1
|
Tsai YS, Yang SC, Yang TH, Wu CH, Lin TC, Kung CW. Sulfonate-Functionalized Metal-Organic Framework as a Porous "Proton Reservoir" for Boosting Electrochemical Reduction of Nitrate to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62185-62194. [PMID: 39486896 DOI: 10.1021/acsami.4c14786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The electrochemical reduction reaction of nitrate (NO3RR) is an attractive route to produce ammonia at ambient conditions, but the conversion from nitrate to ammonia, which requires nine protons, has to compete with both the two-proton process of nitrite formation and the hydrogen evolution reaction. Extensive research efforts have thus been made in recent studies to develop electrocatalysts for the NO3RR facilitating the production of ammonia. Rather than designing another better electrocatalyst, herein, we synthesize an electrochemically inactive, porous, and chemically robust zirconium-based metal-organic framework (MOF) with enriched intraframework sulfonate groups, SO3-MOF-808, as a coating deposited on top of the catalytically active copper-based electrode. Although both the overall reaction rate and electrochemically active surface area of the electrode are barely affected by the MOF coating, with negatively charged sulfonate groups capable of enriching more protons near the electrode surface, the MOF coating significantly promotes the selectivity of the NO3RR toward the production of ammonia. In contrast, the use of MOF coating with positively charged trimethylammonium groups to repulse protons strongly facilitates the conversion of nitrate to nitrite, with selectivity of more than 90% at all potentials. Under the optimal operating conditions, the copper electrocatalyst with SO3-MOF-808 coating can achieve a Faradaic efficiency of 87.5% for ammonia production, a nitrate-to-ammonia selectivity of 95.6%, and an ammonia production rate of 97 μmol/cm2 h, outperforming all of those achieved by both the pristine copper (75.0%; 93.9%; 87 μmol/cm2 h) and copper with optimized Nafion coating (83.3%; 86.9%; 64 μmol/cm2 h). Findings here suggest the function of MOF as an advanced alternative to the commercially available Nafion to enrich protons near the surface of electrocatalyst for NO3RR, and shed light on the potential of utilizing such electrochemically inactive MOF coatings in a range of proton-coupled electrocatalytic reactions.
Collapse
Affiliation(s)
- Yun-Shan Tsai
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Shang-Cheng Yang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Tzu-Hsien Yang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
- Program on Key Materials, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Chung-Huan Wu
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Tzu-Chi Lin
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
- Program on Key Materials, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
| |
Collapse
|
2
|
Balasubramanian S, Kulandaisamy AJ, Rayappan JBB. Engineering the defects of UiO-66 MOF for an improved catalytic detoxification of CWA simulant: methyl paraoxon. RSC Adv 2024; 14:31535-31548. [PMID: 39372052 PMCID: PMC11450554 DOI: 10.1039/d4ra04637d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
Exigency in search of an ideal candidate for an effective detoxification of chemical warfare agents is still continuing. Zirconium-based Metal-organic Framework (MOF) UiO-66 has shown a significant detoxification of such toxic chemicals owing to its tunable physio-chemical properties and profuse catalytic sites. In this context, a series of UiO-66 MOFs synthesized by tuning the acidity constant (pK a) and concentration of the modulator, synthesis temperature and water molecules was tested for their detoxification efficiency against the simulant 'methyl-paraoxon' at room temperature. Amongst, HCl modulated UiO-66 across the considered synthesis temperature have shown competent catalytic performance in virtue of defects generation within its structure. In addition, the role of catalytic features of UiO-66 obtained by tailoring its defects in enhancing the degradation efficiency has been systematically investigated. The detoxification efficiency of 98.5% with a half-life time of 0.23 min has confirmed the effectiveness of engineered defects in enhancing the catalytic activity of UiO-66 in detoxifying the identified simulant.
Collapse
Affiliation(s)
- Selva Balasubramanian
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India +91 4362 264 120 +91 4362 350 009. ext. 2255
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India
| | | | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India +91 4362 264 120 +91 4362 350 009. ext. 2255
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India
| |
Collapse
|
3
|
Ghatak A, Shanker GS, Sappati S, Liberman I, Shimoni R, Hod I. Pendant Proton-Relays Systematically Tune the Rate and Selectivity of Electrocatalytic Ammonia Generation in a Fe-Porphyrin Based Metal-Organic Framework. Angew Chem Int Ed Engl 2024; 63:e202407667. [PMID: 38923372 DOI: 10.1002/anie.202407667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Electrocatalytic nitrite reduction (eNO2RR) is a promising alternative route to produce ammonia (NH3). Until now, several molecular catalysts have shown capability to homogeneously reduce nitrite to NH3, while taking advantage of added secondary-sphere functionalities to direct catalytic performance. Yet, realizing such control over heterogeneous electrocatalytic surfaces remains a challenge. Herein, we demonstrate that heterogenization of a Fe-porphyrin molecular catalyst within a 2D Metal-Organic Framework (MOF), allows efficient eNO2RR to NH3. On top of that, installation of pendant proton relaying moieties proximal to the catalytic site, resulted in significant improvement in catalytic activity and selectivity. Notably, systematic manipulation of NH3 faradaic efficiency (up to 90 %) and partial current (5-fold increase) was achieved by varying the proton relay-to-catalyst molar ratio. Electrochemical and spectroscopic analysis show that the proton relays simultaneously aid in generating and stabilizing of reactive Fe-bound NO intermediate. Thus, this concept offers new molecular tools to tune heterogeneous electrocatalytic systems.
