1
|
Luo C, Wu C, Wang X, Han Z, Wang Z, Ding K. Ruthenium-Catalyzed Carbocycle-Selective Hydrogenation of Fused Heteroarenes. J Am Chem Soc 2024; 146:35043-35056. [PMID: 39661002 DOI: 10.1021/jacs.4c05365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The homogeneous catalytic hydrogenation of benzo-fused heteroarenes generally provides partially hydrogenated products wherein the heteroaryl ring is preferentially reduced, such as quinoline hydrogenation, leading to 1,2,3,4-tetrahydroquinoline. Herein, we report a carbocycle-selective hydrogenation of fused N-heteroarenes (quinoline, isoquinoline, quinoxaline, etc.) using the Ru complex of a chiral spiroketal-based diphosphine (SKP) as the catalyst, affording the corresponding 5,6,7,8-tetrahydro products in high chemoselectivities. This catalytic system is also effective for the asymmetric carbocycle hydrogenation of fused heteroarenes bearing a boryl or amino group. Experimental studies provided a strong support for the homogeneous nature of the catalysis, and an inner-sphere mechanism was proposed for the hydrogenation. DFT calculations indicated that the hydrogenation is initiated by η4-coordinative activation of quinoline carbocycle to Ru dihydride complex of SKP, followed by metal-to-ligand hydride transfer. Subsequent carbocycle reduction proceeds via consecutive steps of the H2 oxidative addition and C-H reductive elimination.
Collapse
Affiliation(s)
- Chenguang Luo
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chaozheng Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhaobin Han
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
2
|
Kovalenko SA, Gulyaeva ES, Osipova ES, Filippov OA, Danshina AA, Vendier L, Kireev NV, Godovikov IA, Canac Y, Valyaev DA, Belkova NV, Shubina ES. Influence of triphosphine ligand coordination geometry in Mn(I) hydride complexes [(P ∩P ∩P)(CO) 2MnH] on their kinetic hydricity. Dalton Trans 2024; 54:122-132. [PMID: 39543971 DOI: 10.1039/d4dt02496f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Octahedral Mn(I) complexes bearing tridentate donor ligands [(L∩L'∩L'')(CO)2MnX] have recently emerged as major players in catalytic (de)hydrogenation processes. While most of these systems are still based on structurally rigid pincer scaffolds imposing a meridional coordination mode, for some more flexible tridentate ligands a facial arrangement of donor moieties becomes possible. Accordingly, the geometry of the corresponding Mn(I) hydrides [(L∩L'∩L'')(CO)2MnH] directly involved in the catalytic processes, namely the nature of the donor extremity located in the trans-position of the hydride (CO and L for mer- and fac-configurations, respectively) may influence their hydride transfer ability. Herein, low-temperature IR and NMR spectroscopy studies of two model Mn(I) complexes, mer-[(L1)(CO)2MnH] and fac-[(L2)(CO)2MnH], bearing similar triphosphine ligands (L1 = PhP(CH2CH2PPh2)2; L2 = MeC(CH2PPh2)3) in the presence of B(C6F5)3 as the H- abstractor revealed for the first time a higher kinetic hydricity of the tripodal system. Even for the pincer complex, hydride transfer proceeds from the non-covalent adduct fac-[(L1)(CO)2MnH]⋯B(C6F5)3 with the facial geometry arising from the mer-to-fac isomerization of the initial mer-[(L1)(CO)2MnH]. The higher reactivity of the fac-hydride derivatives was found to be consistent with the catalytic performance of the corresponding Mn(I) bromide complexes in the benchmark ester hydrosilylation.
Collapse
Affiliation(s)
- Sergey A Kovalenko
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
| | - Ekaterina S Gulyaeva
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France.
| | - Elena S Osipova
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
| | - Oleg A Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
| | - Anastasia A Danshina
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France.
| | - Nikolay V Kireev
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
| | - Ivan A Godovikov
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France.
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France.
| | - Natalia V Belkova
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
| | - Elena S Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
| |
Collapse
|
3
|
Yao Y, Zhang X, Cao Y, Liu L, Zhang Y, Zhang S. Single-Site Pd Regulated by π-π Stacking for High-Selectivity Cyclopropanation Reaction. J Am Chem Soc 2024; 146:31053-31061. [PMID: 39478287 DOI: 10.1021/jacs.4c10860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Cyclopropane-based high-energy fuels possess high intramolecular energy and density, and their precise synthesis is a critical challenge. However, owing to the highest strain in the cyclopropane structure (compared to other four- or five-membered rings, etc.), metal-carbene intermediates form with difficulty, resulting in poor catalytic selectivity for its synthesis. Herein, through rational design of π-π stacking between the Pd organic complex and graphene, we report a single-site Pd catalyst for precise synthesis of multicyclopropane-based high-energy fuels. It is discovered that π-π stacking enhanced the electrophilicity of Pd through a weak metal-support interaction, thus promoting the formation of Pd═C carbene active intermediates. Meanwhile, the adsorption between the active centers and intermediates was enhanced via π-π stacking. These two respects led to almost twice selectivity for cyclopropanation reaction up to 80.5% as that without π-π stacking. This work provides an effective strategy of π-π noncovalent interactions for regulating C-C coupling reaction selectivity.
Collapse
Affiliation(s)
- Yuan Yao
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Science and Technology on Particle Materials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinyue Zhang
- School of Energy Science and Technology, Henan University, Zhengzhou 450046, P. R. China
| | - Yingying Cao
- School of Energy Science and Technology, Henan University, Zhengzhou 450046, P. R. China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, P. R. China
| | - Long Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Science and Technology on Particle Materials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanqiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Science and Technology on Particle Materials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Energy Science and Technology, Henan University, Zhengzhou 450046, P. R. China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, P. R. China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Science and Technology on Particle Materials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, P. R. China
| |
Collapse
|
4
|
Du H, Wang T, Li M, Yin Z, Lv R, Zhang M, Wu X, Tang Y, Li H, Fu G. Identifying Highly Active and Selective Cobalt X-Ides for Electrocatalytic Hydrogenation of Quinoline. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411090. [PMID: 39221520 DOI: 10.1002/adma.202411090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Earth-abundant Co X-ides are emerging as promising catalysts for the electrocatalytic hydrogenation of quinoline (ECHQ), yet challenging due to the limited fundamental understanding of ECHQ mechanism on Co X-ides. This work identifies the catalytic performance differences of Co X-ides in ECHQ and provides significant insights into the catalytic mechanism of ECHQ. Among selected Co X-ides, the Co3O4 presents the best ECHQ performance with a high conversion of 98.2% and 100% selectivity at ambient conditions. The Co3O4 sites present a higher proportion of 2-coordinated hydrogen-bonded water at the interface than other Co X-ides at a low negative potential, which enhances the kinetics of subsequent water dissociation to produce H*. An ideal 1,4/2,3-H* addition pathway on Co3O4 surface with a spontaneous desorption of 1,2,3,4-tetrahydroquinoline is demonstrated through operando tracing and theoretical calculations. In comparison, the Co9S8 sites display the lowest ECHQ performance due to the high thermodynamic barrier in the H* formation step, which suppresses subsequent hydrogenation; while the ECHQ on Co(OH)F and CoP sites undergo the 1,2,3,4- and 4,3/1,2-H* addition pathway respectively with the high desorption barriers and thus low conversion of quinoline. Moreover, the Co3O4 presents a wide substrate scope and allows excellent conversion of other quinoline derivatives and N-heterocyclic substrates.
