1
|
Kong Q, Tan Y, Zhang H, Zhu T, Li Y, Xing Y, Wang X. Mimosa-Inspired Body Temperature-Responsive Shape Memory Polymer Networks: High Energy Densities and Multi-Recyclability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407596. [PMID: 39140246 PMCID: PMC11497007 DOI: 10.1002/advs.202407596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Indexed: 08/15/2024]
Abstract
Inspired by the Mimosa plant, this study herein develops a unique dynamic shape memory polymer (SMP) network capable of transitioning from hard to pliable with heat, featuring reversible actuation, self-healing, recyclability, and degradability. This material is adept at simulating the functionalities of artificial muscles for a variety of tasks, with a remarkable specific energy density of 1.8 J g-1-≈46 times higher than that of human skeletal muscle. As an intelligent manipulator, it demonstrates remarkable proficiency in identifying and handling items at high temperatures. Its suitable rate of shape recovery around human body temperature indicates its promising utility as an implant material for addressing acute obstructions. The dynamic covalent bonding within the network structure not only provides excellent resistance to solvents but also bestows remarkable abilities for self-healing, reprocessing, and degradation. These attributes significantly boost its practicality and environmental sustainability. Anticipated to promote advancements in the sectors of biomedical devices, soft robotics, and smart actuators, this SMP network represents a forward leap in simulating artificial muscles, marking a stride toward the future of adaptive and sustainable technology.
Collapse
Affiliation(s)
- Qingming Kong
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Yu Tan
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Haiyang Zhang
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Tengyang Zhu
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Yitan Li
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Yongzheng Xing
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Xu Wang
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| |
Collapse
|
2
|
Veloso-Fernández A, Laza JM, Ruiz-Rubio L, Martín A, Benito-Vicente A, Martín C, Vilas-Vilela JL. Advancing Food Packaging: Exploring Cyto-Toxicity of Shape Memory Polyurethanes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4770. [PMID: 39410342 PMCID: PMC11478179 DOI: 10.3390/ma17194770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
Cytotoxicity is a critical parameter for materials intended for biological applications, such as food packaging. Shape-memory polyurethanes (SMPUs) have garnered significant interest due to their versatile properties and adaptability in synthesis. However, their suitability for biological applications is limited by the use of aromatic isocyanates, such as methylene diphenyl 4,4'-diisocyanate (MDI) and toluene diisocyanate (TDI), which are commonly used in SMPU synthesis but can generate carcinogenic compounds upon degradation. In this study, thermo-responsive shape-memory polyurethanes (SMPUs) were synthesized using poly(tetramethylene ether) glycol (PTMG) and castor oil (CO) as a chain extender with four different isocyanates-aromatic (MDI and TDI), aliphatic (hexamethylene diisocyanate [HDI] and isophorone diisocyanate [IPDI])-to evaluate their impact on polyurethane cytotoxicity. Cytotoxicity assays were conducted on the synthesized SMPU samples before and after exposure to light-induced degradation. The results showed that prior to degradation, all samples exhibited cell proliferation rates above 90%. However, after degradation, the SMPUs containing aromatic isocyanates demonstrated a drastic reduction in cell proliferation to values below 10%, whereas the samples with aliphatic isocyanates maintained cell proliferation above 70%. Subsequently, the influence of polyol chain length was assessed using PTMG, with molecular weights of 1000, 650, and 250 g·mol-1. The results indicated that the SMPUs with longer chain lengths exhibited higher cell proliferation rates both before and after degradation. The thermal and mechanical properties of the SMPUs were further characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermomechanical analysis (TMA), providing comprehensive insights into the behavior of these materials.
Collapse
Affiliation(s)
- Antonio Veloso-Fernández
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, CSIC, 48940 Leioa, Spain; (A.V.-F.); (L.R.-R.); (A.M.); (J.L.V.-V.)
| | - José Manuel Laza
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, CSIC, 48940 Leioa, Spain; (A.V.-F.); (L.R.-R.); (A.M.); (J.L.V.-V.)
| | - Leire Ruiz-Rubio
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, CSIC, 48940 Leioa, Spain; (A.V.-F.); (L.R.-R.); (A.M.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Ane Martín
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, CSIC, 48940 Leioa, Spain; (A.V.-F.); (L.R.-R.); (A.M.); (J.L.V.-V.)
| | - Asier Benito-Vicente
- Instituto Biofisika (UPV/EHU, CSIC), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, CSIC, 48940 Leioa, Spain; (A.B.-V.); (C.M.)
| | - Cesar Martín
- Instituto Biofisika (UPV/EHU, CSIC), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, CSIC, 48940 Leioa, Spain; (A.B.-V.); (C.M.)
| | - José Luis Vilas-Vilela
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, CSIC, 48940 Leioa, Spain; (A.V.-F.); (L.R.-R.); (A.M.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
3
|
Zhao W, Liu J, Wang S, Dai J, Liu X. Bio-Based Thermosetting Resins: From Molecular Engineering to Intrinsically Multifunctional Customization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311242. [PMID: 38504494 DOI: 10.1002/adma.202311242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Recent years have witnessed a growing interest in bio-based thermosetting resins in terms of environmental concerns and the desire for sustainable industrial practices. Beyond sustainability, utilizing the structural diversity of renewable feedstock to craft bio-based thermosets with customized functionalities is very worthy of expectation. There exist many bio-based compounds with inherently unique chemical structures and functions, some of which are even difficult to synthesize artificially. Over the past decade, great efforts are devoted to discovering/designing functional properties of bio-based thermosets, and notable progress have been made in antibacterial, antifouling, flame retardancy, serving as carbon precursors, and stimuli responsiveness, among others, largely expanding their application potential and future prospects. In this review, recent advances in the field of functional bio-based thermosets are presented, with a particular focus on molecular structures and design strategies for discovering functional properties. Examples are highlighted wherein functionalities are facilitated by the inherent structures of bio-based feedstock. Perspectives on issues regarding further advances in this field are proposed at the end.
Collapse
Affiliation(s)
- Weiwei Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Jingkai Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Shuaipeng Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Jinyue Dai
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Xiaoqing Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| |
Collapse
|
4
|
Bahatibieke A, Wei S, Feng H, Zhao J, Ma M, Li J, Xie Y, Qiao K, Wang Y, Peng J, Meng H, Zheng Y. Injectable and in situ foaming shape-adaptive porous Bio-based polyurethane scaffold used for cartilage regeneration. Bioact Mater 2024; 39:1-13. [PMID: 38783924 PMCID: PMC11108820 DOI: 10.1016/j.bioactmat.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 05/25/2024] Open
Abstract
Irregular articular cartilage injury is a common type of joint trauma, often resulting from intense impacts and other factors that lead to irregularly shaped wounds, the limited regenerative capacity of cartilage and the mismatched shape of the scaffods have contributed to unsatisfactory therapeutic outcomes. While injectable materials are a traditional solution to adapt to irregular cartilage defects, they have limitations, and injectable materials often lack the porous microstructures favorable for the rapid proliferation of cartilage cells. In this study, an injectable porous polyurethane scaffold named PU-BDO-Gelatin-Foam (PUBGF) was prepared. After injection into cartilage defects, PUBGF forms in situ at the site of the defect and exhibits a dynamic microstructure during the initial two weeks. This dynamic microstructure endows the scaffold with the ability to retain substances within its interior, thereby enhancing its capacity to promote chondrogenesis. Furthermore, the chondral repair efficacy of PUBGF was validated by directly injecting it into rat articular cartilage injury sites. The injectable PUBGF scaffold demonstrates a superior potential for promoting the repair of cartilage defects when compared to traditional porous polyurethane scaffolds. The substance retention ability of this injectable porous scaffold makes it a promising option for clinical applications.
