1
|
Han Z, Yang Y, Rushlow J, Huo J, Liu Z, Hsu YC, Yin R, Wang M, Liang R, Wang KY, Zhou HC. Development of the design and synthesis of metal-organic frameworks (MOFs) - from large scale attempts, functional oriented modifications, to artificial intelligence (AI) predictions. Chem Soc Rev 2025; 54:367-395. [PMID: 39582426 DOI: 10.1039/d4cs00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Owing to the exceptional porous properties of metal-organic frameworks (MOFs), there has recently been a surge of interest, evidenced by a plethora of research into their design, synthesis, properties, and applications. This expanding research landscape has driven significant advancements in the precise regulation of MOF design and synthesis. Initially dominated by large-scale synthesis approaches, this field has evolved towards more targeted functional modifications. Recently, the integration of computational science, particularly through artificial intelligence predictions, has ushered in a new era of innovation, enabling more precise and efficient MOF design and synthesis methodologies. The objective of this review is to provide readers with an extensive overview of the development process of MOF design and synthesis, and to present visions for future developments.
Collapse
Affiliation(s)
- Zongsu Han
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Joshua Rushlow
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Jiatong Huo
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Zhaoyi Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Yu-Chuan Hsu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Rujie Yin
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Mengmeng Wang
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348 Louvain-laNeuve, Belgium
| | - Rongran Liang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Kun-Yu Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
2
|
Li S, Chai Y, Zhang J. Imidazolium-based ionic liquid functionalized chiral metal-organic framework as an efficient catalyst for asymmetric catalytic sulfoxidation. RSC Adv 2025; 15:398-405. [PMID: 39758914 PMCID: PMC11696314 DOI: 10.1039/d4ra07458k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025] Open
Abstract
Ionic liquid (IL) units in heterogeneous catalysts exhibit synergistic effects to enhance catalytic performance and stabilize catalytically active centers, while also preventing the degradation of catalysts during the reaction process. Ionic liquid units in IL-functionalized CMOF catalysts enhance their catalytic performance in a synergistic manner. However, not only are the yields of IL-functionalized CMOFs obtained with post-synthesis methods low, but they also lead to blocking of the MOF pores and leaching of the ionic liquid. Hence, we designed and synthesized IL-functionalized chiral Ti(salen)-derivatized dicarboxylic acid as a linker coordinated with zinc nitrate to form ionic liquid functionalized CMOF (IL-Ti(salen) CMOF-n) (n = 1 and 2) catalysts. The synthesised IL-Ti(salen) CMOF-n catalyst was characterized by FT-IR, PXRD, SEM, TEM, TGA and N2 adsorption-desorption, and the catalytic performance of the IL-Ti(salen) CMOF-n was assessed using the asymmetric oxidation of methyl phenyl sulfide as a model reaction and H2O2 as an oxidant. (R)-Methyl phenyl sulfoxide with remarkable chemoselectivity (93%) and enantioselectivity (>99%) was obtained under the optimal reaction conditions. Furthermore, the catalysts demonstrated excellent recyclability after seven consecutive reuses without obvious loss of activity. This work highlights the significance of developing a new type of ionic liquid functionalized chiral heterogeneous catalyst with remarkable catalytic performance, and provides valuable guidance for the design and preparation of novel catalysts for asymmetric catalysis.
Collapse
Affiliation(s)
- Shiye Li
- School of Chemical Engineering, Shanxi Institute of Science and Technology No. 666, Lingqin Line Jincheng 048000 China
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
| | - Yudan Chai
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
| | - Jian Zhang
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
| |
Collapse
|
3
|
Yan RK, Chen XL, Ren J, Cui HL, Yang H, Wang JJ. Design and synthesis of a new highly efficient adjustable Ln-MOF for fluorescence sensing and information encryption. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 330:125669. [PMID: 39754837 DOI: 10.1016/j.saa.2024.125669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Elemental analysis, infrared spectroscopy, and X-ray single crystal diffraction indicated that a novel metal-organic framework (Tb-MOF) designated as 0.5n[H2bpy]·[Tb(dpa)(H2O)2]n·4nH2O was synthesized successfully, (where H4dpa = 5-(3, 4-dicarboxy- phenoxy) isophenic acid, bpy = protonated 4,4'-bipyridine). Tb-MOF adopts a 3D network structure based on TbIII ions and the (dpa)4- ligand through µ4: η1, η2, η2, η2 binding modes. Various luminescent EuxTb1-x-MOFs were prepared by adjusting Tb3+ and Eu3+ concentrations. Fluorescence analysis revealed Tb-MOF's strong fluorescence and excellent sensing ability for pollutants like nitrobenzene (NB), ornidazole (ORN), and fluridine (Flu) in water. It is worth noting that the fluorescence quenching rate of Tb-MOF for nitrobenzene can reach 97.1 %, which is also one of the highest among Ln-MOFs. XPS, LUMO orbital energy levels, fluorescence lifetime, and UV absorption were employed to explore the fluorescence quenching mechanism. Tb-MOF demonstrates robust anti-counterfeiting properties and stability, particularly against Flu, and allows rapid in situ imaging of pesticide residues on vegetables. Moreover, leveraging the adjustable emission spectra of EuxTb1-x-MOF, a barcode system for anti-counterfeiting labels has been developed, showing the versatility of stable metal-organic frameworks in advanced technologies for anti-counterfeiting applications.
Collapse
Affiliation(s)
- Rui-Kui Yan
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China
| | - Xiao-Li Chen
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China.
| | - Jing Ren
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China
| | - Hua-Li Cui
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China
| | - Hua Yang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China
| | - Ji-Jiang Wang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China
| |
Collapse
|
4
|
Gibaldi M, Kapeliukha A, White A, Woo TK. Incorporation of Ligand Charge and Metal Oxidation State Considerations into the Computational Solvent Removal and Activation of Experimental Crystal Structures Preceding Molecular Simulation. J Chem Inf Model 2024. [PMID: 39710947 DOI: 10.1021/acs.jcim.4c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Efficient computational screenings are integral to materials discovery in highly sought-after gas adsorption and storage applications, such as CO2 capture. Preprocessing techniques have been developed to render experimental crystal structures suitable for molecular simulations by mimicking experimental activation protocols, particularly residual solvent removal. Current accounts examining these preprocessed materials databases indicate the presence of assorted structural errors introduced by solvent removal and preprocessing, including improper elimination of charge-balancing ions and ligands. Here, we address the need for a reliable experimental crystal structure preprocessing protocol by introducing a novel solvent removal method, which we call SAMOSA, that is informed by systematic ligand charge and metal oxidation state calculations. A robust set of solvent removal criteria is outlined, which identifies solvent molecules and counterions without predefined molecule lists or significant reliance on experimental chemical information. Validation results against popular metal-organic framework (MOF) databases suggest that this method observes significant performance improvements regarding the retention of charged ligands and recognition of charged frameworks. SAMOSA enhances structure fidelity with respect to the original material as-synthesized, thereby representing a powerful tool in computational materials database curation and preprocessing for molecular simulation. The source code is accessible at https://github.com/uowoolab/SAMOSA.
Collapse
Affiliation(s)
- Marco Gibaldi
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa K1N 6N5, Canada
| | - Anna Kapeliukha
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa K1N 6N5, Canada
- Educational and Scientific Institute of High Technologies, Taras Shevchenko National University of Kyiv, 4-g Hlushkova Avenue, Kyiv 03022, Ukraine
| | - Andrew White
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa K1N 6N5, Canada
| | - Tom K Woo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa K1N 6N5, Canada
| |
Collapse
|
5
|
Zhang J, Yue Y, Lin Z, Tao X, Yin D, Zhang C. Pyridyl/Pyrimidyl-Containing Ligands Modulating Two Cd(II)-MOFs with Distinct Architectures and Al 3+ Sensing Abilities. Inorg Chem 2024; 63:23344-23353. [PMID: 39582171 DOI: 10.1021/acs.inorgchem.4c04040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
It is a challenging task to develop metal-organic frameworks (MOFs) with fascinating architectures and outstanding performance. In this work, two novel Cd(II)-MOFs, [Cd2(L1)(BDC)2·1.5i-PrOH]n (1) and [Cd(L2)0.5(BDC)(H2O)]n (2), with distinct sensing performances are successfully synthesized by pyridyl/pyrimidyl-containing functional ligands 9,10-bis(di(pyridine-4-yl)methylene)-9,10-dihydroanthracene (L1) and 9,10-bis(di(pyrimidin-5-yl)methylene)-9,10-dihydroanthracene (L2). 1 exhibits a 3D (4,6,10)-connected multicylindrical framework with compartments, constructed by 4-connected L1 and BDC2- in modes A and B, 6-connected Cd1, and 10-connected [Cd2(COO)2]2+. 2 is fabricated by 4-connected BDC2-, 7-connected Cd, and L2 bridges to generate a 3D (4,7)-connected pillar-layered framework with uncoordinated pyrimidyl N active sites. More importantly, their topologies have not been reported thus far. 1 and 2 have excellent water, pH, and thermal stabilities. 1 can efficiently sense TNP and MDZ in H2O, but its Al3+ sensing ability is relatively average. In sharp contrast, 2 has ultrahigh Al3+ sensitivity. Its limit of detection (LOD) toward Al3+ (2.93 × 10-7 M) is nearly 2 orders of magnitude and 25 times lower than that of 1 (1.18 × 10-5 M) and the WHO's maximum Al3+ limit (7.41 × 10-6 M) in drinking water, respectively. Their sensing mechanisms and different sensing performances are explored in depth.
Collapse
Affiliation(s)
- Jinfang Zhang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yinlong Yue
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zhuo Lin
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xingyu Tao
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Dejing Yin
- School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Chi Zhang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
6
|
Gu J, Lang S, Jin Z, Wei T. A Dual-Functional and Efficient MOF-5@MWCNTs Electrochemical Sensing Device for the Measurement of Trace-Level Acetaminophenol and Dopamine. Molecules 2024; 29:5534. [PMID: 39683694 DOI: 10.3390/molecules29235534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The design and construction of dual-functional and high-efficiency electrochemical sensors are necessary for quantitative detection. In this work, a zinc-based metal-organic framework (MOF-5) and multi-walled carbon nanotubes (MWCNTs) were combined in situ through a simple solvothermal reaction to obtain an MOF-5@MWCNTs composite. The composite exhibits a large surface area, hierarchical pore structure, excellent conductivity, and enhanced electrochemical performance in the detection of acetaminophenol (AP) and dopamine (DA). Remarkably, the synergistic effects between MOF-5 and MWCNTs enable the electrochemical sensor based on the MOF-5@MWCNTs composite to quantitatively determine AP and DA at trace levels. Under optimal conditions, the proposed sensor features relatively wide linear ranges of 0.005-600 μM and 0.1-60 μM for AP and DA, respectively, with very low detection limits (LODs) of 0.061 μM and 0.0075 μM for AP and DA. Importantly, this electrochemical sensor demonstrates excellent reproducibility, stability, and anti-interference ability, making it suitable for practical applications in the detection of AP and DA in urine and tap water samples with acceptable recoveries. The successful integration of MOF-5 with MWCNTs results in a robust and versatile electrochemical sensing platform for the rapid and reliable detection of AP and DA at trace levels.
