1
|
Zhan C, Dattila F, Rettenmaier C, Herzog A, Herran M, Wagner T, Scholten F, Bergmann A, López N, Roldan Cuenya B. Key intermediates and Cu active sites for CO 2 electroreduction to ethylene and ethanol. NATURE ENERGY 2024; 9:1485-1496. [PMID: 39713047 PMCID: PMC11659170 DOI: 10.1038/s41560-024-01633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/09/2024] [Indexed: 12/24/2024]
Abstract
Electrochemical reduction of CO2 (CO2RR) to multi-carbon products is a promising technology to store intermittent renewable electricity into high-added-value chemicals and close the carbon cycle. Its industrial scalability requires electrocatalysts to be highly selective to certain products, such as ethylene or ethanol. However, a substantial knowledge gap prevents the design of tailor-made materials, as the properties ruling the catalyst selectivity remain elusive. Here we combined in situ surface-enhanced Raman spectroscopy and density functional theory on Cu electrocatalysts to unveil the reaction scheme for CO2RR to C2+ products. Ethylene generation occurs when *OC-CO(H) dimers form via CO coupling on undercoordinated Cu sites. The ethanol route opens up only in the presence of highly compressed and distorted Cu domains with deep s-band states via the crucial intermediate *OCHCH2. By identifying and tracking the critical intermediates and specific active sites, our work provides guidelines to selectively decouple ethylene and ethanol production on rationally designed catalysts.
Collapse
Affiliation(s)
- Chao Zhan
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Federico Dattila
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
| | - Clara Rettenmaier
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Antonia Herzog
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Matias Herran
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Timon Wagner
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Fabian Scholten
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Arno Bergmann
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| |
Collapse
|
2
|
Wu H, Yu H, Chow YL, Webley PA, Zhang J. Toward Durable CO 2 Electroreduction with Cu-Based Catalysts via Understanding Their Deactivation Modes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403217. [PMID: 38845132 DOI: 10.1002/adma.202403217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/23/2024] [Indexed: 06/18/2024]
Abstract
The technology of CO2 electrochemical reduction (CO2ER) provides a means to convert CO2, a waste greenhouse gas, into value-added chemicals. Copper is the most studied element that is capable of catalyzing CO2ER to obtain multicarbon products, such as ethylene, ethanol, acetate, etc., at an appreciable rate. Under the operating condition of CO2ER, the catalytic performance of Cu decays because of several factors that alters the surface properties of Cu. In this review, these factors that cause the degradation of Cu-based CO2ER catalysts are categorized into generalized deactivation modes, that are applicable to all electrocatalytic systems. The fundamental principles of each deactivation mode and the associated effects of each on Cu-based catalysts are discussed in detail. Structure- and composition-activity relationship developed from recent in situ/operando characterization studies are presented as evidence of related deactivation modes in operation. With the aim to address these deactivation modes, catalyst design and reaction environment engineering rationales are suggested. Finally, perspectives and remarks built upon the recent advances in CO2ER are provided in attempts to improve the durability of CO2ER catalysts.
Collapse
Affiliation(s)
- Hsiwen Wu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Haoming Yu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, China
| | - Yuen-Leong Chow
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Paul A Webley
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
3
|
Kok J, de Ruiter J, van der Stam W, Burdyny T. Interrogation of Oxidative Pulsed Methods for the Stabilization of Copper Electrodes for CO 2 Electrolysis. J Am Chem Soc 2024; 146:19509-19520. [PMID: 38967202 PMCID: PMC11258781 DOI: 10.1021/jacs.4c06284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Using copper (Cu) as an electrocatalyst uniquely produces multicarbon products (C2+-products) during the CO2 reduction reaction (CO2RR). However, the CO2RR stability of Cu is presently 3 orders of magnitude shorter than required for commercial operation. One means of substantially increasing Cu catalyst lifetimes is through periodic oxidative processes, such as cathodic-anodic pulsing. Despite 100-fold improvements, these oxidative methods only delay, but do not circumvent, degradation. Here, we provide an interrogation of chemical and electrochemical Cu oxidative processes to identify the mechanistic processes leading to stable CO2RR through electrochemical and in situ Raman spectroscopy measurements. We first examine chemical oxidation using an open-circuit potential (OCP), identifying that copper oxidation is regulated by the transient behavior of the OCP curve and limited by the rate of the oxygen reduction reaction (ORR). Increasing O2 flux to the cathode subsequently increased ORR rates, both extending lifetimes and reducing "off" times by 3-fold. In a separate approach, the formation of Cu2O is achieved through electrochemical oxidation. Here, we establish the minimum electrode potentials required for fast Cu oxidation (-0.28 V vs Ag/AgCl, 1 M KHCO3) by accounting for transient local pH changes and tracking oxidation charge transfer. Lastly, we performed a stability test resulting in a 20-fold increase in stable ethylene production versus the continuous case, finding that spatial copper migration is slowed but not mitigated by oxidative pulsing approaches alone.