Collapse
Affiliation(s)
- Abudureheman Bahatibieke
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuai Wei
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Han Feng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
- Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Jianming Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mengjiao Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Junfei Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kun Qiao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanseng Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiang Peng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Haoye Meng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
5
|
Miravalle E, Viada G, Bonomo M, Barolo C, Bracco P, Zanetti M. Recycling of Commercially Available Biobased Thermoset Polyurethane Using Covalent Adaptable Network Mechanisms. Polymers (Basel) 2024; 16:2217. [PMID: 39125243 PMCID: PMC11314662 DOI: 10.3390/polym16152217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Until recently, recycling thermoset polyurethanes (PUs) was limited to degrading methods. The development of covalent adaptable networks (CANs), to which PUs can be assigned, has opened novel possibilities for actual recycling. Most efforts in this area have been directed toward inventing new materials that can benefit from CAN theory; presently, little or nothing has been applied to industrially producible materials. In this study, both an industrially available polyol (Sovermol780®) and isocyanate (Tolonate X FLO 100®) with percentages of bioderived components were employed, resulting in a potentially scalable and industrially producible material. The resultant network could be reworked up to three times, maintaining the crosslinked structure without significantly changing the thermal properties. Improvements in mechanical parameters were observed when comparing the pristine material to the material exposed to three rework processes, with gains of roughly 50% in elongation at break and 20% in tensile strength despite a 25% decrease in Young's modulus and crosslink density. Thus, it was demonstrated that theory may be profitably applied even to materials that are not designed including additional bonds but instead rely just on the dynamic urethane bond that is naturally present in the network.
Collapse
Affiliation(s)
- Edoardo Miravalle
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (E.M.); (M.B.)
| | - Gabriele Viada
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (E.M.); (M.B.)
| | - Matteo Bonomo
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (E.M.); (M.B.)
- Instm Reference Centre, University of Turin, Via G. Quarello 15A, 10135 Turin, Italy
- SUSPLAS@UniTo, Sustainable Plastic Scientific Hub, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Claudia Barolo
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (E.M.); (M.B.)
- Instm Reference Centre, University of Turin, Via G. Quarello 15A, 10135 Turin, Italy
- SUSPLAS@UniTo, Sustainable Plastic Scientific Hub, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Pierangiola Bracco
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (E.M.); (M.B.)
- SUSPLAS@UniTo, Sustainable Plastic Scientific Hub, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Marco Zanetti
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (E.M.); (M.B.)
- Instm Reference Centre, University of Turin, Via G. Quarello 15A, 10135 Turin, Italy
- SUSPLAS@UniTo, Sustainable Plastic Scientific Hub, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| |
Collapse
|
6
|
Wang H, Huang Q, Liu C, Hong W, Li J, Ma J, Yu P, Wang C, Yan X. Development of Fluorenyl-Based Copolyimines with Adjustable Mechanical Properties, Recyclability and Friction Resistance. Chemistry 2024; 30:e202401481. [PMID: 38831477 DOI: 10.1002/chem.202401481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Dynamic polyimines are a class of fascinating dynamic polymers with recyclability and reparability owing to their reversible Schiff-base reactions. However, balancing the dynamic properties and mechanical strength of dynamic polyimines presents a major challenge due to the dissociative and associative nature of the imine bonds. Herein, we introduced bulky fluorene groups and polyether amine into the skeleton of polyimine networks to achieve a tradeoff in comprehensive properties. The resulting dynamic polyimines with fluorene groups (Cardo-DPIs) were successfully synthesized by combining the rigid diamine 9,9-bis(4-aminophenyl)fluorene and the flexible polyether amine, demonstrating a high tensile strength of 64.7 MPa. Additionally, Cardo-DPIs films with more content of rigid fluorene groups exhibited higher water resistance, glass transition temperature and wear-resisting ability. Moreover, the Cardo-DPIs films not only efficiently underwent thermal reshaping, but also exhibited excellent self-healing capabilities and chemical degradation in acidic solutions. Furthermore, the resulting films can achieve fully closed-loop recovery by free amine solution for 2 h at room temperature. This study broadens the scope of dynamic polyimine materials and promotes the balanced development of their functional and mechanical properties.
Collapse
Affiliation(s)
- Haiyue Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Qirui Huang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Cai Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Wei Hong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Jianing Li
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Juanjuan Ma
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Ping Yu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Chunyu Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
7
|
Lin L, Tu Y, Li Z, Wu H, Mao H, Wang C. Synthesis and application of multifunctional lignin-modified cationic waterborne polyurethane in textiles. Int J Biol Macromol 2024; 262:130063. [PMID: 38340925 DOI: 10.1016/j.ijbiomac.2024.130063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Waterborne polyurethanes (WPUs) often have limitations like inadequate weathering resistance and thermal stability. To overcome these shortcomings, lignin has been selected as a modifier for its abundant availability, renewability, and biocompatibility. This study synthesized a cationic WPU using isophorone diisocyanate and polyethylene glycol as raw materials. Hydrophilicity was attained through the inclusion of dihydroxyethyl dodecylamine as a chain extender, while the introduction of epoxy monomers and lignin served to modify the polyurethane. Furthermore, a dye dispersion for cotton fabric dyeing was prepared by combining the synthesized polyurethane, chitosan, and dyes. The cationic nature of the polyurethane played a crucial role in facilitating dye adhesion and uptake on the fabric surface, resulting in improved dyeing performance. The incorporation of epoxy side chains and chitosan cross-linking contributed to the excellent color fastness of the dyed fabrics. Moreover, the incorporation of lignin and chitosan endowed the fabric with antibacterial properties. Simultaneously, it provided effective UV protection, characterized by a high UV protection factor value for the fabrics. This lignin-modified WPU exhibits tremendous potential in applications such as textile coatings, adhesives, and color fixation agents. It effectively addresses the limitations of traditional WPUs and offers notable advantages, including a renewable source, cost-effectiveness, and biocompatibility.
Collapse
Affiliation(s)
- Ling Lin
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Yuanfang Tu
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ziyin Li
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Huanling Wu
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Haiyan Mao
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chunxia Wang
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
8
|
Gao B, Yao C, Sun X, Yaras A, Mao L. Upcycling discarded polyethylene terephthalate plastics into superior tensile strength and impact resistance materials with a facile one-pot process. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133662. [PMID: 38309171 DOI: 10.1016/j.jhazmat.2024.133662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Discarding PET plastic (dPET) causes serious environmental pollution and enormous fossil resources waste. Processing techniques have mainly focused on the conversion of dPET into monomers, with minimal reports highlighting their transformation into high-value materials. This work intends to transform dPET into a high-performance material with potential alternative value in harsh production environments. The soft and hard segments of the thermoplastic polyester elastomeric (TPEE) molecular structure are reacted and cross-linked with dPET using a facile one-pot process, and two main polymers, (C8H4O4)n and ((C16H18O4)0.76·(C4H8O)0.24)n are generated after the reaction. Through chemical reactions between TPEE and dPET, new characteristic products and chemical bond-crossing structures are formed, while the resulting product particles or multiple TPEE particles are anchored by the high viscosity of dPET, which endows the material with superior tensile strength (34.21 MPa) and impact resistance. The glass transition temperature (Tg) of the material implies that neither the molecular chain nor the chain segments can move, while only the atoms or groups composing the molecule vibrate at their equilibrium positions. The development of this new treatment method may contribute to the reduction of environmental pollution and the improvement of the high-value conversion and utilization of dPET.
Collapse
Affiliation(s)
- Bingying Gao
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Chao Yao
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xuzhang Sun
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ali Yaras
- Faculty of Engineering, Architecture and Design, Department of Metallurgy and Material Engineering, Bartın University, Bartin, Turkey
| | - Linqiang Mao
- School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
9
|
Yu N, An ZW, Zhang JL, Cheng BX, Ye K, Wang S, Wu W, Li RKY, Tan X, Zhao H. Recent Advances in Tailored Fabrication and Properties of Biobased Self-Healing Polyurethane. Biomacromolecules 2023; 24:4605-4621. [PMID: 37917193 DOI: 10.1021/acs.biomac.3c00805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
With the emergence of challenges in the environmental degradation and resource scarcity fields, the research of biobased self-healing polyurethane (BSPU) has become a prevailing trend in the technology of the polyurethane industry and a promising direction for developing biomass resources. Here, the production of BSPU from lignocellulose, vegetable oil, chitosan, collagen, and coumarin is classified, and the principles of designing polyurethane based on compelling examples using the latest methods and current research are summarized. Moreover, the impact of biomass materials on self-healing and mechanical properties, as well as the tailored performance method, are presented in detail. Finally, the applications of BSPU in biomedicine, sensors, coatings, etc. are also summarized, and the possible challenges and development prospects are explored to helpfully make progress in the development of BSPU. These findings demonstrate valuable references and practical significance for future BSPU research.