Collapse
Affiliation(s)
- Jianxia Gu
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, China
| | - Shuting Lang
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, China
| | - Zhanbin Jin
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, China
| | - Tingting Wei
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, China
| |
Collapse
|
7
|
Chu H, Liu Z, Wang CC, Wang P. Sustainable production and applications of metal-organic frameworks. Chem Commun (Camb) 2024; 60:8350-8359. [PMID: 39028126 DOI: 10.1039/d4cc02063d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Metal-organic frameworks (MOFs) have become a hot spot in the area of functional materials and have undergone rapid development in a wide range of fields in the 21st century. However, the scalable application of MOFs is still constrained by high production cost at the front end. Additionally, systematic discussion of the reuse of spent MOFs is lacking. Encouragingly, an increasing number of studies have been focusing on the low-cost production and recycling of MOF-based materials, providing feasible solutions for resource recovery and reduction. To stimulate future enthusiasm and interest in realizing the blue economy of MOFs, ranging from front-end production to terminal disposal, we have presented and summarized the state-of-the-art progress in the sustainable synthesis, separation, and reuse of MOFs. Based on the existing challenges, we also propose fit-for-purpose future directions in the MOF field to move toward blue economy.
Collapse
Affiliation(s)
- Hongyu Chu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Zhengxing Liu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
8
|
Zhao B, Li C, Hu T, Gao Y, Fan L, Zhang X. Robust {Pb 10}-Cluster-Based Metal-Organic Framework for Capturing and Converting CO 2 into Cyclic Carbonates under Mild Conditions. Inorg Chem 2024; 63:14183-14192. [PMID: 39010257 DOI: 10.1021/acs.inorgchem.4c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Developing a highly active catalyst that can efficiently capture and convert carbon dioxide (CO2) into high-value-added energy materials remains a severe challenge, which inspires us to explore effective metal-organic frameworks (MOFs) with high chemical stability and high-density active sites. Herein, we report a robust 3D lead(II)-organic framework of {(Me2NH2)2[Pb5(PTTPA)2(H2O)3]·2DMF·3H2O}n (NUC-111) with unreported [Pb10(COO)22(H2O)6] clusters (abbreviated as {Pb10}) as nodes (H6PTTPA = 4,4',4″-(pyridine-2,4,6-triyl)triisophthalic acid). After thermal activation, NUC-111a is functionalized by the multifarious symbiotic acid-base active sites of open Pb2+ sites and uncoordinated pyridine groups on the inner surface of the void volume. Gas adsorption tests confirm that NUC-111a displays a higher separation performance for mixed gases of f CO2 and CH4 with the selectivity of CO2/CH4 at 273 K and 101 kPa being 31 (1:99, v/v), 23 (15:85, v/v), and 8 (50:50, v/v), respectively. When the temperature rises to 298 K, the selectivity of CO2/CH4 at 101 kPa is 26 (1:99, v/v), 22 (15:85, v/v), and 11 (50:50, v/v). Moreover, activated NUC-111a exhibited excellent catalytic performance, stability, and recyclability for the cycloaddition of CO2 with epoxides under mild conditions. Hence, this work provides valuable insight into designing MOFs with multifunctionality for CO2 capture, separation, and conversion.
Collapse
Affiliation(s)
- Bo Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Chong Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Yanpeng Gao
- College of Chemical Engineering, Ordos Institute of Technology, Ordos 017000, P. R. China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
9
|
Daglar H, Gulbalkan HC, Aksu GO, Keskin S. Computational Simulations of Metal-Organic Frameworks to Enhance Adsorption Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2405532. [PMID: 39072794 DOI: 10.1002/adma.202405532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Metal-organic frameworks (MOFs), renowned for their exceptional porosity and crystalline structure, stand at the forefront of gas adsorption and separation applications. Shortly after their discovery through experimental synthesis, computational simulations quickly become an important method in broadening the use of MOFs by offering deep insights into their structural, functional, and performance properties. This review specifically addresses the pivotal role of molecular simulations in enlarging the molecular understanding of MOFs and enhancing their applications, particularly for gas adsorption. After reviewing the historical development and implementation of molecular simulation methods in the field of MOFs, high-throughput computational screening (HTCS) studies used to unlock the potential of MOFs in CO2 capture, CH4 storage, H2 storage, and water harvesting are visited and recent advancements in these adsorption applications are highlighted. The transformative impact of integrating artificial intelligence with HTCS on the prediction of MOFs' performance and directing the experimental efforts on promising materials is addressed. An outlook on current opportunities and challenges in the field to accelerate the adsorption applications of MOFs is finally provided.
Collapse
Affiliation(s)
- Hilal Daglar
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey
| | - Hasan Can Gulbalkan
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey
| | - Gokhan Onder Aksu
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey
| |
Collapse
|
10
|
Ghanavati R, Escobosa AC, Manz TA. An automated protocol to construct flexibility parameters for classical forcefields: applications to metal-organic frameworks. RSC Adv 2024; 14:22714-22762. [PMID: 39035129 PMCID: PMC11258866 DOI: 10.1039/d4ra01859a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
In this work, forcefield flexibility parameters were constructed and validated for more than 100 metal-organic frameworks (MOFs). We used atom typing to identify bond types, angle types, and dihedral types associated with bond stretches, angle bends, dihedral torsions, and other flexibility interactions. Our work used Manz's angle-bending and dihedral-torsion model potentials. For a crystal structure containing N atoms in its unit cell, the number of independent flexibility interactions is 3(N atoms - 1). Because the number of bonds, angles, and dihedrals is normally much larger than 3(N atoms - 1), these internal coordinates are redundant. To reduce (but not eliminate) this redundancy, our protocol prunes dihedral types in a way that preserves symmetry equivalency. Next, each dihedral type is classified as non-rotatable, hindered, rotatable, or linear. We introduce a smart selection method that identifies which particular torsion modes are important for each rotatable dihedral type. Then, we computed the force constants for all flexibility interactions together via LASSO regression (i.e., regularized linear least-squares fitting) of the training dataset. LASSO automatically identifies and removes unimportant forcefield interactions. For each MOF, the reference dataset was quantum-mechanically-computed in VASP via DFT with dispersion and included: (i) finite-displacement calculations along every independent atom translation mode, (ii) geometries randomly sampled via ab initio molecular dynamics (AIMD), (iii) the optimized ground-state geometry using experimental lattice parameters, and (iv) rigid torsion scans for each rotatable dihedral type. After training, the flexibility model was validated across geometries that were not part of the training dataset. For each MOF, we computed the goodness of fit (R-squared value) and the root-mean-squared error (RMSE) separately for the training and validation datasets. We compared flexibility models with and without bond-bond cross terms. Even without cross terms, the model yielded R-squared values of 0.910 (avg across all MOFs) ± 0.018 (st. dev.) for atom-in-material forces in the validation datasets. Our SAVESTEPS protocol should find widespread applications to parameterize flexible forcefields for material datasets. We performed molecular dynamics simulations using these flexibility parameters to compute heat capacities and thermal expansion coefficients for two MOFs.
Collapse
Affiliation(s)
- Reza Ghanavati
- Chemical & Materials Engineering, New Mexico State University Las Cruces NM 88001 USA
| | - Alma C Escobosa
- Chemical & Materials Engineering, New Mexico State University Las Cruces NM 88001 USA
| | - Thomas A Manz
- Chemical & Materials Engineering, New Mexico State University Las Cruces NM 88001 USA
| |
Collapse
|
11
|
Han S, Qiao X, Zhao Q, Guo J, Yu D, Xu J, Zhuang S, Wang D, Fang X, Zhang D. Ultrafast and Parts-per-Billion-Level MEMS Gas Sensors by Hetero-Interface Engineering of 2D/2D Cu-TCPP@ZnIn 2S 4 with Enriched Surface Sulfur Vacancies. NANO LETTERS 2024. [PMID: 38842083 DOI: 10.1021/acs.nanolett.4c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The primary challenge for resonant-gravimetric gas sensors is the synchronous improvement of the sensitivity and response time, which is restricted by low adsorption capacity and slow mass transfer in the sensing process and remains a great challenge. In this study, a novel 2D/2D Cu-TCPP@ZnIn2S4 composite is successfully constructed, in which Cu-TCPP MOF is used as a core substrate for the growth of 2D ultrathin ZnIn2S4 nanosheets with well-defined {0001} crystalline facets. The Cu-TCPP@ZnIn2S4 sensor exhibited high sensitivity (1.5 Hz@50 and 2.3 Hz@100 ppb), limit of detection (LOD: 50 ppb), and ultrafast (9 s @500 ppb) detection of triethylamine (TEA), which is the lowest LOD and the fastest sensor among the reported TEA sensors at room temperature, tackling the bottleneck for the ultrafast detection of the resonant-gravimetric sensor. These above results provide an innovative and easily achievable pathway for the synthesis of heterogeneous structure sensing materials.
Collapse
Affiliation(s)
- Sancan Han
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Xianyu Qiao
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Qingqiang Zhao
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jie Guo
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Dechao Yu
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jingcheng Xu
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Songlin Zhuang
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Ding Wang
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, People's Republic of China
| | - Dawei Zhang
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
12
|
Chinchan K, Jiajaroen S, Theppitak C, Laksee S, Sukwattanasinitt M, Chainok K. Synthesis, structure and photoluminescence properties of heterometallic-based coordination polymers of trimesic acid. Acta Crystallogr C Struct Chem 2024; 80:230-238. [PMID: 38721808 DOI: 10.1107/s2053229624003528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Reacting trimesic acid (H3TMA, C9H6O6) with CaCl2 and MCl2 at 110 °C under hydrothermal conditions gave the isostructural heterobimetallic coordination polymers (CPs) catena-poly[[tetraaquazinc(II)]-μ-5-carboxybenzene-1,3-dicarboxylato-[tetraaquacalcium(II)]-μ-5-carboxybenzene-1,3-dicarboxylato], [CaZn(HTMA)2(H2O)8]n, 1, and catena-poly[[tetraaquacobalt(II)]-μ-5-carboxybenzene-1,3-dicarboxylato-[tetraaquacalcium(II)]-μ-5-carboxybenzene-1,3-dicarboxylato], [CaCo(HTMA)2(H2O)8]n, 2. Compounds 1 and 2 crystallize in the monoclinic space group C2/c. The solid-state structures consist of eight-coordinate CaII ions and six-coordinate MII ions. These ions are connected by a doubly deprotonated HTMA2- ligand to create a one-dimensional (1D) zigzag chain. Poly[[decaaquabis(μ3-benzene-1,3,5-tricarboxylato)calcium(II)dizinc(II)] dihydrate], {[CaZn2(TMA)2(H2O)10]·2H2O}n, 3, was found incidentally as a minor by-product during the synthesis of 1 at a temperature of 140 °C. It forms crystals in the orthorhombic space group Ccce. The structure of 3 consists of a two-dimensional (2D) layer composed of [Zn(TMA)] chains that are interconnected by CaII ions. The presence of aromatic carboxylic acid ligands and water molecules, which can form numerous hydrogen bonds and π-π interactions, increases the stability of the three-dimensional (3D) supramolecular architecture of these CPs. Compounds 1 and 2 exhibit thermal stability up to 420 °C, as indicated by the thermogravimetric analysis (TGA) curves. The powder X-ray diffraction (PXRD) data reveal the formation of unidentified phases in methanol and dimethyl sulfoxide, while 1 exhibits chemical stability in a wide range of solvents. The luminescence properties of 1 dispersed in various low molecular weight organic solvents was also examined. The results demonstrate excellent selectivity, sensitivity and recyclability for detecting acetone molecules in aqueous media. Additionally, a possible sensing mechanism is also outlined.
