1
|
Luo Q, Wang K, Zhang Q, Ding W, Wang R, Li L, Peng S, Ji D, Qin X. Tailoring Single-Atom Coordination Environments in Carbon Nanofibers via Flash Heating for Highly Efficient Bifunctional Oxygen Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202413369. [PMID: 39162070 DOI: 10.1002/anie.202413369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/21/2024]
Abstract
The rational design of carbon-supported transition metal single-atom catalysts necessitates precise atomic positioning within the precursor. However, structural collapse during pyrolysis can occlude single atoms, posing significant challenges in controlling both their utilization and coordination environment. Herein, we present a surface atom adsorption-flash heating (FH) strategy, which ensures that the pre-designed carbon nanofiber structure remains intact during heating, preventing unforeseen collapse effects and enabling the formation of metal atoms in nano-environments with either tetra-nitrogen or penta-nitrogen coordination at different flash heating temperatures. Theoretical calculations and in situ Raman spectroscopy reveal that penta-nitrogen coordinated cobalt atoms (Co-N5) promote a lower energy pathway for oxygen reduction and oxygen evolution reactions compared to the commonly formed Co-N4 sites. This strategy ensures that Co-N5 sites are fully exposed on the surface, achieving exceptionally high atomic utilization. The turnover frequency (65.33 s-1) is 47.4 times higher than that of 20 % Pt/C under alkaline conditions. The porous, flexible carbon nanofibers significantly enhance zinc-air battery performance, with a high peak power density (273.8 mW cm-2), large specific capacity (784.2 mAh g-1), and long-term cycling stability over 600 h. Additionally, the flexible fiber-shaped zinc-air battery can power wearable devices, demonstrating significant potential in flexible electronics applications.
Collapse
Affiliation(s)
- Qingliang Luo
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Kangkang Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Qiangqiang Zhang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Wei Ding
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Rongwu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016, China
| | - Dongxiao Ji
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaohong Qin
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Lin X, Liu D, Shi L, Liu F, Ye F, Cheng R, Dai L. Second-Shell Coordination Environment Modulation for MnN 4 Active Sites by Oxygen Doping to Boost Oxygen Reduction Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407146. [PMID: 39668408 DOI: 10.1002/smll.202407146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/02/2024] [Indexed: 12/14/2024]
Abstract
As a category of transition metal-nitrogen-carbon (M-N-C) catalysts, Mn-based single-atom catalysts (SACs) are considered as promising non-precious metal catalysts for stable oxygen reduction reaction (ORR) due to their Fenton-inactive character (versus Fe) and more abundant earth reserves (versus Ni, Co). However, their ORR activity is unsatisfactory. Besides, the structure-activity relationship via tuning the coordination environment of the second coordination shell for transition metal single sites is still elusive. Here, a Mn SAC with O doping in the second-shell of atomically dispersed Mn centers (MnSAC-O/C) as highly efficient and stable ORR catalyst is developed. X-ray absorption spectroscopy combined with theoretical calculations verifies the O doping in the second-shell of Mn center, and reveals the distortion of local environment of Mn center in the MnSAC-O/C. The MnSAC-O/C exhibits high ORR performance with a half-wave potential of 0.898 V, superior to MnSAC-C, commercial Pt/C and most reported non-noble metal-based SACs. More importantly, MnSAC-O/C based zinc-air batteries (ZABs) deliver outstanding durability with stable operation exceeding 930 h. Theoretical calculations confirm that O doping breaks the symmetry of charge distribution of MnN4 active center and facilitates OH* desorption, thus attributing to the promoted ORR activity.
Collapse
Affiliation(s)
- Xuanni Lin
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dong Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lei Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Feng Liu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Fenghui Ye
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruyi Cheng
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Sun J, Xu S, Gao W, Zhao G. Engineering the Local Electronic Configuration of Diatomic Iron-Nickel Site for Enhanced Nitrate and Ammonia Co-Electrolysis Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409239. [PMID: 39659094 DOI: 10.1002/smll.202409239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/29/2024] [Indexed: 12/12/2024]
Abstract
Anthropogenic activities have caused a significant rise in nitrate and ammonia nitrogen levels in natural water bodies, disrupting the balance of the nitrogen cycle. The electrocatalytic reduction of nitrate and the oxidation of ammonia are promising strategies for converting polyvalent nitrogen into nontoxic and harmless N2. Herein, a bifunctional electrode loaded with diatomic iron-nickel site on porous N-doped carbon (FeNi-NC) is designed and successfully applied for the co-electrolysis of nitrate and ammonia. The incorporation of the Fe atom shifts the partial density of states of Ni 3d away from the Fermi level and suppresses the 3d-2π* coupling between Ni sites and superficial N2, leading to the easy desorption of N2 intermediates. Consequently, the Faradaic efficiencies of FeNi-NC for N2 production at the cathode and anode are 90.3% and 99.4% at 1.8 V, respectively, and an electricity consumption saving of 19.4% is achieved. This work provides a feasible strategy to regulate the electronic configuration of atomically dispersed catalysts for sewage treatment.
Collapse
Affiliation(s)
- Jie Sun
- School of Chemical Science and Engineering, Department of Thoracic Surgery, Shanghai Tongji Hospital, Tongji University, Shanghai, 200092, P. R. China
| | - Shaohan Xu
- School of Chemical Science and Engineering, Department of Thoracic Surgery, Shanghai Tongji Hospital, Tongji University, Shanghai, 200092, P. R. China
| | - Weiqi Gao
- School of Chemical Science and Engineering, Department of Thoracic Surgery, Shanghai Tongji Hospital, Tongji University, Shanghai, 200092, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Department of Thoracic Surgery, Shanghai Tongji Hospital, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
4
|
Wang H, Yuan H, Wang W, Shen L, Sun J, Liu X, Yang J, Wang X, Wang T, Wen N, Gao Y, Song K, Chen D, Wang S, Zhang YW, Wang J. Asymmetric Polarization Modulation of d-p Hybridization-Enhanced Bidirectional Sulfur Redox Kinetics with Heteronuclear Dual-Atom Catalysts. ACS NANO 2024; 18:33405-33417. [PMID: 39604013 DOI: 10.1021/acsnano.4c09637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Lithium sulfur batteries (LiSBs) represent a highly promising avenue for future energy storage systems, offering high energy density and eco-friendliness. However, the sluggish kinetics of the sulfur redox reaction (SRR) poses a significant challenge to their widespread applications. To tackle this challenge, we have developed an efficient heteronuclear dual-atom catalyst (hetero-DAC) that leverages surface charge polarization to enhance the asymmetric adsorption of sulfur intermediates. This study investigates how asymmetric electronic redistribution of CoFe DACs modulates the d-p orbital hybridization with sulfur intermediates, revealing the mechanisms of moderate adsorption dynamics with enhanced catalytic performance. The dynamic switching between mono and dual adsorption sites, enabled by the heteronuclear polarized configuration, fine-tunes the orbital hybridization, boosting the bidirectional rate-determining steps, that is, the solid-solid conversion of Li2S2 to Li2S and the reverse dissociation of Li2S. Consequently, the thus-designed CoFe DACs cathode delivers impressive rate performance, achieving a high initial specific capacity of 703.9 mA h g-1 at 3 C, with a negligible decay rate of only 0.031% over 1000 cycles, demonstrating sustained long-term cycling stability. This work bridges geometric configurations and electronic structures, elucidating the mechanisms of asymmetric trapping and conversion enabled by hetero-DACs and offering fresh perspectives for catalyst design in LiSBs and beyond.
Collapse
Affiliation(s)
- Haimei Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
| | - Hao Yuan
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, No. 16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wanwan Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis No. 08-03, Singapore 138634, Republic of Singapore
| | - Lei Shen
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Republic of Singapore
| | - Jianguo Sun
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
| | - Ximeng Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
| | - Jing Yang
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, No. 16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xingyang Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
| | - Tuo Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
| | - Ning Wen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Yulin Gao
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
| | - Kepeng Song
- Electron Microscopy Center, Shandong University, Jinan 250100, Shandong, China
| | - Dairong Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Shijie Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis No. 08-03, Singapore 138634, Republic of Singapore
| | - Yong-Wei Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, No. 16-16 Connexis, Singapore 138632, Republic of Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
- National University of Singapore (Chongqing) Research Institute, Chongqing Liang Jiang New Area, Chongqing 401120, China
| |
Collapse
|
5
|
Hei P, Sai Y, Li W, Meng J, Lin Y, Sun X, Wang J, Song Y, Liu XX. Diatomic Catalysts for Aqueous Zinc-Iodine Batteries: Mechanistic Insights and Design Strategies. Angew Chem Int Ed Engl 2024; 63:e202410848. [PMID: 39268653 DOI: 10.1002/anie.202410848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
There has been a growing interest in developing catalysts to enable the reversible iodine conversion reaction for high-performance aqueous zinc-iodine batteries (AZIBs). While diatomic catalysts (DACs) have demonstrated superior performance in various catalytic reactions due to their ability to facilitate synergistic charge interactions, their application in AZIBs remains unexplored. Herein, we present, for the first time, a DAC comprising Mn-Zn dual atoms anchored on a nitrogen-doped carbon matrix (MnZn-NC) for iodine loading, resulting in a high-performance AZIB with a capacity of 224 mAh g-1 at 1 A g-1 and remarkable cycling stability over 320,000 cycles. The electron hopping along the Mn-N-Zn bridge is stimulated via a spin exchange mechanism. This process broadens the Mn 3dxy band width and enhances the metallic character of the catalyst, thus facilitating charge transfer between the catalysts and reaction intermediates. Additionally, the increased electron occupancy within the d-orbital of Zn elevates Zn's d-band center, thereby enhancing chemical interactions between MnZn-NC and I-based species. Furthermore, our mechanism demonstrates potential applicability to other Metal-Zn-NC DACs with spin-polarized atoms. Our work elucidates a clear mechanistic understanding of diatomic catalysts and provides new insights into catalyst design for AZIBs.
Collapse
Affiliation(s)
- Peng Hei
- Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819, China
| | - Ya Sai
- Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819, China
| | - Wenjie Li
- Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819, China
| | - Jianming Meng
- Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819, China
| | - Yulai Lin
- Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819, China
| | - Xiaoqi Sun
- Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University), Ministry of Education, 3-11, Wenhua Road, Heping district, Shenyang, 110819, China
| | - Jing Wang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Yu Song
- Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University), Ministry of Education, 3-11, Wenhua Road, Heping district, Shenyang, 110819, China
| | - Xiao-Xia Liu
- Department of Chemistry, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, 3-11, Wenhua Road, Heping district, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University), Ministry of Education, 3-11, Wenhua Road, Heping district, Shenyang, 110819, China
| |
Collapse
|
6
|
Sun X, Zhang P, Zhang B, Xu C. Electronic Structure Regulated Carbon-Based Single-Atom Catalysts for Highly Efficient and Stable Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405624. [PMID: 39252646 DOI: 10.1002/smll.202405624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/18/2024] [Indexed: 09/11/2024]
Abstract
Single-atom-catalysts (SACs) with atomically dispersed sites on carbon substrates have attained great advancements in electrocatalysis regarding maximum atomic utilization, unique chemical properties, and high catalytic performance. Precisely regulating the electronic structure of single-atom sites offers a rational strategy to optimize reaction processes associated with the activation of reactive intermediates with enhanced electrocatalytic activities of SACs. Although several approaches are proposed in terms of charge transfer, band structure, orbital occupancy, and the spin state, the principles for how electronic structure controls the intrinsic electrocatalytic activity of SACs have not been sufficiently investigated. Herein, strategies for regulating the electronic structure of carbon-based SACs are first summarized, including nonmetal heteroatom doping, coordination number regulating, defect engineering, strain designing, and dual-metal-sites scheming. Second, the impacts of electronic structure on the activation behaviors of reactive intermediates and the electrocatalytic activities of water splitting, oxygen reduction reaction, and CO2/N2 electroreduction reactions are thoroughly discussed. The electronic structure-performance relationships are meticulously understood by combining key characterization techniques with density functional theory (DFT) calculations. Finally, a conclusion of this paper and insights into the challenges and future prospects in this field are proposed. This review highlights the understanding of electronic structure-correlated electrocatalytic activity for SACs and guides their progress in electrochemical applications.