Collapse
Affiliation(s)
- Ning Yu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Ze-Wei An
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jia-Le Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Bing-Xu Cheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Kang Ye
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Wei Wu
- Jihua Laboratory, Foshan, 528200, China
| | - Robert K Y Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xuecai Tan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530006, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530006, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Science, Hubei University, Wuhan, 430062, China
| |
Collapse
|
10
|
Lv J, Thangavel G, Xin Y, Gao D, Poh WC, Chen S, Lee PS. Printed sustainable elastomeric conductor for soft electronics. Nat Commun 2023; 14:7132. [PMID: 37932285 PMCID: PMC10628110 DOI: 10.1038/s41467-023-42838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
The widespread adoption of renewable and sustainable elastomers in stretchable electronics has been impeded by challenges in their fabrication and lacklustre performance. Here, we realize a printed sustainable stretchable conductor with superior electrical performance by synthesizing sustainable and recyclable vegetable oil polyurethane (VegPU) elastomeric binder and developing a solution sintering method for their composites with Ag flakes. The binder impedes the propagation of cracks through its porous network, while the solution sintering reaction reduces the resistance increment upon stretching, resulting in high stretchability (350%), superior conductivity (12833 S cm-1), and low hysteresis (0.333) after 100% cyclic stretching. The sustainable conductor was used to print durable and stretchable impedance sensors for non-obstructive detection of fruit maturity in food sensing technology. The combination of sustainable materials and strategies for realizing high-performance stretchable conductors provides a roadmap for the development of sustainable stretchable electronics.
Collapse
Affiliation(s)
- Jian Lv
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore
- Frontier Institute of Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Gurunathan Thangavel
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
- Advanced Materials Research Center, Technology Innovation Institute (TII), Masdar City, Abu Dhabi, P.O. Box 9639, United Arab Emirates
| | - Yangyang Xin
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore
| | - Dace Gao
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
| | - Wei Church Poh
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
| | - Shaohua Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore.
| |
Collapse
|
11
|
Yu X, Yang H, Ye Z, Chen K, Yuan T, Dong Y, Xiao R, Wang Z. Ultra-Tough Waterborne Polyurethane-Based Graft-Copolymerized Piezoresistive Composite Designed for Rehabilitation Training Monitoring Pressure Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303095. [PMID: 37340575 DOI: 10.1002/smll.202303095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Indexed: 06/22/2023]
Abstract
Effective training is crucial for patients who need rehabilitation for achieving optimal recovery and reducing complications. Herein, a wireless rehabilitation training monitoring band with a highly sensitive pressure sensor is proposed and designed. It utilizes polyaniline@waterborne polyurethane (PANI@WPU) as a piezoresistive composite material, which is prepared via the in situ grafting polymerization of PANI on the WPU surface. WPU is designed and synthesized with tunable glass transition temperatures ranging from -60 to 0 °C. Dipentaerythritol (Di-PE) and ureidopyrimidinone (UPy) groups are introduced, endowing the material with good tensile strength (14.2 MPa), toughness (62 MJ-1 m-3 ), and great elasticity (low permanent deformation: 2%). Di-PE and UPy enhance the mechanical properties of WPU by increasing the cross-linking density and crystallinity. Combining the toughness of WPU and the high-density microstructure derived by hot embossing technology, the pressure sensor exhibits high sensitivity (168.1 kPa-1 ), fast response time (32 ms), and excellent stability (10 000 cycles with 3.5% decay). In addition, the rehabilitation training monitoring band is equipped with a wireless Bluetooth module, which can be easily applied to monitor the rehabilitation training effect of patients using an applet. Therefore, this work has the potential to significantly broaden the application of WPU-based pressure sensors for rehabilitation monitoring.
Collapse
Affiliation(s)
- Xu Yu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Hua Yang
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Zhihao Ye
- School of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Kaifeng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Ting Yuan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yabo Dong
- School of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Rui Xiao
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Zongrong Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Soft Machines and SmartDevices of Zhejiang Province, School of Aeronautics and Astronautics, Huanjiang Laboratory, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| |
Collapse
|
12
|
Liu J, Miao P, Leng X, Che J, Wei Z, Li Y. Chemically Recyclable Biobased Non-Isocyanate Polyurethane Networks from CO 2 -Derived Six-membered Cyclic Carbonates. Macromol Rapid Commun 2023; 44:e2300263. [PMID: 37435986 DOI: 10.1002/marc.202300263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Non-isocyanate polyurethanes (NIPUs) are widely studied as sustainability potential, because they can be prepared without using toxic isocyanates in the synthesis process. The aminolysis of cyclic carbonate to form NIPUs is a promising route. In this work, a series of NIPUs is prepared from renewable bis(6-membered cyclic carbonates) (iEbcc) and amines. The resulting NIPUs possess excellent mechanical properties and thermal stability. The NIPUs can be remolded via transcarbamoylation reactions, and iEbcc-TAEA-10 (the molar ratio of tris(2-aminoethyl)amine in amines is 10%) still get a recovery ratio of 90% in tensile stress after three cycles of remolding. In addition, the obtained materials can be chemically degraded into bi(1,3-diol) precursors with high purity (>99%) and yield (>90%) through alcoholysis. Meanwhile, the degraded products can be used to regenerate NIPUs with similar structures and properties as the original samples. The synthetic strategy, isocyanate-free and employing isoeugenol and carbon dioxide (CO2 ) as building blocks, makes this approach an attractive pathway to NIPU networks taking a step toward a circular economy.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Pengcheng Miao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xuefei Leng
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jian Che
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Dalian Xinyulong Marine Biological Seed Technology Co., Ltd., Dalian, 116222, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
13
|
Luo K, Wang L, Wang MX, Du R, Tang L, Yang KK, Wang YZ. 4D Printing of Biocompatible Scaffolds via In Situ Photo-crosslinking from Shape Memory Copolyesters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44373-44383. [PMID: 37669475 DOI: 10.1021/acsami.3c10747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The complexity of surgical treatments for large-area soft tissue injuries makes placing large implants into injury sites challenging. Aliphatic polyesters are often used for scaffold preparation in tissue engineering owing to their excellent biodegradability and biocompatibility. Scaffolds with shape-memory effect (SME) can also avoid large-volume trauma during the implantation. However, the complexity and diversity of diseases require more adaptable and precise processing methods. Four-dimensional (4D) printing, a booming smart material additive manufacturing technology, provides a new opportunity for developing shape memory scaffolds. With the aim of personalized or patient-adaptable soft tissues such as blood vessels, we developed a feasible strategy for fabricating scaffolds with fine architectures using 4D printing crosslinkable shape memory linear copolyesters using fused deposition modeling (FDM). To overcome the weak bonding strength of each printed layer during FDM, a catalyst-free photo-crosslinkable functional group derived from biocompatible cinnamic acid was embedded into the linear copolyesters as in situ crosslinking points during FDM printing. Under ultraviolet-assisted irradiation, the resulting 4D scaffold models demonstrated excellent SME, desirable mechanical performance, and good stability in a water environment owing to the chemical bonding between each layer. Moreover, the excellent biocompatibility of the scaffold was evaluated in vitro and in vivo. The developed composite scaffolds could be used for minimally invasive soft tissue repair.
