XRD) and computational studies (density functional theory, DFT), confirming the existence of a robust correlation between σ-hole interaction energy and deformation of the tetrahedral geometry of OsO4. Also, some adducts formed by RuO4 with nucleophiles were investigated computationally.
Collapse
Affiliation(s)
- Miriam Calabrese
- NFMLab-Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, I-20131, Milan, Italy
| | - Andrea Pizzi
- NFMLab-Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, I-20131, Milan, Italy
| | - Andrea Daolio
- NFMLab-Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, I-20131, Milan, Italy
| | - Roberta Beccaria
- NFMLab-Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, I-20131, Milan, Italy
| | - Cristina Lo Iacono
- NFMLab-Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, I-20131, Milan, Italy
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322-0300, United States
| | - Giuseppe Resnati
- NFMLab-Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, I-20131, Milan, Italy
| |
Collapse
|
11
|
Il'in MV, Safinskaya YV, Polonnikov DA, Novikov AS, Bolotin DS. Chalcogen- and Halogen-Bond-Donating Cyanoborohydrides Provide Imine Hydrogenation. J Org Chem 2024; 89:2916-2925. [PMID: 38373196 DOI: 10.1021/acs.joc.3c02282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Sulfonium, selenonium, telluronium, and iodonium cyanoborohydrides have been synthesized, isolated, and fully characterized by various methods, including single-crystal X-ray diffraction (XRD) analysis. The quantum theory of atoms in molecules' analysis based on the XRD data indicated that the hydride···σ-hole short contacts observed in the crystal structures of each compound have a purely noncovalent nature. The telluronium and iodonium cyanoborohydrides provide a significantly higher rate of the model reaction of imine hydrogenation compared with sodium and tetrabutylammonium cyanoborohydrides. Based on the NMR and high-resolution electrospray ionization mass spectrometry data indicating that the reaction progress is accompanied by the cation reduction, a mechanism involving intermediate formation of elusive onium hydrides has been proposed as an alternative to conventional electrophilic activation of the imine moiety by its ligation to the cation's σ-hole.
Collapse
Affiliation(s)
- Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Yana V Safinskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Denis A Polonnikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
12
|
Li Y, Zhao C, Wang Z, Zeng Y. Halogen Bond Catalysis: A Physical Chemistry Perspective. J Phys Chem A 2024; 128:507-527. [PMID: 38214658 DOI: 10.1021/acs.jpca.3c06363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
As important noncovalent interactions, halogen bonds have been widely used in material science, supramolecular chemistry, medicinal chemistry, organocatalysis, and other fields. In the past 15 years, halogen bond catalysis has become a developed field in organocatalysis for the catalysts' advantages of being environmentally friendly, inexpensive, and recyclable. Halogen bonds can induce various organic reactions, and halogen bond catalysis has become a powerful alternative to the fully explored hydrogen bond catalysis. From a physical chemistry view, this perspective provides an overview of the latest progress and key examples of halogen bond catalysis via activation of the lone pair systems of organic functional group, π systems, and metal complexes. The research progresses in halogen bond catalysis by our group were also introduced.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Chang Zhao
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhuo Wang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
13
|
Abstract
Catalysts play a major role in chemical synthesis, and catalysis is considered to be a green and economic process. Catalysis is dominated by covalent interactions between the catalyst and substrate. The design of non-covalent catalysts came into limelight only recently. Hydrogen bonding (HB) catalysts are well established among non-covalent catalysts, including asymmetric HB catalysts. Though halogen bonding (XB) catalysis and its asymmetric version are gaining admiration, non-covalent chalcogen bonding catalysis (ChB) is in the budding stage. This tutorial review will focus on the recently evolved chalcogen bonding catalysis and emphasis will be given to the chalcogen bonding of chiral molecules. Since successful enantioselective chalcogen bonding catalysis is yet to be reported, this review will focus on the basics of non-covalent bonding catalysis, chalcogen bonding catalysis, chiral chalcogenide synthesis, rigidification of transition states by ChB, stabilization of cations by chiral chalcogens, details of unsuccessful asymmetric chalcogen bonding catalysis, enantioseparation of racemic molecules using ChB, and the existence of ChB in chiral biomolecules.
Collapse
Affiliation(s)
- Govindasamy Sekar
- Department of Chemistry, IIT Madras, Chennai, Tamilnadu-600 036, India.
| | | | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Science and Chemical Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland.
| |
Collapse
|
14
|
Wang Y, Zhao C, Chen WK, Zeng Y. Chalcogen Bond Catalysis with Telluronium Cations for Bromination Reaction: Importance of Electrostatic and Polarization Effects. Chemistry 2023; 29:e202302749. [PMID: 37747101 DOI: 10.1002/chem.202302749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
Recently, chalcogen bond catalysts with telluronium cations have garnered considerable attention in organic reactions. In this work, chalcogen bond catalysis on the bromination reaction of anisole with N-bromosuccinimide (NBS) with the telluronium cationic catalysts has been explored with density functional theory (DFT). The catalytic reaction is divided into two stages: the bromine transfer step and the proton transfer step. Based on the computational results, one can find the rate-determining step is the bromine transfer step. Moreover, the present study elucidates that a stronger chalcogen bond between catalysts and NBS will give better catalytic performance. Additionally, this work also clarified the importance of the electrostatic and polarization effects in the chalcogen bond between the oxygen atom of NBS and the Te atom of the catalyst in this bromination reaction. The electrostatic and polarization effects are significantly influenced by the electron-withdrawing ability of the substitution groups on the catalysts. Moreover, the structure-property relationship between the strength of chalcogen bond, electrostatic effect, polarization effect and catalytic performance are established for the design of more efficient chalcogen bond catalysts.