Collapse
Affiliation(s)
- Arnab Ghatak
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - G Shiva Shanker
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Subrahmanyam Sappati
- BioTechMed Center, and Department of Pharmaceutical Technology and Biochemistry, ul. Narutowicza 11/12, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Itamar Liberman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Ran Shimoni
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
4
|
Zhang C, Lin Z, Jiao L, Jiang HL. Metal-Organic Frameworks for Electrocatalytic CO 2 Reduction: From Catalytic Site Design to Microenvironment Modulation. Angew Chem Int Ed Engl 2024:e202414506. [PMID: 39214860 DOI: 10.1002/anie.202414506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The electrochemical reduction of CO2 to high-value carbon-based chemicals provides a sustainable approach to achieving an artificial carbon cycle. In the decade, metal-organic frameworks (MOFs), a kind of porous crystalline porous materials featuring well-defined structures, large surface area, high porosity, diverse components, easy tailorability, and controllable morphology, have attracted considerable research attention, serving as electrocatalysts to drive CO2 reduction. In this review, the reaction mechanisms of electrochemical CO2 reduction and the structure/component advantages of MOFs meeting the requirements of electrocatalysts for CO2 reduction are analyzed. After that, the representative progress for the precise fabrication of MOF-based electrocatalysts for CO2 reduction, focusing on catalytic site design and microenvironment modulation, are systemically summarized. Furthermore, the emerging applications and promising research for more practical scenarios related to electrochemical CO2 conversion are specifically proposed. Finally, the remaining challenges and future outlook of MOFs for electrochemical CO2 reduction are further discussed.
Collapse
Affiliation(s)
- Chengming Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhongyuan Lin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Long Jiao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
5
|
Zhao Y, Merino-Garcia I, Albo J, Kaiser A. A Zero-Gap Gas Phase Photoelectrolyzer for CO 2 Reduction with Porous Carbon Supported Photocathodes. CHEMSUSCHEM 2024; 17:e202400518. [PMID: 38687205 DOI: 10.1002/cssc.202400518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
A modified Metal-Organic Framework UiO-66-NH2-based photocathode in a zero-gap gas phase photoelectrolyzer was applied for CO2 reduction. Four types of porous carbon fiber layers with different wettability were employed to tailor the local environment of the cathodic surface reactions, optimizing activity and selectivity towards formate, methanol, and ethanol. Results are explained by mass transport through the different type and arrangement of carbon fiber support layers in the photocathodes and the resulting local environment at the UiO-66-NH2 catalyst. The highest energy-to-fuel conversion efficiency of 1.06 % towards hydrocarbons was achieved with the most hydrophobic carbon fiber (H23C2). The results are a step further in understanding how the design and composition of the photoelectrodes in photoelectrochemical electrolyzers can impact the CO2 reduction efficiency and selectivity.
Collapse
Affiliation(s)
- Yujie Zhao
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Ivan Merino-Garcia
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n., 39005, Santander, Spain
| | - Jonathan Albo
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n., 39005, Santander, Spain
| | - Andreas Kaiser
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Tsai MD, Wu KC, Kung CW. Zirconium-based metal-organic frameworks and their roles in electrocatalysis. Chem Commun (Camb) 2024; 60:8360-8374. [PMID: 39034845 DOI: 10.1039/d4cc02793k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Due to their exceptional chemical stability in water and high structural tunability, zirconium(IV)-based MOFs (Zr-MOFs) have been considered attractive materials in the broad fields of electrocatalysis. Numerous studies published since 2015 have attempted to utilise Zr-MOFs in electrocatalysis, with the porous framework serving as either the active electrocatalyst or the scaffold or surface coating to further enhance the performance of the actual electrocatalyst. Herein, the roles of Zr-MOFs in electrocatalytic processes are discussed, and some selected examples reporting the applications of Zr-MOFs in various electrocatalytic reactions, including several studies from our group, are overviewed. Challenges, limitations and opportunities in using Zr-MOFs in electrocatalysis in future studies are discussed.
Collapse
Affiliation(s)
- Meng-Dian Tsai
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| | - Kuan-Chu Wu
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| |
Collapse
|
7
|
Liu Y, Wang S, Chen W, Kong W, Wang S, Liu H, Ding L, Ding LX, Wang H. 5.1 µm Ion-Regulated Rigid Quasi-Solid Electrolyte Constructed by Bridging Fast Li-Ion Transfer Channels for Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401837. [PMID: 38682617 DOI: 10.1002/adma.202401837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/24/2024] [Indexed: 05/01/2024]
Abstract
An ultra-thin quasi-solid electrolyte (QSE) with dendrite-inhibiting properties is a requirement for achieving high energy density quasi-solid lithium metal batteries (LMBs). Here, a 5.1 µm rigid QSE layer is directly designed on the cathode, in which Kevlar (poly(p-phenylene terephthalate)) nanofibers (KANFs) with negatively charged groups bridging metal-organic framework (MOF) particles are served as a rigid skeleton, and non-flammable deep eutectic solvent is selected to be encapsulated into the MOF channels, combined with in situ polymerization to complete safe electrolyte system with high rigidness and stability. The QSE with constructed topological network demonstrates high rigidity (5.4 GPa), high ionic conductivity (0.73 mS cm-1 at room temperature), good ion-regulated properties, and improved structural stability, contributing to homogenized Li-ion flux, excellent dendrite suppression, and prolonged cyclic performance for LMB. Additionally, ion regulation influences the Li deposition behavior, exhibiting a uniform morphology on the Li-metal surface after cycling. According to density-functional theory, KANFs bridging MOFs as hosts play a vital function in the free-state and fast diffusion dynamics of Li-ions. This work provides an effective strategy for constructing ultrathin robust electrolytes with a novel ionic conduction mode.