Collapse
Affiliation(s)
- Kun Luo
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Li Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
- Department of Biomedical Engineering, School of Big Health and Intelligent Engineering, Chengdu 610500, China
| | - Man-Xi Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Rui Du
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Li Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ke-Ke Yang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
14
|
Miravalle E, Bracco P, Brunella V, Barolo C, Zanetti M. Improving Sustainability through Covalent Adaptable Networks in the Recycling of Polyurethane Plastics. Polymers (Basel) 2023; 15:3780. [PMID: 37765634 PMCID: PMC10537520 DOI: 10.3390/polym15183780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The global plastic waste problem has created an urgent need for the development of more sustainable materials and recycling processes. Polyurethane (PU) plastics, which represent 5.5% of globally produced plastics, are particularly challenging to recycle owing to their crosslinked structure. Covalent adaptable networks (CANs) based on dynamic covalent bonds have emerged as a promising solution for recycling PU waste. CANs enable the production of thermoset polymers that can be recycled using methods that are traditionally reserved for thermoplastic polymers. Reprocessing using hot-pressing techniques, in particular, proved to be more suited for the class of polyurethanes, allowing for the efficient recycling of PU materials. This Review paper explores the potential of CANs for improving the sustainability of PU recycling processes by examining different types of PU-CANs, bond types, and fillers that can be used to optimise the recycling efficiency. The paper concludes that further research is needed to develop more cost-effective and industrial-friendly techniques for recycling PU-CANs, as they can significantly contribute to sustainable development by creating recyclable thermoset polymers.
Collapse
Affiliation(s)
- Edoardo Miravalle
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy; (E.M.); (P.B.); (V.B.); (C.B.)
| | - Pierangiola Bracco
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy; (E.M.); (P.B.); (V.B.); (C.B.)
- INSTM Reference Centre, University of Turin, Via G. Quarello 15A, 10135 Turin, Italy
| | - Valentina Brunella
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy; (E.M.); (P.B.); (V.B.); (C.B.)
- INSTM Reference Centre, University of Turin, Via G. Quarello 15A, 10135 Turin, Italy
| | - Claudia Barolo
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy; (E.M.); (P.B.); (V.B.); (C.B.)
- INSTM Reference Centre, University of Turin, Via G. Quarello 15A, 10135 Turin, Italy
- ICxT Interdepartmental Centre, University of Turin, Via Lungo Dora Siena 100, 10153 Turin, Italy
| | - Marco Zanetti
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy; (E.M.); (P.B.); (V.B.); (C.B.)
- INSTM Reference Centre, University of Turin, Via G. Quarello 15A, 10135 Turin, Italy
- ICxT Interdepartmental Centre, University of Turin, Via Lungo Dora Siena 100, 10153 Turin, Italy
| |
Collapse
|
15
|
Zhang Z, Jiang X, Ma Y, Lu X, Jiang Z. High-Performance Branched Polymer Elastomer Based on a Topological Network Structure and Dynamic Bonding. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43048-43059. [PMID: 37647234 DOI: 10.1021/acsami.3c11027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
High performance has always been the research focus of elastomers. However, there are inherent conflicts among properties of elastomers, such as strength and toughness, strength and damping performance, strength and self-healing ability, etc. Herein, first, we synthesized a unique structure of the dangling chain containing proton donors and receptors. Then, we design and fabricate a kind of high-performance elastomer with a gradient distribution of a dangling chain and a dynamic bond structure. The dangling chains of different lengths intertwine with each other and self-assemble to form a "dense accumulation" structure driven by hydrogen bonds, and the elastomer exhibits special micro/nano scale aggregated states and microphase separation. The "dense accumulation" structure plays a vital role in the increase of mechanical properties. Meanwhile, under the joint action of a dangling chain and a dynamic bond, the damping performance and self-healing performance of the elastomer are greatly enhanced. High strength (27.5 MPa), toughness (121.9 MJ·m-3), 94.8% healing efficiency and outstanding damping performance (tan δ ≥ 0.4, high damping temperature range up to 144 °C) are simultaneously achieved beyond the current state-of-the-art. This topoarchitected polymer with a gradient distribution of dangling chains successfully solves the defects of conventional branched polymers in deteriorating their mechanical properties. This material design provides a new strategy for the development of high-performance structural and functional integrated elastomers.
Collapse
Affiliation(s)
- Zhenpeng Zhang
- South China University of Technology, Guangzhou 501641, China
| | - Xiaolin Jiang
- South China University of Technology, Guangzhou 501641, China
| | - Yuanhao Ma
- South China University of Technology, Guangzhou 501641, China
| | - Xun Lu
- South China University of Technology, Guangzhou 501641, China
| | - Zhijie Jiang
- South China University of Technology, Guangzhou 501641, China
| |
Collapse
|
16
|
Xiong H, Yue T, Wu Q, Zhang L, Xie Z, Liu J, Zhang L, Wu J. Self-healing bottlebrush polymer networks enabled via a side-chain interlocking design. MATERIALS HORIZONS 2023; 10:2128-2138. [PMID: 36946355 DOI: 10.1039/d3mh00274h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exploring novel healing mechanisms is a constant impetus for the development of self-healing materials. Herein, we find that side-chain interlocking of bottlebrush polymers can form a dynamic network and thereby serve as a driving force for the self-healing process of the materials. Molecular dynamics simulation indicates that the interlocking is formed by the interpenetration between the long side chains of adjacent molecules and stabilized by van der Waals interactions and molecular entanglements of side chains. The interlocking can be tailored by changing the length and density of the side chains through atom transfer radical polymerization. As a result, the optimized bottlebrush polymer shows a healing efficiency of up to 100%. Unlike chemical interactions, side-chain interlocking eliminates the introduction of specific chemical groups. Therefore, bottlebrush polymers can even self-heal under harsh aqueous conditions, including acid and alkali solutions. Moreover, the highly dynamic side-chain interlocking enables bottlebrush polymers to efficiently dissipate vibration energy, and thus they can be used as damping materials. Collectively, side-chain interlocking expands the scope of physical interactions in self-healing materials and hews out a versatile way for polymers to accomplish self-healing capability in various environments.
Collapse
Affiliation(s)
- Hui Xiong
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University Chengdu 610065, P. R. China.
| | - Tongkui Yue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology Beijing 100029, P. R. China.
| | - Qi Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University Chengdu 610065, P. R. China.
| | - Linjun Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University Chengdu 610065, P. R. China.
| | - Zhengtian Xie
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University Chengdu 610065, P. R. China.
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology Beijing 100029, P. R. China.
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology Beijing 100029, P. R. China.
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University Chengdu 610065, P. R. China.
| |
Collapse
|
17
|
Xue R, Zhao H, An ZW, Wu W, Jiang Y, Li P, Huang CX, Shi D, Li RKY, Hu GH, Wang SF. Self-Healable, Solvent Response Cellulose Nanocrystal/Waterborne Polyurethane Nanocomposites with Encryption Capability. ACS NANO 2023; 17:5653-5662. [PMID: 36897210 DOI: 10.1021/acsnano.2c11809] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cellulose nanocrystal (CNC)-based chiral nematic structure is widely used in stimulus response and sensing. A popular area of research is enhancing the mechanical characteristics and environmental adaptability of chiral nematic materials. In this paper, a flexible photonic film with self-healing ability (FPFS) was prepared by combining waterborne polyurethane containing dynamic covalent disulfide bonds (SSWPU) with CNC. The results found that the FPFS showed excellent toughness under the action of stretching, bending, twisting, and folding. The FPFS exhibited an amazing self-healing efficiency, which can be self-healed within 2 h at room temperature. Moreover, the FPFS could respond immediately and produce reversible color change when it was soaked in typical solvents. In addition, when ethanol was used as ink to paint on the FPFS, a visible pattern only under polarized light was formed. This study offers fresh perspectives in the areas of self-healing, biological anticounterfeiting, solvent response, and flexible photonic materials.