Collapse
Affiliation(s)
- Yanjiang Wang
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China
| | - Chang Zhao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wen-Kai Chen
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
15
|
Yaghoobi F, Salehzadeh S. Catalysis of the Nitroso-Diels-Alder cycloaddition reaction between CH 3N=O and cis-1,3-butadiene by pnictogen bonding, a theoretical study. J Mol Graph Model 2023; 125:108583. [PMID: 37582304 DOI: 10.1016/j.jmgm.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 08/17/2023]
Abstract
Density functional theory calculations at the M06-2X/aug-cc-pVTZ level of theory have been used to examine the Nitroso-Diels-Alder (N-D-A) cycloaddition reaction between the CH3N=O and cis-1,3-butadiene in the presence of PO2X (X=F, Cl, OH) as a catalyst. The effect of the above PO2X compounds on the activation energy of the N-D-A reaction, has been studied here. In the first stage, the energies of two different bonding interactions, via P⋯N versus P⋯O binding, between the PO2X and CH3N=O molecules were calculated. The results showed that the largest values of the interaction energy between the above molecules belong to the PO2F, when connects to the nitrogen atom of the CH3N=O. Also, calculations showed that all the above PO2X compounds, decrease the activation energies of N-D-A reaction studied here via both P⋯N and P⋯O interactions. However, the largest effect on activation energies of the reaction belongs to the PO2F catalyst when acts via P⋯N bonding. The activation strain model (ASM) was used to analyze the influence of the PO2X catalyst on the studied reaction. The quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis were performed to understand the nature of forming interactions at the TS structures. The results of this study showed that the PO2X (X=F, Cl, OH) compounds may be suggested as efficient catalysts for N-D-A reactions.
Collapse
Affiliation(s)
- Fereshteh Yaghoobi
- Nahavand Higher Education Complex, Bu-Ali Sina University, Hamedan, Iran.
| | | |
Collapse
|
16
|
Beckmann JL, Krieft J, Vishnevskiy YV, Neumann B, Stammler HG, Mitzel NW. Poly-pnictogen bonding: trapping halide ions by a tetradentate antimony(iii) Lewis acid. Chem Sci 2023; 14:13551-13559. [PMID: 38033898 PMCID: PMC10685332 DOI: 10.1039/d3sc04594c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
A highly halide affine, tetradentate pnictogen-bonding host-system based on the syn-photodimer of 1,8-diethynylanthracene was synthesized by a selective tin-antimony exchange reaction. The host carries four C[triple bond, length as m-dash]C-Sb(C2F5)2 units and has been investigated regarding its ability to act as a Lewis acidic host component for the cooperative trapping of halide ions (F-, Cl-, Br-, I-). The chelating effect makes this host-system superior to its bidentate derivative in competition experiments. It represents a charge-reversed crown-4 and has the ability to dissolve otherwise poorly soluble salts like tetra-methyl-ammonium chloride. Its NMR-spectroscopic properties make it a potential probe for halide ions in solution. Insights into the structural properties of the halide adducts by X-ray diffraction and computational methods (DFT, QTAIM, IQA) reveal a complex interplay of attractive pnictogen bonding interactions and Coulomb repulsion.
Collapse
Affiliation(s)
- J Louis Beckmann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| | - Jonas Krieft
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| | - Yury V Vishnevskiy
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| | - Beate Neumann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| | - Hans-Georg Stammler
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| | - Norbert W Mitzel
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| |
Collapse
|
17
|
Beckmann JL, Krieft J, Vishnevskiy YV, Neumann B, Stammler HG, Mitzel NW. A Bidentate Antimony Pnictogen Bonding Host System. Angew Chem Int Ed Engl 2023; 62:e202310439. [PMID: 37773008 DOI: 10.1002/anie.202310439] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
A bidentate pnictogen bonding host-system based on 1,8-diethynylanthracene was synthesized by a selective tin-antimony exchange reaction and investigated regarding its ability to act as a Lewis acidic host component for the complexation of Lewis basic or anionic guests. In this work, the novel C≡C-Sb(C2 F5 )2 unit was established to study the potential of antimony(III) sites as representatives for the scarcely explored pnictogen bonding donors. The capability of this partly fluorinated host system was investigated towards halide anions (Cl- , Br- , I- ), dimethyl chalcogenides Me2 Y (Y=O, S, Se, Te), and nitrogen heterocycles (pyridine, pyrimidine). Insights into the adduct formation behavior as well as the bonding situation of such E⋅⋅⋅Sb-CF moieties were obtained in solution by means of NMR spectroscopy, in the solid state by X-ray diffraction, by elemental analyses, and by computational methods (DFT, QTAIM, IQA), respectively.
Collapse
Affiliation(s)
- J Louis Beckmann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Jonas Krieft
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Norbert W Mitzel
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
18
|
Il'in MV, Polonnikov DA, Novikov AS, Sysoeva AA, Safinskaya YV, Bolotin DS. Influence of Coordination to Silver(I) Centers on the Activity of Heterocyclic Iodonium Salts Serving as Halogen-Bond-Donating Catalysts. Chempluschem 2023; 88:e202300304. [PMID: 37675949 DOI: 10.1002/cplu.202300304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/08/2023]
Abstract
Kinetic data based on 1 H NMR monitoring and computational studies indicate that in solution, pyrazole-containing iodonium triflates and silver(I) triflate bind to each other, and such an interplay results in the decrease of the total catalytic activity of the mixture of these Lewis acids compared to the separate catalysis of the Schiff condensation, the imine-isocyanide coupling, or the nucleophilic attack on a triple carbon-carbon bond. Moreover, the kinetic data indicate that such a cooperation with the silver(I) triflate results in prevention of decomposition of the iodonium salts during the reaction progress. XRD study confirms that the pyrazole-containing iodonium triflate coordinates to the silver(I) center via the pyrazole N atom to produce a rare example of a pentacoordinated trigonal bipyramidal dinuclear silver(I) complex featuring cationic ligands.
Collapse
Affiliation(s)
- Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
| | - Denis A Polonnikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
- Research Institute of Chemistry, Рeoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russia
| | - Alexandra A Sysoeva
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
| | - Yana V Safinskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
| |
Collapse
|
19
|
Radzhabov AD, Ledneva AI, Soldatova NS, Fedorova II, Ivanov DM, Ivanov AA, Yusubov MS, Kukushkin VY, Postnikov PS. Halogen Bond-Involving Self-Assembly of Iodonium Carboxylates: Adding a Dimension to Supramolecular Architecture. Int J Mol Sci 2023; 24:14642. [PMID: 37834088 PMCID: PMC10573078 DOI: 10.3390/ijms241914642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
We designed 0D, 1D, and 2D supramolecular assemblies made of diaryliodonium salts (functioning as double σ-hole donors) and carboxylates (as σ-hole acceptors). The association was based on two charge-supported halogen bonds (XB), which occurred between IIII sites of the iodonium cations and the carboxylate anions. The sequential introduction of the carboxylic groups in the aryl ring of the benzoic acid added a dimension to the 0D supramolecular organization of the benzoate, which furnished 1D-chained and 2D-layered structures when terephthalate and trimesate anions, correspondingly, were applied as XB acceptors. The structure-directing XB were studied using DFT calculations under periodic boundary conditions and were followed by the one-electron-potential analysis and the Bader atoms-in-molecules topological analysis of electron density. These theoretical methods confirmed the existence of the XB and verified the philicities of the interaction partners in the designed solid-state structures.