Collapse
Affiliation(s)
- Han Du
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Tianyi Wang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Meng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210096, China
| | - Zitong Yin
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ransheng Lv
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Muzhe Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiangrui Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
5
|
Nie W, Ruan M, Wang C, Liu Z. Small Molecule π-π Stacking Promotes Efficient Photoelectrocatalytic Splitting of Aqueous Hydrogen Production from Polyaniline. CHEMSUSCHEM 2024:e202401363. [PMID: 39180463 DOI: 10.1002/cssc.202401363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Photoelectrocatalysis efficiency depends on light absorption and the effective use of photogenerated carriers but is often limited by inefficient charge transfer and catalytic surface reactivity. In this study, π-π stacking of polar small molecules on aromatic ring-rich polyaniline (PANI) was carried out to improve its photoelectrocatalytic splitting of water for hydrogen production. Detailed photoelectrochemical experiments and density-functional theory (DFT) calculations show that small molecules of p-aminobenzoic acid (PABA) and PANI have the best π-π stacking (compared to p-toluenesulfonic acid (PTA)), which promotes the separation of carriers on the PANI surface. In addition, the polar effect of the small molecules also improves the reactivity of the PANI surface and also reduces the potential barrier for H2 evolution. The current density of PANI-PABA reached -0.12 mA/cm2 (1.23 V vs. RHE) 2.53 times higher than that of pure PANI in linear voltammetric scanning tests under light. This strategy of introducing polar small molecules into organocatalysts via π-π stacking will provide new ideas for the preparation of efficient organic photoelectrocatalysis.
Collapse
Affiliation(s)
- Weixing Nie
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Mengnan Ruan
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, 300384, China
- Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384, China
| | - Chengyi Wang
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, 300384, China
- Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384, China
| | - Zhifeng Liu
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, 300384, China
- Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384, China
| |
Collapse
|
6
|
Zhao CG, Cai J, Du C, Gao Q, Han J, Xie J. Manganese(I)-Catalyzed Enantioselective C(sp 2)-C(sp 3) Bond-Forming for the Synthesis of Skipped Dienes with Synergistic Aminocatalysis. Angew Chem Int Ed Engl 2024; 63:e202400177. [PMID: 38488857 DOI: 10.1002/anie.202400177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 04/09/2024]
Abstract
Mn(I)-catalyzed enantioselective C-C bond-forming reactions represent a great challenge in homogeneous catalysis primarily due to a limited understanding of its mechanistic principles. Herein, we have developed an interesting catalytic strategy that leverages a synergistic combination of a dimeric manganese(I) catalyst and a chiral aminocatalyst to address this issue. A range of conjugated dienals and trienals can exclusively proceed 1,4-hydroalkenylation by using readily available aromatic and aliphatic alkenyl boronic acids as coupling partners, producing a rich library of skipped diene aldehydes in synthetically useful yields and high levels of enantioselectivities. Notably, downstream transformations of these products can not only afford a concise approach to construct enantioenriched skipped trienes but also realize enantioselective total synthesis of analogues to (-)-Blepharocalyxin D in four steps. DFT calculations suggest the 1,4-hydroalkenylation is kinetically more favorable than 1,6-hydroalkenylation.
Collapse
Affiliation(s)
- Chuan-Gang Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Junzhe Cai
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chaoyu Du
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qi Gao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
7
|
Liu Z, Yu YJ, Bai YQ, Chen MW, Zhou YG. Manganese Pentacarbonyl Bromide as Regeneration Catalyst Enabled Biomimetic Asymmetric Reduction. Org Lett 2024; 26:2535-2539. [PMID: 38526435 DOI: 10.1021/acs.orglett.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Using readily available manganese pentacarbonyl bromide as a regeneration catalyst, biomimetic asymmetric reduction of imines including quinoxalinones, benzoxazinones, and benzoxazine has been successfully developed in the presence of transfer catalyst chiral phosphoric acids, providing the chiral amines with high yields and enantioselectivities.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan-Jiang Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yu-Qing Bai
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mu-Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
8
|
Ji J, Huo Y, Dai Z, Chen Z, Tu T. Manganese-Catalyzed Mono-N-Methylation of Aliphatic Primary Amines without the Requirement of External High-Hydrogen Pressure. Angew Chem Int Ed Engl 2024; 63:e202318763. [PMID: 38300154 DOI: 10.1002/anie.202318763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
The synthesis of mono-N-methylated aliphatic primary amines has traditionally been challenging, requiring noble metal catalysts and high-pressure H2 for achieving satisfactory yields and selectivity. Herein, we developed an approach for the selective coupling of methanol and aliphatic primary amines, without high-pressure hydrogen, using a manganese-based catalyst. Remarkably, up to 98 % yields with broad substrate scope were achieved at low catalyst loadings. Notably, due to the weak base-catalyzed alcoholysis of formamide intermediates, our novel protocol not only obviates the addition of high-pressure H2 but also prevents side secondary N-methylation, supported by control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Jiale Ji
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yinghao Huo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Zhaowen Dai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Zhening Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
9
|
Mohite MA, Sheokand S, Mondal D, Balakrishna MS. Catalytic utility of PNN-based Mn I pincer complexes in the synthesis of quinolines and transfer hydrogenation of carbonyl derivatives. Dalton Trans 2024; 53:5580-5591. [PMID: 38433558 DOI: 10.1039/d4dt00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
This manuscript describes the synthesis of a triazolyl-pyridine-based phosphine, N-((diphenylphosphaneyl)methyl)-N-methyl-6-(1-phenyl-1H-1,2,3-triazol-4-yl)pyridin-2-amine, [2,6-{(PPh2)CH2N(Me)(C5H3N)(C2HN3C6H5)}] (1) (here onwards referred to as PNN) and its cationic and neutral MnI complexes and catalytic applications. The reaction of 1 with Mn(CO)5Br afforded a cationic complex [Mn(CO)3(PNN)]Br (2), which is highly stable in solid state, but in solution it gradually loses one of the CO groups to form a neutral complex [Mn(CO)2(PNN)Br] (3). Complex 2 on treatment with AgBF4 also yielded a cationic complex [Mn(CO)3(PNN)]BF4 (4). These complexes efficiently promoted the synthesis of quinoline derivatives via acceptor-less dehydrogenative coupling of 2-aminobenzyl alcohol and ketones, with complex 3 showing the highest activity with a very low catalyst loading (0.03 mol%) at 110 °C. Complex 3 (0.5 mol%) also showed excellent catalytic activity in the transfer hydrogenation of ketones and aldehydes to form respective secondary and primary alcohols.