Collapse
Affiliation(s)
- Kunlanit Chinchan
- Thammasat University Research Unit in Multifunctional Crystalline Materials, and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Suwadee Jiajaroen
- Thammasat University Research Unit in Multifunctional Crystalline Materials, and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Chatphorn Theppitak
- Thammasat University Research Unit in Multifunctional Crystalline Materials, and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Sakchai Laksee
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkharak, Nakon Nayok, 26120, Thailand
| | | | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials, and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| |
Collapse
|
13
|
Li C, Yuan Y, Yue M, Hu Q, Ren X, Pan B, Zhang C, Wang K, Zhang Q. Recent Advances in Pristine Iron Triad Metal-Organic Framework Cathodes for Alkali Metal-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310373. [PMID: 38174633 DOI: 10.1002/smll.202310373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/10/2023] [Indexed: 01/05/2024]
Abstract
Pristine iron triad metal-organic frameworks (MOFs), i.e., Fe-MOFs, Co-MOFs, Ni-MOFs, and heterometallic iron triad MOFs, are utilized as versatile and promising cathodes for alkali metal-ion batteries, owing to their distinctive structure characteristics, including modifiable and designable composition, multi-electron redox-active sites, exceptional porosity, and stable construction facilitating rapid ion diffusion. Notably, pristine iron triad MOFs cathodes have recently achieved significant milestones in electrochemical energy storage due to their exceptional electrochemical properties. Here, the recent advances in pristine iron triad MOFs cathodes for alkali metal-ion batteries are summarized. The redox reaction mechanisms and essential strategies to boost the electrochemical behaviors in associated electrochemical energy storage devices are also explored. Furthermore, insights into the future prospects related to pristine iron triad MOFs cathodes for lithium-ion, sodium-ion, and potassium-ion batteries are also delivered.
Collapse
Affiliation(s)
- Chao Li
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Yuquan Yuan
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Min Yue
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Qiwei Hu
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Xianpei Ren
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Baocai Pan
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Kuaibing Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
14
|
Chen C, Jiang J, Liu Y, Ji X, Zhou M, Zhao J, Jiang J. Synergy of metallic Co and oxygen vacancy sites in Co/Ce-MOF catalysts for efficiently promoting lignin derived phenols and macromolecular lignin hydrodeoxygenation. Int J Biol Macromol 2024; 270:132465. [PMID: 38768909 DOI: 10.1016/j.ijbiomac.2024.132465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
The enhanced utilization of biomass-derived chemicals for the generation of high value aromatics through an advanced catalytic strategy has captured considerable attention within the realm of eco-friendly manufacturing. This work presented four innovative three-dimensional rod-shaped mesoporous Ce-based MOF materials, which were coupled with a H-donor solvent to facilitate vanillin hydrodeoxygenation and macromolecular lignin. Under the optimized conditions (30 mg CoCe@C catalyst, 2 MPa N2 pressure, 15 mL isopropanol, 190 °C, and 5 h), the CoCe@C catalyst achieved nearly complete conversion of vanillin and demonstrated 87.8 % selectivity in the hydrogen-donor solvent. The characterization findings suggested that the synergy between metallic Co and oxygen vacancy sites enabled the effective activation of CHO group in vanillin, leading to formation of reactive product MMP. In addition, the optimal CoCe@C catalyst could also achieve macromolecular lignin hydrodeoxygenation to obtain high yield of lignin oil products with narrower molecular weight distribution. This study presented a viable approach for the concurrent utilization of lignin derivatives in the generation of high value fuels and chemicals.
Collapse
Affiliation(s)
- Changzhou Chen
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China.
| | - Jie Jiang
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
| | - Yajun Liu
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
| | - Xialin Ji
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
| | - Mengqing Zhou
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| | - Jianchun Jiang
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
| |
Collapse
|
15
|
Liang RR, Han Z, Cai P, Yang Y, Rushlow J, Liu Z, Wang KY, Zhou HC. A Robust Pyrazolate Metal-Organic Framework for Efficient Catalysis of Dehydrogenative C-O Cross Coupling Reaction. J Am Chem Soc 2024; 146:14174-14181. [PMID: 38723205 PMCID: PMC11117398 DOI: 10.1021/jacs.4c03038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024]
Abstract
Construction of robust heterogeneous catalysts with atomic precision is a long-sought pursuit in the catalysis field due to its fundamental significance in taming chemical transformations. Herein, we present the synthesis of a single-crystalline pyrazolate metal-organic framework (MOF) named PCN-300, bearing a lamellar structure with two distinct Cu centers and one-dimensional (1D) open channels when stacked. PCN-300 exhibits exceptional stability in aqueous solutions across a broad pH range from 1 to 14. In contrast, its monomeric counterpart assembled through hydrogen bonding displays limited stability, emphasizing the role of Cu-pyrazolate coordination bonds in framework robustness. Remarkably, the synergy of the 1D open channels, excellent stability, and the active Cu-porphyrin sites endows PCN-300 with outstanding catalytic activity in the cross dehydrogenative coupling reaction to form the C-O bond without the "compulsory" ortho-position directing groups (yields up to 96%), outperforming homogeneous Cu-porphyrin catalysts. Moreover, PCN-300 exhibits superior recyclability and compatibility with various phenol substrates. Control experiments reveal the synergy between the Cu-porphyrin center and framework in PCN-300 and computations unveil the free radical pathway of the reaction. This study highlights the power of robust pyrazolate MOFs in directly activating C-H bonds and catalyzing challenging chemical transformations in an environmentally friendly manner.
Collapse
Affiliation(s)
| | | | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Joshua Rushlow
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Zhaoyi Liu
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Kun-Yu Wang
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
16
|
Zhao X, Xu Q, Han J, Zhang W, Rao H, Du DY, She P, Qin JS. Ionic Liquid Modified Fe-Porphyrinic Metal-Organic Frameworks as Efficient and Selective Photocatalysts for CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26272-26279. [PMID: 38728610 DOI: 10.1021/acsami.4c04219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Porphyrin-based metal-organic frameworks (MOFs) are ideal platforms for heterogeneous photocatalysts toward CO2 reduction. To further explore photocatalytic MOF systems, it is also necessary to consider their ability to fine-tune the microenvironments of the active sites, which affects their overall catalytic operation. Herein, a kind of ionic liquid (IL, here is 3-butyric acid-1-methyl imidazolium bromide, BAMeImBr) was anchored to iron-porphyrinic Zr-MOFs with different amounts to obtain ILx@MOF-526 (MOF-526 = Zr6O4(OH)4(FeTCBPP)3, FeTCBPP = iron 5,10,15,20-tetra[4-(4'-carboxyphenyl)phenyl]-porphyrin, x = 100, 200, and 400). ILx@MOF-526 series was designed to investigate the effects of the microenvironmental and electronic structural modification on the efficiency and selectivity of the photochemical reduction of CO2 after introducing IL fragments. Compared to parent MOF-526, the production and selectivity of CO were greatly improved in the absence of any photosensitizer under visible light by the ILx@MOF-526 series. Among them, the CO yield of IL200@MOF-526 was up to 14.0 mmol g-1 within 72 h with a remarkable CO selectivity of 97%, which is superior to that of MOF-526 without BAMeIm+ modification and other amounts of BAMeIm+ loaded. Furthermore, density functional theory calculations were performed to study the mechanism of the CO2 reduction.
Collapse
Affiliation(s)
- Xue Zhao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Qiang Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Jingwei Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Wenwen Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Dong-Ying Du
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
17
|
Matsuyama K, Matsuoka T, Eiro M, Kato T, Okuyama T. PdRu Bimetallic Nanoparticles/Metal-Organic Framework Composite through Supercritical CO 2-Assisted Immobilization. ACS OMEGA 2024; 9:20437-20443. [PMID: 38737038 PMCID: PMC11079872 DOI: 10.1021/acsomega.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Metal-nanoparticle (NP)/metal-organic framework (MOF) composites have attracted considerable attention as heterogeneous catalysts. Compared with porous carbon, silica, and alumina, the charge-transfer interaction between the metal NPs and the MOF accelerated the catalytic activity. In this study, PdRu bimetallic NPs were successfully immobilized on MOFs such as MIL-101(Cr) by using supercritical carbon dioxide. The STEM-EDX images show a uniform 3D distribution of the PdRu bimetallic NPs on MIL-101(Cr). The resulting PdRu@MIL-101(Cr) catalyst exhibited higher CO oxidation than monometal/MOF composites such as Pd@MIL-101(Cr) and Ru@MIL-101(Cr). Furthermore, PdRu@MIL-101(Cr) exhibited higher catalytic activity than PdRu@SiO2. This is because the particle size of the PdRu bimetallic NPs in MIL-101(Cr) was within the range of 2-3 nm. The synergistic effects were based on the combination of two metals, Pd and Ru, small bimetal particle formation, and charge-transfer interactions between the bimetal NPs and the MOF. These factors enhance the catalytic activity of the bimetal/MOF composites.