Collapse
Affiliation(s)
- Amirbek D. Radzhabov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Alyona I. Ledneva
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Natalia S. Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Irina I. Fedorova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia (V.Y.K.)
- Department of Mathematics and Mechanics, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Daniil M. Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia (V.Y.K.)
| | - Alexey A. Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Vadim Yu. Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia (V.Y.K.)
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russia
| | - Pavel S. Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic
| |
Collapse
|
20
|
Keuper AC, Fengler K, Ostler F, Danelzik T, Piekarski DG, García Mancheño O. Fine-Tuning Substrate-Catalyst Halogen-Halogen Interactions for Boosting Enantioselectivity in Halogen-Bonding Catalysis. Angew Chem Int Ed Engl 2023; 62:e202304781. [PMID: 37228095 DOI: 10.1002/anie.202304781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 05/27/2023]
Abstract
A new approach towards highly enantioselective halogen-bonding catalysis has been developed. To circumvent the intrinsic issues of the nature of the halogen-bond (XB) and the resultant unresolved limitations in asymmetric catalysis, fine-tuned halogen-halogen interactions between the substrate and XB-donor were designed to preorganize the substrate in the catalyst's cavity and boost enantiocontrol. The present strategy exploits both the electron cloud (Lewis base site) and the sigma (σ)-hole site of the halogen substituent of the substrates to form a tight catalyst-substrate-counteranion chiral complex, thus enabling a controlled induction of high levels of chirality transfer. Remarkable enantioselectivities of up to 95 : 5 e.r. (90 % ee) have been achieved in a model dearomatization reaction of halogen-substituted (iso)quinolines with tetrakis-iodotriazole multidentate anion-binding catalysts.
Collapse
Affiliation(s)
- Alica C Keuper
- Organic Chemistry Institute, University of Münster, Correnstraße 36/40, 48149, Münster, Germany
| | - Kevin Fengler
- Organic Chemistry Institute, University of Münster, Correnstraße 36/40, 48149, Münster, Germany
| | - Florian Ostler
- Organic Chemistry Institute, University of Münster, Correnstraße 36/40, 48149, Münster, Germany
| | - Tobias Danelzik
- Organic Chemistry Institute, University of Münster, Correnstraße 36/40, 48149, Münster, Germany
| | - Dariusz G Piekarski
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224, Warsaw, Poland
| | - Olga García Mancheño
- Organic Chemistry Institute, University of Münster, Correnstraße 36/40, 48149, Münster, Germany
| |
Collapse
|
21
|
Zhao C, Li Y, Li X, Zeng Y. Iodine(I)-based and iodine(III)-based halogen bond catalysis on the Friedel-Crafts reaction: a theoretical study. Phys Chem Chem Phys 2023; 25:21100-21108. [PMID: 37527332 DOI: 10.1039/d3cp02541a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Halogen bond catalysis, especially iodine derivatives catalysis, has attracted increasing attention in recent years owing to the advantages of relatively cheap, stable, green, easy to handle, and favorable catalytic activity. To obtain insights into the catalytic mechanism and activity of halogen bond donor catalysts, iodine(I)-based and iodine(III)-based halogen bond catalysis on the Friedel-Crafts reaction were investigated in this study. The entire reaction contains several key steps: carbon-carbon bond coupling, proton transfer, hydroxyl departure, indole addition, and deprotonation process. According to the energetic span model, iodine(III)-based donor catalysts exhibit higher catalytic activity than iodine(I)-based catalysts and double cationic catalysts are more potent than single cationic ones. For halogen bond catalysis, the Gibbs energy barriers have linear relation to the electron density at the halogen bond critical points. Furthermore, the Gibbs energy barriers are also linearly related to the integral charge values of the increased region of electron density outside the oxygen atom of reactants. Therefore, the stronger halogen bond results in lower Gibbs energy barrier, and the stronger polarization further benefits the halogen bond catalysis.
Collapse
Affiliation(s)
- Chang Zhao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Ying Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Xiaoyan Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
22
|
Montgomery CA, Murphy GK. Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control. Beilstein J Org Chem 2023; 19:1171-1190. [PMID: 37592937 PMCID: PMC10428621 DOI: 10.3762/bjoc.19.86] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Halogen bonding is commonly found with iodine-containing molecules, and it arises when Lewis bases interact with iodine's σ-holes. Halogen bonding and σ-holes have been encountered in numerous monovalent and hypervalent iodine-containing compounds, and in 2022 σ-holes were computationally confirmed and quantified in the iodonium ylide subset of hypervalent iodine compounds. In light of this new discovery, this article provides an overview of the reactions of iodonium ylides in which halogen bonding has been invoked. Herein, we summarize key discoveries and mechanistic proposals from the early iodonium ylide literature that invoked halogen bonding-type mechanisms, as well as recent reports of reactions between iodonium ylides and Lewis basic nucleophiles in which halogen bonding has been specifically invoked. The reactions discussed herein are organized to enable the reader to build an understanding of how halogen bonding might impact yield and chemoselectivity outcomes in reactions of iodonium ylides. Areas of focus include nucleophile σ-hole selectivity, and how ylide structural modifications and intramolecular halogen bonding (e.g., the ortho-effect) can improve ylide stability or solubility, and alter reaction outcomes.
Collapse
Affiliation(s)
- Carlee A Montgomery
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, N2L3G1, Canada
| | - Graham K Murphy
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
23
|
Li Y, Ge Y, Sun R, Yang X, Huang S, Dong H, Liu Y, Xue H, Ma X, Fu H, Chen Z. Balancing Activity and Stability in Halogen-Bonding Catalysis: Iodopyridinium-Catalyzed One-Pot Synthesis of 2,3-Dihydropyridinones. J Org Chem 2023; 88:11069-11082. [PMID: 37458502 DOI: 10.1021/acs.joc.3c01028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A one-pot cascade reaction for 2,3-dihydropyridinone synthesis was accomplished with 3-fluoro-2-iodo-1-methylpyridinium triflate as the halogen bond catalyst. The desired [4+2] cycloaddition products, bearing aryl, heteroaryl, alkyl, and alicyclic substituents, were successfully furnished in 28-99% yields. Mechanistic investigations proved that a strong halogen-bonding interaction forged between the iodopyridinium catalyst and imine intermediate was essential to dynamically masking the vulnerable C-I bond on the catalyst and accelerating the following aza-Diels-Alder reaction.