Collapse
Affiliation(s)
- Xiaohui Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Bangyan Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| |
Collapse
|
7
|
Niu WJ, Zhao WW, Yan YY, Cai CY, Yu BX, Li RJ. In-depth understanding the synergisms of Cu atomic clusters on Cu single atoms for highly effective electrocatalytic oxygen reduction reaction and Zn-Air battery. J Colloid Interface Sci 2024; 675:989-998. [PMID: 39003818 DOI: 10.1016/j.jcis.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
In this paper, a novel, simple and mild soft template assisted strategy and further carbonization approach has been constructed to the size-tunable preparation of porous Cu-N-C/Surfactant catalysts successfully. Note that the pluronic F127 has a significant influence on the synthesis of porous Cu-N-C/F127 with the atomically dispersed Cu-N4 and adjacent Cu atomic clusters (ACs) than other surfactants owing to their particular non-ionic structure. By combining a series of experimental analysis and density functional theory (DFT) calculations, the synergistic effects between the adjacent Cu ACs and atomically dispersed Cu-N4 are favorable for manipulating the binding energy of O2 adsorption and intermediates desorption at the atomic interface of catalysts, resulting in an excellent electrocatalytic ORR performance with a faster kinetics for Cu-N-C/F127 than those of the Cu-N-C, Cu-N-C/CTAB, Cu-N-C/SDS, and comparable with the commercial Pt/C catalyst. This method not only provides a novel approach for synthesizing highly effective copper based single atom catalysts toward ORR, but also offers an in-depth understanding of the synergisms of adjacent ACs on the Cu single atoms (SAs) for highly effective electrocatalytic ORR and Zn-air Battery.
Collapse
Affiliation(s)
- Wen-Jun Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
| | - Wei-Wei Zhao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Ying-Yun Yan
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Chen-Yu Cai
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Bing-Xin Yu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Ru-Ji Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| |
Collapse
|
8
|
Wang Y, Wang H, Yang Y, Hao Z, Deng R, Dong Q, Liu Q, You H, Song S. Fenton-Inactive Cd Enables Highly Selective O 2-Derived Domino Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407051. [PMID: 39513409 DOI: 10.1002/advs.202407051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/06/2024] [Indexed: 11/15/2024]
Abstract
Advancing and deploying Fenton-inactive Cd that combines excellent catalytic activity, selectivity, and stability remains a serious challenge, predominantly owing to the difficulty in regulating the intrinsic electronic states and local geometric structures of such fully occupied d10s2 configuration. In this work, a combination of experiments and theoretical calculations reveals that the incorporation of boron (B) enables the tuning of the average oxidation state of Cd0 to Cdδ+, facilitating electron localization and implementing a different electrocatalytic preference compared to conventional d10-electron configurations. The resulting Cd(B) catalyst demonstrates high selectivity (>90% on average) in the O2-to-H2O2 conversion, negligible activity loss over 100 h, and a superior H2O2 production rate (15.5 mol∙gcat -1 h-1 at -100 mA). More unexpectedly, the in situ generated H2O2 exhibits a unique advantage over commercial products, selectively oxidizing cinnamaldehyde to benzaldehyde by modulating the practical current.
Collapse
Affiliation(s)
- Yitong Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Huilin Wang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yulu Yang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Zhaomin Hao
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Ruiping Deng
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Qingsong Dong
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Qingchao Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Hongpeng You
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Shuyan Song
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
9
|
Gan D, Ren Y, Sun S, Yang Y, Li X, Xia S. Atomically dispersed copper-zinc dual sites anchored on nitrogen-doped porous carbon toward peroxymonosulfate activation for degradation of various organic contaminants. J Colloid Interface Sci 2024; 673:756-764. [PMID: 38905997 DOI: 10.1016/j.jcis.2024.06.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/28/2024] [Accepted: 06/08/2024] [Indexed: 06/23/2024]
Abstract
Single-atom catalysts (SACs) have been widely studied in Fenton-like reactions, wherein their catalytic performance could be further enhanced by adjusting electronic structure and regulating coordination environment, although relevant research is rarely reported. This text elucidates fabrication of dual atom catalyst systems aimed at augmenting their catalytic efficiency. Herein, atomically dispersed copper-zinc (Cu-Zn) dual sites anchored on nitrogen (N)-doped porous carbon (NC), referred to as CuZn-NC, were synthesized using cage-encapsulated pyrolysis and host-guest strategies. The CuZn-NC catalyst exhibited high activity in activation of peroxymonosulfate (PMS) for degradation of organic pollutants. Based on synergistic effects of adjacent Cu and Zn atom pairs, CuZn-NC (PMS) system achieved 94.44 % bisphenol A (BPA) degradation in 24 min. The radical pathway predominated, and coexistence of non-radical species was demonstrated for BPA degradation in CuZn-NC/PMS system. More importantly, CuZn-NC/PMS system showed generality for degradation of various refractory contaminants. Our experiments indicate that CuZn-N sites on CuZn-NC act as active sites for bonding PMS molecules with optimal binding energy, while pyrrolic N sites are considered as adsorption sites for organic molecules. Overall, this research designs diatomic site catalysts (DACs), with promising implications for wastewater treatment.
Collapse
Affiliation(s)
- Defu Gan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yifan Ren
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Center for Environmental Functional Materials, Tongji University, Shanghai 200092, China
| | - Shiqiang Sun
- College of Physics and New Energy, Xuzhou University of Technology, Xuzhou 221000, China
| | - Yi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaodi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
10
|
Chen M, Sun W, Liu H, Luo Q, Wang Y, Huan J, Hou Y, Zheng Y. Synergistically Utilizing a Liquid Bridge and Interconnected Porous Superhydrophilic Structures to Achieve a One-Step Fog Collection Mode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403260. [PMID: 39032136 DOI: 10.1002/smll.202403260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Conventional fog collection efficiency is subject to the inherent inefficiencies of its three constituent steps: fog capture, coalescence, and transportation. This study presents a liquid bridge synergistic fog collection system (LSFCS) by synergistically utilizing a liquid bridge and interconnected porous superhydrophilic structures (IPHS). The results indicate that the introduction of liquid bridge not only greatly accelerates water droplet transportation, but also facilitates the IPHS in maintaining rough structures that realize stable and efficient fog capture. During fog collection, the lower section of the IPHS is covered by a water layer, however due to the effect of the liquid bridge, the upper section protrudes out, while covered by a connective thin water film that does not obscure the microstructures of the upper section. Under these conditions, a one-step fog collection mode is realized. Once captured by the IPHS, fog droplets immediately coalesce with the water film, and are simultaneously transported into a container under the effect of the liquid bridge. The LSFCS achieves a collection efficiency of 6.5 kg m-2 h-1, 2.3 times that of a system without a liquid bridge. This study offers insight on improving fog collection efficiency, and holds promise for condensation water collection or droplet manipulation.
Collapse
Affiliation(s)
- Mingshuo Chen
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Wei Sun
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Hongtao Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Qiang Luo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yining Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jinmu Huan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yongping Hou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yongmei Zheng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
11
|
Liu R, Wu H, Chung HY, Utomo WP, Tian Y, Shang J, Sit PHL, Ng YH. Incorporating Zinc Metal Sites in Aluminum-Coordinated Porphyrin Metal-Organic Frameworks for Enhanced Photocatalytic Nitrogen Reduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402779. [PMID: 39082205 DOI: 10.1002/smll.202402779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/28/2024] [Indexed: 11/02/2024]
Abstract
Rationally designing photocatalysts is crucial for the solar-driven nitrogen reduction reaction (NRR) due to the stable N≡N triple bond. Metal-organic frameworks (MOFs) are considered promising candidates but suffer from insufficient active sites and inferior charge transport. Herein, it is demonstrated that incorporating 3d metal ions, such as zinc (Zn) or iron (Fe) ions, into Al-coordinated porphyrin MOFs (Al-PMOFs) enables the enhanced ammonia yield of 88.7 and 65.0 µg gcat -1 h-1, 2.5- and 1.8-fold increase compared to the pristine Al-PMOF (35.4 µg gcat -1 h-1), respectively. The origin of ammonia (NH3) is verified via isotopic labeling experiments. Incorporating Zn or Fe into Al-PMOF generates active sites in Al-PMOF, that is, Zn-N4 or Fe-N4 sites, which not only facilitates the adsorption and activation of N2 molecules but suppresses the charge recombination. Photophysical and theoretical studies further reveal the upshift of the lowest unoccupied molecular orbital (LUMO) level to a more energetic position upon inserting 3d metal ions (with a more significant shift in Zn than Fe). The promoted nitrogen activation, suppressed charge recombination, and more negative LUMO levels in Al-PMOF(3d metal) contribute to a higher photocatalytic activity than pristine Al-PMOF. This work provides a promising strategy for designing photocatalysts for efficient solar-to-chemical conversion.
Collapse
Affiliation(s)
- Rui Liu
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Hao Wu
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 99078, China
| | - Hoi Ying Chung
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Wahyu Prasetyo Utomo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Sukolilo, Surabaya, 60111, Indonesia
| | - Yuanmeng Tian
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Patrick H-L Sit
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
12
|
Li S, Xing G, Zhao S, Peng J, Zhao L, Hu F, Li L, Wang J, Ramakrishna S, Peng S. Fe-N co-doped carbon nanofibers with Fe 3C decoration for water activation induced oxygen reduction reaction. Natl Sci Rev 2024; 11:nwae193. [PMID: 39301077 PMCID: PMC11409866 DOI: 10.1093/nsr/nwae193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 09/22/2024] Open
Abstract
Proton activity at the electrified interface is central to the kinetics of proton-coupled electron transfer (PCET) reactions in electrocatalytic oxygen reduction reaction (ORR). Here, we construct an efficient Fe3C water activation site in Fe-N co-doped carbon nanofibers (Fe3C-Fe1/CNT) using an electrospinning-pyrolysis-etching strategy to improve interfacial hydrogen bonding interactions with oxygen intermediates during ORR. In situ Fourier transform infrared spectroscopy and density functional theory studies identified delocalized electrons as key to water activation kinetics. Specifically, the strong electronic perturbation of the Fe-N4 sites by Fe3C disrupts the symmetric electron density distribution, allowing more free electrons to activate the dissociation of interfacial water, thereby promoting hydrogen bond formation. This process ultimately controls the PCET kinetics for enhanced ORR. The Fe3C-Fe1/CNT catalyst demonstrates a half-wave potential of 0.83 V in acidic media and 0.91 V in alkaline media, along with strong performance in H2-O2 fuel cells and Al-air batteries.