Collapse
Affiliation(s)
- Jesse Kok
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering,
Faculty of Applied Sciences, Delft University
of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Jim de Ruiter
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science
& Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Ward van der Stam
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science
& Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Thomas Burdyny
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering,
Faculty of Applied Sciences, Delft University
of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| |
Collapse
|
4
|
Liu S, Li Y, Wang D, Xi S, Xu H, Wang Y, Li X, Zang W, Liu W, Su M, Yan K, Nielander AC, Wong AB, Lu J, Jaramillo TF, Wang L, Canepa P, He Q. Alkali cation-induced cathodic corrosion in Cu electrocatalysts. Nat Commun 2024; 15:5080. [PMID: 38871724 PMCID: PMC11176167 DOI: 10.1038/s41467-024-49492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
The reconstruction of Cu catalysts during electrochemical reduction of CO2 is a widely known but poorly understood phenomenon. Herein, we examine the structural evolution of Cu nanocubes under CO2 reduction reaction and its relevant reaction conditions using identical location transmission electron microscopy, cyclic voltammetry, in situ X-ray absorption fine structure spectroscopy and ab initio molecular dynamics simulation. Our results suggest that Cu catalysts reconstruct via a hitherto unexplored yet critical pathway - alkali cation-induced cathodic corrosion, when the electrode potential is more negative than an onset value (e.g., -0.4 VRHE when using 0.1 M KHCO3). Having alkali cations in the electrolyte is critical for such a process. Consequently, Cu catalysts will inevitably undergo surface reconstructions during a typical process of CO2 reduction reaction, resulting in dynamic catalyst morphologies. While having these reconstructions does not necessarily preclude stable electrocatalytic reactions, they will indeed prohibit long-term selectivity and activity enhancement by controlling the morphology of Cu pre-catalysts. Alternatively, by operating Cu catalysts at less negative potentials in the CO electrochemical reduction, we show that Cu nanocubes can provide a much more stable selectivity advantage over spherical Cu nanoparticles.
Collapse
Affiliation(s)
- Shikai Liu
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Yuheng Li
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Di Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Singapore.
| | - Haoming Xu
- Department of Chemistry, National University of Singapore, 12 Science Drive 3, Singapore, 117543, Singapore
| | - Yulin Wang
- Department of Chemistry, National University of Singapore, 12 Science Drive 3, Singapore, 117543, Singapore
| | - Xinzhe Li
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Wenjie Zang
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Weidong Liu
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Mengyao Su
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Katherine Yan
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Adam C Nielander
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Andrew B Wong
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 12 Science Drive 3, Singapore, 117543, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore
| | - Thomas F Jaramillo
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore.
| | - Pieremanuele Canepa
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore.
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore.
| | - Qian He
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore.
| |
Collapse
|
5
|
Zhang Z, Gee W, Sautet P, Alexandrova AN. H and CO Co-Induced Roughening of Cu Surface in CO 2 Electroreduction Conditions. J Am Chem Soc 2024; 146:16119-16127. [PMID: 38815275 DOI: 10.1021/jacs.4c03515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The dynamic restructuring of Cu has been observed under electrochemical conditions, and it has been hypothesized to underlie the unique reactivity of Cu toward CO2 electroreduction. Roughening is one of the key surface phenomena for Cu activation, whereby numerous atomic vacancies and adatoms form. However, the atomic structure of such surface motifs in the presence of relevant adsorbates has remained elusive. Here, we explore the chemical space of Cu surface restructuring under coverage of CO and H in realistic electroreduction conditions, by combining grand canonical DFT and global optimization techniques, from which we construct a potential-dependent grand canonical ensemble representation. The regime of intermediate and mixed CO and H coverage─where structures exhibit some elevated surface Cu─is thermodynamically unfavorable yet kinetically inevitable. Therefore, we develop a quasi-kinetic Monte Carlo simulation to track the system's evolution during a simulated cathodic scan. We reveal the evolution path of the system across coverage space and identify the accessible metastable structures formed along the way. Chemical bonding analysis is performed on the metastable structures with elevated Cu*CO species to understand their formation mechanism. By molecular dynamics simulations and free energy calculations, the surface chemistry of the Cu*CO species is explored, and we identify plausible mechanisms via which the Cu*CO species may diffuse or dimerize. This work provides rich atomistic insights into the phenomenon of surface roughening and the structure of involved species. It also features generalizable methods to explore the chemical space of restructuring surfaces with mixed adsorbates and their nonequilibrium evolution.
Collapse
Affiliation(s)
- Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90094, United States
| | - Winston Gee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90094, United States
| | - Philippe Sautet
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90094, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90094, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90094, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90094, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90094, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90094, United States
| |
Collapse
|
6
|
Liang Y, Zhang R, Xiao K, Ye F, Ma X, Liu W, Yin H, Mao B, Song X, Hu C. Ligand-engineering Cu-based catalysts to accelerate the electrochemical reduction of CO 2. Chem Commun (Camb) 2024; 60:4699-4702. [PMID: 38595270 DOI: 10.1039/d4cc00819g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Two typical Cu-based complex catalysts with piperazine (PR) and p-phenylenediamine (pPDA) ligands were designed to elucidate whether the ligands can tailor the reduction behavior of the Cu species and thus modulate their electrochemical CO2 reduction reaction (eCO2RR) activity. Specifically, Cu-PR underwent a significant in situ transformation into Cu nanoparticles enriched with a Cuδ+/Cu0 interface for high eCO2RR activity, compared to Cu-pPDA. This finding reveals the importance of ligand engineering in modulating the eCO2RR performance of Cu-based complexes.