Collapse
Affiliation(s)
- Yangxi Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Suqing Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Weicheng Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Wenhan Kong
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Shupei Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Haixing Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Li Ding
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Liang-Xin Ding
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Haihui Wang
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
9
|
Mukhopadhyay S, Naeem MS, Shiva Shanker G, Ghatak A, Kottaichamy AR, Shimoni R, Avram L, Liberman I, Balilty R, Ifraemov R, Rozenberg I, Shalom M, López N, Hod I. Local CO 2 reservoir layer promotes rapid and selective electrochemical CO 2 reduction. Nat Commun 2024; 15:3397. [PMID: 38649389 PMCID: PMC11035706 DOI: 10.1038/s41467-024-47498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Electrochemical CO2 reduction reaction in aqueous electrolytes is a promising route to produce added-value chemicals and decrease carbon emissions. However, even in Gas-Diffusion Electrode devices, low aqueous CO2 solubility limits catalysis rate and selectivity. Here, we demonstrate that when assembled over a heterogeneous electrocatalyst, a film of nitrile-modified Metal-Organic Framework (MOF) acts as a remarkable CO2-solvation layer that increases its local concentration by ~27-fold compared to bulk electrolyte, reaching 0.82 M. When mounted on a Bi catalyst in a Gas Diffusion Electrode, the MOF drastically improves CO2-to-HCOOH conversion, reaching above 90% selectivity and partial HCOOH currents of 166 mA/cm2 (at -0.9 V vs RHE). The MOF also facilitates catalysis through stabilization of reaction intermediates, as identified by operando infrared spectroscopy and Density Functional Theory. Hence, the presented strategy provides new molecular means to enhance heterogeneous electrochemical CO2 reduction reaction, leading it closer to the requirements for practical implementation.
Collapse
Affiliation(s)
- Subhabrata Mukhopadhyay
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Muhammad Saad Naeem
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), 43007, Tarragona, Spain
- Universitat Rovira i Virgili, Pl. Imperial Tarraco 1, 43005, Tarragona, Spain
| | - G Shiva Shanker
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Arnab Ghatak
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Alagar R Kottaichamy
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Ran Shimoni
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Liat Avram
- Department of Chemical Research Support Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Itamar Liberman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Rotem Balilty
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Raya Ifraemov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Illya Rozenberg
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), 43007, Tarragona, Spain.
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| |
Collapse
|
10
|
Shanker GS, Ghatak A, Binyamin S, Balilty R, Shimoni R, Liberman I, Hod I. Regulation of Catalyst Immediate Environment Enables Acidic Electrochemical Benzyl Alcohol Oxidation to Benzaldehyde. ACS Catal 2024; 14:5654-5661. [PMID: 38660611 PMCID: PMC11036388 DOI: 10.1021/acscatal.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Electrocatalytic alcohol oxidation in acid offers a promising alternative to the kinetically sluggish water oxidation reaction toward low-energy H2 generation. However, electrocatalysts driving active and selective acidic alcohol electrochemical transformation are still scarce. In this work, we demonstrate efficient alcohol-to-aldehyde conversion achieved by reticular chemistry-based modification of the catalyst's immediate environment. Specifically, coating a Bi-based electrocatalyst with a thin layer of metal-organic framework (MOF) substantially improves its performance toward benzyl alcohol electro-oxidation to benzaldehyde in a 0.1 M H2SO4 electrolyte. Detailed analysis reveals that the MOF adlayer influences catalysis by increasing the reactivity of surface hydroxides as well as weakening the catalyst-benzaldehyde binding strength. In turn, low-potential (0.65 V) cathodic H2 evolution was obtained through coupling it with anodic benzyl alcohol electro-oxidation. Consequently, the presented approach could be implemented in a wide range of electrocatalytic oxidation reactions for energy-conversion application.