Collapse
Affiliation(s)
- Manali A Mohite
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Sonu Sheokand
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Dipanjan Mondal
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
10
|
Lückemeier L, De Vos T, Schlichter L, Gutheil C, Daniliuc CG, Glorius F. Chemoselective Heterogeneous Hydrogenation of Sulfur Containing Quinolines under Mild Conditions. J Am Chem Soc 2024; 146:5864-5871. [PMID: 38378184 PMCID: PMC10921411 DOI: 10.1021/jacs.3c11163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/22/2024]
Abstract
Sulfur, alongside oxygen and nitrogen, holds a prominent position as one of the key heteroatoms in nature and medicinal chemistry. Its significance stems from its ability to adopt different oxidation states, rendering it valuable as both a polarity handle and a hydrogen bond donor/acceptor. Nevertheless, the poisonous nature of its free electron pairs makes sulfur containing substrates inaccessible for many catalytic protocols. Strong and (at low temperatures) irreversible chemisorption to the catalyst's surface is in particular detrimental for heterogeneous catalysts, possessing only few catalytically active sites. Herein, we present a novel heterogeneous Ru-S catalyst that tolerates multiple sulfur functionalities, including thioethers, thiophenes, sulfoxides, sulfones, sulfonamides, and sulfoximines, in the hydrogenation of quinolines. The utility of the products was further demonstrated by subsequent diversifications of the sulfur functionalities.
Collapse
Affiliation(s)
| | | | - Lisa Schlichter
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, Münster 48149, Germany
| | - Christian Gutheil
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, Münster 48149, Germany
| | - Constantin G. Daniliuc
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, Münster 48149, Germany
| | - Frank Glorius
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, Münster 48149, Germany
| |
Collapse
|
11
|
Zhou X, Wang Z, Li S, Rong X, Bu J, Liu Q, Ouyang Z. Differentiating enantiomers by directional rotation of ions in a mass spectrometer. Science 2024; 383:612-618. [PMID: 38330101 DOI: 10.1126/science.adj8342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
Conventional mass spectrometry does not distinguish between enantiomers, or mirror-image isomers. Here we report a technique to break the chiral symmetry and to differentiate enantiomers by inducing directional rotation of chiral gas-phase ions. Dual alternating current excitations were applied to manipulate the motions of trapped ions, including the rotation around the center of mass and macro movement around the center of the trap. Differences in collision cross section were induced, which could be measured by ion cloud profiling at high resolutions above 10,000. High-field ion mobility and tandem mass spectrometry analyses of the enantiomers were combined and implemented by using a miniature ion trap mass spectrometer. The effectiveness of the developed method was demonstrated with a variety of organic compounds including amino acids, sugars, and several drug molecules, as well as a proof-of-principle ligand optimization study for asymmetric hydrogenation.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Zhuofan Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Shuai Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Xianle Rong
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiexun Bu
- PURSPEC Technology (Beijing) Ltd., Beijing 100084, China
| | - Qiang Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
12
|
Wang M, Liu C, Liu Q. Protocol for stereodivergent asymmetric hydrogenation of quinoxalines. STAR Protoc 2023; 4:102724. [PMID: 37979179 PMCID: PMC10694590 DOI: 10.1016/j.xpro.2023.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 11/20/2023] Open
Abstract
Chiral 1,2,3,4-tetrahydroquinoxalines are ubiquitous in natural products and bioactive molecules. Herein, we disclose a protocol for stereodivergent asymmetric hydrogenation of disubstituted quinoxalines for the preparation of both cis- and trans-enantioenriched disubstituted tetrahydroquinoxalines (up to >20:1 d.r. and 99% ee). We describe steps for synthesis of ligands and substrate, setup of hydrogenation of disubstituted quinoxalines, and purification of products. Additionally, we provide detailed diagrams of the hydrogenation installation. For complete details on the use and execution of this protocol, please refer to Liu et al.1.
Collapse
Affiliation(s)
- Mingyang Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Chenguang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Yang H, Hu Y, Zou Y, Zhang Z, Zhang W. Cobalt-Catalyzed Efficient Asymmetric Hydrogenation of α-Primary Amino Ketones. JACS AU 2023; 3:2981-2986. [PMID: 38034968 PMCID: PMC10685343 DOI: 10.1021/jacsau.3c00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
Based on an amino-group-assisted coordination strategy and a proton-shuttle-activated outer-sphere mode, the cobalt-catalyzed asymmetric hydrogenation of α-primary amino ketones has been developed, resulting in the efficient synthesis of chiral vicinal amino alcohols bearing functionalized aryl rings in high yields and enantioselectivities (up to 99% enantiomeric excess (ee)) within 0.5 h.
Collapse
Affiliation(s)
- Huiwen Yang
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanhua Hu
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yashi Zou
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenfeng Zhang
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanbin Zhang
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Frontiers
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, Shanghai Jiao Tong
University, Shanghai 200240, China
| |
Collapse
|
14
|
Wu J, Xie S, Zhou L, Liu Y, Cui Y, Huang X, Wei C, Li X, Zhang C, Chen H. One-Pot Stereoselective Synthesis of Furantetrahydroquinoline Derivatives Using d/l-Ribose with a 2,3- O-Isopropylidene Group. J Org Chem 2023; 88:12445-12450. [PMID: 37594367 DOI: 10.1021/acs.joc.3c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
An efficient and convenient strategy has been successfully developed for the preparation of novel furantetrahydroquinoline derivatives using d/l-ribose with a 2,3-O-isopropylidene group through the aza-Diels-Alder mechanism. This method has high atom and step economy, high stereoselectivity, and gram-scale synthesis (yield 67%).
Collapse
Affiliation(s)
- Jilai Wu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Song Xie
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Likai Zhou
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai, Hebei 054001, China
| | - Yixuan Liu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Yaxin Cui
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Xiaoyan Huang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Chao Wei
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Xiaoliu Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Chunfang Zhang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
15
|
Xu A, Li C, Huang J, Pang H, Zhao C, Song L, You H, Zhang X, Chen FE. Highly enantioselective synthesis of both tetrahydroquinoxalines and dihydroquinoxalinones via Rh-thiourea catalyzed asymmetric hydrogenation. Chem Sci 2023; 14:9024-9032. [PMID: 37655018 PMCID: PMC10466277 DOI: 10.1039/d3sc00803g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/03/2023] [Indexed: 09/02/2023] Open
Abstract
Chiral tetrahydroquinoxalines and dihydroquinoxalinones represent the core structure of many bioactive molecules. Herein, a simple and efficient Rh-thiourea-catalyzed asymmetric hydrogenation for enantiopure tetrahydroquinoxalines and dihydroquinoxalinones was developed under 1 MPa H2 pressure at room temperature. The reaction was magnified to the gram scale furnishing the desired products with undamaged yield and enantioselectivity. Application of this methodology was also conducted successfully under continuous flow conditions. In addition, 1H NMR experiments revealed that the introduction of a strong Brønsted acid, HCl, not only activated the substrate but also established anion binding between the substrate and the ligand. More importantly, the chloride ion facilitated heterolytic cleavage of dihydrogen to regenerate the active dihydride species and HCl, which was computed to be the rate-determining step. Further deuterium labeling experiments and density functional theory (DFT) calculations demonstrated that this reaction underwent a plausible outer-sphere mechanism in this new catalytic transformation.