Collapse
Affiliation(s)
- Ying Liang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Rui Zhang
- Engineering and Technology Research Center of Membranes for Chemical Industry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaihong Xiao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Fenghui Ye
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinyue Ma
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wei Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Hanle Yin
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Baoguang Mao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiangru Song
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Hua Y, Zhu C, Zhang L, Dong F. Designing Surface and Interface Structures of Copper-Based Catalysts for Enhanced Electrochemical Reduction of CO 2 to Alcohols. MATERIALS (BASEL, SWITZERLAND) 2024; 17:600. [PMID: 38592003 PMCID: PMC10856707 DOI: 10.3390/ma17030600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
Electrochemical CO2 reduction (ECR) has emerged as a promising solution to address both the greenhouse effect caused by CO2 emissions and the energy shortage resulting from the depletion of nonrenewable fossil fuels. The production of multicarbon (C2+) products via ECR, especially high-energy-density alcohols, is highly desirable for industrial applications. Copper (Cu) is the only metal that produces alcohols with appreciable efficiency and kinetic viability in aqueous solutions. However, poor product selectivity is the main technical problem for applying the ECR technology in alcohol production. Extensive research has resulted in the rational design of electrocatalyst architectures using various strategies. This design significantly affects the adsorption energetics of intermediates and the reaction pathways for alcohol production. In this review, we focus on the design of effective catalysts for ECR to alcohols, discussing fundamental principles, innovative strategies, and mechanism understanding. Furthermore, the challenges and prospects in utilizing Cu-based materials for alcohol production via ECR are discussed.
Collapse
Affiliation(s)
- Yanbo Hua
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University Shanghai, Shanghai 200438, China
| | - Chenyuan Zhu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Liming Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University Shanghai, Shanghai 200438, China
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
8
|
Winkler D, Leitner M, Auer A, Kunze-Liebhäuser J. The Relevance of the Interfacial Water Reactivity for Electrochemical CO Reduction on Copper Single Crystals. ACS Catal 2024; 14:1098-1106. [PMID: 38269043 PMCID: PMC10806897 DOI: 10.1021/acscatal.3c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
The electrochemical reduction of CO2 is an important electrolysis reaction that enables the conversion of a waste gas to fuels or value-added chemicals. To make this reaction viable, a profound understanding of central intermediate steps, such as the CO electroreduction, is required. On Cu, the CO reduction reaction (CORR) is intimately linked to the hydrogen evolution reaction (HER) that proceeds via the reduction of water in alkaline or neutral electrolytes. Here, we demonstrate that the interaction of water or more specifically the water reduction kinetics on differently smooth Cu(100) and Cu(111) surfaces during the CORR in alkaline media significantly governs the CORR. On Cu(111), faster HER kinetics and the highest CORR activity are observed, even though HER and CORR onsets are more negative. While on Cu(100) small Cu ad-island clusters form in the cathodic potential range only when CO is present, structural changes appear on a larger length scale on Cu(111) both under CORR conditions and when no CO is present. These differences in the reconstruction characteristics may be attributed to the dominance of either the CORR and its intermediates or the HER on the different Cu surfaces. Therefore, the interfacial water reactivity is considered an essential activity descriptor for the CORR on Cu in alkaline media.
Collapse
Affiliation(s)
- Daniel Winkler
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Matthias Leitner
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Andrea Auer
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Julia Kunze-Liebhäuser
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Zhang Z, Li H, Shao Y, Gan L, Kang F, Duan W, Hansen HA, Li J. Molecular understanding of the critical role of alkali metal cations in initiating CO 2 electroreduction on Cu(100) surface. Nat Commun 2024; 15:612. [PMID: 38242907 PMCID: PMC10799043 DOI: 10.1038/s41467-024-44896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Molecular understanding of the solid-liquid interface is challenging but essential to elucidate the role of the environment on the kinetics of electrochemical reactions. Alkali metal cations (M+), as a vital component at the interface, are found to be necessary for the initiation of carbon dioxide reduction reaction (CO2RR) on coinage metals, and the activity and selectivity of CO2RR could be further enhanced with the cation changing from Li+ to Cs+, while the underlying mechanisms are not well understood. Herein, using ab initio molecular dynamics simulations with explicit solvation and enhanced sampling methods, we systematically investigate the role of M+ in CO2RR on Cu surface. A monotonically decreasing CO2 activation barrier is obtained from Li+ to Cs+, which is attributed to the different coordination abilities of M+ with *CO2. Furthermore, we show that the competing hydrogen evolution reaction must be considered simultaneously to understand the crucial role of alkali metal cations in CO2RR on Cu surfaces, where H+ is repelled from the interface and constrained by M+. Our results provide significant insights into the design of electrochemical environments and highlight the importance of explicitly including the solvation and competing reactions in theoretical simulations of CO2RR.
Collapse
Affiliation(s)
- Zhichao Zhang
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Hengyu Li
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Yangfan Shao
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Lin Gan
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Feiyu Kang
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| | - Wenhui Duan
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, People's Republic of China
- Institute for Advanced Study, Tsinghua University, Beijing, 100084, People's Republic of China
- Frontier Science Center for Quantum Information, Beijing, 100084, People's Republic of China
| | - Heine Anton Hansen
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Jia Li
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
10
|
Xie L, Jiang Y, Zhu W, Ding S, Zhou Y, Zhu JJ. Cu-based catalyst designs in CO 2 electroreduction: precise modulation of reaction intermediates for high-value chemical generation. Chem Sci 2023; 14:13629-13660. [PMID: 38075661 PMCID: PMC10699555 DOI: 10.1039/d3sc04353c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/13/2023] [Indexed: 04/26/2024] Open
Abstract
The massive emission of excess greenhouse gases (mainly CO2) have an irreversible impact on the Earth's ecology. Electrocatalytic CO2 reduction (ECR), a technique that utilizes renewable energy sources to create highly reduced chemicals (e.g. C2H4, C2H5OH), has attracted significant attention in the science community. Cu-based catalysts have emerged as promising candidates for ECR, particularly in producing multi-carbon products that hold substantial value in modern industries. The formation of multi-carbon products involves a range of transient intermediates, the behaviour of which critically influences the reaction pathway and product distribution. Consequently, achieving desirable products necessitates precise regulation of these intermediates. This review explores state-of-the-art designs of Cu-based catalysts, classified into three categories based on the different prospects of the intermediates' modulation: heteroatom doping, morphological structure engineering, and local catalytic environment engineering. These catalyst designs enable efficient multi-carbon generation in ECR by effectively modulating reaction intermediates.