Collapse
Affiliation(s)
- G. Shiva Shanker
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Arnab Ghatak
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Shahar Binyamin
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Rotem Balilty
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ran Shimoni
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Itamar Liberman
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Idan Hod
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
11
|
Iniyan S, Ren J, Deshmukh S, Rajeswaran K, Jegan G, Hou H, Suryanarayanan V, Murugadoss V, Kathiresan M, Xu BB, Guo Z. An Overview of Metal-organic Framework Based Electrocatalysts: Design and Synthesis for Electrochemical Hydrogen Evolution, Oxygen Evolution, and Carbon Dioxide Reduction Reactions. CHEM REC 2023:e202300317. [PMID: 38054611 DOI: 10.1002/tcr.202300317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Due to the increasing global energy demands, scarce fossil fuel supplies, and environmental issues, the pursued goals of energy technologies are being sustainable, more efficient, accessible, and produce near zero greenhouse gas emissions. Electrochemical water splitting is considered as a highly viable and eco-friendly energy technology. Further, electrochemical carbon dioxide (CO2 ) reduction reaction (CO2 RR) is a cleaner strategy for CO2 utilization and conversion to stable energy (fuels). One of the critical issues in these cleaner technologies is the development of efficient and economical electrocatalyst. Among various materials, metal-organic frameworks (MOFs) are becoming increasingly popular because of their structural tunability, such as pre- and post- synthetic modifications, flexibility in ligand design and its functional groups, and incorporation of different metal nodes, that allows for the design of suitable MOFs with desired quality required for each process. In this review, the design of MOF was discussed for specific process together with different synthetic methods and their effects on the MOF properties. The MOFs as electrocatalysts were highlighted with their performances from the aspects of hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and electrochemical CO2 RR. Finally, the challenges and opportunities in this field are discussed.
Collapse
Affiliation(s)
- S Iniyan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Swapnil Deshmukh
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
- DKTE Society's Textile and Engineering an Autonomous Institute, Ichalkaranji, 416115, India
| | - K Rajeswaran
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - G Jegan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Hua Hou
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Vembu Suryanarayanan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Vignesh Murugadoss
- Membrane and Separation Technology Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, 700032, India
| | - Murugavel Kathiresan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Zhanhu Guo
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| |
Collapse
|
12
|
Liu G, Trinh QT, Wang H, Wu S, Arce-Ramos JM, Sullivan MB, Kraft M, Ager JW, Zhang J, Xu R. Selective and Stable CO 2 Electroreduction to CH 4 via Electronic Metal-Support Interaction upon Decomposition/Redeposition of MOF. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301379. [PMID: 37300346 DOI: 10.1002/smll.202301379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/12/2023]
Abstract
The CO2 electroreduction to fuels is a feasible approach to provide renewable energy sources. Therefore, it is necessary to conduct experimental and theoretical investigations on various catalyst design strategies, such as electronic metal-support interaction, to improve the catalytic selectivity. Here a solvent-free synthesis method is reported to prepare a copper (Cu)-based metal-organic framework (MOF) as the precursor. Upon electrochemical CO2 reduction in aqueous electrolyte, it undergoes in situ decomposition/redeposition processes to form abundant interfaces between Cu nanoparticles and amorphous carbon supports. This Cu/C catalyst favors the selective and stable production of CH4 with a Faradaic efficiency of ≈55% at -1.4 V versus reversible hydrogen electrode (RHE) for 12.5 h. The density functional theory calculation reveals the crucial role of interfacial sites between Cu and amorphous carbon support in stabilizing the key intermediates for CO2 reduction to CH4 . The adsorption of COOH* and CHO* at the Cu/C interface is up to 0.86 eV stronger than that on Cu(111), thus promoting the formation of CH4 . Therefore, it is envisioned that the strategy of regulating electronic metal-support interaction can improve the selectivity and stability of catalyst toward a specific product upon electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Guanyu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
| | - Quang Thang Trinh
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, Queensland, 4111, Australia
| | - Haojing Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Shuyang Wu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
| | - Juan Manuel Arce-Ramos
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
| | - Michael B Sullivan
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
| | - Markus Kraft
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Joel W Ager
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Berkeley Educational Alliance for Research in Singapore (BEARS), 1 Create Way, Singapore, 138602, Singapore
| | - Jia Zhang
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
| | - Rong Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
| |
Collapse
|
13
|
Ni W, Guan Y, Chen H, Zhang Y, Wang S, Zhang S. Molecular Engineering of Cation Solvation Structure for Highly Selective Carbon Dioxide Electroreduction. Angew Chem Int Ed Engl 2023; 62:e202303233. [PMID: 37507348 DOI: 10.1002/anie.202303233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 07/30/2023]
Abstract
Balancing the activation of H2 O is crucial for highly selective CO2 electroreduction (CO2 RR), as the protonation steps of CO2 RR require fast H2 O dissociation kinetics, while suppressing hydrogen evolution (HER) demands slow H2 O reduction. We herein proposed one molecular engineering strategy to regulate the H2 O activation using aprotic organic small molecules with high Gutmann donor number as a solvation shell regulator. These organic molecules occupy the first solvation shell of K+ and accumulate in the electrical double layer, decreasing the H2 O density at the interface and the relative content of proton suppliers (free and coordinated H2 O), suppressing the HER. The adsorbed H2 O was stabilized via the second sphere effect and its dissociation was promoted by weakening the O-H bond, which accelerates the subsequent *CO2 protonation kinetics and reduces the energy barrier. In the model electrolyte containing 5 M dimethyl sulfoxide (DMSO) as an additive (KCl-DMSO-5), the highest CO selectivity over Ag foil increased to 99.2 %, with FECO higher than 90.0 % within -0.75 to -1.15 V (vs. RHE). This molecular engineering strategy for cation solvation shell can be extended to other metal electrodes, such as Zn and Sn, and organic molecules like N,N-dimethylformamide.