Collapse
Affiliation(s)
- Ana Xu
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Chaoyi Li
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Heng Pang
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Chengyao Zhao
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Xumu Zhang
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
16
|
Guan J, Chen J, Luo Y, Guo L, Zhang W. Copper-Catalyzed Chemoselective Asymmetric Hydrogenation of C=O Bonds of Exocyclic α,β-Unsaturated Pentanones. Angew Chem Int Ed Engl 2023; 62:e202306380. [PMID: 37307027 DOI: 10.1002/anie.202306380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
A highly chemoselective earth-abundant transition metal copper catalyzed asymmetric hydrogenation of C=O bonds of exocyclic α,β-unsaturated pentanones was realized using H2 . The desired products were obtained with up to 99 % yield and 96 % ee (enantiomeric excess) (99 % ee, after recrystallization). The corresponding chiral exocyclic allylic pentanol products can be converted into several bioactive molecules. The hydrogenation mechanism was investigated via deuterium-labelling experiments and control experiments, which indicate that the keto-enol isomerization rate of the substrate is faster than that of the hydrogenation and also show that the Cu-H complex can only catalyze chemoselectively the asymmetric reduction of the carbonyl group. Computational results indicate that the multiple attractive dispersion interactions (MADI effect) between the catalyst with bulky substituents and substrate play important roles which stabilize the transition states and reduce the generation of by-products.
Collapse
Affiliation(s)
- Jing Guan
- Frontier Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jianzhong Chen
- Frontier Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yicong Luo
- Frontier Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Lisen Guo
- Frontier Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wanbin Zhang
- Frontier Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
17
|
Zeng L, Zhao M, Lin B, Song J, Tucker JHR, Wen J, Zhang X. Cobalt-Catalyzed Enantioselective Hydrogenation of Diaryl Ketones with Ferrocene-Based Secondary Phosphine Oxide Ligands. Org Lett 2023; 25:6228-6233. [PMID: 37585346 DOI: 10.1021/acs.orglett.3c02530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
A new class of cobalt catalytic system for asymmetric hydrogenation of ketones was herein reported, involving the development of novel ferrocene-based secondary phosphine oxide ligands. An unusual P-O bidentate coordination pattern with cobalt was confirmed by an X-ray diffraction study. The bichelating tetrahedral cobalt(II) complexes afforded high reactivities (up to 99% yield) and good to excellent enantioselectivities (up to 92% ee) in the AH of various ortho-substituted diaryl ketones. In addition, the diferrocenyl cobalt complex was characterized with intriguing UV-vis absorption and electrochemical properties.
Collapse
Affiliation(s)
- Liyao Zeng
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Menglong Zhao
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Bijin Lin
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Jingyuan Song
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - James H R Tucker
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Jialin Wen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Xumu Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
18
|
Shi C, Xu R, He L, Li T, Liu S, Yun R. Endowing Nanoparticles with High Stability on the Hydrogenation Reaction by the Amino Group-Assisted Strategy. Inorg Chem 2023; 62:13400-13404. [PMID: 37552508 DOI: 10.1021/acs.inorgchem.3c01743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
In the field of a heterogeneous industrial catalysis process, the encapsulated structure plays a crucial role in preventing active sites from leaching during the reaction; however, related studies on the strategy to fabricate encapsulated catalysts under control remain rare. Herein, we develop an amino-assisted strategy to construct a highly stable catalyst with core-shell copper nanoparticles (NPs), namely, Cu@NC (NC represents the nitrogen-doped carbon), presenting not only excellent activity but also high durability on the hydrogenation of quinolines even in the large-scale tests, which is very vital in practical application. In contrast, in the absence of the amino group, the Cu NPs were dispersed out of the carbon surface to form Cu/NC, leading to readily lose activity in the recycling tests due to the leaching occurred during the catalytic process. This work offers a promising method to fabricate a stable catalyst to enhance durability in heterogeneous catalysis.
Collapse
Affiliation(s)
- Changsong Shi
- The Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Ruiming Xu
- The Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Lei He
- The Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Tuanhui Li
- The Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Shoujie Liu
- The Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
- School of Materials Science and Engineering, Anhui University, Hefei 230601, P. R. China
| | - Ruirui Yun
- The Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| |
Collapse
|
19
|
Wang S, Xie C, Zhu Y, Zi G, Zhang Z, Hou G. Enantioselective Synthesis of Chiral Cyclic Hydrazines by Ni-Catalyzed Asymmetric Hydrogenation. Org Lett 2023; 25:3644-3648. [PMID: 37184220 DOI: 10.1021/acs.orglett.3c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
An efficient Ni-(S,S)-Ph-BPE complex that catalyzed asymmetric hydrogenation of cyclic N-acyl hydrazones has been developed to produce various chiral cyclic hydrazines in high yields with excellent enantioselectivities of up to >99% enantiomeric excess. Moreover, the hydrogenation can not only proceed smoothly on a gram scale under lower catalyst loading (S/C = 3000) without any decrease of enantioselectivity but can also be applied to the asymmetric synthesis of a RIP-1 kinase inhibitor.
Collapse
Affiliation(s)
- Siwei Wang
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Chaochao Xie
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yu Zhu
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zhanbin Zhang
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
20
|
Kumar R, Pandey MK, Bhandari A, Choudhury J. Balancing the Seesaw in Mn-Catalyzed N-Heteroarene Hydrogenation: Mechanism-Inspired Catalyst Design for Simultaneous Taming of Activation and Transfer of H 2. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
21
|
Gao B, Han Z, Meng W, Feng X, Du H. Asymmetric Reduction of Quinolines: A Competition between Enantioselective Transfer Hydrogenation and Racemic Borane Catalysis. J Org Chem 2023. [PMID: 36799068 DOI: 10.1021/acs.joc.2c02905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A chiral phosphoric acid catalyzed asymmetric transfer hydrogenation of quinolines with regenerable dihydrophenanthridine derived by a borane-catalyzed hydrogenation of phenanthridine under H2 has been successfully realized. Despite the competition of a racemic hydrogenation pathway, a variety of tetrahydroquinolines were furnished in high yields with up to 91% ee.
Collapse
Affiliation(s)
- Bochao Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zaiqi Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Remote stereocontrol in the (4 + 2) cycloadditions of 1,7-zwitterions: Asymmetric synthesis of multifunctionalized tetrahydroquinoline derivatives. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
23
|
Hu Y, Zou Y, Yang H, Ji H, Jin Y, Zhang Z, Liu Y, Zhang W. Precise Synthesis of Chiral Z-Allylamides by Cobalt-Catalyzed Asymmetric Sequential Hydrogenations. Angew Chem Int Ed Engl 2023; 62:e202217871. [PMID: 36753391 DOI: 10.1002/anie.202217871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Asymmetric sequential hydrogenations of conjugated enynes have been developed using a Ph-BPE-CoI catalyst for the precise synthesis of chiral Z-allylamides in high activity (up to 1000 substrate/catalyst (S/C)) and with excellent enantioselectivity (up to >99 % enantiomeric excess (ee)). Mechanism experiments and theoretical calculations support a cationic CoI /CoIII redox catalytic cycle. The catalytic activity difference between cobalt complexes of Ph-BPE and QuinoxP* was explained by the process decomposition of rate-determining step in the second hydrogenation.