Collapse
Affiliation(s)
- Liangyiqun Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University Nanjing 210023 China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University Nanjing 210023 China
| | - Shichao Ding
- Department of Nanoengineering, University of California La Jolla San Diego CA 92093 USA
| | - Yang Zhou
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
11
|
Artmann E, Schmider T, Jacob T, Engstfeld AK. Facet-Dependent Formation and Adhesion of Au Oxide and Nanoporous Au on Poly-Oriented Au Single Crystals. Chemphyschem 2023; 24:e202300428. [PMID: 37435757 DOI: 10.1002/cphc.202300428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/13/2023]
Abstract
Nanoporous Au (NPG) has different properties compared to bulk Au, making it an interesting material for numerous applications. To modify the structure of NPG films for specific applications, e. g., the porosity, thickness, and homogeneity of the films, a fundamental understanding of the structure formation is essential. Here, we focus on NPG prepared via electrochemical reduction from Au oxide formed during high voltage (HV) electrolysis on poly-oriented Au single crystal (Au POSC) electrodes. These POSCs consist of a metal bead, with faces with different crystallographic orientations and allow screening of the influence of crystallographic orientation on the structure formation for different facets in one experiment. The HV electrolysis is performed between 100 ms and 30 s at 300 V and 540 V. The amount of Au oxide formed is determined by electrochemical measurements and the structural properties are investigated by scanning electron and optical microscopy. We show that the formation of Au oxide is mostly independent of the crystallographic orientation, except for thick layers, while the macroscopic structure of the NPG films depends on experimental parameters such as the Au oxide precursor thickness and the crystallographic orientation of the substrate. Possible reasons for the frequently observed exfoliation of the NPG films are discussed.
Collapse
Affiliation(s)
- Evelyn Artmann
- Institute of Electrochemistry, Ulm University, D-89081, Ulm, Germany
| | - Tobias Schmider
- Institute of Electrochemistry, Ulm University, D-89081, Ulm, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, D-89081, Ulm, Germany
| | | |
Collapse
|
12
|
Deacon-Price C, da Silva AHM, Santana CS, Koper MTM, Garcia AC. Solvent Effect on Electrochemical CO 2 Reduction Reaction on Nanostructured Copper Electrodes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14518-14527. [PMID: 37529666 PMCID: PMC10388345 DOI: 10.1021/acs.jpcc.3c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Indexed: 08/03/2023]
Abstract
The electrochemical reduction of CO2 (CO2RR) is a sustainable alternative for producing fuels and chemicals, although the production of highly desired hydrocarbons is still a challenge due to the higher overpotential requirement in combination with the competitive hydrogen evolution reaction (HER). Tailoring the electrolyte composition is a possible strategy to favor the CO2RR over the HER. In this work we studied the solvent effect on the CO2RR on a nanostructured Cu electrode in acetonitrile solvent with different amounts of water. Similar to what has been observed for aqueous media, our online gas chromatography results showed that CO2RR in acetonitrile solvent is also structure-dependent, since nanocube-covered copper (CuNC) was the only surface (in comparison to polycrystalline Cu) capable of producing a detectable amount of ethylene (10% FE), provided there is enough water present in the electrolyte (>500 mM). In situ Fourier Transform Infrared (FTIR) spectroscopy showed that in acetonitrile solvent the presence of CO2 strongly inhibits HER by driving away water from the interface. CO is by far the main product of CO2RR in acetonitrile (>85% Faradaic efficiency), but adsorbed CO is not detected. This suggests that in acetonitrile media CO adsorption is inhibited compared to aqueous media. Remarkably, the addition of water to acetonitrile has little quantitative and almost no qualitative effect on the activity and selectivity of the CO2RR. This indicates that water is not strongly involved in the rate-determining step of the CO2RR in acetonitrile. Only at the highest water concentrations and at the CuNC surface, the CO coverage becomes high enough that a small amount of C2+ product is formed.