Collapse
Affiliation(s)
- Wenpeng Ni
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Yongji Guan
- Institute of Optoelectronics and Electromagnetic Information, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Houjun Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Yan Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| |
Collapse
|
14
|
Hu Y, Liu J, Lee C, Li M, Han B, Wu T, Pan H, Geng D, Yan Q. Integration of Metal-Organic Frameworks and Metals: Synergy for Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300916. [PMID: 37066724 DOI: 10.1002/smll.202300916] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Electrocatalysis is a highly promising technology widely used in clean energy conversion. There is a continuing need to develop advanced electrocatalysts to catalyze the critical electrochemical reactions. Integrating metal active species, including various metal nanostructures (NSs) and atomically dispersed metal sites (ADMSs), into metal-organic frameworks (MOFs) leads to the formation of promising heterogeneous electrocatalysts that take advantage of both components. Among them, MOFs can provide support and protection for the active sites on guest metals, and the resulting host-guest interactions can synergistically enhance the electrocatalytic performance. In this review, three key concerns on MOF-metal heterogeneous electrocatalysts regarding the catalytic sites, conductivity, and catalytic stability are first presented. Then, rational integration strategies of MOFs and metals, including the integration of metal NSs via surface anchoring, space confining, and MOF coating, as well as the integration of ADMSs either with the metal nodes/linkers or within the pores of MOFs, along with their recent progress on synergistic cooperation for specific electrochemical reactions are summarized. Finally, current challenges and possible solutions in applying these increasingly concerned electrocatalysts are also provided.
Collapse
Affiliation(s)
- Yue Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Meng Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianci Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dongsheng Geng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| |
Collapse
|
15
|
Liu Y, Li X, Zhang S, Wang Z, Wang Q, He Y, Huang WH, Sun Q, Zhong X, Hu J, Guo X, Lin Q, Li Z, Zhu Y, Chueh CC, Chen CL, Xu Z, Zhu Z. Molecular Engineering of Metal-Organic Frameworks as Efficient Electrochemical Catalysts for Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300945. [PMID: 36912205 DOI: 10.1002/adma.202300945] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Indexed: 06/02/2023]
Abstract
Metal-organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan-metal links (e.g., nickel, as for Ni(DMBD)-MOF) is designed. The crystal structure is solved from microcrystals by a continuous-rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)-MOF due to the Ni-S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)-MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non-thiol (e.g., 1,4-benzene dicarboxylic acid) analog (BDC)-MOF, because it poses fewer energy barriers during the rate-limiting *O intermediate formation step. Iron-substituted NiFe(DMBD)-MOF achieves a current density of 100 mA cm-2 at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis.
Collapse
Affiliation(s)
- Yizhe Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xintong Li
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Shoufeng Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Zilong Wang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Qi Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yonghe He
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Wei-Hsiang Huang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Taipei, 10607, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Qidi Sun
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xiaoyan Zhong
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Jue Hu
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xuyun Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong
| | - Qing Lin
- ReadCrystal Biotech Co., Ltd., Suzhou, Jiangsu Province, 215505, P. R. China
| | - Zhuo Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Ye Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chi-Liang Chen
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Zhengtao Xu
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
16
|
Su X, Xu T, Ye R, Guo C, Wabaidur SM, Chen DL, Aftab S, Zhong Y, Hu Y. One-pot solvothermal synthesis of In-doped amino-functionalized UiO-66 Zr-MOFs with enhanced ligand-to-metal charge transfer for efficient visible-light-driven CO 2 reduction. J Colloid Interface Sci 2023; 646:129-140. [PMID: 37187046 DOI: 10.1016/j.jcis.2023.05.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Metal organic frameworks (MOFs) with high porosity and highly tunable physical/chemical properties can serve as heterogeneous catalysts for CO2 photoreduction, but the application is hindered by the large band gap (Eg) and insufficient ligand-to-metal charge transfer (LMCT). In this study, a simple one-pot solvothermal strategy is proposed to prepare an amino-functionalized MOF (aU(Zr/In)) featuring an amino-functionalizing ligand linker and In-doped Zr-oxo clusters, which enables efficient CO2 reduction driven with visible light. The amino functionalization leads to a significant reduction of Eg as well as a charge redistribution of the framework, allowing the absorption of visible light and the efficient separation of photogenerated carriers. Furthermore, the incorporation of In not only promotes the LMCT process by creating oxygen vacancies in Zr-oxo clusters, but also greatly lowers the energy barrier of the intermediates for CO2-to-CO conversion. With the synergistic effects of the amino groups and the In dopants, the optimized aU(Zr/In) exhibits a CO production rate of 37.58 ± 1.06 μmol g-1 h-1, outperforming the isostructural University of Oslo-66- and Material of Institute Lavoisier-125-based photocatalysts. Our work demonstrates the potential of modifying MOFs with ligands and heteroatom dopants in metal-oxo clusters for solar energy conversion.