Collapse
Affiliation(s)
- Shaoxiong Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Gengyu Xing
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sheng Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jian Peng
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, North Wollongong, NSW 2522, Australia
| | - Lingfei Zhao
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, North Wollongong, NSW 2522, Australia
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jiazhao Wang
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, North Wollongong, NSW 2522, Australia
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
13
|
Ruan QD, Zhao YC, Feng R, Haq MU, Zhang L, Feng JJ, Gao YJ, Wang AJ. Bimetal Oxides Anchored on Carbon Nanotubes/Nanosheets as High-Efficiency and Durable Bifunctional Oxygen Catalyst for Advanced Zn-Air Battery: Experiments and DFT Calculations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402104. [PMID: 38949416 DOI: 10.1002/smll.202402104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/13/2024] [Indexed: 07/02/2024]
Abstract
To meet increasing requirement for innovative energy storage and conversion technology, it is urgent to prepare effective, affordable, and long-term stable oxygen electrocatalysts to replace precious metal-based counterparts. Herein, a two-step pyrolysis strategy is developed for controlled synthesis of Fe2O3 and Mn3O4 anchored on carbon nanotubes/nanosheets (Fe2O3-Mn3O4-CNTs/NSs). The typical catalyst has a high half-wave potential (E1/2 = 0.87 V) for oxygen reduction reaction (ORR), accompanied with a smaller overpotential (η10 = 290 mV) for oxygen evolution reaction (OER), showing substantial improvement in the ORR and OER performances. As well, density functional theory calculations are performed to illustrate the catalytic mechanism, where the in situ generated Fe2O3 directly correlates to the reduced energy barrier, rather than Mn3O4. The Fe2O3-Mn3O4-CNTs/NSs-based Zn-air battery exhibits a high-power density (153 mW cm-2) and satisfyingly long durability (1650 charge/discharge cycles/550 h). This work provides a new reference for preparation of highly reversible oxygen conversion catalysts.
Collapse
Affiliation(s)
- Qi-Dong Ruan
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yun-Cai Zhao
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Rui Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Mahmood Ul Haq
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Lu Zhang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yi-Jing Gao
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| |
Collapse
|
14
|
Huang S, Lin F, Wang S, Zeng X, Ling H, Hu X, Shen Z, Cao D. Asymmetric Microenvironment Tailoring Strategies of Atomically Dispersed Dual-Site Catalysts for Oxygen Reduction and CO 2 Reduction Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407974. [PMID: 39152929 DOI: 10.1002/adma.202407974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Dual-atom catalysts (DACs) with atomically dispersed dual-sites, as an extension of single-atom catalysts (SACs), have recently become a new hot topic in heterogeneous catalysis due to their maximized atom efficiency and dual-site diverse synergy, because the synergistic diversity of dual-sites achieved by asymmetric microenvironment tailoring can efficiently boost the catalytic activity by optimizing the electronic structure of DACs. Here, this work first summarizes the frequently-used experimental synthesis and characterization methods of DACs. Then, four synergistic catalytic mechanisms (cascade mechanism, assistance mechanism, co-adsorption mechanism and bifunction mechanism) and four key modulating methods (active site asymmetric strategy, transverse/axial-modification engineering, distance engineering and strain engineering) are elaborated comprehensively. The emphasis is placed on the effects of asymmetric microenvironment of DACs on oxygen/carbon dioxide reduction reaction. Finally, some perspectives and outlooks are also addressed. In short, the review summarizes a useful asymmetric microenvironment tailoring strategy to speed up synthesis of high-performance electrocatalysts for different reactions.
Collapse
Affiliation(s)
- Shiqing Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanmiao Lin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaofei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hao Ling
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Xiayi Hu
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Zhigang Shen
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| |
Collapse
|
15
|
Rao P, Han X, Sun H, Wang F, Liang Y, Li J, Wu D, Shi X, Kang Z, Miao Z, Deng P, Tian X. Precise Synthesis of Dual-Single-Atom Electrocatalysts through Pre-Coordination-Directed in Situ Confinement for CO 2 Reduction. Angew Chem Int Ed Engl 2024:e202415223. [PMID: 39343763 DOI: 10.1002/anie.202415223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 10/01/2024]
Abstract
Dual-single-atom catalysts (DSACs) are the next paradigm shift in single-atom catalysts because of the enhanced performance brought about by the synergistic effects between adjacent bimetallic pairs. However, there are few methods for synthesizing DSACs with precise bimetallic structures. Herein, a pre-coordination strategy is proposed to precisely synthesize a library of DSACs. This strategy ensures the selective and effective coordination of two metals via phthalocyanines with specific coordination sites, such as -F- and -OH-. Subsequently, in situ confinement inhibits the migration of metal pairs during high-temperature pyrolysis, and obtains the DSACs with precisely constructed metal pairs. Despite changing synthetic parameters, including transition metal centers, metal pairs, and spatial geometry, the products exhibit similar atomic metal pairs dispersion properties, demonstrating the universality of the strategy. The pre-coordination strategy synthesized DSACs shows significant CO2 reduction reaction performance in both flow-cell and practical rechargeable Zn-CO2 batteries. This work not only provides new insights into the precise synthesis of DSACs, but also offers guidelines for the accelerated discovery of efficient catalysts.
Collapse
Affiliation(s)
- Peng Rao
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Xingqi Han
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Haochen Sun
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials/Innovation Center for Textile Science and Technology/Institute of Functional Materials/Center for Civil Aviation Composites, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fangyuan Wang
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Ying Liang
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jing Li
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Daoxiong Wu
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Xiaodong Shi
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Zhenye Kang
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Zhengpei Miao
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Peilin Deng
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China
| |
Collapse
|
16
|
Lei L, Guo X, Han X, Fei L, Guo X, Wang DG. From Synthesis to Mechanisms: In-Depth Exploration of the Dual-Atom Catalytic Mechanisms Toward Oxygen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311434. [PMID: 38377407 DOI: 10.1002/adma.202311434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Dual-atom catalysts (DACs) hold a higher metal atom loading and provide greater flexibility in terms of the structural characteristics of their active sites in comparison to single-atom catalysts. Consequently, DACs hold great promise for achieving improved catalytic performance. This article aims to provide a focused overview of the latest advancements in DACs, covering their synthesis and mechanisms in reversible oxygen electrocatalysis, which plays a key role in sustainable energy conversion and storage technologies. The discussion starts by highlighting the structures of DACs and the differences in diatomic coordination induced by various substrates. Subsequently, the state-of-the-art fabrication strategies of DACs for oxygen electrocatalysis are discussed from several different perspectives. It particularly highlights the challenges of increasing the diatomic loading capacity. More importantly, the main focus of this overview is to investigate the correlation between the configuration and activity in DACs in order to gain a deeper understanding of their active roles in oxygen electrocatalysis. This will be achieved through density functional theory calculations and sophisticated in situ characterization technologies. The aim is to provide guidelines for optimizing and upgrading DACs in oxygen electrocatalysis. Additionally, the overview discusses the current challenges and future prospects in this rapidly evolving area of research.
Collapse
Affiliation(s)
- Lei Lei
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xinghua Guo
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xu Han
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ling Fei
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiao Guo
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Gao Wang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
17
|
Sun N, Zheng Z, Lai Z, Wang J, Du P, Ying T, Wang H, Xu J, Yu R, Hu Z, Pao CW, Huang WH, Bi K, Lei M, Huang K. Augmented Electrochemical Oxygen Evolution by d-p Orbital Electron Coupling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404772. [PMID: 38822811 DOI: 10.1002/adma.202404772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Indexed: 06/03/2024]
Abstract
While high-entropy alloys, high-entropy oxides, and high-entropy hydroxides, are advanced as a novel frontier in electrocatalytic oxygen evolution, their inherent activity deficiency poses a major challenge. To achieve the unlimited goal to tailor the structure-activity relationship in multicomponent systems, entropy-driven composition engineering presents substantial potential, by fabricating high-entropy anion-regulated transition metal compounds as sophisticated oxygen evolution reaction electrocatalysts. Herein, a versatile 2D high-entropy metal phosphorus trisulfide is developed as a promising and adjustable platform. Leveraging the multiple electron couplings and d-p orbital hybridizations induced by the cocktail effect, the exceptional oxygen evolution catalytic activity is disclosed upon van der Waals material (MnFeCoNiZn)PS3, exhibiting an impressively low overpotential of 240 mV at a current density of 10 mA cm-2, a minimal Tafel slope of 32 mV dec-1, and negligible degradation under varying current densities for over 96 h. Density functional theory calculations further offer insights into the correlation between orbital hybridization and catalytic performance within high-entropy systems, underscoring the contribution of active phosphorus centers on the substrate to performance enhancements. Moreover, by achieving electron redistribution to optimize the electron coordination environment, this work presents an effective strategy for advanced catalysts in energy-related applications.
Collapse
Affiliation(s)
- Ning Sun
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Zhichuan Zheng
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Zhuangzhuang Lai
- State Key Laboratory for Green Chemistry Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Junjie Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng Du
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Tianping Ying
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haifeng Wang
- State Key Laboratory for Green Chemistry Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jianchun Xu
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Runze Yu
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, P. R. China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 300092, Taiwan, R.O.C
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 300092, Taiwan, R.O.C
| | - Ke Bi
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Ming Lei
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Kai Huang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| |
Collapse
|
18
|
Li L, Han M, Zhang P, Yang D, Zhang M. Recent Advances in Engineering Fe-N-C Catalysts for Oxygen Electrocatalysis in Zn-Air Batteries. CHEMSUSCHEM 2024:e202401186. [PMID: 39215381 DOI: 10.1002/cssc.202401186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Fe-N-C single-atom catalysts (SACs) have emerged as one of the most promising candidates for oxygen electrocatalysis due to their maximized atom utilization efficiency, high intrinsic activity, and strong metal-support interaction. Significant progress has been made in engineering Fe-N-C SACs for oxygen electrocatalysis in Zn-air batteries (ZABs). This review provides a comprehensive overview of the recent advancements in Fe-N-C SACs, with a special focus on effective engineering strategies, their performance in oxygen electrocatalysis, and their potential applications in ZABs. The review also discusses the key challenges and future directions in the development of Fe-N-C SACs for efficient and durable oxygen electrocatalysis in ZABs. This review aims to offer valuable insights into the current state of research in this field and to guide future efforts in the development of advanced oxygen electrocatalysts for ZABs.
Collapse
Affiliation(s)
- Le Li
- Jiangsu Urban and Rural Construction Vocational College, Changzhou, 213147, China
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Jiangsu Province, Changzhou, 213164, China
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou, 213147, China
| | | | - Donglei Yang
- PetroChina Tarim Oilfield Company, Korla, 841000, China
| | - Meng Zhang
- Jiangsu Urban and Rural Construction Vocational College, Changzhou, 213147, China
| |
Collapse
|
19
|
Qin T, Pei Z, Qiu J, Wang J, Xu Z, Guo X. Layered Porous Ring-Like Carbon Network Protected FeNi Metal Atomic Pairs for Bifunctional Oxygen Electrocatalysis and Rechargeable Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402762. [PMID: 39194587 DOI: 10.1002/smll.202402762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Bimetallic atom catalysts exhibit ultra-high oxygen electrocatalytic activity by harnessing mutual promotion and synergistic effects between adjacent metal active centers, surpassing the performance of single metal atomic catalysts. Herein, FeNi atom pairs protected by hierarchical porous annular carbon grids (P-FeNi-NPC) are introduced using a mediator-assisted MOFs-derived strategy. The introduction of the multi-block copolymer P123 ensures the uniform confinement and dispersion of metal ions, followed by thermal decomposition to form a "planetary-ring-like" carbon framework that anchors the bimetallic atomic pairs in the active region. The homogeneous distribution of adjacent Fe-N4 and Ni-N4 active sites significantly enhances catalytic activity and stability. Leveraging unique electronic and geometric structures, the resulting P-FeNi-NPC catalyst demonstrates exceptional ORR and OER activities with an ΔE value of 0.705 (E1/2 = 0.845 V, Ej = 10 = 1.55 V). Theoretical calculations unveil that FeNi bimetallic sites loaded on nitrogen-doped carbon frameworks with specific curvature effectively modulate the energy of d-band centers, thus balancing the free energy of oxygen-containing intermediates. This study presents a novel and versatile approach for synthesizing advanced bifunctional catalysts, poised to drive the future development of Zn-air batteries.