Collapse
Affiliation(s)
- Connor Deacon-Price
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Alisson H. M. da Silva
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Cássia S. Santana
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Amanda C. Garcia
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Wu Q, Du R, Wang P, Waterhouse GIN, Li J, Qiu Y, Yan K, Zhao Y, Zhao WW, Tsai HJ, Chen MC, Hung SF, Wang X, Chen G. Nanograin-Boundary-Abundant Cu 2O-Cu Nanocubes with High C 2+ Selectivity and Good Stability during Electrochemical CO 2 Reduction at a Current Density of 500 mA/cm 2. ACS NANO 2023. [PMID: 37339159 DOI: 10.1021/acsnano.3c04951] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Surface and interface engineering, especially the creation of abundant Cu0/Cu+ interfaces and nanograin boundaries, is known to facilitate C2+ production during electrochemical CO2 reductions over copper-based catalysts. However, precisely controlling the favorable nanograin boundaries with surface structures (e.g., Cu(100) facets and Cu[n(100)×(110)] step sites) and simultaneously stabilizing Cu0/Cu+ interfaces is challenging, since Cu+ species are highly susceptible to be reduced into bulk metallic Cu at high current densities. Thus, an in-depth understanding of the structure evolution of the Cu-based catalysts under realistic CO2RR conditions is imperative, including the formation and stabilization of nanograin boundaries and Cu0/Cu+ interfaces. Herein we demonstrate that the well-controlled thermal reduction of Cu2O nanocubes under a CO atmosphere yields a remarkably stable Cu2O-Cu nanocube hybrid catalyst (Cu2O(CO)) possessing a high density of Cu0/Cu+ interfaces, abundant nanograin boundaries with Cu(100) facets, and Cu[n(100)×(110)] step sites. The Cu2O(CO) electrocatalyst delivered a high C2+ Faradaic efficiency of 77.4% (56.6% for ethylene) during the CO2RR under an industrial current density of 500 mA/cm2. Spectroscopic characterizations and morphological evolution studies, together with in situ time-resolved attenuated total reflection-surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) studies, established that the morphology and Cu0/Cu+ interfacial sites in the as-prepared Cu2O(CO) catalyst were preserved under high polarization and high current densities due to the nanograin-boundary-abundant structure. Furthermore, the abundant Cu0/Cu+ interfacial sites on the Cu2O(CO) catalyst acted to increase the *CO adsorption density, thereby increasing the opportunity for C-C coupling reactions, leading to a high C2+ selectivity.
Collapse
Affiliation(s)
- Qiqi Wu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Ruian Du
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Peng Wang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, People's Republic of China
| | | | - Jia Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Keyou Yan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Yun Zhao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Hsin-Jung Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Meng-Cheng Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Xue Wang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, People's Republic of China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
14
|
Chhetri M, Wan M, Jin Z, Yeager J, Sandor C, Rapp C, Wang H, Lee S, Bodenschatz CJ, Zachman MJ, Che F, Yang M. Dual-site catalysts featuring platinum-group-metal atoms on copper shapes boost hydrocarbon formations in electrocatalytic CO 2 reduction. Nat Commun 2023; 14:3075. [PMID: 37244900 DOI: 10.1038/s41467-023-38777-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/16/2023] [Indexed: 05/29/2023] Open
Abstract
Copper-based catalyst is uniquely positioned to catalyze the hydrocarbon formations through electrochemical CO2 reduction. The catalyst design freedom is limited for alloying copper with H-affinitive elements represented by platinum group metals because the latter would easily drive the hydrogen evolution reaction to override CO2 reduction. We report an adept design of anchoring atomically dispersed platinum group metal species on both polycrystalline and shape-controlled Cu catalysts, which now promote targeted CO2 reduction reaction while frustrating the undesired hydrogen evolution reaction. Notably, alloys with similar metal formulations but comprising small platinum or palladium clusters would fail this objective. With an appreciable amount of CO-Pd1 moieties on copper surfaces, facile CO* hydrogenation to CHO* or CO-CHO* coupling is now viable as one of the main pathways on Cu(111) or Cu(100) to selectively produce CH4 or C2H4 through Pd-Cu dual-site pathways. The work broadens copper alloying choices for CO2 reduction in aqueous phases.
Collapse
Affiliation(s)
- Manjeet Chhetri
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Mingyu Wan
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| | - Zehua Jin
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - John Yeager
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Case Sandor
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Conner Rapp
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Hui Wang
- Institute for New Energy Materials and Low Carbon Technology, Tianjin University of Technology, Tianjin, China
| | - Sungsik Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Cameron J Bodenschatz
- Environmental Effects and Coatings Branch, NASA John H. Glenn Research Center, Cleveland, OH, USA
| | - Michael J Zachman
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Fanglin Che
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA.
| | - Ming Yang
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
15
|
Zheng Y, Wang Z, Chen P, Zhang W, Gao Q. Roughness-Dependent Electro-Reductive Coupling of Nitrobenzenes and Aldehydes on Copper Electrodes. CHEMSUSCHEM 2023:e202300180. [PMID: 36988187 DOI: 10.1002/cssc.202300180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/28/2023]
Abstract
The electro-reductive coupling of nitro and carbonyl compounds enables a facile, environmentally friendly and energy benign transformation toward value-added nitrones or imines, but the selectivity is still challenging. Here, the surface roughness of Cu electrodes is introduced for the first time as the determinant to switch products from nitrones to imines owing to the controllable reduction of nitroarenes to hydroxylamines or amines on tailored CuI /Cu0 interfaces. The roughness-dependent selectivity, that is the decrease of nitrones and the increase of imines with enhanced roughness, is visible in the electro-reductive coupling of nitrobenzene and furfural. Thus, the high selectivity of nitrone (98 %) and imine (80 %) can be achieved on a surface smooth Cu foil and the one electrochemically roughened in the presence of I- , respectively. Such roughness-dependence of nitrone/imine selectivity on Cu electrodes is further verified in a wide substrate scope, highlighting the promise of surface/interfacial engineering for electrochemical synthesis.