Collapse
Affiliation(s)
- Xiaoxuan Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Tongfei Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Ruixiang Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Changfa Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | | | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Yijun Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China; Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China.
| |
Collapse
|
17
|
Jiang Q, Wang J, Liu T, Ying S, Kong Y, Chai N, Yi FY. UiO-66-Derived PBA Composite as Multifunctional Electrochemical Non-Enzymatic Sensor Realizing High-Performance Detection of Hydrogen Peroxide and Glucose. Inorg Chem 2023; 62:7014-7023. [PMID: 37126666 DOI: 10.1021/acs.inorgchem.3c00285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this work, a highly efficient multifunctional non-enzymatic electrochemical sensor is successfully fabricated based on a facile two-step synthetic strategy. It resolves two important challenges of poor stability and low reproducibility compared to conventional electrochemical enzyme-based sensors. Herein, a metal-organic framework (UiO-66) is selected as a sacrificial template to construct the corresponding Prussian blue analogue (PBA) target to improve its stability and conductivity, namely, PBA/UiO-66/NF. Target PBA/UiO-66/NF exhibits excellent electrochemical sensing performance as hydrogen peroxide (H2O2) and glucose sensors with ultrahigh sensitivity of up to 1903 μA mM-1 cm-2 for H2O2 and 22,800 μA mM-1 cm-2 for glucose, as well as a very low detection limit of 0.02 μM (S/N = 3) for H2O2 and 0.28 μM for glucose. Especially, extremely high stability can be observed, which will be beneficial for practical application.
Collapse
Affiliation(s)
- Qiao Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jiang Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Tian Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Shuanglu Ying
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yuxuan Kong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Ning Chai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
18
|
Yan T, Wang P, Sun WY. Single-Site Metal-Organic Framework and Copper Foil Tandem Catalyst for Highly Selective CO 2 Electroreduction to C 2 H 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206070. [PMID: 36538751 DOI: 10.1002/smll.202206070] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Tandem catalysis is a promising way to break the limitation of linear scaling relationship for enhancing efficiency, and the desired tandem catalysts for electrochemical CO2 reduction reaction (CO2 RR) are urgent to be developed. Here, a tandem electrocatalyst created by combining Cu foil (CF) with a single-site Cu(II) metal-organic framework (MOF), named as Cu-MOF-CF, to realize improved electrochemical CO2 RR performance, is reported. The Cu-MOF-CF shows suppression of CH4 , great increase in C2 H4 selectivity (48.6%), and partial current density of C2 H4 at -1.11 V versus reversible hydrogen electrode. The outstanding performance of Cu-MOF-CF for CO2 RR results from the improved microenvironment of the Cu active sites that inhibits CH4 production, more CO intermediate produced by single-site Cu-MOF in situ for CF, and the enlarged active surface area by porous Cu-MOF. This work provides a strategy to combine MOFs with copper-based electrocatalysts to establish high-efficiency electrocatalytic CO2 RR.
Collapse
Affiliation(s)
- Tingting Yan
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
19
|
Zhang Q, Yang H, Zhou T, Chen X, Li W, Pang H. Metal-Organic Frameworks and Their Composites for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204141. [PMID: 36106360 PMCID: PMC9661848 DOI: 10.1002/advs.202204141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Indexed: 06/04/2023]
Abstract
From the point of view of the ecological environment, contaminants such as heavy metal ions or toxic gases have caused harmful impacts on the environment and human health, and overcoming these adverse effects remains a serious and important task. Very recent, highly crystalline porous metal-organic frameworks (MOFs), with tailorable chemistry and excellent chemical stability, have shown promising properties in the field of removing various hazardous pollutants. This review concentrates on the recent progress of MOFs and MOF-based materials and their exploit in environmental applications, mainly including water treatment and gas storage and separation. Finally, challenges and trends of MOFs and MOF-based materials for future developments are discussed and explored.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Hui Yang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Ting Zhou
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Xudong Chen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Wenting Li
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| |
Collapse
|
20
|
Fang M, Xu L, Zhang H, Zhu Y, Wong WY. Metalloporphyrin-Linked Mercurated Graphynes for Ultrastable CO 2 Electroreduction to CO with Nearly 100% Selectivity at a Current Density of 1.2 A cm -2. J Am Chem Soc 2022; 144:15143-15154. [PMID: 35947444 DOI: 10.1021/jacs.2c05059] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrochemical reduction reaction of carbon dioxide (CO2RR) to the desired feedstocks with a high faradaic efficiency (FE) and high stability at a high current density is of great importance but challenging owing to its poor electrochemical stability and competition with the hydrogen evolution reaction (HER). Guided by theoretical calculations, herein, a series of novel metalloporphyrin-linked mercurated graphynes (Hg-MTPP) were designed as electrocatalysts for CO2RR, since the mercurated graphyne blocks induce a high HER overpotential. Notably, Hg-CoTPP was synthesized and produced a maximum CO FE of 95.6% at -0.76 V (vs reversible hydrogen electrode (RHE)) in an H-type cell, and a CO FE of 91.2% even at -1.26 V (vs RHE), due to a great suppression of HER. The Hg-CoTPP combined with N-doped graphene (Hg-CoTPP/NG) was able to achieve a high CO FE of nearly 100% at a current density of 1.2 A cm-2 and particularly a ground-breaking stability of over 360 h at around 420 mA cm-2 in a flow-type cell. Further experimental and computational results revealed that the mercurated graphyne of Hg-CoTPP brings a high HER overpotential and tunes the d-band electronic states of the metal center that make the d-band center closer to the Fermi level, thus enhancing the bonding of *COOH intermediates on Hg-CoTPP. The introduction of NG could shorten the Co-N coordination bonds, which enhances electron transfer to the metal center to lower the energy barrier for *COOH. Our results illustrated that Hg-MTPP could serve as a new class of two-dimensional (2D) materials and provide a design concept for developing efficient electrocatalysts for CO2RR in commercial applications.