Collapse
Affiliation(s)
- Tengteng Qin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Pei
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jiahao Qiu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Junzhang Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhou Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xingzhong Guo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| |
Collapse
|
20
|
Hao Q, Zhen C, Tang Q, Wang J, Ma P, Wu J, Wang T, Liu D, Xie L, Liu X, Gu MD, Hoffmann MR, Yu G, Liu K, Lu J. Universal Formation of Single Atoms from Molten Salt for Facilitating Selective CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406380. [PMID: 38857899 DOI: 10.1002/adma.202406380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Clarifying the formation mechanism of single-atom sites guides the design of emerging single-atom catalysts (SACs) and facilitates the identification of the active sites at atomic scale. Herein, a molten-salt atomization strategy is developed for synthesizing zinc (Zn) SACs with temperature universality from 400 to 1000/1100 °C and an evolved coordination from Zn-N2Cl2 to Zn-N4. The electrochemical tests and in situ attenuated total reflectance-surface-enhanced infrared absorption spectroscopy confirm that the Zn-N4 atomic sites are active for electrochemical carbon dioxide (CO2) conversion to carbon monoxide (CO). In a strongly acidic medium (0.2 m K2SO4, pH = 1), the Zn SAC formed at 1000 °C (Zn1NC) containing Zn-N4 sites enables highly selective CO2 electroreduction to CO, with nearly 100% selectivity toward CO product in a wide current density range of 100-600 mA cm-2. During a 50 h continuous electrolysis at the industrial current density of 200 mA cm-2, Zn1NC achieves Faradaic efficiencies greater than 95% for CO product. The work presents a temperature-universal formation of single-atom sites, which provides a novel platform for unraveling the active sites in Zn SACs for CO2 electroreduction and extends the synthesis of SACs with controllable coordination sites.
Collapse
Affiliation(s)
- Qi Hao
- School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Cheng Zhen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Qi Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiazhi Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Peiyu Ma
- Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Junxiu Wu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Tianyang Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Dongxue Liu
- Key Laboratory of Automobile Materials Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, Jilin, 130022, China
| | - Linxuan Xie
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Xiao Liu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - M Danny Gu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Michael R Hoffmann
- Department of Environmental Science and Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA
| | - Gang Yu
- Merging Contaminants Research Center, Beijing Normal University, Zhuhai, Guangdong, 519087, China
| | - Kai Liu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
21
|
Cheng L, Wu Q, Sun H, Tang Y, Xiang Q. Toward Functionality and Deactivation of Metal-Single-Atom in Heterogeneous Photocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406807. [PMID: 38923045 DOI: 10.1002/adma.202406807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Single-atom heterogeneous catalysts (SAHCs) provide an enticing platform for understanding catalyst structure-property-performance relationships. The 100% atom utilization and adjustable local coordination configurations make it easy to probe reaction mechanisms at the atomic level. However, the progressive deactivation of metal-single-atom (MSA) with high surface energy leads to frequent limitations on their commercial viability. This review focuses on the atomistic-sensitive reactivity and atomistic-progressive deactivation of MSA to provide a unifying framework for specific functionality and potential deactivation drivers of MSA, thereby bridging function, purpose-modification structure-performance insights with the atomistic-progressive deactivation for sustainable structure-property-performance accessibility. The dominant functionalization of atomically precise MSA acting on properties and reactivity encompassing precise photocatalytic reactions is first systematically explored. Afterward, a detailed analysis of various deactivation modes of MSA and strategies to enhance their durability is presented, providing valuable insights into the design of SAHCs with deactivation-resistant stability. Finally, the remaining challenges and future perspectives of SAHCs toward industrialization, anticipating shedding some light on the next stage of atom-economic chemical/energy transformations are presented.
Collapse
Affiliation(s)
- Lei Cheng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Qiaolin Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanjun Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
22
|
Liu L, He Q, Dong S, Wang M, Song Y, Diao H, Yuan D. Building synergistic multiple active sites in branch-leaf nanostructured carbon nanofiber derived from MOF/COF hybrid for flexible wearable Zn-air battery. J Colloid Interface Sci 2024; 666:35-46. [PMID: 38583208 DOI: 10.1016/j.jcis.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) have attracted growing attention in electrochemical energy storage and conversion systems (e.g., Zn-air batteries, ZABs) owing to their structural tunability, ordered porosity and high specific surface area. In this work, for the first time, the three-dimensional (3D) highly open catalyst (CNFs/CoZn-MOF@COF) possessing hierarchical porous structure and high-density active sites of uniform cobalt (Co) nanoparticles and metal-Nx (M-Nx, M = Co and Zn) is demonstrated, which is fabricated using electrospinning technique in combination with MOF/COF hybridization strategy and direct pyrolysis. Benefiting from the well-designed branch-leaf nanostructures, plentiful and uniform active sites on the MOF/COF-derived carbon frameworks, as well as the synergistic effect of multiple active sites, CNFs/CoZn-MOF@COF catalyst achieves superior electrocatalytic activity and stability towards both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with a small potential gap (ΔE = 0.75 V). In situ Raman spectroscopy and X-ray photoelectron spectroscopy results indicate that the CoOOH intermediates are the main active species during OER/ORR. Significantly, both aqueous and all-solid-state rechargeable ZABs assembled with CNFs/CoZn-MOF@COF as the air cathode show high open-circuit potential, outstanding peak power density, large capacity and long cycle life. More impressively, the obtained all-solid-state ZAB also displays superb mechanical flexibility and device stability under different, showcasing great application deformations potential in portable and wearable electronics. This work provides a new insight into the design and exploitation of bifunctional catalysts from MOF/COF hybrid materials for energy storage and conversion devices.
Collapse
Affiliation(s)
- Longlong Liu
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, China
| | - Quanfeng He
- College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, Fujian, China
| | - Senjie Dong
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, China
| | - Minghui Wang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, China
| | - Yuqian Song
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, China
| | - Han Diao
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, China
| | - Ding Yuan
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, China.
| |
Collapse
|
23
|
Tamtaji M, Kim MG, WANG J, Galligan PR, Zhu H, Hung F, Xu Z, Zhu Y, Luo Z, Goddard WA, Chen G. A High-Entropy Single-Atom Catalyst Toward Oxygen Reduction Reaction in Acidic and Alkaline Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309883. [PMID: 38687196 PMCID: PMC11234427 DOI: 10.1002/advs.202309883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/21/2024] [Indexed: 05/02/2024]
Abstract
The design of high-entropy single-atom catalysts (HESAC) with 5.2 times higher entropy compared to single-atom catalysts (SAC) is proposed, by using four different metals (FeCoNiRu-HESAC) for oxygen reduction reaction (ORR). Fe active sites with intermetallic distances of 6.1 Å exhibit a low ORR overpotential of 0.44 V, which originates from weakening the adsorption of OH intermediates. Based on density functional theory (DFT) findings, the FeCoNiRu-HESAC with a nitrogen-doped sample were synthesized. The atomic structures are confirmed with X-ray photoelectron spectroscopy (XPS), X-ray absorption (XAS), and scanning transmission electron microscopy (STEM). The predicted high catalytic activity is experimentally verified, finding that FeCoNiRu-HESAC has overpotentials of 0.41 and 0.37 V with Tafel slopes of 101 and 210 mVdec-1 at the current density of 1 mA cm-2 and the kinetic current densities of 8.2 and 5.3 mA cm-2, respectively, in acidic and alkaline electrolytes. These results are comparable with Pt/C. The FeCoNiRu-HESAC is used for Zinc-air battery applications with an open circuit potential of 1.39 V and power density of 0.16 W cm-2. Therefore, a strategy guided by DFT is provided for the rational design of HESAC which can be replaced with high-cost Pt catalysts toward ORR and beyond.
Collapse
Affiliation(s)
- Mohsen Tamtaji
- Hong Kong Quantum AI Lab LimitedPak Shek KokHong Kong SAR999077China
| | - Min Gyu Kim
- Beamline Research DivisionPohang Accelerator Laboratory (PAL)Pohang University of Science and TechnologyPohang37673Republic of Korea
| | - Jun WANG
- Department of Chemical and Biological EngineeringGuangdong‐Hong Kong‐Macao Joint Laboratory for Intelligent Micro‐Nano Optoelectronic TechnologyWilliam Mong Institute of Nano Science and Technologyand Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water BayHong KongKowloon999077P.R. China
| | - Patrick Ryan Galligan
- Department of Chemical and Biological EngineeringGuangdong‐Hong Kong‐Macao Joint Laboratory for Intelligent Micro‐Nano Optoelectronic TechnologyWilliam Mong Institute of Nano Science and Technologyand Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water BayHong KongKowloon999077P.R. China
| | - Haoyu Zhu
- Hong Kong Quantum AI Lab LimitedPak Shek KokHong Kong SAR999077China
| | - Faan‐Fung Hung
- Hong Kong Quantum AI Lab LimitedPak Shek KokHong Kong SAR999077China
| | - Zhihang Xu
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Ye Zhu
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Zhengtang Luo
- Department of Chemical and Biological EngineeringGuangdong‐Hong Kong‐Macao Joint Laboratory for Intelligent Micro‐Nano Optoelectronic TechnologyWilliam Mong Institute of Nano Science and Technologyand Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water BayHong KongKowloon999077P.R. China
| | - William A. Goddard
- Materials and Process Simulation Center (MSC), MC 139–74California Institute of TechnologyPasadenaCA91125USA
| | - GuanHua Chen
- Hong Kong Quantum AI Lab LimitedPak Shek KokHong Kong SAR999077China
- Department of ChemistryThe University of Hong KongPokfulam RoadHong Kong SAR999077China
| |
Collapse
|
24
|
Geng X, Zhang N, Li Z, Zhao M, Zhang H, Li J. Iron-doped nanozymes with spontaneous peroxidase-mimic activity as a promising antibacterial therapy for bacterial keratitis. SMART MEDICINE 2024; 3:e20240004. [PMID: 39188699 PMCID: PMC11236036 DOI: 10.1002/smmd.20240004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/23/2024] [Indexed: 08/28/2024]
Abstract
The development of non-antibiotic pharmaceuticals with biocompatible and efficient antibacterial properties is of great significance for the treatment of bacterial keratitis. In this study, we have developed antibacterial iron-doped nanozymes (Fe3+-doped nanozymes, FNEs) with distinguished capacity to fight against bacterial infections. The iron-doped nanozymes are composed of Fe3+ doped zeolitic imidazolate framework-8 (Fe/ZIF-8) and polyethylene imide (PEI), which were functionally coated on the surface of Fe/ZIF-8 and imparted the FNEs with improved water dispersibility and biocompatibility. FNEs possess a significant spontaneous peroxidase-mimic activity without the need for external stimulation, thus elevating cellular reactive oxygen species level by catalyzing local H2O2 at the infection site and resulting in bacteria damaged to death. FNEs eliminated 100% of Staphylococcus aureus within 6 h, and significantly relieved inflammation and bacterial infection levels in mice bacterial keratitis, exhibiting higher bioavailability and a superior therapeutic effect compared to conventional antibiotic eye drops. In addition, the FNEs would not generate drug resistance, suggesting that FNEs have great potential in overcoming infectious diseases caused by antimicrobial resistant bacteria.