Collapse
Affiliation(s)
- Kiyoshi Matsuyama
- Department
of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Takumi Matsuoka
- Department
of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Masashi Eiro
- Department
of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Takafumi Kato
- Department
of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Tetsuya Okuyama
- Department
of Collaborative Interdisciplinary Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga-Shi, Kasuga 816-8580, Japan
| |
Collapse
|
18
|
Letwaba J, Uyor UO, Mavhungu ML, Achuka NO, Popoola PA. A review on MOFs synthesis and effect of their structural characteristics for hydrogen adsorption. RSC Adv 2024; 14:14233-14253. [PMID: 38690110 PMCID: PMC11058478 DOI: 10.1039/d4ra00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Climate change is causing a rise in the need to transition from fossil fuels to renewable and clean energy such as hydrogen as a sustainable energy source. The issue with hydrogen's practical storage, however, prevents it from being widely used as an energy source. Current solutions, such as liquefied and compressed hydrogen storage, are insufficient to meet the U.S. Department of Energy's (US DOE) extensive on-board application requirements. Thus, a backup strategy involving material-based storage is required. Metal organic frameworks (MOFs) belong to the category of crystalline porous materials that have seen rapid interest in the field of energy storage due to their large surface area, high pore volume, and modifiable structure. Therefore, advanced technologies employed in the construction of MOFs, such as solvothermal, mechanochemical, microwave assisted, and sonochemical methods are reviewed. Finally, this review discussed the selected factors and structural characteristics of MOFs, which affect the hydrogen capacity.
Collapse
Affiliation(s)
- John Letwaba
- Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology P.M.B X680 Pretoria 0001 South Africa
| | - Uwa Orji Uyor
- Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology P.M.B X680 Pretoria 0001 South Africa
- Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka Private Bag 0004 Nsukka Enugu State Nigeria
| | - Mapula Lucey Mavhungu
- Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology P.M.B X680 Pretoria 0001 South Africa
| | - Nwoke Oji Achuka
- Department of Agricultural and Bioresources Engineering, University of Nigeria, Nsukka Private Bag 0004 Nsukka Enugu State Nigeria
| | - Patricia Abimbola Popoola
- Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology P.M.B X680 Pretoria 0001 South Africa
| |
Collapse
|
19
|
Shi YS, Xiao T, Yang DD, Xia ZG, Zheng XJ. Dynamic Fluorescence Sensing of Bromide Ions by Photochromic Bi(III)-Coordination Polymers Based on a Ligand Integrated by Naphthalene Diimides and Pyridinium in Solution and Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309076. [PMID: 38032168 DOI: 10.1002/smll.202309076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Indexed: 12/01/2023]
Abstract
Bismuth(III)-based complexes have garnered increasing attention in fluorescence sensing due to their environmentally friendly and sustainable characteristics. A Bismuth(III) coordination polymer (CP),1-Cl based on a naphthalene diimides(NDI)-pyridinium is synthesized by an in situ reaction method. Notable for its sensitivity to visible light, 1-Cl shows excellent photochromic properties, and the integration of NDI and pyridinium in one ligand makes photogenerated radicals more stable. Structural analysis and theoretical calculations are employed to investigate the potential pathway of photoinduced electron transfer (ET) during the photochromic process. Notably, in aqueous solutions, 1-Cl displays an extraordinary fluorescence enhancement response to bromide ion (Br-), resulting in a distinct transition from yellow to orange in color. The potential mechanism of fluorescence sensing has been revealed through single-crystal X-ray diffraction analysis. This insight highlights a continuous substitution process where the Cl- ions are successively replaced by Br- ions. Consequently, a single-crystal-to-single-crystal transformation (SCSC) occurs, yielding the intermediate species, 1-Cl-Br, which ultimately transforms into the final product, 1-Br. Finally, the photochromic film is successfully prepared and applied to practical applications such as ink-free printing, information anti-counterfeiting, and the visual detection of Br- ions. This work combines photochromism with fluorescence sensing, broadening the research field and practical application of photochromic materials.
Collapse
Affiliation(s)
- Yong-Sheng Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Tong Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dong-Dong Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhong-Gang Xia
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiang-Jun Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
20
|
Zheng C, Wu Q, Hu X, Ma J, Sun K, Sun Y, Xu B. Macro-manufacturing robust and stable metal-organic framework beads for antibiotics removal from wastewater. ENVIRONMENTAL RESEARCH 2024; 246:118564. [PMID: 38417658 DOI: 10.1016/j.envres.2024.118564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Metal-organic frameworks (MOFs) have shown great prospects in wastewater remediation. However, the easy aggregation, difficult separation and inferior reusability greatly limit their large-scale application. Herein, we proposed a facile, green and low-cost strategy to construct robust and stable MOF-based hydrogel beads (Fe-BTC-HBs) in a gram scale, and employed them to remove antibiotics from wastewater. As a result, the Fe-BTC-HBs demonstrated outstanding adsorption capacity for both ofloxacin (OFL) and tetracycline (TC) (281.17 mg/g for OFL and 223.60 mg/g for TC) under a near-neutral environment. The main adsorption mechanisms of OFL and TC were hydrogen bonding and π-π stacking interaction. Owing to its macroscopic granule and stable structure, Fe-BTC-HBs can be separated rapidly from wastewater after capturing antibiotics, and more than 85% adsorption capacity still remained after six cycles, while the powdered Fe-BTC only showed less than 6% recovery efficiency with massive weight loss (around 92%). In real industrial effluent, the adsorption performance of Fe-BTC-HBs toward two antibiotics exhibited negligible decreases (2.9% for OFL and 2.2% for TC) compared with that in corresponding solutions. Furthermore, Fe-BTC-HBs also had appealing economic and environmental benefit. Overall, the macro-manufactured MOF beads have the promising potential for the large-scale wastewater treatment.
Collapse
Affiliation(s)
- Chaofan Zheng
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Qu Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaojing Hu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Jingxuan Ma
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Kuiyuan Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Bincheng Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
21
|
Wang Y, Jiang ZJ, Wang DR, Lu W, Li D. Machine Learning-Assisted Discovery of Propane-Selective Metal-Organic Frameworks. J Am Chem Soc 2024; 146:6955-6961. [PMID: 38422479 DOI: 10.1021/jacs.3c14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Machine learning is gaining momentum in the prediction and discovery of materials for specific applications. Given the abundance of metal-organic frameworks (MOFs), computational screening of the existing MOFs for propane/propylene (C3H8/C3H6) separation could be equally important for developing new MOFs. Herein, we report a machine learning-assisted strategy for screening C3H8-selective MOFs from the CoRE MOF database. Among the four algorithms applied in machine learning, the random forest (RF) algorithm displays the highest degree of accuracy. We experimentally verified the identified top-performing MOF (JNU-90) with its benchmark selectivity and separation performance of directly producing C3H6. Considering its excellent hydrolytic stability, JNU-90 shows great promise in the energy-efficient separation of C3H8/C3H6. This work may accelerate the development of MOFs for challenging separations.
Collapse
Affiliation(s)
- Ying Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Zhi-Jie Jiang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Dong-Rong Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Weigang Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
22
|
Cai D, Yang Z, Tong R, Huang H, Zhang C, Xia Y. Binder-Free MOF-Based and MOF-Derived Nanoarrays for Flexible Electrochemical Energy Storage: Progress and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305778. [PMID: 37948356 DOI: 10.1002/smll.202305778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/09/2023] [Indexed: 11/12/2023]
Abstract
The fast development of Internet of Things and the rapid advent of next-generation versatile wearable electronics require cost-effective and highly-efficient electroactive materials for flexible electrochemical energy storage devices. Among various electroactive materials, binder-free nanostructured arrays have attracted widespread attention. Featured with growing on a conductive and flexible substrate without using inactive and insulating binders, binder-free 3D nanoarray electrodes facilitate fast electron/ion transportation and rapid reaction kinetics with more exposed active sites, maintain structure integrity of electrodes even under bending or twisted conditions, readily release generated joule heat during charge/discharge cycles and achieve enhanced gravimetric capacity of the whole device. Binder-free metal-organic framework (MOF) nanoarrays and/or MOF-derived nanoarrays with high surface area and unique porous structure have emerged with great potential in energy storage field and been extensively exploited in recent years. In this review, common substrates used for binder-free nanoarrays are compared and discussed. Various MOF-based and MOF-derived nanoarrays, including metal oxides, sulfides, selenides, nitrides, phosphides and nitrogen-doped carbons, are surveyed and their electrochemical performance along with their applications in flexible energy storage are analyzed and overviewed. In addition, key technical issues and outlooks on future development of MOF-based and MOF-derived nanoarrays toward flexible energy storage are also offered.
Collapse
Affiliation(s)
- Dongming Cai
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Zhuxian Yang
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QF, UK
| | - Rui Tong
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Haiming Huang
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Chuankun Zhang
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Yongde Xia
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QF, UK
| |
Collapse
|
23
|
Zhang S, Xiao J, Zhong G, Xu T, Zhang X. Design and application of dual-emission metal-organic framework-based ratiometric fluorescence sensors. Analyst 2024; 149:1381-1397. [PMID: 38312079 DOI: 10.1039/d3an02187d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Metal-organic frameworks (MOFs) are novel inorganic-organic hybridized crystals with a wide range of applications. In the last twenty years, fluorescence sensing based on MOFs has attracted much attention. MOFs can exhibit luminescence from metal nodes, ligands or introduced guests, which provides an excellent fluorescence response in sensing. However, single-signal emitting MOFs are susceptible to interference from concentration, environment, and excitation intensity, resulting in poor accuracy. To overcome the shortcomings, dual-emission MOF-based ratiometric fluorescence sensors have been proposed and rapidly developed. In this review, we first introduce the luminescence mechanisms, synthetic methods, and detection mechanisms of dual-emission MOFs, highlight the strategies for constructing ratiometric fluorescence sensors based on dual-emission MOFs, and classify them into three categories: intrinsic dual-emission and single-emission MOFs with luminescent guests, and non-emission MOFs with other luminescent materials. Then, we summarize the recent advances in dual-emission MOF-based ratiometric fluorescence sensors in various analytical industries. Finally, we discuss the current challenges and prospects for the future development of these sensors.
Collapse
Affiliation(s)
- Shuxin Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Jingyu Xiao
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Geng Zhong
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
24
|
Li D, Yadav A, Zhou H, Roy K, Thanasekaran P, Lee C. Advances and Applications of Metal-Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300244. [PMID: 38356684 PMCID: PMC10862192 DOI: 10.1002/gch2.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Indexed: 02/16/2024]
Abstract
Metal-organic frameworks (MOFs) that are the wonder material of the 21st century consist of metal ions/clusters coordinated to organic ligands to form one- or more-dimensional porous structures with unprecedented chemical and structural tunability, exceptional thermal stability, ultrahigh porosity, and a large surface area, making them an ideal candidate for numerous potential applications. In this work, the recent progress in the design and synthetic approaches of MOFs and explore their potential applications in the fields of gas storage and separation, catalysis, magnetism, drug delivery, chemical/biosensing, supercapacitors, rechargeable batteries and self-powered wearable sensors based on piezoelectric and triboelectric nanogenerators are summarized. Lastly, this work identifies present challenges and outlines future opportunities in this field, which can provide valuable references.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Anurag Yadav
- Department of ChemistryPondicherry UniversityPuducherry605014India
| | - Hong Zhou
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Kaustav Roy
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | | | - Chengkuo Lee
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| |
Collapse
|
25
|
Yao X, Chen X, Sun Y, Yang P, Gu X, Dai X. Application of metal-organic frameworks-based functional composite scaffolds in tissue engineering. Regen Biomater 2024; 11:rbae009. [PMID: 38420353 PMCID: PMC10900102 DOI: 10.1093/rb/rbae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 03/02/2024] Open
Abstract
With the rapid development of materials science and tissue engineering, a variety of biomaterials have been used to construct tissue engineering scaffolds. Due to the performance limitations of single materials, functional composite biomaterials have attracted great attention as tools to improve the effectiveness of biological scaffolds for tissue repair. In recent years, metal-organic frameworks (MOFs) have shown great promise for application in tissue engineering because of their high specific surface area, high porosity, high biocompatibility, appropriate environmental sensitivities and other advantages. This review introduces methods for the construction of MOFs-based functional composite scaffolds and describes the specific functions and mechanisms of MOFs in repairing damaged tissue. The latest MOFs-based functional composites and their applications in different tissues are discussed. Finally, the challenges and future prospects of using MOFs-based composites in tissue engineering are summarized. The aim of this review is to show the great potential of MOFs-based functional composite materials in the field of tissue engineering and to stimulate further innovation in this promising area.