Collapse
Affiliation(s)
- Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huiwen Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Haotian Ji
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yue Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
24
|
Wei H, Chen H, Chen J, Gridnev ID, Zhang W. Nickel-Catalyzed Asymmetric Hydrogenation of α-Substituted Vinylphosphonates and Diarylvinylphosphine Oxides. Angew Chem Int Ed Engl 2023; 62:e202214990. [PMID: 36507919 DOI: 10.1002/anie.202214990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Chiral α-substituted ethylphosphonate and ethylphosphine oxide compounds are widely used in drugs, pesticides, and ligands. However, their catalytic asymmetric synthesis is still rare. Of the only asymmetric hydrogenation methods available at present, all cases use rare metal catalysts. Herein, we report an efficient earth-abundant transition-metal nickel catalyzed asymmetric hydrogenation affording the corresponding chiral ethylphosphine products with up to 99 % yield, 96 % ee (enantiomeric excess) (99 % ee, after recrystallization) and 1000 S/C (substrate/catalyst); this is also the first study on the asymmetric hydrogenation of terminal olefins using a nickel catalyst under a hydrogen atmosphere. The catalytic mechanism was investigated via deuterium-labelling experiments and calculations which indicate that the two added hydrogen atoms of the products come from hydrogen gas. Additionally, it is believed that the reaction involves a NiII rather than Ni0 cyclic process based on the weak attractive interactions between the Ni catalyst and terminal olefin substrate.
Collapse
Affiliation(s)
- Hanlin Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Hao Chen
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jianzhong Chen
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Ilya D Gridnev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
25
|
Wang Z, Chen S, Chen C, Yang Y, Wang C. Manganese-Catalyzed Hydrogenative Desulfurization of Thioamides. Angew Chem Int Ed Engl 2023; 62:e202215963. [PMID: 36428247 DOI: 10.1002/anie.202215963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Earth-abundant transition metal catalysis has emerged as an important alternative to noble transition metal catalysis in hydrogenation reactions. However, there has been no Earth-abundant transition metal catalyzed hydrogenation of thioamides reported so far, presumably due to the poisoning of catalysts by sulfur-containing molecules. Herein, we described the first manganese-catalyzed hydrogenative desulfurization of thioamides to amines or imines. The key to success is the use of MnBr(CO)5 instead of commonly-employed pincer-manganese catalysts, together with simple NEt3 and CuBr. This protocol features excellent selectivity on sole cleavage of the C=S bond of thioamides, in contrast to the only known Ru-catalyzed hydrogenation of thioamides, and unprecedented chemo-selectivity tolerating vulnerable functional groups such as nitrile, ketone, aldehyde, ester, sulfone, nitro, olefin, alkyne and heterocycle, which are usually susceptible to common hydride-type reductive protocols.
Collapse
Affiliation(s)
- Zelong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Silin Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Wuyi University, School of Biotechnology and Health Sciences, Jiangmen, 529020, China
| | - Chao Chen
- Wuyi University, School of Biotechnology and Health Sciences, Jiangmen, 529020, China.,Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Yunhui Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
26
|
Oates CL, Goodfellow AS, Bühl M, Clarke ML. Rational Design of a Facially Coordinating P,N,N Ligand for Manganese-Catalysed Enantioselective Hydrogenation of Cyclic Ketones. Angew Chem Int Ed Engl 2023; 62:e202212479. [PMID: 36341982 PMCID: PMC10107995 DOI: 10.1002/anie.202212479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
DFT calculations on the full catalytic cycle for manganese catalysed enantioselective hydrogenation of a selection of ketones have been carried out at the PBE0-D3PCM //RI-BP86PCM level. Mn complexes of an enantiomerically pure chiral P,N,N ligand have been found to be most reactive when adopting a facial coordination mode. The use of a new ligand with an ortho-substituted dimethylamino-pyridine motif has been calculated to completely transform the levels of enantioselectivity possible for the hydrogenation of cyclic ketones relative to the first-generation Mn catalysts. In silico evaluation of substrates has been used to identify those likely to be reduced with high enantiomer ratios (er), and others that would exhibit less selectivity; good agreements were then found in experiments. Various cyclic ketones and some acetophenone derivatives were hydrogenated with er's up to 99 : 1.
Collapse
Affiliation(s)
- Conor L. Oates
- EaStCHEM School of ChemistryUniversity of St AndrewsPurdie BuildingNorth HaughSt Andrews, KY16 9STUK
| | - Alister S. Goodfellow
- EaStCHEM School of ChemistryUniversity of St AndrewsPurdie BuildingNorth HaughSt Andrews, KY16 9STUK
| | - Michael Bühl
- EaStCHEM School of ChemistryUniversity of St AndrewsPurdie BuildingNorth HaughSt Andrews, KY16 9STUK
| | - Matthew L. Clarke
- EaStCHEM School of ChemistryUniversity of St AndrewsPurdie BuildingNorth HaughSt Andrews, KY16 9STUK
| |
Collapse
|
27
|
Papa V, Fessler J, Zaccaria F, Hervochon J, Dam P, Kubis C, Spannenberg A, Wei Z, Jiao H, Zuccaccia C, Macchioni A, Junge K, Beller M. Efficient Hydrogenation of N-Heterocycles Catalyzed by NNP-Manganese(I) Pincer Complexes at Ambient Temperature. Chemistry 2023; 29:e202202774. [PMID: 36193859 PMCID: PMC10100126 DOI: 10.1002/chem.202202774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/06/2022]
Abstract
Manganese-catalyzed hydrogenation reactions have aroused widespread interest in recent years. Among the catalytic systems described, especially PNP- and NNP-Mn pincer catalysts have been reported for the hydrogenation of aldehydes, ketones, nitriles, aldimines and esters. Furthermore, NNP-Mn pincer compounds are efficient catalysts for the hydrogenolysis of less reactive amides, ureas, carbonates, and carbamates. Herein, the synthesis and application of specific imidazolylaminophosphine ligands and the corresponding Mn pincer complexes are described. These new catalysts have been characterized and studied by a combination of experimental and theoretical investigations, and their catalytic activities have been tested in several hydrogenation reactions with good to excellent performance. Especially, the reduction of N-heterocycles can be performed under very mild conditions.