Collapse
Affiliation(s)
- Yinjian Zheng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Zhiyuan Wang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Peng Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Wenbiao Zhang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| |
Collapse
|
16
|
Rossi K. What do we talk about, when we talk about single-crystal termination-dependent selectivity of Cu electrocatalysts for CO 2 reduction? A data-driven retrospective. Phys Chem Chem Phys 2023; 25:6867-6876. [PMID: 36799456 DOI: 10.1039/d2cp04576a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
We mine from the literature experimental data on the CO2 electrochemical reduction selectivity of Cu single crystal surfaces. We then probe the accuracy of a machine learning model trained to predict faradaic efficiencies for 11 CO2 reduction reaction products, as a function of the applied voltage at which the reaction takes place, and the relative amounts of non equivalent surface sites, distinguished according to their nominal coordination. A satisfactory model accuracy is found only when discriminating data according to their provenance. On one hand, this result points at a qualitative agreement across reported experimental CO2 reduction reactions trends for single-crystal surfaces with well-defined terminations. On the other, this finding hints at the presence of differences in nominally identical catalysts and/or CO2 reduction reaction measurements, which result in quantitative disagreement between experiments.
Collapse
Affiliation(s)
- Kevin Rossi
- Institut des sciences et ingénierie chimiques, École Polytechnique Fédérale de Lausanne, 1950 Sion, Switzerland.
| |
Collapse
|
17
|
Luo M, Ozden A, Wang Z, Li F, Erick Huang J, Hung SF, Wang Y, Li J, Nam DH, Li YC, Xu Y, Lu R, Zhang S, Lum Y, Ren Y, Fan L, Wang F, Li HH, Appadoo D, Dinh CT, Liu Y, Chen B, Wicks J, Chen H, Sinton D, Sargent EH. Coordination Polymer Electrocatalysts Enable Efficient CO-to-Acetate Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209567. [PMID: 36584285 DOI: 10.1002/adma.202209567] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Upgrading carbon dioxide/monoxide to multi-carbon C2+ products using renewable electricity offers one route to more sustainable fuel and chemical production. One of the most appealing products is acetate, the profitable electrosynthesis of which demands a catalyst with higher efficiency. Here, a coordination polymer (CP) catalyst is reported that consists of Cu(I) and benzimidazole units linked via Cu(I)-imidazole coordination bonds, which enables selective reduction of CO to acetate with a 61% Faradaic efficiency at -0.59 volts versus the reversible hydrogen electrode at a current density of 400 mA cm-2 in flow cells. The catalyst is integrated in a cation exchange membrane-based membrane electrode assembly that enables stable acetate electrosynthesis for 190 h, while achieving direct collection of concentrated acetate (3.3 molar) from the cathodic liquid stream, an average single-pass utilization of 50% toward CO-to-acetate conversion, and an average acetate full-cell energy efficiency of 15% at a current density of 250 mA cm-2 .
Collapse
Affiliation(s)
- Mingchuan Luo
- Department of Electrical and Computer Engineering, University of Toronto, 35 St, George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Adnan Ozden
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's, College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Ziyun Wang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St, George Street, Toronto, Ontario, M5S 1A4, Canada
- School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Fengwang Li
- Department of Electrical and Computer Engineering, University of Toronto, 35 St, George Street, Toronto, Ontario, M5S 1A4, Canada
- School of Chemical and Biomolecular Engineering and The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jianan Erick Huang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St, George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Sung-Fu Hung
- Department of Electrical and Computer Engineering, University of Toronto, 35 St, George Street, Toronto, Ontario, M5S 1A4, Canada
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yuhang Wang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St, George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Jun Li
- Department of Electrical and Computer Engineering, University of Toronto, 35 St, George Street, Toronto, Ontario, M5S 1A4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's, College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Dae-Hyun Nam
- Department of Electrical and Computer Engineering, University of Toronto, 35 St, George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Yuguang C Li
- Department of Electrical and Computer Engineering, University of Toronto, 35 St, George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Yi Xu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's, College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Ruihu Lu
- School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Shuzhen Zhang
- School of Chemical and Biomolecular Engineering and The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yanwei Lum
- Department of Electrical and Computer Engineering, University of Toronto, 35 St, George Street, Toronto, Ontario, M5S 1A4, Canada
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Yang Ren
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois, 60439, USA
| | - Longlong Fan
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois, 60439, USA
| | - Fei Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Hui-Hui Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | | | - Cao-Thang Dinh
- Department of Electrical and Computer Engineering, University of Toronto, 35 St, George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Yuan Liu
- Department of Electrical and Computer Engineering, University of Toronto, 35 St, George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Bin Chen
- Department of Electrical and Computer Engineering, University of Toronto, 35 St, George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Joshua Wicks
- Department of Electrical and Computer Engineering, University of Toronto, 35 St, George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Haijie Chen
- Department of Electrical and Computer Engineering, University of Toronto, 35 St, George Street, Toronto, Ontario, M5S 1A4, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's, College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 35 St, George Street, Toronto, Ontario, M5S 1A4, Canada
| |
Collapse
|
18
|
Koolen CD, Luo W, Züttel A. From Single Crystal to Single Atom Catalysts: Structural Factors Influencing the Performance of Metal Catalysts for CO 2 Electroreduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cedric David Koolen
- Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL) Valais/Wallis, Energypolis, Sion 1951, Switzerland
- Empa Materials Science & Technology, Dübendorf 8600, Switzerland
| | - Wen Luo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Andreas Züttel
- Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL) Valais/Wallis, Energypolis, Sion 1951, Switzerland
- Empa Materials Science & Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
19
|
Winkler MEG, Gonçalves RH, Rubira AF. FTIR-Assisted Electroreduction of CO 2 and H 2O to CO and H 2 by Electrochemically Deposited Copper on Oxidized Graphite Felt. ACS OMEGA 2022; 7:45067-45076. [PMID: 36530290 PMCID: PMC9753529 DOI: 10.1021/acsomega.2c05486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Obtaining CO and H2 from electrochemical CO2 reduction (CO2RR) offers a viable alternative to reduce CO2 emissions and produce chemicals and fuels. Herein, we report a simple strategy for obtaining polycrystalline copper deposited on oxidized graphite felt (Cu-OGF) and its performance on the selective conversion of CO2 and H2O to CO and H2. For the electrode obtaining, graphite felt (GF) was first oxidized (OGF) in order to make the substrate hydrophilic and then copper particles were electrochemically deposited onto OGF. The pH of deposition was investigated, and the CO2RR activity was assessed for the prepared electrodes at each pH (2.0, 4.0, 6.0, 8.0, and 10.0). It was found that pH 2.0 was the most promising for CO2RR due to the presence of hexagonal copper microparticles. Fourier transform infrared analysis of the produced gases showed that this is a low-cost catalyst capable of reducing CO2 and H2O to CO and H2, with Faradaic efficiencies between 0.50 and 5.21% for CO and 50.87 to 98.30% for H2, depending on the experimental conditions. Hence, it is possible for this gas mixture to be used as a fuel gas or to be enriched with CO for use in Fischer-Tropsch processes.