Collapse
Affiliation(s)
- Xiwen Geng
- Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouChina
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Nan Zhang
- Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Eye HospitalZhengzhouChina
| | - Zhanrong Li
- Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Eye HospitalZhengzhouChina
| | - Mengyang Zhao
- Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Eye HospitalZhengzhouChina
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Jingguo Li
- Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Eye HospitalZhengzhouChina
| |
Collapse
|
25
|
Ding C, Zhao Y, Qiao Z. Modification of carbon nanofibers for boosting oxygen electrocatalysis. Phys Chem Chem Phys 2024; 26:13606-13621. [PMID: 38682278 DOI: 10.1039/d3cp05904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Oxygen electrocatalysis is a key process for many effective energy conversion techniques, which requires the development of high-performance electrocatalysts. Carbon nanofibers featuring good electronic conductivity, large specific surface area, high axial strength and modulus, and good resistance toward harsh environments have thus been recognized as reinforcements in oxygen electrocatalysis. This review summarizes the recent progress on carbon nanofibers as electrocatalysts for oxygen electrocatalysis, with special focus on the modulation of carbon nanofibers for further elevating their electrocatalytic performance, which includes morphological and structural engineering, surface and pore size distribution, defect engineering, and coupling with other electroactive materials. Additionally, the correlation between the geometrical/electronic structure of their active centers and electrocatalytic activity is systematically discussed. Finally, conclusions and perspectives of this interesting research field are presented, which we hope will provide guidance for the future fabrication of more advanced carbon-fiber-based electrocatalysts.
Collapse
Affiliation(s)
- Changming Ding
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Jiangsu Ruilante New Materials Co., Ltd, Yangzhou, 211400, China
| | - Yitao Zhao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province, 213164, China
- Jiangsu Key Laboratory of High-Performance Fiber Composites, JITRI-PGTEX Joint Innovation Center, PGTEX CHINA Co., Ltd., Changzhou, Jiangsu Province, 213164, China
| | - Zhiyong Qiao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Jiangsu Ruilante New Materials Co., Ltd, Yangzhou, 211400, China
| |
Collapse
|
26
|
Li Y, Li Z, Shi K, Luo L, Jiang H, He Y, Zhao Y, He J, Lin L, Sun Z, Sun G. Single-Atom Mn Catalysts via Integration with Mn Sub Nano-Clusters Synergistically Enhance Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309727. [PMID: 38112245 DOI: 10.1002/smll.202309727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Integrating single atoms and clusters into one system represents a novel strategy for achieving the desired catalytic performance. In comparison to single-atom catalysts, catalysts combining single atoms and clusters harness the advantages of both, thus displaying greater potential. Nevertheless, constructing single-atom-cluster systems remains challenging, and the fundamental mechanism for enhancing catalytic activity remains elusive. In this study, a directly confined preparation of a 3D hollow sea urchin-like carbon structure (MnSA/MnAC-SSCNR) is developed. Mn single atoms synergistically interact with Mn clusters, optimizing and reducing energy barriers in the reaction pathway, thus enhancing reaction kinetics. Consequently, in contrast to Mn single-atom catalysts (MnSA-SSCNR), MnSA/MnAC-SSCNR exhibits significantly improved oxygen reduction activity, with a half-wave potential (E1/2) of 0.90 V in 0.1 m KOH, surpassing that of MnSA-SSCNR and Pt/C. This work demonstrates a strategy of remote synergy between heterogeneous single atoms and clusters, which not only contributes to electrocatalytic reactions but also holds potential for reactions involving more complex products.
Collapse
Affiliation(s)
- Yayin Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zihan Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Kefan Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Lanke Luo
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Haomin Jiang
- Center for Advanced Materials Research & College of Arts and Sciences Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai, 519087, China
| | - Yu He
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuelin Zhao
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jiayue He
- Center for Advanced Materials Research & College of Arts and Sciences Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai, 519087, China
| | - Liu Lin
- Center for Advanced Materials Research & College of Arts and Sciences Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai, 519087, China
| | - Zemin Sun
- Center for Advanced Materials Research & College of Arts and Sciences Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai, 519087, China
| | - Genban Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
27
|
Zhang M, Zhang D, Jing X, Xu B, Duan C. Engineering NH 2-Cu-NH 2 Triple-atom Sites in Defective MOFs for Selective Overall Photoreduction of CO 2 into CH 3COCH 3. Angew Chem Int Ed Engl 2024; 63:e202402755. [PMID: 38462995 DOI: 10.1002/anie.202402755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Selective photoreduction of CO2 to multicarbon products, is an important but challenging task, due to high CO2 activation barriers and insufficient catalytic sites for C-C coupling. Herein, a defect engineering strategy for incorporating copper sites into the connected nodes of defective metal-organic framework UiO-66-NH2 for selective overall photo-reduction of CO2 into acetone. The Cu2+ site in well-modified CuN2O2 units served as a trapping site to capture electrons via efficient electron-hole separation, forming the active Cu+ site for CO2 reduction. Two NH2 groups in CuN2O2 unit adsorb CO2 and cooperated with copper ion to functionalize as a triple atom catalytic site, each interacting with one CO2 molecule to strengthen the binding of *CO intermediate to the catalytic site. The deoxygenated *CO attached to the Cu site interacted with *CH3 fixed at one amino group to form the key intermediate CO*-CH3, which interacted with the third reduction intermediate on another amino group to produce acetone. Our photocatalyst realizes efficient overall CO2 reduction to C3 product acetone CH3COCH3 with an evolution rate of 70.9 μmol gcat -1 h-1 and a selectivity up to 97 % without any adducts, offering a promising avenue for designing triple-atomic sites to producing C3 product from photosynthesis with water.
Collapse
Affiliation(s)
- Mengrui Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Dan Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xu Jing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Baijie Xu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
28
|
Liu X, Yang X, Zhao Z, Fang T, Yi K, Chen L, Liu S, Wang R, Jia X. Isolated Binary Fe-Ni Metal-Nitrogen Sites Anchored on Porous Carbon Nanosheets for Efficient Oxygen Electrocatalysis through High-Temperature Gas-Migration Strategy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18703-18712. [PMID: 38591147 DOI: 10.1021/acsami.3c17193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Atomically dispersed dual-site catalysts can regulate multiple reaction processes and provide synergistic functions based on diverse molecules and their interfaces. However, how to synthesize and stabilize dual-site single-atom catalysts (DACs) is confronted with challenges. Herein, we report a facile high-temperature gas-migration strategy to synthesize Fe-Ni DACs on nitrogen-doped carbon nanosheets (FeNiSAs/NC). FeNiSAs/NC exhibits a high half-wave potential (0.88 V) for the oxygen reduction reaction (ORR) and a low overpotential of 410 mV at 10 mA cm-2 for the oxygen evolution reaction (OER). As an air electrode for Zn-air batteries (ZABs), it shows better performances in aqueous ZABs and excellent stability and flexibility in solid-state ZABs. The high specific surface area (1687.32 m2/g) of FeNiSAs/NC is conducive to electron transport. Density functional theory (DFT) reveals that the Fe sites are the active center, and Ni sites can significantly optimize the free energy of the oxygen-containing intermediate state on Fe sites, contributing to the improvement of ORR and the corresponding OER activities. This work can provide guidance for the rational design of DACs and understand the structure-activity relationship of SACs with multiple active sites for electrocatalytic energy conversion.
Collapse
Affiliation(s)
- Xinghuan Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Xiaodong Yang
- Key Laboratory of Ecophysics and Department of Physics, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Zeyu Zhao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Tianwen Fang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Ke Yi
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Long Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Shiyu Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Rongjie Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Xin Jia
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
29
|
Deng H, Deng D, Jin S, Tian Z, Yang LM. Unraveling the Activity and Mechanism of TM@g-C 4N 3 Electrocatalysts in the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17617-17625. [PMID: 38530989 DOI: 10.1021/acsami.4c01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In this work, a high-throughput screening strategy and density functional theory (DFT) are jointly employed to identify high-performance TM@g-C4N3 (TM = 3d, 4d, 5d transition metals) single-atom catalysts (SACs) for the oxygen reduction reaction (ORR). Comprehensive studies demonstrated that Cu@, Zn@, and Ag@g-C4N3 show high ORR catalytic activities under both acidic and alkaline conditions with favorable overpotentials (ηORR) of 0.70, 0.89, and 0.89 V, respectively; among them, Cu@g-C4N3 is the best candidate. The ORR follows a four-electron mechanism with the final product H2O/OH-. Cu@, Zn@, and Ag@g-C4N3 catalysts also exhibit good thermal (500 K) and electrochemical (0.93-3.14 V) stabilities. Cu@, Zn@, and Ag@g-C4N3 demonstrate superior activities with low ηORR due to its moderate adsorption strength of *OH. The ηORR and the Gibbs free energy changes of *OH (ΔG4(acidic)/ΔG4(alkaline)) resemble a volcano-type relationship under acidic/alkaline conditions, respectively. Additionally, the O-O bond length in *OOH emerged as an effective structural descriptor for rapidly identifying the promising electrocatalysts. This research provides valuable insights into the origin of the ORR activity on TM@g-C4N3 and offers useful guidance for the efficient exploration of high-performance catalyst candidates.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shangbin Jin
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, PR China
| | - Li-Ming Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
30
|
Wei Y, Miao J, Cui J, Lang J, Rao Q, Zhou B, Long M, Alvarez PJJ. Heteroatom substitution enhances generation and reactivity of surface-activated peroxydisulfate complexes for catalytic fenton-like reactions. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133753. [PMID: 38350321 DOI: 10.1016/j.jhazmat.2024.133753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Peroxydisulfate (PDS)-based Fenton-like reactions are promising advanced oxidation processes (AOPs) to degrade recalcitrant organic water pollutants. Current research predominantly focuses on augmenting the generation of reactive species (e.g., surface-activated PDS complexes (PDS*) to improve treatment efficiency, but overlooks the potential benefits of enhancing the reactivity of these species. Here, we enhanced PDS* generation and reactivity by incorporating Zn into CuO catalyst lattice, which resulted in 99% degradation of 4-chlorophenol within only 10 min. Zn increased PDS* generation by nearly doubling PDS adsorption while maintaining similar PDS to PDS* conversion efficiency, and induced higher PDS* reactivity than the common catalyst CuO, as indicated by a 4.1-fold larger slope between adsorbed PDS and open circuit potential of a catalytic electrode. Cu-O-Zn formation upshifts the d-band center of Cu sites and lowers the energy barrier for PDS adsorption and sulfate desorption, resulting in enhanced PDS* generation and reactivity. Overall, this study informs strategies to enhance PDS* reactivity and design highly active catalysts for efficient AOPs.
Collapse
Affiliation(s)
- Yan Wei
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Miao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahao Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junyu Lang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qunli Rao
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingce Long
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, United States.
| |
Collapse
|
31
|
Zuo X, Zhang L, Gao G, Xin C, Fu B, Liu S, Ding H. Catalytic Oxidation of Benzene over Atomic Active Site AgNi/BCN Catalysts at Room Temperature. Molecules 2024; 29:1463. [PMID: 38611743 PMCID: PMC11013234 DOI: 10.3390/molecules29071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Benzene is the typical volatile organic compound (VOC) of indoor and outdoor air pollution, which harms human health and the environment. Due to the stability of their aromatic structure, the catalytic oxidation of benzene rings in an environment without an external energy input is difficult. In this study, the efficient degradation of benzene at room temperature was achieved by constructing Ag and Ni bimetallic active site catalysts (AgNi/BCN) supported on boron-carbon-nitrogen aerogel. The atomic-scale Ag and Ni are uniformly dispersed on the catalyst surface and form Ag/Ni-C/N bonds with C and N, which were conducive to the catalytic oxidation of benzene at room temperature. Further catalytic reaction mechanisms indicate that benzene reacted with ·OH to produce R·, which reacted with O2 to regenerate ·OH. Under the strong oxidation of ·OH, benzene was oxidized to form alcohols, carboxylic acids, and eventually CO2 and H2O. This study not only significantly reduces the energy consumption of VOC catalytic oxidation, but also improves the safety of VOC treatment, providing new ideas for the low energy consumption and green development of VOC treatment.