Collapse
Affiliation(s)
- Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xinran Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yu Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
26
|
Balasubramaniyan NG, Perumal P. Highly efficient electrochemical detection of H 2O 2 utilizing an innovative copper porphyrinic nanosheet decorated bismuth metal-organic framework modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:624-638. [PMID: 38198128 DOI: 10.1039/d3ay01804k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The ability to detect hydrogen peroxide is important due to the presence in biological systems. Researchers are highly interested in developing efficient electrochemical hydrogen peroxide sensors. Metal-organic frameworks (MOFs) with their composites, an emerging class of porous materials, are ideal candidates for heterogeneous catalysts because of their versatile functionalities. Using a facile solvothermal reaction, we fabricated a 2D Cu-TCPP nanosheet uniformly grown on a 3D Bi-MOF. The process takes advantage of the large surface area and pore volume of the Bi-MOF while maintaining the crystallinity of Bi-BTC when Cu-TCPP is added to the surface. The sensor was fabricated by depositing the Bi-BTC-Cu-TCPP nanocomposites on a glassy carbon electrode to conduct electrochemical measurements such as cyclic voltammetry and electrochemical impedance spectroscopy. Finally, differential pulse voltammetry was utilized to investigate the effect of hydrogen peroxide on the electrochemical activity of Bi-BTC-Cu-TCPP deposited on a glassy carbon electrode. This electrode showed high electrochemical performance activity for the reduction of hydrogen peroxide. The sensor showed a linear response to H2O2 in the 10-120 μM concentration range, with a detection limit of 0.20 μM. The sensor was also stable and selective for H2O2 in the presence of other interfering species. This work demonstrates the potential of nanocomposite-based electrochemical sensors for sensitive and selective detection of H2O2. Besides, the modified electrode has many advantages, including remarkable catalytic activity, long-term stability, good reproducibility, and a good signal response during H2O2 reduction.
Collapse
Affiliation(s)
- Nandha Gopal Balasubramaniyan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603 203, India.
| | - Panneerselvam Perumal
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603 203, India.
| |
Collapse
|
27
|
Duan X, Ge F, Yan Q, Liu Y, Zheng H. Customized Synthesis of MOF Nanoplates via Molecular Scalpel Strategy for Efficient Oxygen Reduction in Zn-Air Batteries. Chemistry 2024; 30:e202302784. [PMID: 37875464 DOI: 10.1002/chem.202302784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
The production of metal-organic framework (MOF) nanoplates with well-defined geometric morphology is remarkable for expanding their applications. Herein, the cobalt-based MOF nanoplates with hexagonal channels from a layer-pillared MOF are accomplished, via a molecular scalpel strategy, utilizing monodentate pyridine to replace the bidentate 4,4'-bipyridine. The morphology can be modified from nanorods to nanoplates with controllable thickness tuned by the amounts of pyridine. Succeeding carbonization treatment transforms the MOF nanoplates into Co particles homogeneously encapsulated in the nitrogen-doped carbon layers. The prepared catalyst with a unique platelike morphology displays a high half-wave potential of 0.88 V in oxygen reduction reaction. When used in primary Zn-air batteries, it delivers a high peak power density of 280 mW cm-2 . This work clarifies the structure-morphology-reactivity connection of MOF nanoplates.
Collapse
Affiliation(s)
- Xinde Duan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, P. R. China
| | - Fayuan Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, P. R. China
| | - Qi Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, P. R. China
| | - Yang Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, P. R. China
| | - Hegen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, P. R. China
| |
Collapse
|
28
|
Wang Z, Sun B, Liao J, Cao S, Li L, Wang Q, Guo C. In-situ growth of electrically conductive MOFs in wood cellulose scaffold for flexible, robust and hydrophobic membranes with improved electrochemical performance. Int J Biol Macromol 2024; 255:127989. [PMID: 37977469 DOI: 10.1016/j.ijbiomac.2023.127989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Electrically conductive metal-organic frameworks (EC-MOFs) have attracted great attentions in electrochemical fields, but their practical application is limited by their hard-to-shape powder form. The aims was to integrate continuously nucleated EC-MOFs on natural wood cellulose scaffold to develop biobased EC-MOFs membrane with robust flexibility and improved electrochemical performance for wearable supercapacitors. EC-MOF materials (NiCAT or CuCAT) were successfully incorporated onto porous tempo-oxidized wood (TOW) scaffold to create ultrathin membranes through electrostatic force-mediated interfacial growth and simple room-temperature densification. The studies demonstrated the uniform and continuous EC-MOFs nanolayer on TOW scaffold and the interfacial bonding between EC-MOF and TOW. The densification of EC-MOF@TOW bulk yielded highly flexible ultrathin membranes (about 0.3 mm) with high tensile stress exceeding 180 MPa. Moreover, the 50 %-NiCAT@TOW membrane demonstrated high electrical conductivity (4.227 S·m-1) and hydrophobicity (contact angle exceeding 130°). Notably, these properties remained stable even after twisting or bending deformation. Furthermore, the electrochemical performance of EC-MOF@TOW membrane with hierarchical pores outperformed the EC-MOF powder electrode. This study innovatively anchored EC-MOFs onto wood through facile process, yielding highly flexible membranes with exceptional performance that outperforms most of reported conductive wood-based membranes. These findings would provide some references for flexible and functional EC-MOF/wood membranes for wearable devices.
Collapse
Affiliation(s)
- Zhinan Wang
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Borong Sun
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Junqi Liao
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Shuqi Cao
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Liping Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Qingwen Wang
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| | - Chuigen Guo
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
29
|
Wang MM, Xiong TZ, Chen BC, Hu JJ, Wen HR, Liu SJ. Solvent- and pH-Stable Eu(III)-Based Metal-Organic Framework with Phosphate-Ratio Fluorescence Sensing and Significant Proton Conduction. Inorg Chem 2023; 62:21322-21328. [PMID: 38071665 DOI: 10.1021/acs.inorgchem.3c03406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Lanthanide-based metal-organic frameworks show good potential for applications due to their unique structures and functional properties. A highly thermally and acid-base stable Eu-MOF was synthesized by a solvothermal method with the molecular formula {[(CH3)2NH2]2[Eu2(NDDP)2(H2O)2]·H2O}n (Eu-MOF, H4NDDP = 5,5'-(naphthalene-2,6-diyl)diisophthalic acid). Eu-MOF takes a three-dimensional (4,4,8)-connected topology. The water molecules involved in the coordination, free water molecules, and [(CH3)2NH2]+ cations in the pore can be used as proton carriers. The proton conductivity attains 1.25 × 10-4 S cm-1 at room temperature and 2.42 × 10-3 S cm-1 at 70 °C and 98% relative humidity. Combined with the dual-emission properties from the ligands and Eu(III) ions enables Eu-MOF to be used as a ratiometric fluorescent sensor for phosphate efficiently and rapidly, with a limit of detection of 0.12 μM in the Tris-HCl buffer solution. These results provide a new approach for the construction of MOFs with high proton conductivity and a ratiometric fluorescence response.
Collapse
Affiliation(s)
- Miao-Miao Wang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Tian-Zheng Xiong
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Bo-Chen Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Jun-Jie Hu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| |
Collapse
|
30
|
Ercakir G, Aksu GO, Altintas C, Keskin S. Hierarchical Computational Screening of Quantum Metal-Organic Framework Database to Identify Metal-Organic Frameworks for Volatile Organic-Compound Capture from Air. ACS ENGINEERING AU 2023; 3:488-497. [PMID: 38144678 PMCID: PMC10739624 DOI: 10.1021/acsengineeringau.3c00039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/26/2023]
Abstract
The design and discovery of novel porous materials that can efficiently capture volatile organic compounds (VOCs) from air are critical to address one of the most important challenges of our world, air pollution. In this work, we studied a recently introduced metal-organic framework (MOF) database, namely, quantum MOF (QMOF) database, to unlock the potential of both experimentally synthesized and hypothetically generated structures for adsorption-based n-butane (C4H10) capture from air. Configurational Bias Monte Carlo (CBMC) simulations were used to study the adsorption of a quaternary gas mixture of N2, O2, Ar, and C4H10 in QMOFs for two different processes, pressure swing adsorption (PSA) and vacuum-swing adsorption (VSA). Several adsorbent performance evaluation metrics, such as C4H10 selectivity, working capacity, the adsorbent performance score, and percent regenerability, were used to identify the best adsorbent candidates, which were then further studied by molecular simulations for C4H10 capture from a more realistic seven-component air mixture consisting of N2, O2, Ar, C4H10, C3H8, C3H6, and C2H6. Results showed that the top five QMOFs have C4H10 selectivities between 6.3 × 103 and 9 × 103 (3.8 × 103 and 5 × 103) at 1 bar (10 bar). Detailed analysis of the structure-performance relations showed that low/mediocre porosity (0.4-0.6) and narrow pore sizes (6-9 Å) of QMOFs lead to high C4H10 selectivities. Radial distribution function analyses of the top materials revealed that C4H10 molecules tend to confine close to the organic parts of MOFs. Our results provided the first information in the literature about the VOC capture potential of a large variety and number of MOFs, which will be useful to direct the experimental efforts to the most promising adsorbent materials for C4H10 capture from air.