Collapse
Affiliation(s)
- Mingwei Fang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Linli Xu
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Hongyang Zhang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Ying Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
21
|
Shimoni R, Shi Z, Binyamin S, Yang Y, Liberman I, Ifraemov R, Mukhopadhyay S, Zhang L, Hod I. Electrostatic Secondary-Sphere Interactions That Facilitate Rapid and Selective Electrocatalytic CO 2 Reduction in a Fe-Porphyrin-Based Metal-Organic Framework. Angew Chem Int Ed Engl 2022; 61:e202206085. [PMID: 35674328 PMCID: PMC9401588 DOI: 10.1002/anie.202206085] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Metal-organic frameworks (MOFs) are promising platforms for heterogeneous tethering of molecular CO2 reduction electrocatalysts. Yet, to further understand electrocatalytic MOF systems, one also needs to consider their capability to fine-tune the immediate chemical environment of the active site, and thus affect its overall catalytic operation. Here, we show that electrostatic secondary-sphere functionalities enable substantial improvement of CO2 -to-CO conversion activity and selectivity. In situ Raman analysis reveal that immobilization of pendent positively-charged groups adjacent to MOF-residing Fe-porphyrin catalysts, stabilize weakly-bound CO intermediates, allowing their rapid release as catalytic products. Also, by varying the electrolyte's ionic strength, systematic regulation of electrostatic field magnitude was achieved, resulting in essentially 100 % CO selectivity. Thus, this concept provides a sensitive molecular-handle that adjust heterogeneous electrocatalysis on demand.
Collapse
Affiliation(s)
- Ran Shimoni
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| | - Zhuocheng Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and PreventionDepartment of Environmental Science & EngineeringFudan UniversityShanghai200433China
| | - Shahar Binyamin
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| | - Yang Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and PreventionDepartment of Environmental Science & EngineeringFudan UniversityShanghai200433China
| | - Itamar Liberman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| | - Raya Ifraemov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| | - Subhabrata Mukhopadhyay
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and PreventionDepartment of Environmental Science & EngineeringFudan UniversityShanghai200433China
- Shanghai Institute of Pollution Control and Ecological SecurityDepartment of Environmental Science & EngineeringShanghai200092China
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| |
Collapse
|
22
|
|
23
|
Shimoni R, Shi Z, Binyamin S, Yang Y, Liberman I, Ifraemov R, Mukhopadhyay S, Zhang L, Hod I. Electrostatic Secondary‐Sphere Interactions That Facilitate Rapid and Selective Electrocatalytic CO2 Reduction in a Fe‐Porphyrin‐Based Metal‐Organic Framework. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ran Shimoni
- Ben-Gurion University of the Negev Chemistry ISRAEL
| | - Zhuocheng Shi
- Fudan University Environmental Science and Engineering CHINA
| | | | - Yang Yang
- Fudan University Environmental Science and Engineering CHINA
| | | | | | | | - Liwu Zhang
- Fudan University Environmental Science and Engineering CHINA
| | - Idan Hod
- Ben-Gurion University of the Negev Chemistry Ben-Gurion Ave 1 Beer-Sheva ISRAEL
| |
Collapse
|
24
|
Lyu F, Hua W, Wu H, Sun H, Deng Z, Peng Y. Structural and interfacial engineering of well-defined metal-organic ensembles for electrocatalytic carbon dioxide reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63980-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Frustrated Lewis pairs in situ formation in B-based porous aromatic frameworks for efficient o-phenylenediamine cyclization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Chen S, Li W, Jiang W, Yang J, Zhu J, Wang L, Ou H, Zhuang Z, Chen M, Sun X, Wang D, Li Y. MOF Encapsulating N‐Heterocyclic Carbene‐Ligated Copper Single‐Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shenghua Chen
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Wen‐Hao Li
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Wenjun Jiang
- Qian Xuesen Laboratory of Space Technology China Academy of Space Technology Beijing 100094 P. R. China
| | - Jiarui Yang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 P. R. China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials School of Material Science and Engineering Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Honghui Ou
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Zechao Zhuang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 P. R. China
| | - Xiaohui Sun
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
27
|
Li D, Zhu B, Sun Z, Liu Q, Wang L, Tang H. Construction of UiO-66/Bi 4O 5Br 2 Type-II Heterojunction to Boost Charge Transfer for Promoting Photocatalytic CO 2 Reduction Performance. Front Chem 2021; 9:804204. [PMID: 34966722 PMCID: PMC8710753 DOI: 10.3389/fchem.2021.804204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
One of the basic challenges of CO2 photoreduction is to develop efficient photocatalysts, and the construction of heterostructure photocatalysts with intimate interfaces is an effective strategy to enhance interfacial charge transfer for realizing high photocatalytic activity. Herein, a novel UiO-66/Bi4O5Br2 heterostructure photocatalyst was constructed by depositing UiO-66 nanoparticles with octahedral morphology over the Bi4O5Br2 nanoflowers assembled from the Bi4O5Br2 nanosheets via an electrostatic self-assembly method. A tight contact interface and a built-in electric field were formed between the UiO-66 and the Bi4O5Br2, which was conducive to the photo-electrons transfer from the Bi4O5Br2 to the UiO-66 and the formation of a type-II heterojunction with highly efficient charge separation. As a result, the UiO-66/Bi4O5Br2 exhibited improved photocatalytic CO2 reduction performance with a CO generation rate of 8.35 μmol h−1 g−1 without using any sacrificial agents or noble co-catalysts. This work illustrates an applicable tactic to develop potent photocatalysts for clean energy conversion.