Collapse
Affiliation(s)
- Yi Li
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Yicen Ge
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Rui Sun
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiao Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shipeng Huang
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Huajian Dong
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Yunyao Liu
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Haodan Xue
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Xiaoyan Ma
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zeqin Chen
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| |
Collapse
|
24
|
Chen WW, Artigues M, Font-Bardia M, Cuenca AB, Shafir A. Cyclic Homo- and Heterohalogen Di-λ 3-diarylhalonium Structures. J Am Chem Soc 2023. [PMID: 37311085 DOI: 10.1021/jacs.3c02406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the context of the ever-growing interest in the cyclic diaryliodonium salts, this work presents synthetic design principles for a new family of structures with two hypervalent halogens in the ring. The smallest bis-phenylene derivative, [(C6H4)2I2]2+, was prepared through oxidative dimerization of a precursor bearing the ortho-disposed iodine and trifluoroborate groups. We also report, for the first time, the formation of cycles containing two different halogen atoms. These present two phenylenes linked by hetero-(I/Br) or -(I/Cl) halogen pairs. This approach was also extended to the cyclic bis-naphthylene derivative [(C10H6)2I2]2+. The structures of these bis-halogen(III) rings were further assessed through X-ray analysis. The simplest cyclic phenylene bis-iodine(III) derivative features the interplanar angle of ∼120°, while a smaller angle of ∼103° was found for the analogous naphthylene-based salt. All dications form dimeric pairs through a combination of π-π and C-H/π interactions. As the largest member of the family, a bis-I(III)-macrocycle was also assembled using the quasi-planar xanthene backbone. Its geometry enables the two iodine(III) centers to be bridged intramolecularly by two bidentate triflate anions. In a preliminary manner, the interaction of the phenylene- and naphthalene-based bis-iodine(III) dications with a new family of rigid bidentate bis-pyridine ligands was studied in solution and the solid state, with an X-ray structure showing the chelating donor bonding to just one of the two iodine centers.
Collapse
Affiliation(s)
- Wei W Chen
- BISi-Bonds Group, Institut de Química Avançada de Catalunya, IQAC-CSIC, c/Jordi Girona 20, 08034 Barcelona, Spain
| | - Margalida Artigues
- Department of Analytical and Applied Chemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Vía Augusta 390, 08017 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de RX. Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, c/Solé i Sabarís 1-3, 08028 Barcelona, Spain
| | - Ana B Cuenca
- BISi-Bonds/CRISOL Group, Department of Organic and Pharmaceutical Chemistry, Universitat Ramon Llull and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Vía Augusta 390, 08017 Barcelona, Spain
| | - Alexandr Shafir
- BISi-Bonds Group, Institut de Química Avançada de Catalunya, IQAC-CSIC, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), 08034 Barcelona, Spain
| |
Collapse
|
25
|
Zheng H, Cai L, Pan M, Uyanik M, Ishihara K, Xue XS. Catalyst-Substrate Helical Character Matching Determines the Enantioselectivity in the Ishihara-Type Iodoarenes Catalyzed Asymmetric Kita-Dearomative Spirolactonization. J Am Chem Soc 2023; 145:7301-7312. [PMID: 36940192 DOI: 10.1021/jacs.2c13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara's elegant design of conformationally flexible C2-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called "proton-transfer-coupled-dearomatization (PTCD)", which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined C2-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate's helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)···O halogen bond, N-H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs.
Collapse
Affiliation(s)
- Hanliang Zheng
- Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Liu Cai
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ming Pan
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Muhammet Uyanik
- Graduate School of Engineering, Nagoya University Furocho, Chikusaku, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University Furocho, Chikusaku, Nagoya 464-8603, Japan
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| |
Collapse
|
26
|
Arndt T, Raina A, Breugst M. Iodine-Catalyzed Claisen-Rearrangements of Allyl Aryl Ethers and Subsequent Iodocyclizations. Chem Asian J 2023; 18:e202201279. [PMID: 36626351 DOI: 10.1002/asia.202201279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Iodine can be considered as the simplest halogen-bond donor. Previous investigations have revealed its remarkable catalytic effect in various reactions. The catalytic activity of iodine can often even compete with that of traditional Lewis acids. So far, iodine was typically used to activate carbonyl derivatives like Michael acceptors. We now demonstrate that iodine can also be used to activate allyl aryl ethers in Claisen rearrangements. The formed ortho-allylic phenols rapidly undergo iodocyclizations to afford dihydrobenzofurans, which are important building blocks for medicinal applications. A comparison with different catalysts further highlights the potential of iodine catalysis for this reaction. Computational and mechanistic investigations provide deeper insights into the underlying non-covalent interactions and their role for the catalysis.
Collapse
Affiliation(s)
- Thiemo Arndt
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany.,Department für Chemie, Universität zu Köln, Greinstraße 4, 50939, Köln, Germany
| | - Abhinav Raina
- Department für Chemie, Universität zu Köln, Greinstraße 4, 50939, Köln, Germany
| | - Martin Breugst
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany.,Department für Chemie, Universität zu Köln, Greinstraße 4, 50939, Köln, Germany
| |
Collapse
|
27
|
Podrezova EV, Okhina AA, Rogachev AD, Baykov SV, Kirschning A, Yusubov MS, Soldatova NS, Postnikov PS. Ligand-free Ullmann-type arylation of oxazolidinones by diaryliodonium salts. Org Biomol Chem 2023; 21:1952-1957. [PMID: 36757159 DOI: 10.1039/d2ob02122f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The arylation of azaheterocycles can be considered as one of the most important processes for the preparation of various biologically active compounds. In the present work, we describe a method for the copper-catalyzed N-arylation of hindered oxazolidinones using diaryliodonium salts. The method succeeds in good to excellent yields for the arylation of 4-alkyloxazolidinones, including sterically hindered isopropyl- and tert-butyl-substituted. The efficiency of the method was demonstrated for a wide range of diaryliodonium salts - symmetric and unsymmetric as well as ortho-substituted derivatives. The developed approach will provide an important contribution in the development and preparation of novel drugs and bioactive molecules containing oxazolidinone moieties.
Collapse
Affiliation(s)
- Ekaterina V Podrezova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia.
| | - Alina A Okhina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogov str., 2, Novosibirsk 630090, Russia
| | - Artem D Rogachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogov str., 2, Novosibirsk 630090, Russia
| | - Sergey V Baykov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia. .,Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | | | - Mekhman S Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia.
| | - Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia.