Collapse
Affiliation(s)
- Xin Zuo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
- North China Municipal Engineering Design & Research Institute Co., Ltd., Tianjin 300074, China
| | - Lisheng Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Ge Gao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Changchun Xin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Bingfeng Fu
- Shenzhen Yuanqi Environmental Energy Technology Co., Ltd., Futian District, Shenzhen 518045, China;
| | - Shejiang Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Hui Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| |
Collapse
|
32
|
Zhang X, Liu X, Wu D, Hu L, Zhang H, Sun Z, Qian S, Xia Z, Luo Q, Cao L, Yang J, Yao T. Self-Assembly Intermetallic PtCu 3 Core with High-Index Faceted Pt Shell for High-Efficiency Oxygen Reduction. NANO LETTERS 2024; 24:3213-3220. [PMID: 38426819 DOI: 10.1021/acs.nanolett.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Rational design of well-defined active sites is crucial for promoting sluggish oxygen reduction reactions. Herein, leveraging the surfactant-oriented and solvent-ligand effects, we develop a facile self-assembly strategy to construct a core-shell catalyst comprising a high-index Pt shell encapsulating a PtCu3 intermetallic core with efficient oxygen-reduction performance. Without undergoing a high-temperature route, the ordered PtCu3 is directly fabricated through the accelerated reduction of Cu2+, followed by the deposition of the remaining Pt precursor onto its surface, forming high-index steps oriented by the steric hindrance of surfactant. This approach results in a high half-wave potential of 0.911 V versus reversible hydrogen electrode, with negligible deactivation even after 15000-cycle operation. Operando spectroscopies identify that this core-shell catalyst facilitates the conversion of oxygen-involving intermediates and ensures antidissolution ability. Theoretical investigations rationalize that this improvement is attributed to reinforced electronic interactions around high-index Pt, stabilizing the binding strength of rate-determining OHads species.
Collapse
Affiliation(s)
- Xue Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Dan Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Longfei Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Huijuan Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Zhiguo Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Shiting Qian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zhiyuan Xia
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Linlin Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Jinlong Yang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
33
|
Zhao X, Cheng H, Chen X, Zhang Q, Li C, Xie J, Marinkovic N, Ma L, Zheng JC, Sasaki K. Multiple Metal-Nitrogen Bonds Synergistically Boosting the Activity and Durability of High-Entropy Alloy Electrocatalysts. J Am Chem Soc 2024; 146:3010-3022. [PMID: 38278519 PMCID: PMC10859931 DOI: 10.1021/jacs.3c08177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/28/2024]
Abstract
The development of Pt-based catalysts for use in fuel cells that meet performance targets of high activity, maximized stability, and low cost remains a huge challenge. Herein, we report a nitrogen (N)-doped high-entropy alloy (HEA) electrocatalyst that consists of a Pt-rich shell and a N-doped PtCoFeNiCu core on a carbon support (denoted as N-Pt/HEA/C). The N-Pt/HEA/C catalyst showed a high mass activity of 1.34 A mgPt-1 at 0.9 V for the oxygen reduction reaction (ORR) in rotating disk electrode (RDE) testing, which substantially outperformed commercial Pt/C and most of the other binary/ternary Pt-based catalysts. The N-Pt/HEA/C catalyst also demonstrated excellent stability in both RDE and membrane electrode assembly (MEA) testing. Using operando X-ray absorption spectroscopy (XAS) measurements and theoretical calculations, we revealed that the enhanced ORR activity of N-Pt/HEA/C originated from the optimized adsorption energy of intermediates, resulting in the tailored electronic structure formed upon N-doping. Furthermore, we showed that the multiple metal-nitrogen bonds formed synergistically improved the corrosion resistance of the 3d transition metals and enhanced the ORR durability.
Collapse
Affiliation(s)
- Xueru Zhao
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Hao Cheng
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiaobo Chen
- Department
of Mechanical Engineering & Materials Science and Engineering
Program, State University of New York at
Binghamton, Binghamton, New York 13902, United States
| | - Qi Zhang
- Department
of Mechanical and Energy Engineering, Purdue School of Engineering
and Technology, Indiana University-Purdue
University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Chenzhao Li
- Department
of Mechanical and Energy Engineering, Purdue School of Engineering
and Technology, Indiana University-Purdue
University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Jian Xie
- Department
of Mechanical and Energy Engineering, Purdue School of Engineering
and Technology, Indiana University-Purdue
University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Nebojsa Marinkovic
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Lu Ma
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Jin-Cheng Zheng
- Department
of Physics and Fujian Provincial Key Laboratory of Theoretical and
Computational Chemistry, Xiamen University, Xiamen 361005, China
- Department
of Physics and Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang, Selangor 43900, Malaysia
| | - Kotaro Sasaki
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
34
|
Wang B, Fu Y, Xu F, Lai C, Zhang M, Li L, Liu S, Yan H, Zhou X, Huo X, Ma D, Wang N, Hu X, Fan X, Sun H. Copper Single-Atom Catalysts-A Rising Star for Energy Conversion and Environmental Purification: Synthesis, Modification, and Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306621. [PMID: 37814375 DOI: 10.1002/smll.202306621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Future renewable energy supply and green, sustainable environmental development rely on various types of catalytic reactions. Copper single-atom catalysts (Cu SACs) are attractive due to their distinctive electronic structure (3d orbitals are not filled with valence electrons), high atomic utilization, and excellent catalytic performance and selectivity. Despite numerous optimization studies are conducted on Cu SACs in terms of energy conversion and environmental purification, the coupling among Cu atoms-support interactions, active sites, and catalytic performance remains unclear, and a systematic review of Cu SACs is lacking. To this end, this work summarizes the recent advances of Cu SACs. The synthesis strategies of Cu SACs, metal-support interactions between Cu single atoms and different supports, modification methods including modification for carriers, coordination environment regulating, site distance effect utilizing, and dual metal active center catalysts constructing, as well as their applications in energy conversion and environmental purification are emphatically introduced. Finally, the opportunities and challenges for the future Cu SACs development are discussed. This review aims to provide insight into Cu SACs and a reference for their optimal design and wide application.
Collapse
Affiliation(s)
- Biting Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xiuqin Huo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Neng Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xiaorui Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xing Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Hao Sun
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
35
|
Cui R, Gu J, Wang N, Wang Y, Huang X, Zhang S, Lu L, Wang D. Organic Dye Molecule Intercalated Vanadium Oxygen Hydrate Enables High-Performance Aqueous Zinc-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307849. [PMID: 37806752 DOI: 10.1002/smll.202307849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Although the layered vanadium oxide-based materials have been considered to be one of the candidates for aqueous Zn-ion batteries (AZIBs), it still faces inevitable challenges of unsatisfactory capacities and sluggish kinetics because of strong electrostatic interactions between Zn-ions and structure lattice. This work addresses the strategy of pre-inserting guest materials to vanadium oxide cathode using different intercalants. To achieve this goal, the small organic dye molecules, methyl orange (MO), and methylene blue (MB) are proposed as the intercalants for vanadium oxygen hydrate (VOH). It has been demonstrated that use of these intercalants can facilitate reaction kinetics between Zn2+ and VOH, leading to an improvement of specific capacity (293 mAh g-1 at 0.3 A g-1 for MO-VOH and 311 mAh g-1 for MB-VOH) compared to VOH, a large enhancement of excellent energy density (237.1 Wh kg-1 for MO-VOH, 232.3 Wh kg-1 for MB-VOH), and a prolong lifespan operation at 3 A g-1 . The mechanism studies suggest that the weakened electrostatic interactions between the Zn-ions and V-O lattice after intercalating organic molecules contribute to boosting the electrochemical performance of AZIBs unveiled by charge density difference and binding energy.
Collapse
Affiliation(s)
- Rukun Cui
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Jianmin Gu
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Ning Wang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yiran Wang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Xiaoyan Huang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Senlin Zhang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Li Lu
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Desong Wang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
- School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| |
Collapse
|
36
|
Xu W, Zeng R, Rebarchik M, Posada-Borbón A, Li H, Pollock CJ, Mavrikakis M, Abruña HD. Atomically Dispersed Zn/Co-N-C as ORR Electrocatalysts for Alkaline Fuel Cells. J Am Chem Soc 2024; 146:2593-2603. [PMID: 38235653 DOI: 10.1021/jacs.3c11355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hydrogen fuel cells have drawn increasing attention as one of the most promising next-generation power sources for future automotive transportation. Developing efficient, durable, and low-cost electrocatalysts, to accelerate the sluggish oxygen reduction reaction (ORR) kinetics, is urgently needed to advance fuel cell technologies. Herein, we report on metal-organic frameworks-derived nonprecious dual metal single-atom catalysts (SACs) (Zn/Co-N-C), consisting of Co-N4 and Zn-N4 local structures. These catalysts exhibited superior ORR activity with a half-wave potential (E1/2) of 0.938 V versus RHE (reversible hydrogen electrode) and robust stability (ΔE1/2 = -8.5 mV) after 50k electrochemical cycles. Moreover, this remarkable performance was validated under realistic fuel cell working conditions, achieving a record-high peak power density of ∼1 W cm-2 among the reported SACs for alkaline fuel cells. Operando X-ray absorption spectroscopy was conducted to identify the active sites and reveal catalytic mechanistic insights. The results indicated that the Co atom in the Co-N4 structure was the main catalytically active center, where one axial oxygenated species binds to form an Oads-Co-N4 moiety during the ORR. In addition, theoretical studies, based on a potential-dependent microkinetic model and core-level shift calculations, showed good agreement with the experimental results and provided insights into the bonding of oxygen species on Co-N4 centers during the ORR. This work provides a comprehensive mechanistic understanding of the active sites in the Zn/Co-N-C catalysts and will pave the way for the future design and advancement of high-performance single-site electrocatalysts for fuel cells and other energy applications.
Collapse
Affiliation(s)
- Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michael Rebarchik
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Alvaro Posada-Borbón
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Huiqi Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher J Pollock
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
37
|
Pei J, Shang H, Mao J, Chen Z, Sui R, Zhang X, Zhou D, Wang Y, Zhang F, Zhu W, Wang T, Chen W, Zhuang Z. A replacement strategy for regulating local environment of single-atom Co-S xN 4-x catalysts to facilitate CO 2 electroreduction. Nat Commun 2024; 15:416. [PMID: 38195701 PMCID: PMC10776860 DOI: 10.1038/s41467-023-44652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
The performances of single-atom catalysts are governed by their local coordination environments. Here, a thermal replacement strategy is developed for the synthesis of single-atom catalysts with precisely controlled and adjustable local coordination environments. A series of Co-SxN4-x (x = 0, 1, 2, 3) single-atom catalysts are successfully synthesized by thermally replacing coordinated N with S at elevated temperature, and a volcano relationship between coordinations and catalytic performances toward electrochemical CO2 reduction is observed. The Co-S1N3 catalyst has the balanced COOH*and CO* bindings, and thus locates at the apex of the volcano with the highest performance toward electrochemical CO2 reduction to CO, with the maximum CO Faradaic efficiency of 98 ± 1.8% and high turnover frequency of 4564 h-1 at an overpotential of 410 mV tested in H-cell with CO2-saturated 0.5 M KHCO3, surpassing most of the reported single-atom catalysts. This work provides a rational approach to control the local coordination environment of the single-atom catalysts, which is important for further fine-tuning the catalytic performance.