Collapse
Affiliation(s)
- Rui Xue
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, Guangxi 530004, China
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430062, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China
| | - Ze-Wei An
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wei Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Yan Jiang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peng Li
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Chong-Xing Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Dean Shi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China
| | - Robert K Y Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Guo-Hua Hu
- Laboratory of Reactions and Process Engineering, CNRS-University of Lorraine, Nancy 54001, France
| | - Shuang-Fei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
18
|
Song H, Liu C, Gui D, Sha Y, Song Q, Jia P, Gao J, Lin Y. Sustainable and mechanically robust epoxy resins derived from chitosan and tung oil with proton conductivity. J Appl Polym Sci 2023. [DOI: 10.1002/app.53857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Hong Song
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
| | - Chaofan Liu
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
| | - Daxiang Gui
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
| | - Ye Sha
- Department of Chemistry and Material Science, College of Science Nanjing Forestry University Nanjing People's Republic of China
| | - Qingping Song
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
| | - Puyou Jia
- Jiangsu Key Laboratory for Biomass Energy and Material, Institute of Chemical Industry of Forest Products Chinese Academy of Forestry (CAF) Nanjing People's Republic of China
| | - Jiangang Gao
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
| | - Ying Lin
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
- Jiangsu Key Laboratory for Biomass Energy and Material, Institute of Chemical Industry of Forest Products Chinese Academy of Forestry (CAF) Nanjing People's Republic of China
| |
Collapse
|
19
|
Xue Y, Lin J, Wan T, Luo Y, Ma Z, Zhou Y, Tuten BT, Zhang M, Tao X, Song P. Stretchable, Ultratough, and Intrinsically Self-Extinguishing Elastomers with Desirable Recyclability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207268. [PMID: 36683185 PMCID: PMC10037964 DOI: 10.1002/advs.202207268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Advanced elastomers are increasingly used in emerging areas, for example, flexible electronics and devices, and these real-world applications often require elastomers to be stretchable, tough and fire safe. However, to date there are few successes in achieving such a performance portfolio due to their different governing mechanisms. Herein, a stretchable, supertough, and self-extinguishing polyurethane elastomers by introducing dynamic π-π stacking motifs and phosphorus-containing moieties are reported. The resultant elastomer shows a large break strain of ≈2260% and a record-high toughness (ca. 460 MJ m-3 ), which arises from its dynamic microphase-separated microstructure resulting in increased entropic elasticity, and strain-hardening at large strains. The elastomer also exhibits a self-extinguishing ability thanks to the presence of both phosphorus-containing units and π-π stacking interactions. Its promising applications as a reliable yet recyclable substrate for strain sensors are demonstrated. The work will help to expedite next-generation sustainable advanced elastomers for flexible electronics and devices applications.
Collapse
Affiliation(s)
- Yijiao Xue
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Jinyou Lin
- Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Tao Wan
- School of Materials Science and EngineeringThe University of New South WalesSydneyNSW2502Australia
| | - Yanlong Luo
- College of ScienceNanjing Forestry UniversityNanjing210037China
| | - Zhewen Ma
- Department of Polymer MaterialsSchool of Materials Science and EngineeringTongji UniversityShanghai201804China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Bryan T. Tuten
- Centre for Materials ScienceSchool of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Meng Zhang
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Xinyong Tao
- College of Materials Science and EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Pingan Song
- Centre for Future MaterialsUnviersity of Southern QueenslandSpringfield4300Australia
- School of Agriculture and Environmental ScienceUnviersity of Southern QueenslandSpringfield4300Australia
| |
Collapse
|
20
|
Deng H, Chen Q, Xie F, Zhao C, Pan J, Cheng Q, Zhang C. Castor oil-based waterborne polyurethane/tunicate cellulose nanocrystals nanocomposites for wearable strain sensors. Carbohydr Polym 2023; 302:120313. [PMID: 36604095 DOI: 10.1016/j.carbpol.2022.120313] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
In this study, tunicate cellulose nanocrystals (TCNCs) were introduced into castor oil-based waterborne polyurethane (WPU) to prepare bio-based nanocomposites through a simple solution blending method. The effect of TCNCs content on the particle size and stability of the composite dispersions, as well as the thermophysical and mechanical properties of the composite films were studied and discussed. The unique structure and properties of TCNCs, such as high crystallinity, large aspect ratio and high modulus, not only greatly improved the storage stability of WPU, but also showed significant reinforcing/toughening effects and excellent compatibility to WPU. By drip-coating silver nanowires (AgNWs) on the surface of the composite films, the flexible strain sensors were fabricated, which showed excellent sensitivity in monitoring human movement.
Collapse
Affiliation(s)
- Henghui Deng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou 510642, China
| | - Fei Xie
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Caimei Zhao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jun Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qiaoyun Cheng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Research Center for Sugarcane Industry, Engineering Technology of Light Industry, Guangzhou 510316, China.
| | - Chaoqun Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
21
|
Yin X, Liu H, Lin R, Liu X, Huang Z, Du J, Gu Y, Lin X, Lin W, Yi G. Synthesis and properties of semicrystalline non‐isocyanate polyurethane with tunable triple shape memory properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xingshan Yin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Huameng Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Ruijun Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Xiaochun Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Zhiyi Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Jiahao Du
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Yuxin Gu
- Kinte Material Technology Co., Ltd. Guangdong China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory) Jieyang China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory) Jieyang China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory) Jieyang China
| |
Collapse
|
22
|
Singh P, Rana A, Karak N, Kumar I, Rana S, Kumar P. Sustainable smart anti-corrosion coating materials derived from vegetable oil derivatives: a review. RSC Adv 2023; 13:3910-3941. [PMID: 36756545 PMCID: PMC9890588 DOI: 10.1039/d2ra07825b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Sustainable development is a critical concern in this fast-paced technological world. Therefore, it is essential to employ renewable resources to move towards sustainable development goals (SDGs). The polyols attained from renewable resources, including lignin, chitosan, vegetable oils, cellulose, etc. and the polymers derived from them have attracted the attention of the majority of researchers, both in academia and industry. The development of bio-based polymers from vegetable oils start emerging with different properties to generate a value-added system. This review will give an impression to readers about how coatings generated from vegetable oils can find a way towards better protective properties against corrosion either by using fillers or by using molecular structure modifications in the system, thus covering a range of vegetable oil-based self-healing polymers and their application in anti-corrosion coatings.
Collapse
Affiliation(s)
- Poonam Singh
- University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres Bidholi Dehradun 248007 India
| | - Anuj Rana
- Department of Microbiology, College of Basic Sciences & Humanities, Chaudhary Charan Singh Haryana Agricultural UniversityHisar125004India
| | - Niranjan Karak
- Department of Chemical Sciences, Tezpur UniversityNapaam 784028India
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and SciencePilani 333 031India
| | - Sravendra Rana
- University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres Bidholi Dehradun 248007 India
| | - Pankaj Kumar
- University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres Bidholi Dehradun 248007 India
| |
Collapse
|
23
|
Wang L, Luo H, Gao Q, Jiang L, Wang Z, Fan H, Chen Y, Yan J, Xiang J. The missing piece: Effect of dangling chains on the synthesis and properties of bio‐based waterborne polyurethane. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Li Wang
- College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University) Ministry of Education Chengdu People's Republic of China
| | - Haihang Luo
- College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University) Ministry of Education Chengdu People's Republic of China
| | - Qiang Gao
- College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University) Ministry of Education Chengdu People's Republic of China
| | - Le Jiang
- College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University) Ministry of Education Chengdu People's Republic of China
| | - Zhenya Wang
- College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University) Ministry of Education Chengdu People's Republic of China
| | - Haojun Fan
- College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University) Ministry of Education Chengdu People's Republic of China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu People's Republic of China
| | - Yi Chen
- College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University) Ministry of Education Chengdu People's Republic of China
| | - Jun Yan
- College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University) Ministry of Education Chengdu People's Republic of China
| | - Jun Xiang
- College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University) Ministry of Education Chengdu People's Republic of China
| |
Collapse
|
24
|
Chen X, Zeng X, Luo K, Chen T, Zhang T, Yan G, Wang L. A Multiple Remotely Controlled Platform from Recyclable Polyurethane Composite Network with Shape-Memory Effect and Self-Healing Ability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205286. [PMID: 36316237 DOI: 10.1002/smll.202205286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Stimuli-responsive materials can transform from temporary to permanent shapes by specific external triggers. However, the damage might inevitably occur to them when exposed to complex environments, causing a significant reduction in their lifetime and quality. In this study, recyclable remotely controlled shape-changing polyurethane composite with self-healing compacity is developed from polyethylene glycol, polytetrahydrofuran diol using isophorone diisocyanate as crosslinker. After the incorporation of magnetite nanoparticles (MNPs), remote heating could be generated by near-infrared irradiation and alternating magnetic fields. The results show that MNPs are uniformly distributed in the smart networks, resulting in tunable temperature changes of the polymer composite material under various direct/indirect triggering in bending experiments, presenting different shape recovery rates. Moreover, to enhance the self-healing capability, a disulfide bond is introduced into the polymer networks, and the results show that highly efficient and rapid healing could be achieved from tensile tests, scanning electron microscopy as well as optical microscopy. Additionally, the synergistic effect of transesterification and the dynamic exchange of disulfide bonds brin the networks reproducibility for recycling use. The obtained material is promising to be an alternative material for soft robots and smart sensors.