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia. .,Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic
| |
Collapse
|
28
|
Novikov AS, Bolotin DS. Xenon Derivatives as Aerogen Bond-Donating Catalysts for Organic Transformations: A Theoretical Study on the Metaphorical "Spherical Cow in a Vacuum" Provides Insights into Noncovalent Organocatalysis. J Org Chem 2023; 88:1936-1944. [PMID: 35679603 DOI: 10.1021/acs.joc.2c00680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Computations indicate that cationic and noncharged xenon derivatives should exhibit higher catalytic activity than their iodine-based noncovalent organocatalytic congeners. Perfluorophenyl xenonium(II) is expected to demonstrate the best balance between catalytic activity and chemical stability for use in organocatalysis. Comparing its catalytic activity with that of isoelectronic perfluoroiodobenzene indicates that the high catalytic activity of cationic noncovalent organocatalysts is predominantly attributed to the electrostatic interactions with the reaction substrates, which cause the polarization of ligated species during the reaction progress. In contrast, the electron transfer and covalent contributions to the bonding between the catalyst and substrate have negligible effects. The dominant effect of electrostatic interactions results in a strong negative correlation between the calculated Gibbs free energies of activation for the modeled reactions and the highest potentials of the σ-holes on the central atoms of the catalysts. No such correlation is observed for noncharged catalysts.
Collapse
Affiliation(s)
- Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
29
|
Portela S, Fernández I. η 6 -Metalated Aryl Iodides in Diels-Alder Cycloaddition Reactions: Mode of Activation and Catalysis. Chem Asian J 2023; 18:e202201214. [PMID: 36515097 PMCID: PMC10108214 DOI: 10.1002/asia.202201214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/15/2022]
Abstract
The potential application of η6 -metalated aryl iodides as organocatalyst has been explored by means of computational methods. It is found that the enhanced halogen bonding donor ability of these species, in comparison with their demetalated counterparts, translates into a significant acceleration of the Diels-Alder cycloaddition reaction involving cyclohexadiene and methyl vinyl ketone. The factors behind this acceleration, the endo-exo selectivity of the process and the influence of the nature of the transition metal fragment in the activity of these species are quantitatively explored in detail by means of the combination of the Activation Strain Model of reaction and the Energy Decomposition Analysis methods.
Collapse
Affiliation(s)
- Susana Portela
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| |
Collapse
|
30
|
Calabrese M, Pizzi A, Daolio A, Frontera A, Resnati G. σ-Hole interactions in organometallic catalysts: the case of methyltrioxorhenium(VII). Dalton Trans 2023; 52:1030-1035. [PMID: 36602028 DOI: 10.1039/d2dt03819f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Methyltrioxorhenium(VII) (MTO) is a widely employed catalyst for metathesis, olefination, and most importantly, oxidation reactions. It is often preferred to other oxometal complexes due to its stability in air and higher efficiency. The seminal papers of K. B. Sharpless showed that when pyridine derivatives are used as co-catalysts, MTO-catalyzed olefin epoxidation with H2O2 as oxidant, a particularly useful reaction, is accelerated, with pyridine speeding up catalytic turnover and increasing the lifetime of MTO under the reaction conditions. In this paper, combined experimental and theoretical results show that the occurrence of σ-hole interactions in catalytic systems extends to MTO. Four crystalline adducts between MTO and aliphatic and heteroaromatic bases are obtained, and their X-ray analyses display short Re⋯N/O contacts opposite to both O-Re and C-Re covalent bonds with geometries consistent with σ-hole interactions. Computational analyses support the attractive nature of these close contacts and confirm that their features are typical of σ-hole interactions. The understanding of the nature of Re⋯N/O interactions may help to optimize the ligand-acceleration effect of pyridine in the epoxidation of olefins under MTO catalysis.
Collapse
Affiliation(s)
- Miriam Calabrese
- NFMLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, I-20131 Milano, Italy.
| | - Andrea Pizzi
- NFMLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, I-20131 Milano, Italy.
| | - Andrea Daolio
- NFMLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, I-20131 Milano, Italy.
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Giuseppe Resnati
- NFMLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, I-20131 Milano, Italy.
| |
Collapse
|
31
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
32
|
Yoshida Y, Ao T, Mino T, Sakamoto M. Chiral Bromonium Salt (Hypervalent Bromine(III)) with N-Nitrosamine as a Halogen-Bonding Bifunctional Catalyst. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010384. [PMID: 36615579 PMCID: PMC9822295 DOI: 10.3390/molecules28010384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
There has been a great focus on halogen-bonding as a unique interaction between electron-deficient halogen atoms with Lewis basic moieties. Although the application of halogen-bonded atoms in organic chemistry has been eagerly researched in these decades, the development of chiral molecules with halogen-bonding functionalities and their utilization in asymmetric catalysis are still in the\ir infancy. We have previously developed chiral halonium salts with amide functionalities, which behaved as excellent catalysts albeit in only two reactions due to the lack of substrate activation abilities. In this manuscript, we have developed chiral halonium salts with an N-nitrosamine moiety and applied them to the Mannich reaction of isatin-derived ketimines with malonic esters. The study focused on our novel bromonium salt catalyst which provided the corresponding products in high yields with up to 80% ee. DFT calculations of the chiral catalyst structure suggested that the high asymmetric induction abilities of this catalyst are due to the Lewis basic role of the N-nitrosamine part. To the best of our knowledge, this is the first catalytic application of N-nitrosamines.
Collapse
|
33
|
Kuczmera TJ, Dietz A, Boelke A, Nachtsheim BJ. Synthesis and reactivity of azole-based iodazinium salts. Beilstein J Org Chem 2023; 19:317-324. [PMID: 36960303 PMCID: PMC10028571 DOI: 10.3762/bjoc.19.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
A systematic investigation of imidazo- and pyrazoloiodazinium salts is presented. Besides a robust synthetic protocol that allowed us to synthesize these novel cyclic iodonium salts in their mono- and dicationic forms, we gained in-depth structural information through single-crystal analysis and demonstrated the ring opening of the heterocycle-bridged iodonium species. For an exclusive set of dicationic imidazoiodaziniums, we show highly delicate post-oxidation functionalizations retaining the hypervalent iodine center.