Collapse
Affiliation(s)
- Veronica Papa
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
- Istituto italiano di tecnologiaVia Morego 3016163GenovaItaly
| | - Johannes Fessler
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Francesco Zaccaria
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCCUniversità degli Studi di Perugia06123PerugiaItaly
| | - Julien Hervochon
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Phong Dam
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Christoph Kubis
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Zhihong Wei
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
- Institute of Molecular ScienceKey Laboratory of Materials for Energy Conversion and Storage of Shanxi ProvinceShanxi University030006TaiyuanP. R. China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Cristiano Zuccaccia
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCCUniversità degli Studi di Perugia06123PerugiaItaly
| | - Alceo Macchioni
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCCUniversità degli Studi di Perugia06123PerugiaItaly
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| |
Collapse
|
28
|
Chauhan A, Banerjee A, Kar AK, Srivastava R. Metal-Free N-Doped Carbon Catalyst Derived from Chitosan for Aqueous Formic Acid-Mediated Selective Reductive Formylation of Quinoline and Nitroarenes. CHEMSUSCHEM 2022; 15:e202201560. [PMID: 36134620 DOI: 10.1002/cssc.202201560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
A chitosan-derived metal-free N-doped carbon catalyst was synthesized and investigated for selective reductive formylation of quinoline to N-formyl-tetrahydroquinoline and nitroarenes to N-formyl anilides via aqueous formic acid (FA)-mediated catalytic transformation. FA dissociated on the catalyst surface and acted as a hydrogenating and formylating source for selective N-formylation of N-heteroarenes. The carbonized catalyst prepared at 700 °C offered the best activity. A 92 % yield of N-formyl-tetrahydroquinoline after 14 h and >99 % yield for N-formyl anilide after 12 h at 160 °C were obtained. The excellent catalytic activity was correlated with the type of "N" species and the basicity of the catalyst. Density functional theory calculations revealed that a water-assisted FA decomposition pathway (deprotonation and dehydroxylation) generated the surface adsorbed -H and -HCOO species, required for the formation of N-formylated products. In addition, the selective formation of N-formyl-tetrahydroquinoline and N-formyl anilides was explained by a comprehensive reaction energetics analysis.
Collapse
Affiliation(s)
- Arzoo Chauhan
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Arghya Banerjee
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Ashish Kumar Kar
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Rajendra Srivastava
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| |
Collapse
|
29
|
Shabade AB, Sharma DM, Bajpai P, Gonnade RG, Vanka K, Punji B. Room temperature chemoselective hydrogenation of C[double bond, length as m-dash]C, C[double bond, length as m-dash]O and C[double bond, length as m-dash]N bonds by using a well-defined mixed donor Mn(i) pincer catalyst. Chem Sci 2022; 13:13764-13773. [PMID: 36544725 PMCID: PMC9710210 DOI: 10.1039/d2sc05274a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Chemoselective hydrogenation of C[double bond, length as m-dash]C, C[double bond, length as m-dash]O and C[double bond, length as m-dash]N bonds in α,β-unsaturated ketones, aldehydes and imines is accomplished at room temperature (27 °C) using a well-defined Mn(i) catalyst and 5.0 bar H2. Amongst the three mixed-donor Mn(i) complexes developed, κ3-(R2PN3NPyz)Mn(CO)2Br (R = Ph, iPr, t Bu); the t Bu-substituted complex ( tBu2PN3NPyz)Mn(CO)2Br shows exceptional chemoselective catalytic reduction of unsaturated bonds. This hydrogenation protocol tolerates a range of highly susceptible functionalities, such as halides (-F, -Cl, -Br, and -I), alkoxy and hydroxy, including hydrogen-sensitive moieties like acetyl, nitrile, nitro, epoxide, and unconjugated alkenyl and alkynyl groups. Additionally, the disclosed method applies to indole, pyrrole, furan, thiophene, and pyridine-containing unsaturated ketones leading to the corresponding saturated ketones. The C[double bond, length as m-dash]C bond is chemoselectively hydrogenated in α,β-unsaturated ketones, while the aldehyde's C[double bond, length as m-dash]O bond and imine's C[double bond, length as m-dash]N bond are preferentially reduced over the C[double bond, length as m-dash]C bond. A detailed mechanistic study highlighted the non-innocent behavior of the ligand in the ( tBu2PN3NPyz)Mn(i) complex and indicated a metal-ligand cooperative catalytic pathway. The molecular hydrogen (H2) acts as a hydride source, whereas MeOH provides a proton for hydrogenation. DFT energy calculations supported the facile progress of most catalytic steps, involving a crucial turnover-limiting H2 activation.
Collapse
Affiliation(s)
- Anand B. Shabade
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL)Dr Homi Bhabha RoadPune 411008India,Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India
| | - Dipesh M. Sharma
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL)Dr Homi Bhabha RoadPune 411008India,Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India
| | - Priyam Bajpai
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India,Physical and Material Chemistry Division, CSIR-NCLDr Homi Bhabha RoadPuneIndia
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India,Centre for Material Characterization, CSIR-NCLDr Homi Bhabha RoadPuneIndia
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India,Physical and Material Chemistry Division, CSIR-NCLDr Homi Bhabha RoadPuneIndia
| | - Benudhar Punji
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL)Dr Homi Bhabha RoadPune 411008India,Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India
| |
Collapse
|
30
|
Qi H, Wang L, Sun Q, Sun W. Asymmetric transfer hydrogenation of quinoline derivatives catalyzed by chiral iridium-imidazoline complex in water. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Wang Y, Liu S, Yang H, Li H, Lan Y, Liu Q. Structure, reactivity and catalytic properties of manganese-hydride amidate complexes. Nat Chem 2022; 14:1233-1241. [PMID: 36097055 DOI: 10.1038/s41557-022-01036-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/04/2022] [Indexed: 11/09/2022]
Abstract
The high efficiency of widely applied Noyori-type hydrogenation catalysts arises from the N-H moiety coordinated to a metal centre, which stabilizes rate-determining transition states through hydrogen-bonding interactions. It was proposed that a higher efficiency could be achieved by substituting an N-M' group (M' = alkali metals) for the N-H moiety using a large excess of metal alkoxides (M'OR); however, such a metal-hydride amidate intermediate has not yet been isolated. Here we present the synthesis, isolation and reactivity of a metal-hydride amidate complex (HMn-NLi). Kinetic studies show that the rate of hydride transfer from HMn-NLi to a ketone is 24-fold higher than that of the corresponding amino metal-hydride complex (HMn-NH). Moreover, the hydrogenation of N-alkyl-substituted aldimines was realized using HMn-NLi as the active catalyst, whereas HMn-NH is much less effective. These results highlight the superiority of M/NM' bifunctional catalysis over the classic M/NH bifunctional catalysis for hydrogenation reactions.
Collapse
Affiliation(s)
- Yujie Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, China
| | - Haobo Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Hengxu Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, China. .,College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, China.
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
32
|
Electrocatalytic hydrogenation of quinolines with water over a fluorine-modified cobalt catalyst. Nat Commun 2022; 13:5297. [PMID: 36075932 PMCID: PMC9458668 DOI: 10.1038/s41467-022-32933-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Room temperature and selective hydrogenation of quinolines to 1,2,3,4-tetrahydroquinolines using a safe and clean hydrogen donor catalyzed by cost-effective materials is significant yet challenging because of the difficult activation of quinolines and H2. Here, a fluorine-modified cobalt catalyst is synthesized via electroreduction of a Co(OH)F precursor that exhibits high activity for electrocatalytic hydrogenation of quinolines by using H2O as the hydrogen source to produce 1,2,3,4-tetrahydroquinolines with up to 99% selectivity and 94% isolated yield under ambient conditions. Fluorine surface-sites are shown to enhance the adsorption of quinolines and promote water activation to produce active atomic hydrogen (H*) by forming F−-K+(H2O)7 networks. A 1,4/2,3-addition pathway involving H* is proposed through combining experimental and theoretical results. Wide substrate scopes, scalable synthesis of bioactive precursors, facile preparation of deuterated analogues, and the paired synthesis of 1,2,3,4-tetrahydroquinoline and industrially important adiponitrile at a low voltage highlight the promising applications of this methodology. Selective hydrogenation of quinolines with easy-to-handle hydrogen donors and cost-effective catalysts is desirable. Here electrocatalytic quinoline hydrogenation to 1,2,3,4-tetrahydroquinolines is reported with water over a fluorine-modified cobalt.