Collapse
Affiliation(s)
- Dongsheng Li
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Bichen Zhu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Zhongti Sun
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Qinqin Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Lele Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Hua Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Promoting ethylene production over a wide potential window on Cu crystallites induced and stabilized via current shock and charge delocalization. Nat Commun 2021; 12:6823. [PMID: 34819521 PMCID: PMC8613262 DOI: 10.1038/s41467-021-27169-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/06/2021] [Indexed: 11/30/2022] Open
Abstract
Electrochemical CO2 reduction (CO2RR) in a product-orientated and energy-efficient manner relies on rational catalyst design guided by mechanistic understandings. In this study, the effect of conducting support on the CO2RR behaviors of semi-conductive metal-organic framework (MOF) - Cu3(HITP)2 are carefully investigated. Compared to the stand-alone MOF, adding Ketjen Black greatly promotes C2H4 production with a stabilized Faradaic efficiency between 60-70% in a wide potential range and prolonged period. Multicrystalline Cu nano-crystallites in the reconstructed MOF are induced and stabilized by the conducting support via current shock and charge delocalization, which is analogous to the mechanism of dendrite prevention through conductive scaffolds in metal ion batteries. Density functional theory calculations elucidate that the contained multi-facets and rich grain boundaries promote C-C coupling while suppressing HER. This study underlines the key role of substrate-catalyst interaction, and the regulation of Cu crystalline states via conditioning the charge transport, in steering the CO2RR pathway.
Collapse
|
29
|
Chen S, Li WH, Jiang W, Yang J, Zhu J, Wang L, Ou H, Zhuang Z, Chen M, Sun X, Wang D, Li Y. MOF Encapsulating N-Heterocyclic Carbene-Ligated Copper Single-Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angew Chem Int Ed Engl 2021; 61:e202114450. [PMID: 34767294 DOI: 10.1002/anie.202114450] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 12/26/2022]
Abstract
The exploitation of highly efficient carbon dioxide reduction (CO2 RR) electrocatalyst for methane (CH4 ) electrosynthesis has attracted great attention for the intermittent renewable electricity storage but remains challenging. Here, N-heterocyclic carbene (NHC)-ligated copper single atom site (Cu SAS) embedded in metal-organic framework is reported (2Bn-Cu@UiO-67), which can achieve an outstanding Faradaic efficiency (FE) of 81 % for the CO2 reduction to CH4 at -1.5 V vs. RHE with a current density of 420 mA cm-2 . The CH4 FE of our catalyst remains above 70 % within a wide potential range and achieves an unprecedented turnover frequency (TOF) of 16.3 s-1 . The σ donation of NHC enriches the surface electron density of Cu SAS and promotes the preferential adsorption of CHO* intermediates. The porosity of the catalyst facilitates the diffusion of CO2 to 2Bn-Cu, significantly increasing the availability of each catalytic center.
Collapse
Affiliation(s)
- Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wen-Hao Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenjun Jiang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, 100094, P. R. China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Honghui Ou
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xiaohui Sun
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
30
|
Mukhopadhyay S, Shimoni R, Liberman I, Ifraemov R, Rozenberg I, Hod I. Assembly of a Metal-Organic Framework (MOF) Membrane on a Solid Electrocatalyst: Introducing Molecular-Level Control Over Heterogeneous CO 2 Reduction. Angew Chem Int Ed Engl 2021; 60:13423-13429. [PMID: 33755294 PMCID: PMC8251703 DOI: 10.1002/anie.202102320] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Electrochemically active Metal‐Organic Frameworks (MOFs) have been progressively recognized for their use in solar fuel production schemes. Typically, they are utilized as platforms for heterogeneous tethering of exceptionally large concentration of molecular electrocatalysts onto electrodes. Yet so far, the potential influence of their extraordinary chemical modularity on electrocatalysis has been overlooked. Herein, we demonstrate that, when assembled on a solid Ag CO2 reduction electrocatalyst, a non‐catalytic UiO‐66 MOF acts as a porous membrane that systematically tunes the active site's immediate chemical environment, leading to a drastic enhancement of electrocatalytic activity and selectivity. Electrochemical analysis shows that the MOF membrane improves catalytic performance through physical and electrostatic regulation of reactants delivery towards the catalytic sites. The MOF also stabilizes catalytic intermediates via modulation of active site's secondary coordination sphere. This concept can be expanded to a wide range of proton‐coupled electrochemical reactions, providing new means for precise, molecular‐level manipulation of heterogeneous solar fuels systems.
Collapse
Affiliation(s)
- Subhabrata Mukhopadhyay
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Ran Shimoni
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Itamar Liberman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Raya Ifraemov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Illya Rozenberg
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|