Collapse
Affiliation(s)
- Goktug Ercakir
- Department of Chemical and
Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Gokhan Onder Aksu
- Department of Chemical and
Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Cigdem Altintas
- Department of Chemical and
Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Seda Keskin
- Department of Chemical and
Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
31
|
Binaeian E, Nabipour H, Ahmadi S, Rohani S. The green synthesis and applications of biological metal-organic frameworks for targeted drug delivery and tumor treatments. J Mater Chem B 2023; 11:11426-11459. [PMID: 38047399 DOI: 10.1039/d3tb01959d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Biological metal-organic frameworks (bio-MOFs) constitute a growing subclass of MOFs composed of metals and bio-ligands derived from biology, such as nucleobases, peptides, saccharides, and amino acids. Bio-ligands are more abundant than other traditional organic ligands, providing multiple coordination sites for MOFs. However, bio-MOFs are typically prepared using hazardous or harmful solvents or reagents, as well as laborious processes that do not conform to environmentally friendly standards. To improve biocompatibility and biosafety, eco-friendly synthesis and functionalization techniques should be employed with mild conditions and safer materials, aiming to reduce or avoid the use of toxic and hazardous chemical agents. Recently, bio-MOF applications have gained importance in some research areas, including imaging, tumor therapy, and targeted drug delivery, owing to their flexibility, low steric hindrances, low toxicity, remarkable biocompatibility, surface property refining, and degradability. This has led to an exponential increase in research on these materials. This paper provides a comprehensive review of updated strategies for the synthesis of environmentally friendly bio-MOFs, as well as an examination of the current progress and accomplishments in green-synthesized bio-MOFs for drug delivery aims and tumor treatments. In conclusion, we consider the challenges of applying bio-MOFs for biomedical applications and clarify the possible research orientation that can lead to highly efficient therapeutic outcomes.
Collapse
Affiliation(s)
- Ehsan Binaeian
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Hafezeh Nabipour
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Soroush Ahmadi
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
32
|
Zou J, Li Y, Dong H, Ma N, Dai W. Well-constructed a water stable Cu-BTC@TpPa-1 binary composite with excellent capture ability toward malachite green. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124306-124315. [PMID: 37996590 DOI: 10.1007/s11356-023-31114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Adsorptive removal of dyes (e.g., malachite green (MG)) from wastewater using commercially available adsorbents is not significantly efficient. Metal-organic frameworks (MOFs) such as Cu-BTC is considered as an excellent adsorbent in adsorption-separation filed. However, the water instability of Cu-BTC restricts its potential utilization in dye wastewater purification. In this paper, we have developed a novel metal/covalent-organic frameworks (Cu-BTC@TpPa-1) binary composite by solvothermal method. This composite serves as a multifunctional platform for the effective removal of MG from water. This Cu-BTC@TpPa-1 obviously keeps structural integrity soaked in water for 7 days. And its heat resistant performance can achieve 360 °C because of the TpPa-1 protection, which is outdistance to that of Cu-BTC. The adsorbed capacity of MG over Cu-BTC@TpPa-1 is exceptionally high, with an uptake of up to 64.12 mg/g, which is superior compared to previous adsorbents, highlighting its superior adsorption capabilities. The adsorptive performance was controlled by the associative effects of Cu-BTC and TpPa-1 with an association effect of π-complexation and electrostatic attraction. The Cu-BTC@TpPa-1 might be a prospective adsorbent for MG capture from industrial wastewater.
Collapse
Affiliation(s)
- Jiaying Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Yan Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Haotian Dong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Na Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Wei Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| |
Collapse
|
33
|
Kaur M, Virender, Khatkar S, Singh B, Kumar A, Dubey SK. Recent Advancements in Sensing of Silver ions by Different Host Molecules: An Overview (2018-2023). J Fluoresc 2023:10.1007/s10895-023-03494-8. [PMID: 38038876 DOI: 10.1007/s10895-023-03494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
The chemosensors act as powerful tool in the detection of metal ions due to their simplicity, high sensitivity, low cost, low detection limit, rapid photophysical response, and application to the environmental and medical fields. This review article presents an overview for the chemosensing of Ag+ ions based on Calix, MOF, Nanoparticle, COF, Calix, Electrochemical chemosensor published from 2018 to 2023. Here, we have reviewed the sensing of Ag+ ions and summarised the binding response, mechanism, LOD, colorimetric response, adsorption capacity, technique used. The purpose of this review article to provide a detailed summary of the performance of different host chemosensors that are helpful for providing future direction to researchers on Ag+ ion detection and provides path to design effective chemsosensor (simple to synthesize, cost effective, high sensitivity, with more practical application). While studying the related article literature, we came across some challenges and that has been discussed lastly and provided solutions for them.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Virender
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Sunita Khatkar
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway & Centre of Applied Science for Health, Technological University Dublin (TU Dublin), Dublin, D24 FKT9, Ireland
| | - Ashwani Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| | - Santosh Kumar Dubey
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| |
Collapse
|
34
|
Guo YY, Wang RD, Wei WM, Fang F, Zhao XH, Zhang SS, Shen TZ, Zhang J, Zhao QH, Wang J. Structure and properties of metal-organic frameworks modulated by sulfate ions. Dalton Trans 2023; 52:15940-15949. [PMID: 37843307 DOI: 10.1039/d3dt01995k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Anions play a significant role in the construction of metal-organic frameworks (MOFs). Anions can affect coordination between metal ions and organic ligands, and the formation of crystal structures, thereby affecting the structure and properties of MOFs. Two novel 3D porous MOFs ({[Cd3(TIPE)2(SO4)1.6(H2O)2.4]·2.8OH·6.2H2O}n (MOF-1) and {[Cd3(TIPE)2(SO4)3(H2O)2]·10H2O}n (MOF-2)) were successfully synthesized, by introducing SO42- to design and adjust their structure and properties, in which the sulfate ions not only participated in coordination but also played a bridging role. Both MOF-1 and MOF-2 exhibited high stability and strong fluorescence properties, and their fluorescence properties also changed compared to those of previously reported 2D nonporous MOF-3 ({[Cd2(TIPE)2Cl3(ACN)]·CdCl3·3H2O}n) with an identical ligand. They could also be used in combination with MOF-3 to distinguish between Fe3+ and Cr2O72- ions, due to a change in their fluorescence properties. In this work, the structure was reshaped by introducing sulfate ions, and the role and function of the sulfate ions in the structure were studied, providing a feasible idea for the design and precise regulation of MOFs.
Collapse
Affiliation(s)
- Yuan-Yuan Guo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, 650500, People's Republic of China.
| | - Rui-Dong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, 650500, People's Republic of China.
| | - Wei-Ming Wei
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, 650500, People's Republic of China.
| | - Fang Fang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, 650500, People's Republic of China.
| | - Xu-Hui Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, 650500, People's Republic of China.
| | - Suo-Shu Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, 650500, People's Republic of China.
| | - Tian-Ze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, 650500, People's Republic of China.
| | - Jun Zhang
- New Energy Photovoltaic Industry Research Center, Qinghai University, Xining 810016, People's Republic of China
| | - Qi-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, 650500, People's Republic of China.
| | - Juan Wang
- The School of Foreign Languages College, College of Arts and Sciences Kunming, Kunming, 650221, People's Republic of China.
| |
Collapse
|
35
|
Park C, Baek JW, Shin E, Kim ID. Two-Dimensional Electrically Conductive Metal-Organic Frameworks as Chemiresistive Sensors. ACS NANOSCIENCE AU 2023; 3:353-374. [PMID: 37868223 PMCID: PMC10588438 DOI: 10.1021/acsnanoscienceau.3c00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 10/24/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as attractive chemical sensing materials due to their exceptionally high porosity and chemical diversity. Nevertheless, the utilization of MOFs in chemiresistive type sensors has been hindered by their inherent limitation in electrical conductivity. The recent emergence of two-dimensional conductive MOFs (2D c-MOFs) has addressed this limitation by offering enhanced electrical conductivity, while still retaining the advantageous properties of MOFs. In particular, c-MOFs have shown promising advantages for the fabrication of sensors capable of operating at room temperature. Thus, active research on gas sensors utilizing c-MOFs is currently underway, focusing on enhancing sensitivity and selectivity. To comprehend the potential of MOFs as chemiresistive sensors for future applications, it is crucial to understand not only the fundamental properties of conductive MOFs but also the state-of-the-art works that contribute to improving their performance. This comprehensive review delves into the distinctive characteristics of 2D c-MOFs as a new class of chemiresistors, providing in-depth insights into their unique sensing properties. Furthermore, we discuss the proposed sensing mechanisms associated with 2D c-MOFs and provide a concise summary of the strategies employed to enhance the sensing performance of 2D c-MOFs. These strategies encompass a range of approaches, including the design of metal nodes and linkers, morphology control, and the synergistic use of composite materials. In addition, the review thoroughly explores the prospects of 2D c-MOFs as chemiresistors and elucidates their remarkable potential for further advancements. The insights presented in this review shed light on future directions and offer valuable opportunities in the chemical sensing research field.
Collapse
Affiliation(s)
- Chungseong Park
- Department of Materials Science and
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong Won Baek
- Department of Materials Science and
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Euichul Shin
- Department of Materials Science and
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
36
|
Zhou Y, Tian M, Li R, Zhang Y, Zhang G, Zhang C, Shuang S. Ultrasensitive Electrochemical Platform for Dopamine Detection Based on CoNi-MOF@ERGO Composite. ACS Biomater Sci Eng 2023; 9:5599-5609. [PMID: 37656436 DOI: 10.1021/acsbiomaterials.3c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
An electrochemical sensor applied for dopamine (DA) detection was constructed. An easy static way was used to synthesize bimetallic CoNi-MOF. Next, it was mixed with graphene oxide (GO) under ultrasound to get a uniform suspension. Subsequently, the solution was coated on the glassy carbon electrode (GCE) to form CoNi-MOF@ERGO/GCE by the electrochemical reduction method. The interaction between CoNi-MOF and electrochemically reduced graphene oxide (ERGO) enhances the electrocatalytic performance for DA detection. CoNi-MOF@ERGO/GCE has a wider linear range (0.1-400 μM) and a lower detection limit (0.086 μM) under optimum conditions. Furthermore, it has been applied to test DA in human serum samples. The results reveal that the DA sensor shows excellent performance, which will provide a novel idea for more sensitive and quicker DA detection.
Collapse
Affiliation(s)
- Ying Zhou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Min Tian
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ruichun Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
37
|
Liu J, Zhou K, Ullah S, Miao J, Wang H, Thonhauser T, Li J. Precise Pore Engineering of fcu-Type Y-MOFs for One-Step C 2 H 4 Purification from Ternary C 2 H 6 /C 2 H 4 /C 2 H 2 Mixtures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304460. [PMID: 37337386 DOI: 10.1002/smll.202304460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 06/21/2023]
Abstract
The purification of C2 H4 from C2 H6 /C2 H4 /C2 H2 mixtures is of great significance in the chemical industry for C2 H4 production but remains a daunting task. Guided by powerful reticular chemistry principles, herein a systematic study is carried out to engineer pore dimensions and pore functionality of fcu-type Y-based metal-organic frameworks (Y-MOFs) through the construction of a series of eight new structures using linear dicarboxylate linkers with different length and functional groups. This study illustrates how delicate changes in pore size and pore surface chemistry can effectively influence the adsorption preference of C2 H6 , C2 H4 , and C2 H2 by the MOFs. Importantly, clear relations between pore size/pore surface polarity and C2 adsorption selectivities of this series of MOFs are established. In particular, HIAM-326 built on a linker decorated with trifluoromethoxy group shows notably preferential adsorption of C2 H6 and C2 H2 over C2 H4 , with balanced C2 H2 /C2 H4 and C2 H6 /C2 H4 selectivities. This endows the compound with the capability of one-step purification of C2 H4 from C2 H6 /C2 H4 /C2 H2 ternary mixtures, which is validated by breakthrough measurements where high purity C2 H4 (99.9%+) can be obtained directly from the separation column. Its adsorption thermodynamics and underlying selective adsorption mechanisms are further revealed by ab initio calculations.