Collapse
|
20
|
Cui Y, Yang C, Lin H, Rui S, Yao D, Liao Y, Zhang C, Fang Y, Wang X, Zhong Z, Song Y, Wang G, Zhuang L, Li Z. Amorphous N xC Coating Promotes Electrochemical CO 2 Deep Reduction to Hydrocarbons over Ag Nanocatalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yanjia Cui
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Caili Yang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Huanhao Lin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Suyan Rui
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Defu Yao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Yuting Liao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Chenchen Zhang
- Department of Chemistry Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Guangdong 515063, China
| | - Yiwen Fang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Xiaoming Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Ziyi Zhong
- Department of Chemistry Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Guangdong 515063, China
- Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| | - Yibing Song
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Gongwei Wang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Zhen Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| |
Collapse
|
21
|
Wang W, Duan J, Liu Y, Zhai T. Structural Reconstruction of Catalysts in Electroreduction Reaction: Identifying, Understanding, and Manipulating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110699. [PMID: 35460124 DOI: 10.1002/adma.202110699] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Electroreduction transformation of small molecules (CO2 , N2 , and H2 O) into chemical feedstocks offers a promising approach to eliminate carbon emissions and harness renewable energy. Most cathodic catalysts often undergo structural transformation under operating electroreduction conditions. These structural reconstructions are reflected in changes in their catalytic activity. In-depth understanding of the change of active sites and influence parameters of reconstruction behaviors is an essential precondition for the design of highly efficient catalysts. Despite the previous achievements, comprehensive insight toward the structural evolution mechanism in cathodic catalysts, compared to anode ones, under reaction conditions is still lacking. Herein, an overview of structural reconstruction for cathodic catalysts in terms of fundamental mechanisms, reconstruction process, advanced characterizations, and influencing parameters is provided. On this basis, the typical strategies for manipulating the structural reconfiguration of catalysts are also explicitly discussed from the catalyst structure and working environment. By delivering the mechanism, strategies, insights, and techniques, this review will provide a comprehensive understanding of the structural reconstruction of cathodic catalysts in electroreduction reactions and future guidelines for their rational development.
Collapse
Affiliation(s)
- Wenbin Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Junyuan Duan
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
22
|
Chang X, He M, Lu Q, Xu B. Origin and effect of surface oxygen-containing species on electrochemical CO or CO2 reduction reactions. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1459-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
23
|
Wang X, Hu Q, Li G, Yang H, He C. Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Li J, Li C, Hou J, Gao W, Chang X, Lu Q, Xu B. Intercepting Elusive Intermediates in Cu-Mediated CO Electrochemical Reduction with Alkyl Species. J Am Chem Soc 2022; 144:20495-20506. [DOI: 10.1021/jacs.2c09378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Chunsong Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiajie Hou
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wenqiang Gao
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Wei Z, Sautet P. Improving the Accuracy of Modelling CO
2
Electroreduction on Copper Using Many‐Body Perturbation Theory. Angew Chem Int Ed Engl 2022; 61:e202210060. [DOI: 10.1002/anie.202210060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Ziyang Wei
- Department of Chemistry and Biochemistry University of California Los Angeles CA, 90095 USA
| | - Philippe Sautet
- Department of Chemistry and Biochemistry University of California Los Angeles CA, 90095 USA
- Department of Chemical and Biomolecular Engineering University of California Los Angeles CA, 90095 USA
| |
Collapse
|
26
|
Structural evolution and strain generation of derived-Cu catalysts during CO 2 electroreduction. Nat Commun 2022; 13:4857. [PMID: 35982055 PMCID: PMC9388520 DOI: 10.1038/s41467-022-32601-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Copper (Cu)-based catalysts generally exhibit high C2+ selectivity during the electrochemical CO2 reduction reaction (CO2RR). However, the origin of this selectivity and the influence of catalyst precursors on it are not fully understood. We combine operando X-ray diffraction and operando Raman spectroscopy to monitor the structural and compositional evolution of three Cu precursors during the CO2RR. The results indicate that despite different kinetics, all three precursors are completely reduced to Cu(0) with similar grain sizes (~11 nm), and that oxidized Cu species are not involved in the CO2RR. Furthermore, Cu(OH)2- and Cu2(OH)2CO3-derived Cu exhibit considerable tensile strain (0.43%~0.55%), whereas CuO-derived Cu does not. Theoretical calculations suggest that the tensile strain in Cu lattice is conducive to promoting CO2RR, which is consistent with experimental observations. The high CO2RR performance of some derived Cu catalysts is attributed to the combined effect of the small grain size and lattice strain, both originating from the in situ electroreduction of precursors. These findings establish correlations between Cu precursors, lattice strains, and catalytic behaviors, demonstrating the unique ability of operando characterization in studying electrochemical processes. Copper catalysts derived from oxidized precursors typically exhibit high selectivity for CO2 electroreduction to multicarbon products, yet the influencing factors that control the selectivity need further investigation. Here, the authors reveal that the high selectivity stems from small grain size and lattice strain due to in situ reduction of precursors.