Collapse
Affiliation(s)
- Jiajing Pei
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huishan Shang
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjie Mao
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Zhe Chen
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, China
| | - Rui Sui
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuejiang Zhang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Danni Zhou
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, 201204, China
| | - Fang Zhang
- Analysis and Testing Center, Beijing Institute of Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, China.
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
38
|
Sui C, Nie Z, Liu H, Boczkaj G, Liu W, Kong L, Zhan J. Singlet oxygen-dominated peroxymonosulfate activation by layered crednerite for organic pollutants degradation in high salinity wastewater. J Environ Sci (China) 2024; 135:86-96. [PMID: 37778844 DOI: 10.1016/j.jes.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 10/03/2023]
Abstract
Advanced oxidation processes have been widely studied for organic pollutants treatment in water, but the degradation performance of radical-dominated pathway was severely inhibited by the side reactions between the anions and radicals, especially in high salinity conditions. Here, a singlet oxygen (1O2)-dominated non-radical process was developed for organic pollutants degradation in high salinity wastewater, with layered crednerite (CuMnO2) as catalysts and peroxymonosulfate (PMS) as oxidant. Based on the experiments and density functional theory calculations, 1O2 was the dominating reactive species and the constructed Cu-O-Mn with electron-deficient Mn captured electron from PMS promoting the generation of 1O2. The rapid degradation of bisphenol A (BPA) was achieved by CuMnO2/PMS system, which was 5-fold and 21-fold higher than that in Mn2O3/PMS system and Cu2O/PMS system. The CuMnO2/PMS system shown prominent BPA removal performance under high salinity conditions, prominent PMS utilization efficiency, outstanding total organic carbon removal rate, wide range of applicable pH and good stability. This work unveiled that the 1O2-dominated non-radical process of CuMnO2/PMS system overcame the inhibitory effect of anions in high salinity conditions, which provided a promising technique to remove organic pollutants from high saline wastewater.
Collapse
Affiliation(s)
- Chengji Sui
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan 250100, China
| | - Zixuan Nie
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan 250100, China
| | - Huan Liu
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan 250100, China
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Lingshuai Kong
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan 250100, China.
| | - Jinhua Zhan
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan 250100, China.
| |
Collapse
|
39
|
Zhang P, Liu Y, Liu S, Zhou L, Wu X, Han G, Liu T, Sun K, Li B, Jiang J. Precise Design and Modification Engineering of Single-Atom Catalytic Materials for Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305782. [PMID: 37718497 DOI: 10.1002/smll.202305782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Indexed: 09/19/2023]
Abstract
Due to their unique electronic and structural properties, single-atom catalytic materials (SACMs) hold great promise for the oxygen reduction reaction (ORR). Coordinating environmental and engineering strategies is the key to improving the ORR performance of SACMs. This review summarizes the latest research progress and breakthroughs of SACMs in the field of ORR catalysis. First, the research progress on the catalytic mechanism of SACMs acting on ORR is reviewed, including the latest research results on the origin of SACMs activity and the analysis of pre-adsorption mechanism. The study of the pre-adsorption mechanism is an important breakthrough direction to explore the origin of the high activity of SACMs and the practical and theoretical understanding of the catalytic process. Precise coordination environment modification, including in-plane, axial, and adjacent site modifications, can enhance the intrinsic catalytic activity of SACMs and promote the ORR process. Additionally, several engineering strategies are discussed, including multiple SACMs, high loading, and atomic site confinement. Multiple SACMs synergistically enhance catalytic activity and selectivity, while high loading can provide more active sites for catalytic reactions. Overall, this review provides important insights into the design of advanced catalysts for ORR.
Collapse
Affiliation(s)
- Pengxiang Zhang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Limin Zhou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Guosheng Han
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| |
Collapse
|
40
|
Wang X, Yang J, Liu S, He S, Liu Z, Che X, Qiu J. Accelerating Sulfur Redox Chemistry by Atomically Dispersed Zn-N 4 Sites Coupled with Pyridine-N Defects on Porous Carbon Sheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305508. [PMID: 37670540 DOI: 10.1002/smll.202305508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/12/2023] [Indexed: 09/07/2023]
Abstract
Single-atom catalysts (SACs) with specific N-coordinated configurations immobilized on the carbon substrates have recently been verified to effectively alleviate the shuttle effect of lithium polysulfides (LiPSs) in lithium-sulfur (Li─S) batteries. Herein, a versatile molten salt (KCl/ZnCl2 )-mediated pyrolysis strategy is demonstrated to fabricate Zn SACs composed of well-defined Zn-N4 sites embedded into porous carbon sheets with rich pyridine-N defects (Zn─N/CS). The electrochemical kinetic analysis and theoretical calculations reveal the critical roles of Zn-N4 active sites and surrounding pyridine-N defects in enhancing adsorption toward LiPS intermediates and catalyzing their liquid-solid conversion. It is confirmed by reducing the overpotential of the rate-determining step of Li2 S2 to Li2 S and the energy barrier for Li2 S decomposition, thus the Zn─N/CS guarantees fast redox kinetics between LiPSs and Li2 S products. As a proof of concept demonstration, the assembled Li─S batteries with the Zn─N/CS-based sulfur cathode deliver a high specific capacity of 1132 mAh g-1 at 0.1 C and remarkable capacity retention of 72.2% over 800 cycles at 2 C. Furthermore, a considerable areal capacity of 6.14 mAh cm-2 at 0.2 C can still be released with a high sulfur loading of 7.0 mg cm-2 , highlighting the practical applications of the as-obtained Zn─N/CS cathode in Li─S batteries.
Collapse
Affiliation(s)
- Xiaoting Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Juan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Siyu Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Songjie He
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhibin Liu
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
| | - Xiaogang Che
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jieshan Qiu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
41
|
Xiao Y, Hu S, Miao Y, Gong F, Chen J, Wu M, Liu W, Chen S. Recent Progress in Hot Spot Regulated Strategies for Catalysts Applied in Li-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305009. [PMID: 37641184 DOI: 10.1002/smll.202305009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/23/2023] [Indexed: 08/31/2023]
Abstract
As a high energy density power system, lithium-carbon dioxide (Li-CO2 ) batteries play an important role in addressing the fossil fuel crisis issues and alleviating the greenhouse effect. However, the sluggish transformation kinetic of CO2 and the difficult decomposition of discharge products impede the achievement of large capacity, small overpotential, and long life span of the batteries, which require exploring efficient catalysts to resolve these problems. In this review, the main focus is on the hot spot regulation strategies of the catalysts, which include the modulation of the active sites, the designing of microstructure, and the construction of composition. The recent progress of promising catalysis with hot spot regulated strategies is systematically addressed. Critical challenges are also presented and perspectives to provide useful guidance for the rational design of highly efficient catalysts for practical advanced Li-CO2 batteries are proposed.
Collapse
Affiliation(s)
- Ying Xiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shilin Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yue Miao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fenglian Gong
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Mingxuan Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shimou Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
42
|
Tong M, Sun F, Xing G, Tian C, Wang L, Fu H. Potential Dominates Structural Recombination of Single Atom Mn Sites for Promoting Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2023; 62:e202314933. [PMID: 37955333 DOI: 10.1002/anie.202314933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Single atom sites (SAS) often undergo structural recombination in oxygen reduction reaction (ORR), while the effect of valence state and reconstruction on active centers needs to be investigated thoroughly. Herein, the Mn-SAS catalyst with uniform and precise Mn-N4 configuration is rationally designed. We utilize operando synchrotron radiation to track the dynamic evolution of active centers during ORR. Under the applied potential, the structural evolution of Mn-N4 into Mn-N3 C and further into Mn-N2 C2 configurations is clarified. Simultaneously, the valence states of Mn are increased from +3.0 to +3.8 and then decreased to +3.2. When the potential is removed, the catalyst returned to its initial Mn+3.0 -N4 configuration. Such successive evolutions optimize the electronic and geometric structures of active centers as evidenced by theory calculations. The evolved Mn+3.8 -N3 C and Mn+3.2 -N2 C2 configurations respectively adjust the O2 adsorption and reduce the energy barrier of rate-determining step. Thus, it can achieve an onset potential of 0.99 V, superior stability over 10,000 cycles, and a high turnover frequency of 1.59 s-1 at 0.85 VRHE. Our present work provides new insights into the construction of well-defined SAS catalysts by regulating the valence states and configurations of active centers.
Collapse
Affiliation(s)
- Miaomiao Tong
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Gengyu Xing
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Chungui Tian
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Lei Wang
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
43
|
Zou T, Wang Y, Xu F. Defect-Engineered Charge Transfer in a PtCu/Pr xCe 1-xO 2 Carbon-Free Catalyst for Promoting the Methanol Oxidation and Oxygen Reduction Reactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58296-58308. [PMID: 38064379 DOI: 10.1021/acsami.3c11446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Platinum (Pt) and Pt-based alloys have been extensively studied as efficient catalysts for both the anode and cathode of direct methanol fuel cells (DMFC). Defect engineering has been revealed to be practicable in tuning the charge transfer between Pt and transition metals/supports, which leads to the charge density rearrangement and facilitates the electrocatalytic performance. Herein, Pr-doped CeO2 nanocubes were used as the noncarbon support of a PtCu catalyst. The concentration and structure of oxygen vacancy (Vo) defects were engineered by Pr doping. Besides the Vo monomer, the oxygen vacancy with a linear structure is also observed, leading to the one-dimensional PtCu. The Vo concentration shows the volcanic scenario as Pr increased. Accordingly, the activities of PtCu/PrxCe1-xO2 toward methanol oxidation and oxygen reduction reactions exhibit the volcanic scenario. PtCu/Pr0.15Ce0.85O2 exhibits the optimal catalytic performance with the specific activity 3.57 times higher than that of Pt/C toward MOR and 1.34 times higher toward ORR. The MOR and ORR mass activities of PtCu/Pr0.15Ce0.85O2 reached 1.05 and 0.12 A·mg-1, which are 3.09 and 0.92 times the values of Pt/C, respectively. The abundant Vo afforded surplus electrons, which tailored the electron transfer between PtCu and PrxCe1-xO2, leading to enhanced catalytic performance of PtCu/PrxCe1-xO2. DFT calculations on PtCu/Pr0.15Ce0.85O2 revealed that Pr doping reduced the band gap of CeO2 and lowered the overpotential.
Collapse
Affiliation(s)
- Tianhua Zou
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350002, China
| | - Yifen Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350002, China
| | - Feng Xu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
44
|
Guo N, Xue H, Ren R, Sun J, Song T, Dong H, Zhao Z, Zhang J, Wang Q, Wu L. S-Block Potassium Single-atom Electrocatalyst with K-N 4 Configuration Derived from K + /Polydopamine for Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2023; 62:e202312409. [PMID: 37681482 DOI: 10.1002/anie.202312409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Currently, single-atom catalysts (SACs) research mainly focuses on transition metal atoms as active centers. Due to their delocalized s/p-bands, the s-block main group metal elements are typically regarded as catalytically inert. Herein, an s-block potassium SAC (K-N-C) with K-N4 configuration is reported for the first time, which exhibits excellent oxygen reduction reaction (ORR) activity and stability under alkaline conditions. Specifically, the half-wave potential (E1/2 ) is up to 0.908 V, and negligible changes in E1/2 are observed after 10,000 cycles. In addition, the K-N-C offers an exceptional power density of 158.1 mW cm-2 and remarkable durability up to 420 h in a Zn-air battery. Density functional theory (DFT) simulations show that K-N-C has bifunctional active K and C sites, can optimize the free energy of ORR reaction intermediates, and adjust the rate-determining steps. The crystal orbital Hamilton population (COHP) results showed that the s orbitals of K played a major role in the adsorption of intermediates, which was different from the d orbitals in transition metals. This work significantly guides the rational design and catalytic mechanism research of s-block SACs with high ORR activity.