Collapse
Affiliation(s)
- Jiaqi Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, P. R. China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, P. R. China
| | - Saif Ullah
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Jiafeng Miao
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, P. R. China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, P. R. China
| | - Timo Thonhauser
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
38
|
Xu S, Ni H, Zhang X, Han C, Qian J. Abundant Surface Defects in Cobalt Hydroxides/Oxyhydroxides Induced by Zinc Species Facilitate Water Oxidation. Inorg Chem 2023; 62:14757-14763. [PMID: 37639239 DOI: 10.1021/acs.inorgchem.3c02210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The complex process of the anodic oxygen evolution reaction (OER) severely hinders overall water splitting, which further limits the large-scale production and application of hydrogen energy. In this work, one type of bimetallic coordination polymer of ZnCoBTC using the MOF-on-MOF strategy has been synthesized where both Co(II) and Zn(II) cations exhibit the same coordination environment. By applying an electric potential, the predesigned bimetallic MOF precursor can be conveniently degraded into CoOxHy as an active species for efficient OER. Owing to the dissolution of ZnOxHy species, in situ formed disordered defects on the external surface of the catalyst increase the specific surface area as well as expose abundant active materials. Therefore, the ZnCoOxHy nanosheet shows excellent OER performance and reaches an overpotential of only 334 mV at 10 mA cm-2 with a Tafel slope of 66.4 mV dec-1, indicating fast reaction kinetics. The results demonstrate that metals with the same coordination environment can undergo in situ replacement or secondary growth on the pristine MOF, and they can be electrochemically degraded into highly efficient catalysts for future energy applications.
Collapse
Affiliation(s)
- Shaojie Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Huijie Ni
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Xiaodeng Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Cheng Han
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| |
Collapse
|
39
|
Wang T, Wang Z, Hao J, Zhao J, Guo J, Gao Z, Song YY. Improved Sensitivity and Selectivity of Glutathione Detection through Target-Driven Electron Donor Generation in Photoelectrochemical Electrodes. Anal Chem 2023; 95:13242-13249. [PMID: 37615488 DOI: 10.1021/acs.analchem.3c02340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Glutathione (GSH) plays a vital role in many physiological processes, and its abnormal levels have been found to be associated with several diseases. In contrast to traditional methods using electron donor-containing electrolytes for photoelectrochemical (PEC) sensing, in this study, a target-driven electron donor generation in a PEC electrode was developed to detect GSH. Using well-aligned TiO2 nanotube arrays (TNTs) as the PEC substrate, mesoporous MIL-125(Ti) was grown in the TNTs through an in situ solvothermal method and subsequent two-step annealing treatment. The accommodation capacity of mesoporous MIL-125(Ti) allows a well loading of cystine and Pt nanoclusters (NCs). Taking advantage of the specific cleavage ability of disulfide bonds by GSH, cystine was converted to cysteine, which served as the electron donor for the PEC process. Benefiting from the confinement effect of mesoporous MIL-125(Ti), cysteine was effectively oxidized to cysteine sulfinic acid by the photogenerated holes. Importantly, the highly active Pt NCs decorated in the mesopores not only improved the charge transfer but also accelerated the above oxidation reaction. The synergistic effect of these factors enabled the efficient separation of the photogenerated electron-hole pairs, which induced a significant photocurrent increase and in turn led to the high-sensitivity detection of GSH. Consequently, the proposed PEC biosensor exhibited excellent performance in the detection of GSH in serum specimens. The target-driven electron donor generation designed in this study might open a new route for developing sensitive and selective PEC biosensors with application in complex biological environments.
Collapse
Affiliation(s)
- Tianmeng Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Zirui Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Jiani Hao
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Junjian Zhao
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Junli Guo
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Zhida Gao
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Yan-Yan Song
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| |
Collapse
|
40
|
Hu JJ, Xie KL, Xiong TZ, Wang MM, Wen HR, Peng Y, Liu SJ. Stable Europium(III) Metal-Organic Framework Demonstrating High Proton Conductivity and Fluorescence Detection of Tetracyclines. Inorg Chem 2023. [PMID: 37452746 DOI: 10.1021/acs.inorgchem.3c01468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A europium(III) metal-organic framework (MOF), namely, {[[(CH3)2NH2]3Eu2(DTTP-2OH)2(HCOO)(H2O)]·4H2O}n (Eu-MOF, H4DTTP-2OH = 2',5'-dihydroxy-[1,1':4',1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid) has been assembled through solvothermal method. The Eu-MOF is a three-dimensional (3D) (4,4,8)-connected topological framework with binuclear Eu(III) clusters as secondary building units, in which a richly ordered hydrogen bonding network formed among the free H2O molecules, dimethylamine cations, and phenolic hydroxyl groups provides a potential pathway for proton conduction. The proton conductivity reaches the category of superionic conductors (σ > 10-4 S cm-1) at room temperature with a maximum conductivity of 1.91 × 10-3 S cm-1 at 60 °C and 98% RH. Moreover, it also can be used as a fluorescence sensor in aqueous solution with detection limits of 0.14 μM for tetracycline, 0.13 μM for oxytetracycline and 0.11 μM for doxycycline. These results pave new methods for constructing MOFs with high proton conductivity and responsive fluorescence.
Collapse
Affiliation(s)
- Jun-Jie Hu
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Kang-Le Xie
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Tian-Zheng Xiong
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Miao-Miao Wang
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| |
Collapse
|
41
|
Ji XX, Liu YL, Chang XY, Li RL, Ye F, Yang L, Fu Y. An electrochemical sensor derived from Cu-BTB MOF for the efficient detection of diflubenzuron in food and environmental samples. Food Chem 2023; 428:136802. [PMID: 37421661 DOI: 10.1016/j.foodchem.2023.136802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Diflubenzuron is widely used as a benzoylurea insecticide, and its impact on human health should not be underestimated. Therefore, the detection of its residues in food and the environment is crucial. In this paper, octahedral Cu-BTB was fabricated using a simple hydrothermal method. It served as a precursor for synthesizing Cu/Cu2O/CuO@C with a core-shell structure through annealing, creating an electrochemical sensor for the detection of diflubenzuron. The response of Cu/Cu2O/CuO@C/GCE, expressed as ΔI/I0 exhibited a linear correlation with the logarithm of the diflubenzuron concentration ranging from 1.0 × 10-4 to 1.0 × 10-12 mol·L-1. The limit of detection (LOD) was determined to be 130 fM using differential pulse voltammetry (DPV). The electrochemical sensor demonstrated excellent stability, reproducibility, and anti-interference properties. Moreover, Cu/Cu2O/CuO@C/GCE was successfully employed to quantitatively determine diflubenzuron in actual food samples (tomato and cucumber) and environmental samples (Songhua River water, tap water, and local soil) with good recoveries. Finally, the possible mechanism of Cu/Cu2O/CuO@C/GCE for monitoring diflubenzuron was thoroughly investigated.
Collapse
Affiliation(s)
- Xian-Xian Ji
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yu-Long Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xin-Yue Chang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Rui-Long Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Liu Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
42
|
Huang Q, Yang Y, Qian J. Structure-directed growth and morphology of multifunctional metal-organic frameworks. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
43
|
Demir H, Daglar H, Gulbalkan HC, Aksu GO, Keskin S. Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
44
|
Wang Y, Chen J, Wang C, Zhang L, Yang Y, Chen C, Xie Y, Zhao P, Fei J. An electrochemical sensor based on Ce-MOF-derived Ce-doped poly(3,4-ethylenedioxythiophene) composite for efficient determination of rutin in food. Talanta 2023; 263:124678. [PMID: 37247454 DOI: 10.1016/j.talanta.2023.124678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/19/2023] [Accepted: 05/14/2023] [Indexed: 05/31/2023]
Abstract
As a common antioxidant and nutritional fortifier in food chemistry, rutin has positive therapeutic effects against novel coronaviruses. Here, Ce-doped poly(3,4-ethylenedioxythiophene) (Ce-PEDOT) nanocomposites derived through cerium-based metal-organic framework (Ce-MOF) as a sacrificial template have been synthesized and successfully applied to electrochemical sensors. Due to the outstanding electrical conductivity of PEDOT and the high catalytic activity of Ce, the nanocomposites were used for the detection of rutin. The Ce-PEDOT/GCE sensor detects rutin over a linear range of 0.02-9 μM with the limit of detection of 14.7 nM (S/N = 3). Satisfactory results were obtained in the determination of rutin in natural food samples (buckwheat tea and orange). Moreover, the redox mechanism and electrochemical reaction sites of rutin were investigated by the CV curves of scan rate and density functional theory. This work is the first to demonstrate the combined PEDOT and Ce-MOF-derived materials as an electrochemical sensor to detect rutin, thus opening a new window for the application of the material in detection.