Collapse
Affiliation(s)
- Xiaohu Chen
- Department of Biomedical Engineering, School of Big Health and Intelligent Engineering, Chengdu Medical College, Chengdu, Sichuan, 610500, P. R. China
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, P. R. China
| | - Xiyang Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, P. R. China
| | - Kun Luo
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, P. R. China
| | - Tao Chen
- Department of Biomedical Engineering, School of Big Health and Intelligent Engineering, Chengdu Medical College, Chengdu, Sichuan, 610500, P. R. China
| | - Ting Zhang
- Department of Biomedical Engineering, School of Big Health and Intelligent Engineering, Chengdu Medical College, Chengdu, Sichuan, 610500, P. R. China
| | - Guilong Yan
- School of New Energy and Materials, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, 610500, P. R. China
| | - Li Wang
- Department of Biomedical Engineering, School of Big Health and Intelligent Engineering, Chengdu Medical College, Chengdu, Sichuan, 610500, P. R. China
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, P. R. China
| |
Collapse
|
25
|
Synthesis, Characterization, and Soil Burial Degradation of Biobased Polyurethanes. Polymers (Basel) 2022; 14:polym14224948. [PMID: 36433074 PMCID: PMC9698155 DOI: 10.3390/polym14224948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
There is an urgent need for developing degradable polymeric systems based on bio-derived and sustainable materials. In recent years, polyurethanes derived from castor oil have emerged due to the large availability and sustainable characteristics of castor oil. However, these polymers are normally prepared through tedious and/or energy-intensive procedures or using high volatile and/or toxic reagents such as volatile isocyanates or epoxides. Furthermore, poor investigation has been carried out to design castor oil derived polyurethanes with degradable characteristics or thorough specifically sustainable synthetic procedures. Herein, castor oil-derived polyurethane with more than 90% biomass-derived carbon content and enhanced degradable features was prepared through a simple, eco-friendly (E-factor: 0.2), and scalable procedure, employing a recently developed commercially available biomass-derived (61% bio-based carbon content) low-volatile polymeric isocyanate. The novel material was compared with a castor oil derived-polyurethane prepared with a commercially available fossil-based isocyanate counterpart. The different castor oil-derived polyurethanes were investigated by means of water uptake, soil burial degradation, and disintegration tests in compost. Characterization analyses, including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM), were carried out both prior to and after degradation tests. The results suggest potential applications of the degradable castor oil-derived polyurethane in different fields, such as mulch films for agricultural purposes.
Collapse
|
26
|
Feng S, Jiang P, Zhang P, Lu M, Cui Z, Pan J, Pan L. Synthesis and evaluation of epoxidized vegetable oleic acid as a novel environmental benign plasticizer for polyvinyl chloride. J Appl Polym Sci 2022. [DOI: 10.1002/app.53331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shan Feng
- R&D Department Key Laboratory of Synthesis Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi China
| | - Pingping Jiang
- R&D Department Key Laboratory of Synthesis Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi China
| | - Pingbo Zhang
- R&D Department Key Laboratory of Synthesis Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi China
| | - Minjia Lu
- R&D Department Key Laboratory of Synthesis Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi China
| | - Zhixuan Cui
- R&D Department Key Laboratory of Synthesis Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi China
| | - Jie Pan
- R&D Department Wuxi Jiasheng High‐tech Modified Materials Co., Ltd. Wuxi China
| | - Lingen Pan
- R&D Department Wuxi Jiasheng High‐tech Modified Materials Co., Ltd. Wuxi China
| |
Collapse
|
27
|
Niu X, Wang M, Xia Y, Zhu Y, Jia X, Cao R, Wang X. Self-Healing, Thermadapt Triple-Shape Memory Ionomer Vitrimer for Shape Memory Triboelectric Nanogenerator. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50101-50111. [PMID: 36301079 DOI: 10.1021/acsami.2c13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Benefiting from the associative exchange reaction, vitrimers could be deformed to various shapes while maintaining the integrity of the network, thus being regarded as promising candidates for shape memory polymers. However, it is still a challenge to design the highly desired smart electronic devices with triple and multishape memory performances through a facile method. Here, a novel dual-cross-linked poly(acrylonitrile-co-butyl acrylate-co-hydroxyethyl methacrylate-co-zinc methacrylate) (Zn-PABHM) copolymer was developed via a facile and one-pot free radical polymerization strategy. Ionic cross-linking, the transcarbamoylation reaction, and glass transition were used to fix the permanent shape and two temporary shapes of the obtained ionomer vitrimer, respectively. The thermomechanical and stress relaxation performances of Zn-PABHM vitrimer can be customized by tuning the proportion of the chemical cross-linking and physical cross-linking knots. Furthermore, the Zn-PABHM was employed to construct a shape memory triboelectric nanogenerator, which demonstrates distinctive performance and tunable electrical outputs (37.4-96.0 V) due to variable contact areas enabled by triple shape memory effects. Consequently, the triple-shape memory ionomer vitrimer obtained via a facile and one-pot synthetic strategy has great potential in smart multifunctional electronic devices.
Collapse
Affiliation(s)
- Xiling Niu
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng475004, P. R. China
| | - Min Wang
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (MNR), Tianjin300192, P. R. China
| | - Yifan Xia
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng475004, P. R. China
| | - Yan Zhu
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng475004, P. R. China
| | - Xiaoyong Jia
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng475004, P. R. China
| | - Ruirui Cao
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng475004, P. R. China
| | - Xin Wang
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng475004, P. R. China
| |
Collapse
|
28
|
Cao Q, Li J, Qi Y, Zhang S, Wang J, Wei Z, Pang H, Jian X, Weng Z. Engineering Double Load-Sharing Network in Thermosetting: Much More than Just Toughening. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qi Cao
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Jiahui Li
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Yu Qi
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Jinyan Wang
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Hongchang Pang
- School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Zhihuan Weng
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
29
|
Xie F, Deng H, Zhang W, Shi H, Wang X, Zhang C. Scalable Production of Self-Toughening Plant Oil-Based Polyurethane Elastomers with Multistimuli-Responsive Functionalities. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50090-50100. [PMID: 36289570 DOI: 10.1021/acsami.2c12535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plant oils are becoming of high industrial importance due to the persisting challenges befalling with the utilization of fossil fuels. Thus, developing methodologies to produce multifunctional materials by taking advantage of the unique structure of plant oil is highly desired. In this study, castor oil served as a cross-linker and soft segments, by incorporating scalable rhodamine 6G derivatives, to systematically synthesize a series of smart polymers that possess self-toughening and multistimuli-responsive capabilities. The polyurethane elastomers showed 10 times and 60 times increases in tensile strength and toughness, respectively, in comparison with the unmodified polyurethane due to the existence of large amounts of hydrogen bonding, dynamic C-N spiro bonds, rigid benzene ring, and high cross-link densities. The novel polyurethane elastomers exhibited excellent reversible multichromic behaviors in response to light, pH, and mechanics. Notably, the resulting polyurethane elastomers exhibited ultrasensitive sustained photochromism with tunable white emission and rapid reversibility. This study provides a simple and effective strategy to utilize plant oil for multifunctional material preparation and paves the way to open access for application of plant oil-based products in a variety of industry applications, such as sensors, self-fitting tissue scaffolds, and switchable devices.