Collapse
|
33
|
Wang L, Lin J, Xia C, Sun W. Manganese-catalyzed asymmetric transfer hydrogenation of hydrazones. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Császár Z, Kovács R, Fonyó M, Simon J, Bényei A, Lendvay G, Bakos J, Farkas G. Testing the role of the backbone length using bidentate and tridentate ligands in manganese-catalyzed asymmetric hydrogenation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Viereck P, Hierlmeier G, Tosatti P, Pabst TP, Puentener K, Chirik PJ. Molybdenum-Catalyzed Asymmetric Hydrogenation of Fused Arenes and Heteroarenes. J Am Chem Soc 2022; 144:11203-11214. [PMID: 35714999 DOI: 10.1021/jacs.2c02007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The synthesis of enantioenriched molybdenum precatalysts for the asymmetric hydrogenation of substituted quinolines and naphthalenes is described. Three classes of pincer ligands with chiral substituents were evaluated as supporting ligands in the molybdenum-catalyzed hydrogenation reactions, where oxazoline imino(pyridine) chelates were identified as optimal. A series of 2,6-disubstituted quinolines was hydrogenated to enantioenriched decahydroquinolines with high diastereo- and enantioselectivities. For quinoline derivatives, selective hydrogenation of both the carbocycle and heterocycle was observed depending on the ring substitution. Spectroscopic and mechanistic studies established molybdenum η6-arene complexes as the catalyst resting state and that partial hydrogenation arises from dissociation of the substrate from the coordination sphere of molybdenum prior to complete reduction. A stereochemical model is proposed based on the relative energies of the respective coordination of the prochiral faces of the arene determined by steric interactions between the substrate and the chiral ligand, rather than through precoordination by a heteroatom.
Collapse
Affiliation(s)
- Peter Viereck
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gabriele Hierlmeier
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paolo Tosatti
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kurt Puentener
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
36
|
Li F, Long L, He YM, Li Z, Chen H, Fan QH. Manganese-Catalyzed Asymmetric Formal Hydroamination of Allylic Alcohols: A Remarkable Macrocyclic Ligand Effect. Angew Chem Int Ed Engl 2022; 61:e202202972. [PMID: 35438237 DOI: 10.1002/anie.202202972] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 12/23/2022]
Abstract
A unique family of chiral peraza N6 -macrocyclic ligands, which are conformationally rigid and have a tunable saddle-shaped cavity, is described. Utilizing their manganese(I) complexes, the first example of earth-abundant transition metal-catalyzed asymmetric formal anti-Markovnikov hydroamination of allylic alcohols was realized, providing a practical access to synthetically important chiral γ-amino alcohols in excellent yields and enantioselectivities (up to 99 % yield and 98 % ee). The single-crystal structure of a MnI complex indicates that the manganese atom coordinates with the chiral dialkylamine moiety in a bidentate fashion. Further DFT calculations revealed that five of the six nitrogen atoms in the ligand were engaged in multiple noncovalent interactions with Mn, an isopropanol molecule, and a β-amino ketone intermediate via coordination, hydrogen bonding, and/or CH⋅⋅⋅π interactions in the transition state, showing a remarkable role of the macrocyclic framework.
Collapse
Affiliation(s)
- Faju Li
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Linhong Long
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Mei He
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Zeyu Li
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Qing-Hua Fan
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
37
|
Li B, Chen J, Liu D, Gridnev ID, Zhang W. Nickel-catalysed asymmetric hydrogenation of oximes. Nat Chem 2022; 14:920-927. [PMID: 35697929 DOI: 10.1038/s41557-022-00971-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Chiral hydroxylamines are vital substances in bioscience and versatile subunits in the preparation of a variety of functional molecules. However, asymmetric and non-asymmetric synthetic approaches to these compounds are far from satisfactory. Although atom-economic metal-catalysed asymmetric hydrogenations have been studied for over 50 years, the asymmetric hydrogenation of oximes to the corresponding chiral hydroxylamines remains challenging because of the labile N-O bond and inert C=N bond. Here we report an environmentally friendly, earth-abundant, transition-metal nickel-catalysed asymmetric hydrogenation of oximes, affording the corresponding chiral hydroxylamines with up to 99% yield, 99% e.e. and with a substrate/catalyst ratio of 1,000. Computational results indicate that the weak interactions between the catalyst and substrate play crucial roles not only in the transition states, but also during the approach of the substrate to the catalyst, by selectively reducing the reaction barriers and thus improving the reaction efficiency and securing the generation of chirality.
Collapse
Affiliation(s)
- Bowen Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ilya D Gridnev
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Science, Moscow, Russian Federation
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
38
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
39
|
Liu C, Wang M, Xu Y, Li Y, Liu Q. Manganese-Catalyzed Asymmetric Hydrogenation of 3H-Indoles. Angew Chem Int Ed Engl 2022; 61:e202202814. [PMID: 35238455 DOI: 10.1002/anie.202202814] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/21/2022]
Abstract
The asymmetric hydrogenation (AH) of 3H-indoles represents an ideal approach to the synthesis of useful chiral indoline scaffolds. However, very few catalytic systems based on precious metals have been developed to realize this challenging reaction. Herein, we report a Mn-catalyzed AH of 3H-indoles with excellent yields and enantioselectivities. The kinetic resolution of racemic 3H-indoles by AH was also achieved with high s-factors to construct quaternary stereocenters. Many acid-sensitive functional groups, which cannot be tolerated when using a state-of-the-art ruthenium catalyst, were compatible with manganese catalysis. This new process expands the scope of this transformation and highlights the uniqueness of earth-abundant metal catalysis. The reaction could proceed with catalyst loadings at the parts per million (ppm) level with an exceptional turnover number of 72 350. This is the highest value yet reported for an earth-abundant metal-catalyzed AH reaction.
Collapse
Affiliation(s)
- Chenguang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mingyang Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yihan Xu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yibiao Li
- School of Biotechnology and Health, Wuyi University, Jiangmen, Guangdong, 529090, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
40
|
Li F, Long L, He Y, Li Z, Chen H, Fan Q. Manganese‐Catalyzed Asymmetric Formal Hydroamination of Allylic Alcohols: A Remarkable Macrocyclic Ligand Effect. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Faju Li
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Linhong Long
- CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Yan‐Mei He
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Zeyu Li
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
41
|
Yang W, Kalavalapalli TY, Krieger AM, Khvorost TA, Chernyshov IY, Weber M, Uslamin EA, Pidko EA, Filonenko GA. Basic Promotors Impact Thermodynamics and Catalyst Speciation in Homogeneous Carbonyl Hydrogenation. J Am Chem Soc 2022; 144:8129-8137. [PMID: 35476423 PMCID: PMC9100671 DOI: 10.1021/jacs.2c00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Homogeneously catalyzed
reactions often make use of additives and
promotors that affect reactivity patterns and improve catalytic performance.