Collapse
Affiliation(s)
- Thomas J Kuczmera
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Annalena Dietz
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Andreas Boelke
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
34
|
Kerckhoffs A, Moss I, Langton MJ. Photo-switchable anion binding and catalysis with a visible light responsive halogen bonding receptor. Chem Commun (Camb) 2022; 59:51-54. [PMID: 36440635 DOI: 10.1039/d2cc05199k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Photo-switchable receptors allow for photo-control over guest binding and release with spatial and temporal precision. Here we report the first halogen bonding photo-switchable anion receptors in which chloride binding may be reversibly modulated by irradiation with red and blue light, with over a 50-fold enhancement in chloride binding affinity observed for the Z isomer. We demonstrate that this switchable binding enables unprecedented photo-controlled catalysis of XB-mediated halide abstractions and a Mukaiyama Aldol reaction.
Collapse
Affiliation(s)
- Aidan Kerckhoffs
- Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Isabelle Moss
- Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | | |
Collapse
|
35
|
Baykov SV, Ivanov DM, Kasatkina SO, Galmés B, Frontera A, Resnati G, Kukushkin VY. Stacking Interactions: A Supramolecular Approach to Upgrade Weak Halogen Bond Donors. Chemistry 2022; 28:e202201869. [PMID: 36178324 PMCID: PMC10099561 DOI: 10.1002/chem.202201869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 11/10/2022]
Abstract
The co-crystallization of tetracyanobenzene (TCB) with haloarenes ArX provided six new co-crystals TCB ⋅ ArX (ArX=PhCl, PhBr, 4-MeC6 H4 Cl, 4-MeC6 H4 Br, 4-MeOC6 H4 Cl, 1,2-Br2 C6 H4 ) which were studied by X-ray diffraction. In these systems, the strong collective effect of π⋅⋅⋅π stacking interactions and lone pair-(X)⋅⋅⋅π-hole-(C) bondings between TCB and ArX promote the strength of X⋅⋅⋅Ncyano halogen bonding (HaB). Theoretical studies showed that the stacking interactions affect the σ-hole depth of the haloarenes, thus significantly boosting their ability to function as HaB donors. According to the molecular electrostatic potential calculations, the σ- hole-(Cl) value (1.5 kcal/mol) in the haloarene 4-MeOC6 H4 Cl (featuring an electron-rich arene moiety and exhibiting very poor σ-hole-(Cl) ability) increases significantly in the stacked trimer (TCB)2 ⋅ 4-MeOC6 H4 Cl (12.5 kcal/mol). Theoretical DFT calculations demonstrate the dramatic increase of X⋅⋅⋅Ncyano HaB strength for stacked trimers in comparison with parent unstacked haloarenes.
Collapse
Affiliation(s)
- Sergey V. Baykov
- Institute of ChemistrySaint Petersburg State University7/9 Universitetskaya Nab.Saint Petersburg199034Russian Federation
- Research School of Chemistry and Applied Biomedical SciencesTomsk Polytechnic UniversityTomsk634034Russian Federation
| | - Daniil M. Ivanov
- Institute of ChemistrySaint Petersburg State University7/9 Universitetskaya Nab.Saint Petersburg199034Russian Federation
- Research School of Chemistry and Applied Biomedical SciencesTomsk Polytechnic UniversityTomsk634034Russian Federation
| | - Svetlana O. Kasatkina
- Institute of ChemistrySaint Petersburg State University7/9 Universitetskaya Nab.Saint Petersburg199034Russian Federation
| | - Bartomeu Galmés
- Departament de QuímicaUniversitat de les Illes BalearsCrta de Valldemossa km 7.507122Palma de Mallorca, BalearesSpain
| | - Antonio Frontera
- Departament de QuímicaUniversitat de les Illes BalearsCrta de Valldemossa km 7.507122Palma de Mallorca, BalearesSpain
| | - Giuseppe Resnati
- Research School of Chemistry and Applied Biomedical SciencesTomsk Polytechnic UniversityTomsk634034Russian Federation
- NFMLabDepartment of Chemistry, Materials, Chemical Engineering“Giulio Natta Politecnico di Milano”via Mancinelli 7I-20131MilanoItaly
| | - Vadim Y. Kukushkin
- Institute of ChemistrySaint Petersburg State University7/9 Universitetskaya Nab.Saint Petersburg199034Russian Federation
| |
Collapse
|
36
|
Yoshikai N. Exploring New Reactions and Syntheses of Trivalent Iodine Compounds. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Sihag M, Soni R, Rani N, Kinger M, Kumar Aneja D. Recent Synthetic Applications of Hypervalent Iodine Reagents. A Review in Three Installments: Installment II. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Monika Sihag
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Rinku Soni
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Neha Rani
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Mayank Kinger
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Deepak Kumar Aneja
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| |
Collapse
|
38
|
Aliyarova IS, Tupikina EY, Soldatova NS, Ivanov DM, Postnikov PS, Yusubov M, Kukushkin VY. Halogen Bonding Involving Gold Nucleophiles in Different Oxidation States. Inorg Chem 2022; 61:15398-15407. [PMID: 36137295 DOI: 10.1021/acs.inorgchem.2c01858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A single-crystal X-ray diffraction (XRD) study of diaryliodonium tetrachloroaurates (or, in the recent terminology, tetrachloridoaurates), [(p-XC6H4)2I][AuCl4] (X = Cl, 1; Br, 2), was performed for 1 (the structure is denoted as 1a to show similarity with the isomorphic structure 2a) and two polymorphs─2a (obtained from MeOH) and 2b (from 1,2-C2H4Cl2). Examination of the XRD data for these three structures revealed 2-center C-X···AuIII (X = Cl and Br) and 3-center bifurcated C-Br···(Cl-Au) halogen bonding (abbreviated as XB) between the p-Cl or p-Br atoms of the diaryliodonium cations and the gold(III) atom of [AuCl4]-. The noncovalent nature of AuIII-involving interactions, the nucleophilicity of the gold(III) atoms, and the electrophilic role of p-X atoms of the diaryliodonium cations in the XBs were studied by a set of complementary computational methods. Combined experimental and theoretical studies allowed the recognition of the d-nucleophilicity of the [d8AuIII] atom which, regardless of its rather substantial formal 3+ charge, can function as a d-nucleophilic partner of XB. This conclusion was also supported by theoretical calculations performed for the structures' refcodes BINXOM and ICSD 62511; the obtained data verified the nucleophilicity of AuIII toward a K+ ions or a σ-(Cl)-hole, respectively. All our results, together with consideration of relevant literature, indicate that gold atoms in the three oxidation states (0, I, and even III) exhibit nucleophilicity in XBs.