Collapse
Affiliation(s)
- Fei Xie
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| | - Henghui Deng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| | - Weihao Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| | - Hebo Shi
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| | - Xiaoyu Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| | - Chaoqun Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| |
Collapse
|
30
|
Wang H, Huang J, Liu W, Huang J, Yang D, Qiu X, Zhang J. Tough and Fast Light-Controlled Healable Lignin-Containing Polyurethane Elastomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haixu Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, P. R. China
| | - Jianhua Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, P. R. China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, P. R. China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, P. R. China
| | - Jinhao Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, P. R. China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, P. R. China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Waihuan Xi Road 100, Guangzhou, Guangdong 510006, P. R. China
| | - Jiaren Zhang
- Petrochina Petrochemical Research Institute, Science Base Petro China, Block A42, West of Xisha Village Bridge, Changping District, Beijing 102200, P. R. China
| |
Collapse
|
31
|
Guo X, Liu F, Lv M, Chen F, Gao F, Xiong Z, Chen X, Shen L, Lin F, Gao X. Self-Healable Covalently Adaptable Networks Based on Disulfide Exchange. Polymers (Basel) 2022; 14:3953. [PMID: 36235901 PMCID: PMC9570560 DOI: 10.3390/polym14193953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
Introducing dynamic covalent bonding into thermoset polymers has received considerable attention because they can repair or recover when damaged, thereby minimizing waste and extending the service life of thermoset polymers. However, most of the yielded dynamic covalent bonds require an extra catalyst, high temperature and high-pressure conditions to trigger their self-healing properties. Herein, we report on a catalyst-free bis-dynamic covalent polymer network containing vinylogous urethane and disulfide bonds. It is revealed that the introduction of disulfide bonds significantly reduces the activation energy (reduced from 94 kJ/mol to 51 kJ/mol) of the polymer system for exchanging and promotes the self-healing efficiency (with a high efficiency of 86.92% after being heated at 100 °C for 20 h) of the material. More importantly, the mechanical properties of the healed materials are comparable to those of the initial ones due to the special bis-dynamic covalent polymer network. These results suggest that the bis-dynamic covalent polymer network made of disulfide and inter-vinyl ester bonds opens a new strategy for developing high-performance vitrimer polymers.
Collapse
Affiliation(s)
- Xinru Guo
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Feng Liu
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Meng Lv
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Fengbiao Chen
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Fei Gao
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Zhenhua Xiong
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xuejiao Chen
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liang Shen
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Faman Lin
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xuelang Gao
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| |
Collapse
|
32
|
Recyclable, self-healing itaconic acid-based polyurethane networks with dynamic boronic ester bonds for recoverable adhesion application. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Zhang Y, Xing Q, Chen A, Li M, Qin G, Zhang J, Lei C. Turning Hierarchically Micro-/Nanostructured Polypropylene Surfaces Robustly Superhydrophobic via Tailoring Contact Line Density of Mushroom-Shaped Nanostructure. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Waterborne Polyurethane/Acrylic Adhesive Blends from Physaria fendleri Oil for Food Packaging Applications. SUSTAINABILITY 2022. [DOI: 10.3390/su14148657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Environmental concerns and the diminishing acceptability of using petrochemical polymers require innovative synthetic approaches to materials for essential polymeric technologies such as adhesives. Biobased plant oils have been suggested as replacements for petrochemical monomers in polyurethane formulations. A variety of seed oil extracts from plants contain naturally occurring functional groups such as hydroxyl and glycidyl ether, which can be utilized in polyurethane synthesis. Most studies of bioderived polyurethane adhesives occur in solventborne systems and with chemically modified oils. However, rising concerns and manufacturing limitations of volatile organic compounds in solventborne systems warrant investigation into more sustainable and alternatives that are easier to handle. In this work, we synthesized waterborne polyurethanes comprised of oil derived from Physaria fendleri seed (naturally occurring hydroxyl functionality), hexamethylene diisocyanate, toluene diisocyanate, and dimethyl propionic acid. Acrylate copolymers were synthesized via emulsion polymerization comprised of different butyl and methylmethacrylate monomer ratios. These polymers were formulated into waterborne polyurethane/acrylic adhesive blends. The resulting formulations possess a commercially comparable peel strength of >6 N and are suggested for use in resealable food packaging applications. This study demonstrates the utility of oil derived from Physaria fendleri seeds in waterborne adhesive applications, adding value with bioderived materials and increasing sustainability of polyurethane adhesives.
Collapse
|
35
|
Parsimehr H, Ehsani A. Stimuli-Responsive Electrochemical Energy Storage Devices. CHEM REC 2022; 22:e202200075. [PMID: 35832003 DOI: 10.1002/tcr.202200075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/24/2022] [Indexed: 11/11/2022]
Abstract
Electrochemical energy storage (EES) devices have been swiftly developed in recent years. Stimuli-responsive EES devices that respond to different external stimuli are considered the most advanced EES devices. The stimuli-responsive EES devices enhanced the performance and applications of the EES devices. The capability of the EES devices to respond to the various external stimuli due to produced advanced EES devices that distinguished the best performance and interactions in different situations. The stimuli-responsive EES devices have responsive behavior to different external stimuli including chemical compounds, electricity, photons, mechanical tensions, and temperature. All of these advanced responsiveness behaviors have originated from the functionality and specific structure of the EES devices. The multi-responsive EES devices have been recognized as the next generation of stimuli-responsive EES devices. There are two main steps in developing stimuli-responsive EES devices in the future. The first step is the combination of the economical, environmental, electrochemical, and multi-responsiveness priorities in an EES device. The second step is obtaining some advanced properties such as biocompatibility, flexibility, stretchability, transparency, and wearability in novel stimuli-responsive EES devices. Future studies on stimuli-responsive EES devices will be allocated to merging these significant two steps to improve the performance of the stimuli-responsive EES devices to challenge complicated situations.
Collapse
Affiliation(s)
- Hamidreza Parsimehr
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| |
Collapse
|
36
|
Development of lignin-based waterborne polyurethane materials for flame retardant leather application. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Zhang S, Xu XQ, Liao S, Pan Q, Ma X, Wang Y. Controllable Degradation of Polyurethane Thermosets with Silaketal Linkages in Response to Weak Acid. ACS Macro Lett 2022; 11:868-874. [PMID: 35762900 DOI: 10.1021/acsmacrolett.2c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyurethane (PU) thermosets offer great favors to our daily life on account of their excellent mechanical, physical, and chemical properties as well as appreciable biocompatibility. Nevertheless, PU waste is increasingly causing environmental and health-related problems as it is mostly resistant to chemical degradation under mild conditions. Herein, we report a kind of PU thermoset with silaketal leakages in its main chains to enable polymer degradation in response to weak acids, even in edible vinegar. The degradation rate is significantly influenced by the alkyl substituents on the silicon atoms, with entire degradation in hours, days, weeks, or months. Besides controllable degradation, investigations are also provided into the recycling of PU thermosets by means of thermal reprocessing based on carbamate bond exchange or repolymerization of degradation residuals. Because of the controllable degradation and easy recycling, this particular kind of PU thermoset exhibits great potential in manufacturing green polymer products that can be decomposed by nature or reutilized after disposal.
Collapse
Affiliation(s)
- Shoupeng Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Xiao-Qi Xu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Shenglong Liao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Qianhao Pan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Xinlei Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| |
Collapse
|
38
|
Wang C, Zhang J, Chen J, Shi J, Zhao Y, He M, Ding L. Bio-polyols based waterborne polyurethane coatings reinforced with chitosan-modified ZnO nanoparticles. Int J Biol Macromol 2022; 208:97-104. [PMID: 35304198 DOI: 10.1016/j.ijbiomac.2022.03.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/05/2022]
Abstract
The development of environmentally friendly waterborne polyurethane (WPU) coatings from bio-based polyols has received much attention due to increasing environmental concern and the depletion of petroleum resources. In this study, the WPU coatings derived from castor oil and soy polyol were modified by chain extender [bis(2-hydroxyethyl)amino]-methyl-phosphonic acid dimethyl ester. The effect of chitosan-modified ZnO (CS-ZnO) nanoparticles content on the properties of WPU/CS-ZnO coatings and their films were systematically investigated. The results indicated that WPU/CS-ZnO coatings displayed excellent storage stability and the particle sizes firstly decreased and then increased with CS-ZnO loading. CS-ZnO could improve tensile strength and Young's modulus but reduce the optical transparency of WPU/CS-ZnO films. CS-ZnO has a prominent reinforcement effect on the WPU/CS-ZnO matrix. With the addition of 2 wt% CS-ZnO, the tensile strength and Young's modulus of the WPU/CS-ZnO2 film reached 13.4 and 112.1 MPa, 1.68 and 2.6 times over neat WPU film, respectively. TGA results showed that the thermal stability of WPU/CS-ZnO films improved with increased CS-ZnO content. Furthermore, the WPU/CS-ZnO films' wettability decreased with the introduction of CS-ZnO. This work provides a simple and efficient strategy for preparing environmentally friendly bio-based WPU coatings, which are promising for application in the surface coating industry.