While the role of reaction promotors is often discussed in view of
their chemical reactivity, we demonstrate that they can be involved
in catalysis indirectly. In particular, we demonstrate that promotors
can adjust the thermodynamics of key transformations in homogeneous
hydrogenation catalysis and enable reactions that would be unfavorable
otherwise. We identified this phenomenon in a set of well-established
and new Mn pincer catalysts that suffer from persistent product inhibition
in ester hydrogenation. Although alkoxide base additives do not directly
participate in inhibitory transformations, they can affect the equilibrium
constants of these processes. Experimentally, we confirm that by varying
the base promotor concentration one can control catalyst speciation
and inflict substantial changes to the standard free energies of the
key steps in the catalytic cycle. Despite the fact that the latter
are universally assumed to be constant, we demonstrate that reaction
thermodynamics and catalyst state are subject to external control.
These results suggest that reaction promotors can be viewed as an
integral component of the reaction medium, on its own capable of improving
the catalytic performance and reshaping the seemingly rigid thermodynamic
landscape of the catalytic transformation.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Tejas Y Kalavalapalli
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Annika M Krieger
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Taras A Khvorost
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Ivan Yu Chernyshov
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Manuela Weber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, Berlin D-14195, Germany
| | - Evgeny A Uslamin
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Georgy A Filonenko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
42
|
He Y, Du C, Han J, Han J, Zhu C, Xie J. Manganese‐Catalyzed Anti‐Markovnikov
Hydroarylation of Enamides: Modular Synthesis of Arylethylamines. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yijie He
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chaoyu Du
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jian Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 China
| |
Collapse
|
43
|
Michaliszyn K, Smirnova ES, Bucci A, Martin-Diaconescu V, Lloret-Fillol J. Well‐defined Nickel P3C Complexes as Hydrogenation Catalysts of N‐Heteroarenes Under Mild Conditions. ChemCatChem 2022. [DOI: 10.1002/cctc.202200039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Alberto Bucci
- ICIQ: Institut Catala d'Investigacio Quimica - SPAIN
| | | | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ) - Ave. Paisos Catalans 16Spain 43005 Tarragona SPAIN
| |
Collapse
|
44
|
Liu C, Wang M, Xu Y, Li Y, Liu Q. Manganese‐Catalyzed Asymmetric Hydrogenation of 3H‐Indoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Yihan Xu
- Tsinghua University Department of Chemistry CHINA
| | - Yibiao Li
- Wuyi University Department of Chemistry CHILE
| | - Qiang Liu
- Tsinghua University Department of Chemistry Tsinghuayuan 1 100084 Beijing CHINA
| |
Collapse
|
45
|
Ge L, Harutyunyan SR. Manganese(i)-catalyzed access to 1,2-bisphosphine ligands. Chem Sci 2022; 13:1307-1312. [PMID: 35222914 PMCID: PMC8809422 DOI: 10.1039/d1sc06694c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Chiral bisphosphine ligands are of key importance in transition-metal-catalyzed asymmetric synthesis of optically active products. However, the transition metals typically used are scarce and expensive noble metals, while the synthetic routes to access chiral phosphine ligands are cumbersome and lengthy. To make homogeneous catalysis more sustainable, progress must be made on both fronts. Herein, we present the first catalytic asymmetric hydrophosphination of α,β-unsaturated phosphine oxides in the presence of a chiral complex of earth-abundant manganese(i). This catalytic system offers a short two-step, one-pot synthetic sequence to easily accessible and structurally tunable chiral 1,2-bisphosphines in high yields and enantiomeric excess. The resulting bidentate phosphine ligands were successfully used in asymmetric catalysis as part of earth-abundant metal based organometallic catalysts. Chiral bisphosphine ligands are of key importance in transition-metal-catalyzed asymmetric synthesis of optically active products. Mn(i)-catalyzed hydrophosphination offers a two-step, one-pot synthetic sequence to access chiral 1,2-bisphosphines.![]()
Collapse
Affiliation(s)
- Luo Ge
- Stratingh Institute for Chemistry, University of Groningen Institution Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen Institution Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
46
|
Abstract
AbstractRecent developments in manganese-catalyzed reducing transformations—hydrosilylation, hydroboration, hydrogenation, and transfer hydrogenation—are reviewed herein. Over the past half a decade (i.e., 2016 to the present), more than 115 research publications have been reported in these fields. Novel organometallic compounds and new reduction transformations have been discovered and further developed. Significant challenges that had historically acted as barriers for the use of manganese catalysts in reduction reactions are slowly being broken down. This review will hopefully assist in developing this research area, by presenting a clear and concise overview of the catalyst structures and substrate transformations published so far.1 Introduction2 Hydrosilylation3 Hydroboration4 Hydrogenation5 Transfer Hydrogenation6 Conclusion and Perspective
Collapse
Affiliation(s)
- Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion
- Ruhr University Bochum
| | - Peter Schlichter
- Max Planck Institute for Chemical Energy Conversion
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University
| |
Collapse
|
47
|
Jin MY, Zhou Y, Xiao D, You Y, Zhen Q, Tao G, Yu P, Xing X. Simultaneous Kinetic Resolution and Asymmetric Induction within a Borrowing Hydrogen Cascade Mediated by a Single Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ming Yu Jin
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Yali Zhou
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Dengmengfei Xiao
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Yipeng You
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Qianqian Zhen
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Guanyu Tao
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xiangyou Xing
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
48
|
Cabré A, Verdaguer X, Riera A. Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation. Chem Rev 2022; 122:269-339. [PMID: 34677059 PMCID: PMC9998038 DOI: 10.1021/acs.chemrev.1c00496] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chiral amines are key structural motifs present in a wide variety of natural products, drugs, and other biologically active compounds. During the past decade, significant advances have been made with respect to the enantioselective synthesis of chiral amines, many of them based on catalytic asymmetric hydrogenation (AH). The present review covers the use of AH in the synthesis of chiral amines bearing a stereogenic center either in the α, β, or γ position with respect to the nitrogen atom, reported from 2010 to 2020. Therefore, we provide an overview of the recent advances in the AH of imines, enamides, enamines, allyl amines, and N-heteroaromatic compounds.
Collapse
Affiliation(s)
- Albert Cabré
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Xavier Verdaguer
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Antoni Riera
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| |
Collapse
|
49
|
Dubrawski ZS, Chang CY, Carr CR, Gelfand BS, Piers WE. Electrocatalyst decomposition pathways: torsional strain in a second sphere proton relay shuts off CO 2RR in a Re(2,2′-bipyridyl)(CO) 3X type electrocatalyst. Dalton Trans 2022; 51:17381-17390. [DOI: 10.1039/d2dt02876j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Group 7 tris(carbonyl) bipyridine complexes have been well explored as important CO2 reduction reaction (CO2RR) electrocatalysts and now represent an excellent platform for catalyst design.
Collapse
Affiliation(s)
- Zachary S. Dubrawski
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Chia Yun Chang
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Cody R. Carr
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Benjamin S. Gelfand
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Warren E. Piers
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
50
|
Liu C, Liu Q. Earth-Abundant Metal-Catalyzed Asymmetric Hydrogenation of Carbon-Nitrogen Unsaturated Bonds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|