Collapse
Affiliation(s)
- Irina S Aliyarova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russian Federation
| | - Elena Yu Tupikina
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russian Federation
| | - Daniil M Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russian Federation.,Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic
| | - Mekhman Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russian Federation
| |
Collapse
|
39
|
Novikov AS, Bolotin DS. Halonium, chalconium, and pnictonium salts as noncovalent organocatalysts: a computational study on relative catalytic activity. Org Biomol Chem 2022; 20:7632-7639. [PMID: 36111866 DOI: 10.1039/d2ob01415g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This theoretical study sheds light on the relative catalytic activity of pnictonium, chalconium, and halonium salts in reactions involving elimination of chloride and electrophilic activation of a carbonyl group. DFT calculations indicate that for cationic aromatic onium salts, values of the electrostatic potential on heteroatom σ-holes gradually increase from pnictogen- to halogen-containing species. The higher values of the potential on the halogen atoms of halonium salts result in the overall higher catalytic activity of these species, but in the case of pnictonium and chalconium cations, weak interactions from the side groups provide an additional stabilization effect on the reaction transition states. Based upon quantum-chemical calculations, the catalytic activity of phosphonium(V) and arsenonium(V) salts is expected to be too low to obtain effective noncovalent organocatalytic compounds, whereas stibonium(V), telluronium(IV) and iodonium(III) salts exhibit higher potential in application as noncovalent organocatalysts.
Collapse
Affiliation(s)
- Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation. .,Infochemistry Scientific Center, ITMO University, Kronverksky Pr. 49, Bldg. A, Saint Petersburg, 197101, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
40
|
Synthesis and structural characterization of nitro-functionalized cyclic hypervalent iodine compounds. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Sun Y, Li Y, Li X, Meng L, Zeng Y. The role of halogen bonds in the catalytic mechanism of the iso-Nazarov cyclization reaction: a DFT study. Phys Chem Chem Phys 2022; 24:18877-18887. [PMID: 35912933 DOI: 10.1039/d2cp01913b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the continuous development of halogen bonds, halogen bond donors have been used as clean and efficient catalysts in organic reactions. In this work, with inorganic halides (I2, IBr, ICl, and ICl3) as catalysts and the iso-Nazarov cyclization as the benchmark reaction, we aim at investigating the role of the halogen bond in the catalytic mechanism. The halogen bond catalyzed iso-Nazarov cyclization reaction involves three steps: carbon-carbon coupling process, [1,2]-H shift process, and [1,4]-H shift process. The halogen-bonding interaction promotes the charge accumulation of the oxygen atom in the carbonyl group and decreases the activation energy of the reaction. The catalytic activity of the halogen bond donor is enhanced in the order of I2 < IBr < ICl < ICl3, and it could be predicted that the partial covalent interaction of the I⋯O halogen bond between the catalyst ICl3 and the oxygen atom of the reactant may exhibit good catalytic activity in the experiments. In the [1,4]-H shift process, the two-step hydrogen bond/halogen bond co-catalyzed mechanism exhibits the lowest reaction energy barrier than the one-step water co-catalyzed proton transfer mechanism and the direct one.
Collapse
Affiliation(s)
- Yuanyuan Sun
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Ying Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Xiaoyan Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Lingpeng Meng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
42
|
Yang Q, Wu Q, Zhang X, Yang X, Li Q. Hydrogen and halogen bonds formed by MCO 3 (M = Zn, Cd) and their enhancement by a spodium bond. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Qingqing Yang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, People’s Republic of China
| | - Qiaozhuo Wu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, People’s Republic of China
| | - Xiaolong Zhang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, People’s Republic of China
| | - Xin Yang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, People’s Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, People’s Republic of China
| |
Collapse
|
43
|
Il'in MV, Novikov AS, Bolotin DS. Sulfonium and Selenonium Salts as Noncovalent Organocatalysts for the Multicomponent Groebke-Blackburn-Bienaymé Reaction. J Org Chem 2022; 87:10199-10207. [PMID: 35858372 DOI: 10.1021/acs.joc.2c01141] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sulfonium and selenonium salts, represented by S-aryl dibenzothiophenium and Se-aryl dibenzoselenophenium triflates, were found to exhibit remarkable catalytic activity in the model Groebke-Blackburn-Bienaymé reaction. Kinetic analysis and density functional theory (DFT) calculations indicated that their catalytic effect is induced by the ligation of the reaction substrates to the σ-holes on the S or Se atom of the cations. The experimental data indicated that although 10-fold excess of the chloride totally inhibits the catalytic activity of the sulfonium salts, the selenonium salt remains catalytically active, which can be explained by the experimentally found lower binding constant of the selenonium derivative to chloride in comparison with the sulfonium analogue. Both types of salts exhibit lower catalytic activity in the model reaction than dibenziodolium species.
Collapse
Affiliation(s)
- Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
44
|
Karandikar SS, Bhattacharjee A, Metze BE, Javaly N, Valente EJ, McCormick TM, Stuart DR. Orbital analysis of bonding in diarylhalonium salts and relevance to periodic trends in structure and reactivity. Chem Sci 2022; 13:6532-6540. [PMID: 35756513 PMCID: PMC9172531 DOI: 10.1039/d2sc02332f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
Abstract
Diarylhalonium compounds provide new opportunities as reagents and catalysts in the field of organic synthesis. The three center, four electron (3c-4e) bond is a center piece of their reactivity, but structural variation among the diarylhaloniums, and in comparison with other λ3-iodanes, indicates that the model needs refinement for broader applicability. We use a combination of Density Functional Theory (DFT), Natural Bond Orbital (NBO) Theory, and X-ray structure data to correlate bonding and structure for a λ3-iodane and a series of diarylchloronium, bromonium, and iodonium salts, and their isoelectronic diarylchalcogen counterparts. This analysis reveals that the s-orbital on the central halogen atom plays a greater role in the 3c-4e bond than previously considered. Finally, we show that our revised bonding model and associated structures account for both kinetic and thermodynamic reactivity for both acyclic phenyl(mesityl)halonium and cyclic dibenzohalolium salts.