Collapse
Affiliation(s)
- Chengshuang Wang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China.
| | - Jie Zhang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China; You Pei College, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Jiahao Chen
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China; School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Jingwen Shi
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Yanteng Zhao
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China.
| | - Meng He
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Liang Ding
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| |
Collapse
|
39
|
Choi HY, Shin EJ, Lee SH. Design and evaluation of 3D-printed auxetic structures coated by CWPU/graphene as strain sensor. Sci Rep 2022; 12:7780. [PMID: 35546596 PMCID: PMC9095700 DOI: 10.1038/s41598-022-11540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
A strain sensor characterized by elasticity has recently been studied in various ways to be applied to monitoring humans or robots. Here, 4 types of 3D-printed auxetic lattice structures using thermoplastic polyurethane as raw material were characterized: truss and honeycomb with positive Poisson's ratio and chiral truss and re-entrant with negative Poisson's ratio. Each structure was fabricated as a flexible and stable strain sensor by coating graphene through a dip-coating process. The fabricated auxetic structures have excellent strength, flexibility, and electrical conductivity desirable for a strain sensor and detect a constant change in resistance at a given strain. The 3D-printed auxetic lattice 4 type structures coated with CWPU/Graphene suggest potential applications of multifunctional strain sensors under deformation.
Collapse
Affiliation(s)
- Hyeong Yeol Choi
- Department of Fashion Design, Dong-A University, Busan, 49315, Republic of Korea
| | - Eun Joo Shin
- Department of Organic Materials and Polymer Engineering, Dong-A University, Busan, 49315, Republic of Korea
| | - Sun Hee Lee
- Department of Fashion Design, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
40
|
Environmentally friendly plant‐based waterborne polyurethane for hydrophobic and heat‐resistant films. J Appl Polym Sci 2022. [DOI: 10.1002/app.52437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Wang XZ, Xie DM, Zhao XL, Li YD, Zeng JB. Sustainable, Malleable, and Recyclable Castor Oil-Derived Poly(urethane urea) Networks with Tunable Mechanical Properties and Shape Memory Performance Based on Dynamic Piperazine–Urea Bonds. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00104] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiang-Zhao Wang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Dong-Mei Xie
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiao-Li Zhao
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yi-Dong Li
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jian-Bing Zeng
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
42
|
|
43
|
Zhang J, Zhang C, Shang Q, Hu Y, Song F, Jia P, Zhu G, Huang J, Liu C, Hu L, Zhou Y. Mechanically robust, healable, shape memory, and reprocessable biobased polymers based on dynamic pyrazole-urea bonds. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Zhang R, Zheng Y, Liu T, Tang N, Mao L, Lin L, Ye J, Xie L, Hu W, Wu W, Liao W, Yuan M. The marriage of sealant agent between structure transformable silk fibroin and traditional Chinese medicine for faster skin repair. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
45
|
Wang D, Wang Y, He C, Li J, Omoniyi AO, Lu S, Li X, Zhang J, Sun J, Su Z. Demonstration of temperature-sensitive paints with rigorously controlled thickness applied to variously shaped metal substrates with a highly stable connection based on a demulsification-induced fast solidification strategy. NEW J CHEM 2022. [DOI: 10.1039/d1nj06054f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Temperature-sensitive paints with rigorously controlled thickness are in situ fabricated on metal surfaces based on the demulsification-induced fast solidification method.
Collapse
Affiliation(s)
- Dan Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Yaokai Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Caicai He
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Jiangyan Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Ahmed Olalekan Omoniyi
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Siyu Lu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Xiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Jianfu Zhang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Jing Sun
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Zhongmin Su
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| |
Collapse
|
46
|
Zhang Z, Liu L, Xu D, Zhang R, Shi H, Luan S, Yin J. Research Progress in Preparation and Biomedical Application of Functional Medical Polyurethane Elastomers ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
47
|
|
48
|
Wei X, Ge J, Gao F, Chen F, Zhang W, Zhong J, Lin C, Shen L. Bio-based self-healing coating material derived from renewable castor oil and multifunctional alamine. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Xi P, Quan F, Yao J, Xia Y, Fang K, Jiang Y. Strategy to Fabricate a Strong and Supertough Bio-Inspired Fiber with Organic-Inorganic Networks in a Green and Scalable Way. ACS NANO 2021; 15:16478-16487. [PMID: 34591455 DOI: 10.1021/acsnano.1c05952] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Green and scalable production of some fibrous materials with higher fracture energy has long been the goal of researchers. Although some progress has been made in recent years in the research of materials with high fracture energy, inspired by the fiber structure of spider silk, it is still a great challenge to produce artificial fibers with extremely high toughness using a simple and green process. Here, we use the molecular and nanoscale engineering of calcium phosphate oligomers (CaP, < 1 nm) and waterborne polyurethanes (WPU) macromolecules that have strong interactions to form organic-inorganic networks just like β-sheet crystalline and flexible amorphous regions in spider silk. Through a simple and green route based on widespread paper string processing techniques, we fabricate a strong and supertough bioinspired fiber with a high strength (442 MPa), which is 7-15 times higher than the strength of counterpart PU (20-30 MPa), and a super toughness (640 MJ m-3), which is 2-3.5 times higher than the toughness of spider dragline silk. This technique provides a strategy for industrially manufacturing spider fiber-like artificial fibers with a super toughness.
Collapse
Affiliation(s)
- Panyi Xi
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Fengyu Quan
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Jiuyong Yao
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Yanzhi Xia
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Kuanjun Fang
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Yijun Jiang
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| |
Collapse
|
50
|
Chen A, Wang Q, Li M, Peng Z, Lai J, Zhang J, Xu J, Huang H, Lei C. Combined Approach of Compression Molding and Magnetic Attraction to Micropatterning of Magnetic Polydimethylsiloxane Composite Surfaces with Excellent Anti-Icing/Deicing Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48153-48162. [PMID: 34585564 DOI: 10.1021/acsami.1c15428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The accumulation of ice and contaminants on the surface of composite insulators will cause high energy consumption or even major hazards to power systems. In this work, the polydimethylsiloxane (PDMS) silicone rubber was modified by surface micropatterning and material compositing. Highly crosslinked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (PZS) was used to directly coat ferroferric oxide (Fe3O4) nanoparticles. The obtained core-shell Fe3O4@PZS microspheres were loaded with carbon nanotubes (CNTs) to get CNTs/Fe3O4@PZS as the photothermal magnetic filler. The PDMS/CNTs/Fe3O4@PZS surfaces with micronscale truncated cones were prepared via a combined method of compression molding and magnetic attraction. The 1H,1H,2H,2H-perfluorodecyltrichlorosilane-coated template and magnetic field can increase the height of the microstructure to ∼76 μm and maintain the contact angle of microstructured PDMS/CNTs/Fe3O4@PZS surfaces at a high level (∼152°). Compared with the flat PDMS surface, the micronscale truncated cones extend the freezing time from 4.5 to 11.5 min and also undermine the ice adhesion strength from ∼25 to ∼17 kPa for the microstructured PDMS/CNTs/Fe3O4@PZS surface. The temperature of the PDMS/CNTs/Fe3O4@PZS surface molded with magnetic attraction increases linearly with time and the internal magnetic fillers and achieves 280 °C in 10 s. The efficiency of temperature rise is increased by ∼46%, and hence the entire frozen water droplet can melt within 20 s. The strategy combining active deicing with passive anti-icing undoubtedly promotes the development of high efficiency anti-icing materials and can be applied on insulators to prevent icing flashover.
Collapse
Affiliation(s)
- Anfu Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qiankun Wang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Mingke Li
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhangyuan Peng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jindi Lai
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jingjing Zhang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jinbao Xu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Hanxiong Huang
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, P. R. China
| | - Caihong Lei
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|