Collapse
Affiliation(s)
- Niankun Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Hui Xue
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Rui Ren
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Tianshan Song
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, P. R. China
| | - Zhonglong Zhao
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jiangwei Zhang
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Qin Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Limin Wu
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
45
|
Mo S, Zhao X, Li S, Huang L, Zhao X, Ren Q, Zhang M, Peng R, Zhang Y, Zhou X, Fan Y, Xie Q, Guo Y, Ye D, Chen Y. Non-Interacting Ni and Fe Dual-Atom Pair Sites in N-Doped Carbon Catalysts for Efficient Concentrating Solar-Driven Photothermal CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202313868. [PMID: 37899658 DOI: 10.1002/anie.202313868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 10/31/2023]
Abstract
Solar-to-chemical energy conversion under weak solar irradiation is generally difficult to meet the heat demand of CO2 reduction. Herein, a new concentrated solar-driven photothermal system coupling a dual-metal single-atom catalyst (DSAC) with adjacent Ni-N4 and Fe-N4 pair sites is designed for boosting gas-solid CO2 reduction with H2 O under simulated solar irradiation, even under ambient sunlight. As expected, the (Ni, Fe)-N-C DSAC exhibits a superior photothermal catalytic performance for CO2 reduction to CO (86.16 μmol g-1 h-1 ), CH4 (135.35 μmol g-1 h-1 ) and CH3 OH (59.81 μmol g-1 h-1 ), which are equivalent to 1.70-fold, 1.27-fold and 1.23-fold higher than those of the Fe-N-C catalyst, respectively. Based on theoretical simulations, the Fermi level and d-band center of Fe atom is efficiently regulated in non-interacting Ni and Fe dual-atom pair sites with electronic interaction through electron orbital hybridization on (Ni, Fe)-N-C DSAC. Crucially, the distance between adjacent Ni and Fe atoms of the Ni-N-N-Fe configuration means that the additional Ni atom as a new active site contributes to the main *COOH and *HCO3 dissociation to optimize the corresponding energy barriers in the reaction process, leading to specific dual reaction pathways (COOH and HCO3 pathways) for solar-driven photothermal CO2 reduction to initial CO production.
Collapse
Affiliation(s)
- Shengpeng Mo
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Xinya Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Shuangde Li
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lili Huang
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Xin Zhao
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Quanming Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Mingyuan Zhang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Ruosi Peng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Yanan Zhang
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Xiaobin Zhou
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Yinming Fan
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Qinglin Xie
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yunfa Chen
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
46
|
Xie X, Zhai Z, Peng L, Zhang J, Shang L, Zhang T. Recent advances in bifunctional dual-sites single-atom catalysts for oxygen electrocatalysis toward rechargeable zinc-air batteries. Sci Bull (Beijing) 2023; 68:2862-2875. [PMID: 37884426 DOI: 10.1016/j.scib.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023]
Abstract
Rechargeable zinc-air batteries (ZABs) with high energy density and low pollutant emissions are regarded as the promising energy storage and conversion devices. However, the sluggish kinetics and complex four-electron processes of oxygen reduction reaction and oxygen evolution reaction occurring at air electrodes in rechargeable ZABs pose significant challenges for their large-scale application. Carbon-supported single-atom catalysts (SACs) exhibit great potential in oxygen electrocatalysis, but needs to further improve their bifunctional electrocatalytic performance, which is highly related to the coordination environment of the active sites. As an extension of SACs, dual-sites SACs with wide combination of two active sites provide limitless opportunities to tailor coordination environment at the atomic level and improve catalytic performance. The review systematically summarizes recent achievements in the fabrication of dual-site SACs as bifunctional oxygen electrocatalysts, starting by illustrating the design fundament of the electrocatalysts according to their catalytic mechanisms. Subsequently, metal-nonmetal-atom synergies and dual-metal-atom synergies to synthesize dual-sites SACs toward enhancing rechargeable ZABs performance are overviewed. Finally, the perspectives and challenges for the development of dual-sites SACs are proposed, shedding light on the rational design of efficient bifunctional oxygen electrocatalysts for practical rechargeable ZABs.
Collapse
Affiliation(s)
- Xiaoying Xie
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zeyu Zhai
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lishan Peng
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Jingbo Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
47
|
Wei G, Li Y, Liu X, Huang J, Liu M, Luan D, Gao S, Lou XWD. Single-Atom Zinc Sites with Synergetic Multiple Coordination Shells for Electrochemical H 2 O 2 Production. Angew Chem Int Ed Engl 2023; 62:e202313914. [PMID: 37789565 DOI: 10.1002/anie.202313914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023]
Abstract
Precise manipulation of the coordination environment of single-atom catalysts (SACs), particularly the simultaneous engineering of multiple coordination shells, is crucial to maximize their catalytic performance but remains challenging. Herein, we present a general two-step strategy to fabricate a series of hollow carbon-based SACs featuring asymmetric Zn-N2 O2 moieties simultaneously modulated with S atoms in higher coordination shells of Zn centers (n≥2; designated as Zn-N2 O2 -S). Systematic analyses demonstrate that the synergetic effects between the N2 O2 species in the first coordination shell and the S atoms in higher coordination shells lead to robust discrete Zn sites with the optimal electronic structure for selective O2 reduction to H2 O2 . Remarkably, the Zn-N2 O2 moiety with S atoms in the second coordination shell possesses a nearly ideal Gibbs free energy for the key OOH* intermediate, which favors the formation and desorption of OOH* on Zn sites for H2 O2 generation. Consequently, the Zn-N2 O2 -S SAC exhibits impressive electrochemical H2 O2 production performance with high selectivity of 96 %. Even at a high current density of 80 mA cm-2 in the flow cell, it shows a high H2 O2 production rate of 6.924 mol gcat -1 h-1 with an average Faradaic efficiency of 93.1 %, and excellent durability over 65 h.
Collapse
Affiliation(s)
- Gangya Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
| | - Yunxiang Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
| | - Xupo Liu
- School of Materials Science and Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
| | - Jinrui Huang
- School of Materials Science and Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
| | - Mengran Liu
- School of Materials Science and Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - Shuyan Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
- School of Materials Science and Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| |
Collapse
|
48
|
Qu Y, Dai T, Cui Y, Ding G, Zhu Y, Wang Z, Jiang Q. Heterostructured Co-Doped-Cu 2 O/Cu Synergistically Promotes Water Dissociation for Improved Electrochemical Nitrate Reduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308246. [PMID: 37967357 DOI: 10.1002/smll.202308246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Indexed: 11/17/2023]
Abstract
Electrochemical nitrate reduction reaction (NO3 RR) has recently emerged as a promising approach for sustainable ammonia synthesis and wastewater treatment, while the activity and selectivity for ammonia production have remained low. Herein, rational design and controllable synthesis of heterostructured Co-doped Cu2 O/Cu nanoparticles embedded in carbon framework (Co-Cu2 O/Cu@C) is reported for NO3 RR. The Co-Cu2 O/Cu@C exhibits a high ammonia yield rate of 37.86 mg h-1 mg-1 cat. with 98.1% Faraday efficiency, which is higher than those obtained for most of the Cu-based catalysts under similar conditions. Density functional theory calculations indicated that the strong electronic interactions at Cu/Co-Cu2 O interface facilitate the N species deoxygenation process and doping of Co promotes water dissociation to generate * H for the N species hydrogenation process, leading to enhanced NO3 RR performance. This work provides a new design strategy toward high-performance catalysts toward NO3 RR for ammonia generation.
Collapse
Affiliation(s)
- Yanbin Qu
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Tianyi Dai
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Yuhuan Cui
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Guopeng Ding
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Yongfu Zhu
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Zhili Wang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
49
|
Zhao L, Cai Q, Mao B, Mao J, Dong H, Xiang Z, Zhu J, Paul R, Wang D, Long Y, Qu L, Yan R, Dai L, Hu C. A universal approach to dual-metal-atom catalytic sites confined in carbon dots for various target reactions. Proc Natl Acad Sci U S A 2023; 120:e2308828120. [PMID: 37871204 PMCID: PMC10622929 DOI: 10.1073/pnas.2308828120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/22/2023] [Indexed: 10/25/2023] Open
Abstract
Here, a molecular-design and carbon dot-confinement coupling strategy through the pyrolysis of bimetallic complex of diethylenetriamine pentaacetic acid under low-temperature is proposed as a universal approach to dual-metal-atom sites in carbon dots (DMASs-CDs). CDs as the "carbon islands" could block the migration of DMASs across "islands" to achieve dynamic stability. More than twenty DMASs-CDs with specific compositions of DMASs (pairwise combinations among Fe, Co, Ni, Mn, Zn, Cu, and Mo) have been synthesized successfully. Thereafter, high intrinsic activity is observed for the probe reaction of urea oxidation on NiMn-CDs. In situ and ex situ spectroscopic characterization and first-principle calculations unveil that the synergistic effect in NiMn-DMASs could stretch the urea molecule and weaken the N-H bond, endowing NiMn-CDs with a low energy barrier for urea dehydrogenation. Moreover, DMASs-CDs for various target electrochemical reactions, including but not limited to urea oxidation, are realized by optimizing the specific DMAS combination in CDs.
Collapse
Affiliation(s)
- Linjie Zhao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Qifeng Cai
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
- Laboratory of Theoretical and Computational Nanoscience, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing100029, China
| | - Baoguang Mao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China
| | - Hui Dong
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Jia Zhu
- Laboratory of Theoretical and Computational Nanoscience, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing100029, China
| | - Rajib Paul
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH44242
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yongde Long
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Liangti Qu
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Riqing Yan
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Liming Dai
- Australian Carbon Materials Centre, School of Chemical Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
50
|
Feng R, Ruan QD, Feng JJ, Yao YQ, Li LM, Zhang L, Wang AJ. Facile pyrolysis synthesis of abundant FeCo dual-single atoms anchored on N-doped carbon nanocages for synergistically boosting oxygen reduction reaction. J Colloid Interface Sci 2023; 654:1240-1250. [PMID: 39491913 DOI: 10.1016/j.jcis.2023.10.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Single-atom transition metal-based nitrogen-doped carbon (M-Nx-C) is regarded as high-efficiency and cost-effectiveness alternatives to replace noble metal catalysts for oxygen reduction reaction (ORR) in renewable energy storage and conversion devices. In this work, rich FeCo dual-single atoms were efficiently entrapped into N-doped carbon nanocages (FeCo DSAs-NCCs) by simple pyrolysis of the bimetallic precursors doped zeolitic imidazolate framework-8 (ZIF-8), as affirmed by a series of characterizations. The graphitization degree of the N-doping carbon substrate was regulated by modulating the pyrolysis temperature and the types of the metal salts. The typical catalyst substantially improved the alkaline ORR performance, with the onset potential (Eonset) of 0.99 V (vs. RHE) and half-wave potential (E1/2) of 0.88 V (vs. RHE). Ultimately, the catalyst-assembled Zn-air battery possessed a higher open-circuit voltage of 1.501 V, larger power density of 123.7 mW cm-2, and outstanding durability for 150 h. This study provides a guide on developing ORR catalysts for electrochemical energy conversion and storage technology.
Collapse
Affiliation(s)
- Rui Feng
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Qi-Dong Ruan
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Jiu-Ju Feng
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China
| | - You-Qiang Yao
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Lin-Mei Li
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Lu Zhang
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Ai-Jun Wang
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China.
| |
Collapse
|