Collapse
Affiliation(s)
| | - Avik Bhattacharjee
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Bryan E Metze
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Nicole Javaly
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Edward J Valente
- Department of Chemistry, University of Portland Portland OR 97203 USA
| | | | - David R Stuart
- Department of Chemistry, Portland State University Portland OR 97201 USA
| |
Collapse
|
45
|
N LT, K HM, S KC, S S, L M, P M, R JR, A SM, Karnan M, K LN. N-[2-(5-bromo-2-chloro-pyrimidin-4-yl)thio)-4-methoxy-phenyl]-4-chlorobenzenesulfonamide: The existence of H-bond and halogen bond interactions assisted supramolecular architecture – A quantum chemical investigation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Soldatova NS, Postnikov PS, Ivanov DM, Semyonov OV, Kukurina OS, Guselnikova O, Yamauchi Y, Wirth T, Zhdankin VV, Yusubov MS, Gomila RM, Frontera A, Resnati G, Kukushkin VY. Zwitterionic iodonium species afford halogen bond-based porous organic frameworks. Chem Sci 2022; 13:5650-5658. [PMID: 35694330 PMCID: PMC9116302 DOI: 10.1039/d2sc00892k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
Porous architectures characterized by parallel channels arranged in honeycomb or rectangular patterns are identified in two polymorphic crystals of a zwitterionic 4-(aryliodonio)-benzenesulfonate. The channels are filled with disordered water molecules which can be reversibly removed on heating. Consistent with the remarkable strength and directionality of the halogen bonds (XBs) driving the crystal packing formation, the porous structure is stable and fully preserved on almost quantitative removal and readsorption of water. The porous systems described here are the first reported cases of one-component 3D organic frameworks whose assembly is driven by XB only (XOFs). These systems are a proof of concept for the ability of zwitterionic aryliodonium tectons in affording robust one-component 3D XOFs. The high directionality and strength of the XBs formed by these zwitterions and the geometrical constraints resulting from the tendency of their hypervalent iodine atoms to act as bidentate XB donors might be key factors in determining this ability.
Collapse
Affiliation(s)
- Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
- Department of Solid State Engineering, Institute of Chemical Technology Prague 16628 Czech Republic
| | - Daniil M Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
- Institute of Chemistry, Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Oleg V Semyonov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Olga S Kukurina
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Olga Guselnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia
| | - Thomas Wirth
- School of Chemistry, Cardiff University Park Place Cardiff UK
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth MN 55812 USA
| | - Mekhman S Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Rosa M Gomila
- Serveis Científico-Tècnics, Universitat de les Illes Balears Crta. de Valldemossa Km 7.5 07122 Palma de Mallorca Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears Crta. de Valldemossa Km 7.5 07122 Palma de Mallorca Spain
| | - Giuseppe Resnati
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
- NFMLab, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta"; Politecnico di Milano via Mancinelli 7 I-20131 Milano Italy
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| |
Collapse
|
47
|
Riegel GF, Takashige K, Lovstedt A, Kass SR. Charge‐Activated TADDOLs: Recyclable Organocatalysts for Asymmetric (Hetero‐)Diels–Alder Reactions. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- George F. Riegel
- Department of Chemistry University of Minnesota Minneapolis Minnesota United States
| | - Keiji Takashige
- Department of Chemistry University of Minnesota Minneapolis Minnesota United States
| | - Alex Lovstedt
- Department of Chemistry University of Minnesota Minneapolis Minnesota United States
| | - Steven R. Kass
- Department of Chemistry University of Minnesota Minneapolis Minnesota United States
| |
Collapse
|
48
|
Il'in MV, Sysoeva AA, Novikov AS, Bolotin DS. Diaryliodoniums as Hybrid Hydrogen- and Halogen-Bond-Donating Organocatalysts for the Groebke-Blackburn-Bienaymé Reaction. J Org Chem 2022; 87:4569-4579. [PMID: 35176856 DOI: 10.1021/acs.joc.1c02885] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dibenziodolium and diphenyliodonium triflates display high catalytic activity for the multicomponent reaction that leads to a series of imidazopyridines. Density functional theory (DFT) calculations indicate that both the salts can play the role of hybrid hydrogen- and halogen-bond-donating organocatalysts, which electrophilically activate the carbonyl and imine groups during the reaction process. The ortho-H atoms in the vicinal position to the I atom play a dual role: forming additional noncovalent bonds with the ligated substrate and increasing the maximum electrostatic potential on the σ-hole at the iodine atom owing to the effects of polarization. Dibenziodolium triflate exhibits higher catalytic activity, and the results obtained from 1H nuclear magnetic resonance (NMR) titrations, in conjunction with those from DFT calculations, indicate that this could be explained in terms of the additional energy required for the rotation of the phenyl ring in the diphenyliodonium cation during ligation of the substrate.
Collapse
Affiliation(s)
- Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Alexandra A Sysoeva
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
49
|
Li G, Smith R, Gembicky M, Rheingold AL, Protasiewicz JD. Sterically crowded 1,4-diiodobenzene as a precursor to difunctional hypervalent iodine compounds. Chem Commun (Camb) 2022; 58:1159-1162. [PMID: 34981095 DOI: 10.1039/d1cc06486j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bulky 1,4-di-iodobenzene having four adjacent para-tBu-C6H4 group (Ar') substituents (1) was used to prepare the di-hypervalent iodine compound 1,4-[I(OAc)2]2-2,3,5,6-Ar'4-C6 (2). Despite the steric encumbrance of the iodine center by the flanking aryl substituents, compound 2 undergoes ready cyclization under mild conditions (excess CF3COOH at 55 °C, 30 min) to afford a dicyclic di-iodonium di-triflate salt 3. The single crystal structures of compounds 2 and 3 were examined and compared to the formerly characterized precursor 1. The para-tert-butyl groups on these compounds also render the compounds more soluble than multifunctional hypervalent iodine (HVI) compounds. HVI compounds having multiple iodine(III) centers are increasingly of interest for applications as recyclable reagents, materials precursors, and as Lewis acids.
Collapse
Affiliation(s)
- Guobi Li
- Chemistry Department, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Rhett Smith
- Chemistry Department, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Milan Gembicky
- Chemistry and Biochemistry Department, University of California San Diego, La Jolla, CA, 92093, USA
| | - Arnold L Rheingold
- Chemistry and Biochemistry Department, University of California San Diego, La Jolla, CA, 92093, USA
| | - John D Protasiewicz
- Chemistry Department, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
50
|
Yang Y, Shang H, Li X, Zhu K, Luan Y. The synthesis of a copper metal‐organic framework Cu
3
TDPAT and its application in a Morita‐Baylis‐Hillman (MBH) reaction. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanan Yang
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Hailing Shang
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Xiujuan Li
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Kaicheng Zhu
- Xi'an Key Laboratory of Advanced Photo‐electronics Materials and Energy Conversion Device, School of Sciences Xijing University Xi'an China
| | - Yi Luan
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| |
Collapse
|