Collapse
Affiliation(s)
- Yilin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, People's Republic of China
| | - Jia Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chenxi Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Li Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yaqi Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chao Chen
- School of Materials and Chemical Engineering, Hunan City University, Yiyang, 413000, People's Republic of China
| | - Yixi Xie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China; Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, People's Republic of China.
| |
Collapse
|
45
|
Hu L, Shi T, Chen J, Cui Q, Yu H, Wu D, Ma H, Wei Q, Ju H. Dual-quenching electrochemiluminescence resonance energy transfer system from CoPd nanoparticles enhanced porous g-C 3N 4 to FeMOFs-sCuO for neuron-specific enolase immunosensing. Biosens Bioelectron 2023; 226:115132. [PMID: 36791617 DOI: 10.1016/j.bios.2023.115132] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
For the diagnosis and therapy of small cell lung cancer (SCLC), the accurate and sensitive determination of neuron-specific enolase (NSE) content is crucial. This work outlines a dual-quenching electrochemiluminescence resonance energy transfer (ECL-RET) immunosensor based on the double quenching effects of iron base metal organic frameworks (FeMOFs) loaded with small sized CuO nanoparticles (FeMOFs-sCuO) towards CoPd nanoparticles (CoPdNPs) enhanced porous g-C3N4 (P-C3N4-CoPdNPs). To be specific, we prepared a porous g-C3N4 (P-C3N4) which has a rich porous structure, and significantly increased the specific surface area and the number of reaction sites of P-C3N4. Meanwhile, the CoPdNPs were loaded onto P-C3N4 to improve the ECL luminescence property of P-C3N4/K2S2O8 system through acting as a coreaction accelerator. In addition, the ultraviolet-visible (UV-vis) absorption spectra of FeMOFs and small sized CuO nanoparticles (sCuO) showed considerable overlap with the ECL emission spectra of P-C3N4 appropriately. Therefore, FeMOFs with high specific surface area were prepared and well combined with sCuO to effectively dual-quenching the ECL emission of P-C3N4 based on resonance energy transfer. Hence, a new type ECL-RET couple made up of P-C3N4-CoPdNPs (donor) and FeMOFs-sCuO (acceptor) were developed for the first time. A certain amount of P-C3N4-CoPdNPs, Ab1, BSA, NSE were modified layer by layer onto the electrode surface. Then FeMOFs-sCuO-Ab2 bioconjugates was incubated through the immune recognition binding. As a result, a sandwich-type ECL biosensor was manufactured successfully for NSE immunoassay. Under optimal experimental conditions, the limit of detection (LOD) and the limit of quantitation (LOQ) of the prepared ECL sensor for NSE analysis was 20.4 fg mL-1 and 7.99 fg mL-1, respectively, with the relative standard deviation (RSD) of 1.68%. The linear detection range was 0.0000500-100 ng mL-1. The studied immunosensor had satisfactory sensitivity, specificity and reproducibility, manifesting the suggested sensing strategy might offer a good technical means and theoretical basis for the sensitivity analysis of NSE and has a potential application in clinical diagnosis analysis.
Collapse
Affiliation(s)
- Lihua Hu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Tengfei Shi
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jiye Chen
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Qianqian Cui
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hao Yu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
46
|
Amiri M, Lulich A, Chiu NC, Wolff S, Fast DB, Stickle WF, Stylianou KC, Nyman M. Bismuth-Polyoxocation Coordination Networks: Controlling Nuclearity and Dimension-Dependent Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18087-18100. [PMID: 36976927 DOI: 10.1021/acsami.3c01172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bismuth-oxocluster nodes for metal-organic frameworks (MOFs) and coordination networks/polymers are less prolific than other families featuring zinc, zirconium, titanium, lanthanides, etc. However, Bi3+ is non-toxic, it readily forms polyoxocations, and its oxides are exploited in photocatalysis. This family of compounds provides opportunity in medicinal and energy applications. Here, we show that Bi node nuclearity depends on solvent polarity, leading to a family of Bix-sulfonate/carboxylate coordination networks with x = 1-38. Larger nuclearity-node networks were obtained from polar and strongly coordinating solvents, and we attribute the solvent's ability to stabilize larger species in solution. The strong role of the solvent and the lesser role of the linker in defining node topologies differ from other MOF syntheses, and this is due to the Bi3+ intrinsic lone pair that leads to weak node-linker interactions. We describe this family by single-crystal X-ray diffraction (eleven structures), obtained in pure forms and high yields. Ditopic linkers include NDS (1,5-naphthalenedisulfonate), DDBS (2,2'-[biphenyl-4,4'-diylchethane-2,1-diyl] dibenzenesulphonate), and NH2-benzendicarboxylate (BDC). While the BDC and NDS linkers yield more open-framework topologies that resemble those obtained by carboxylate linkers, topologies with DDBS linkers appear to be in part driven by association between DDBS molecules. An in situ small-angle X-ray scattering study of Bi38-DDBS reveals stepwise formation, including Bi38-assembly, pre-organization in solution, followed by crystallization, confirming the less important role of the linker. We demonstrate photocatalytic hydrogen (H2) generation with select members of the synthesized materials without the benefit of a co-catalyst. Band gap determination from X-ray photoelectron spectroscopy (XPS) and UV-vis data suggest the DDBS linker effectively absorbs in the visible range with ligand-to-Bi-node charge transfer. In addition, materials containing more Bi (larger Bi38-nodes or Bi6 inorganic chains) exhibit strong UV absorption, also contributing to effective photocatalysis by a different mechanism. All tested materials became black with extensive UV-vis exposure, and XPS, transmission electron microscopy, and X-ray scattering of the black Bi38-framework suggest that Bi0 is formed in situ, without phase segregation. This evolution leads to enhanced photocatalytic performance, perhaps due to increased light absorption.
Collapse
Affiliation(s)
- Mehran Amiri
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Alice Lulich
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Nan-Chieh Chiu
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Samuel Wolff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Dylan B Fast
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - William F Stickle
- Hewlett-Packard Co., 1000 NE Circle Blvd., Corvallis, Oregon 97330, United States
| | - Kyriakos C Stylianou
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
47
|
Mandal S, Bej S, Banerjee P. Insights into the uses of two azine decorated d10-MOFs for corrosion inhibition application on mild steel surface in saline medium: Experimental as well as theoretical investigation. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
48
|
Qu L, Wu M, Zhao L, Li J, Pan H. A sandwich electrochemical immunosensor based on MXene@dual MOFs for detection of tumor marker CA125. Mikrochim Acta 2023; 190:147. [PMID: 36947252 DOI: 10.1007/s00604-023-05719-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
The detection signal of carbohydrate antigen 125 (CA125) can be quantitatively amplified via the dual metal-organic framework (MOF) sandwich strategy. We propose a versatile method for synthesizing uniform MXene and MIL-101(Fe)-NH2 composites that combine the advantages of both materials to build a base layer with superb performance. MXene exhibits excellent electrical conductivity and high surface area. The mesoporous MIL-101(Fe)-NH2 not only increases the loading capacity of the primary antibody but also possesses the catalytic activity of the metal center (Fe). UiO66 loaded with methylene blue (MB) was fabricated as an electrochemical immunosensor signal tag to enable the detection of CA125. The mixture of MXene and MIL-101(Fe)-NH2 prepared as the substrate was fixed by chitosan rich in amino groups. As the signal amplification sector, UiO66@MB enhanced secondary antibody loading capacity and generated a redox signal enabling the detection of antigenic substances. The proposed electrochemical immunosensor demonstrated high sensitivity with a low limit of detection (LOD) of 0.006 U/mL. Therefore, the dual MOF sandwich-based immunosensor provides a novel method for the early diagnosis of CA125.
Collapse
Affiliation(s)
- Lingli Qu
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Mengdie Wu
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lu Zhao
- School of Materials Science and Engineering, Chang' an University, Xi'an, 710062, Shaanxi, China
| | - Jiang Li
- School of Materials Science and Engineering, Chang' an University, Xi'an, 710062, Shaanxi, China.
| | - Hongzhi Pan
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
49
|
Lulich A, Amiri M, Stephen D, Shohel M, Mao Z, Nyman M. Bismuth Coordination Polymers with Fluorinated Linkers: Aqueous Stability, Bivolatility, and Adsorptive Behavior. ACS OMEGA 2023; 8:10476-10486. [PMID: 36969471 PMCID: PMC10034978 DOI: 10.1021/acsomega.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Bismuth metal-organic frameworks and coordination polymers (CP) are challenging to synthesize, given the poor solubility of bismuth precursors and asymmetric and labile ligation of Bi3+ due to its intrinsic lone pair. Here, we synthesize and structurally characterize three Bi3+-CPs, exploiting a tetrafluoroterephtalate (F4BDC) linker to determine the effect of high acidity on these synthesis and coordination challenges. Single-crystal X-ray diffraction characterization showed that pi-pi stacking of linkers directs framework arrangement and generally deters open porosity in the three structures, respectively featuring Bi chains (Bi chain -F 4 BDC), Bi dimers (Bi 2 -F 4 BDC) linked into chains, and Bi tetramers (Bi 4 -F 4 BDC). Powder X-ray diffraction and microscopic imaging show the high purity and stability of these compounds in water. Naphthalenedisulfonate (NDS) was used as a mineralizer in the synthesis of (Bi chain -F 4 BDC) and (Bi 4 -F 4 BDC), and studies of its role in assembly pathways yielded two additional structures featuring mixed NDS and F4BDC, respectively, linking monomer and octamer Bi nodes, and confirmed that F4BDC is the preferred (less labile) linker. Methylene blue (MB) adsorption studies show differing efficacies of the three Bi-F4BDC phases, attributed to surface characteristics of the preferential growth facets, while generally most effective adsorption is attributed to the hydrophobicity of fluorinated ligands. Finally, thermogravimetric analysis of all three Bi-F4BDC phases indicates simultaneous ligand degradation and in situ formation of volatile Bi compounds, which could be exploited in the chemical vapor deposition of Bi-containing thin films.
Collapse
Affiliation(s)
| | | | - Doctor Stephen
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Mohammad Shohel
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Zhiwei Mao
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
50
|
Rabiei K, Mohammadkhani Z, Keypour H, Kouhdareh J. Palladium Schiff base complex-modified Cu(BDC-NH 2) metal-organic frameworks for C-N coupling. RSC Adv 2023; 13:8114-8129. [PMID: 36926010 PMCID: PMC10014173 DOI: 10.1039/d3ra01020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
In this study, the synthesis of a novel functionalized metal-organic-framework (MOF) [Cu(BDC-NH2)@Schiff-base-Pd(ii)] catalyst via post-synthetic modification of Cu(BDC-NH2) is reported. The targeted complex was prepared by chemically attaching N,N'-bis(5-formylpyrrol-2-ylmethyl) homopiperazine via a Schiff base reaction followed by complexation with Pd ions. Afterwards, the synthesized solid was applied as a very effective multifunctional catalyst in C-N coupling reactions. The synthesized compounds were identified by suitable techniques including N2 isotherms, EDX spectroscopy, FT-IR spectroscopy, XRD, SEM, ICP-OES and TG-DTA. This nanocatalyst was used in C-N cross-coupling reactions, and it showed its usage in a diverse range of different functional groups with good efficiency. The reasons for introducing this catalyst system are its advantages such as considerably high selectivity, almost complete conversion of products, high yields, and convenient separation of catalysts and products. The results indicate that the highest efficiency of the product in the reaction was obtained in the shortest possible time with the use of [Cu(BDC-NH2)@Schiff-base-Pd(ii)] catalysts. Overall, the high catalytic activity of the [Cu(BDC-NH2)@Schiff-base-Pd(ii)] catalyst may be due to the obtained high surface area and the synergistic features created between Lewis acidic Cu nodes and Pd ions.
Collapse
Affiliation(s)
- Khadijeh Rabiei
- Department of Chemistry, Faculty of Science, Qom University of Technology Qom Iran
| | - Zahra Mohammadkhani
- Department of Chemistry, Faculty of Science, Qom University of Technology Qom Iran
| | - Hassan Keypour
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Jamal Kouhdareh
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| |
Collapse
|