Collapse
|
27
|
Wei Z, Sautet P. Improving the Accuracy of Modelling CO2 Electroreduction on Copper Using Many‐Body Perturbation Theory. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ziyang Wei
- UCLA: University of California Los Angeles Chemistry and Biochemistry UNITED STATES
| | - Philippe Sautet
- University of California Los Angeles Chemical and Biomolecular Engineering 5531 Boelter HallBox 951592 90095-1592 Los Angeles UNITED STATES
| |
Collapse
|
28
|
Shao F, Wong JK, Low QH, Iannuzzi M, Li J, Lan J. In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces. Proc Natl Acad Sci U S A 2022; 119:e2118166119. [PMID: 35858341 PMCID: PMC9304001 DOI: 10.1073/pnas.2118166119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/18/2022] [Indexed: 01/16/2023] Open
Abstract
Electrochemical reduction of CO(2) to value-added chemicals and fuels is a promising strategy to sustain pressing renewable energy demands and to address climate change issues. Direct observation of reaction intermediates during the CO(2) reduction reaction will contribute to mechanistic understandings and thus promote the design of catalysts with the desired activity, selectivity, and stability. Herein, we combined in situ electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy and ab initio molecular dynamics calculations to investigate the CORR process on Cu single-crystal surfaces in various electrolytes. Competing redox pathways and coexistent intermediates of CO adsorption (*COatop and *CObridge), dimerization (protonated dimer *HOCCOH and its dehydrated *CCO), oxidation (*CO2- and *CO32-), and hydrogenation (*CHO), as well as Cu-Oad/Cu-OHad species at Cu-electrolyte interfaces, were simultaneously identified using in situ spectroscopy and further confirmed with isotope-labeling experiments. With AIMD simulations, we report accurate vibrational frequency assignments of these intermediates based on the calculated vibrational density of states and reveal the corresponding species in the electrochemical CO redox landscape on Cu surfaces. Our findings provide direct insights into key intermediates during the CO(2)RR and offer a full-spectroscopic tool (40-4,000 cm-1) for future mechanistic studies.
Collapse
Affiliation(s)
- Feng Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Physics and Astronomy, National Graphene Institute, University of Manchester, Manchester, M13 9PL, UK
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Jun Kit Wong
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Qi Hang Low
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574, Singapore
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Jingguo Li
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Jinggang Lan
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
29
|
Asperti S, Hendrikx R, Gonzalez‐Garcia Y, Kortlever R. Benchmarking the Electrochemical CO
2
Reduction on Polycrystalline Copper Foils: The Importance of Microstructure Versus Applied Potential. ChemCatChem 2022. [DOI: 10.1002/cctc.202200540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Simone Asperti
- Department of Process & Energy, Faculty of Mechanical Maritime and Materials Engineering Delft University of Technology Leeghwaterstraat 39 2628 CB Delft The Netherlands
| | - Ruud Hendrikx
- Department of Materials Science and Engineering Faculty of Mechanical, Maritime and Materials Engineering Delft University of Technology Mekelweg 2 2628 CD Delft The Netherlands
| | - Yaiza Gonzalez‐Garcia
- Department of Materials Science and Engineering Faculty of Mechanical, Maritime and Materials Engineering Delft University of Technology Mekelweg 2 2628 CD Delft The Netherlands
| | - Ruud Kortlever
- Department of Process & Energy, Faculty of Mechanical Maritime and Materials Engineering Delft University of Technology Leeghwaterstraat 39 2628 CB Delft The Netherlands
| |
Collapse
|
30
|
Yoon A, Poon J, Grosse P, Chee SW, Cuenya BR. Iodide-mediated Cu catalyst restructuring during CO 2 electroreduction. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:14041-14050. [PMID: 35872703 PMCID: PMC9255670 DOI: 10.1039/d1ta11089f] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Catalyst restructuring during electrochemical reactions is a critical but poorly understood process that determines the underlying structure-property relationships during catalysis. In the electrocatalytic reduction of CO2 (CO2RR), it is known that Cu, the most favorable catalyst for hydrocarbon generation, is highly susceptible to restructuring in the presence of halides. Iodide ions, in particular, greatly improved the catalyst performance of Cu foils, although a detailed understanding of the morphological evolution induced by iodide remains lacking. It is also unclear if a similar enhancement transfers to catalyst particles. Here, we first demonstrate that iodide pre-treatment improves the selectivity of hexagonally ordered Cu-island arrays towards ethylene and oxygenate products. Then, the morphological changes in these arrays caused by iodide treatment and during CO2RR are visualized using electrochemical transmission electron microscopy. Our observations reveal that the Cu islands evolve into tetrahedral CuI, which then become 3-dimensional chains of copper nanoparticles under CO2RR conditions. Furthermore, CuI and Cu2O particles re-precipitated when the samples are returned to open circuit potential, implying that iodide and Cu+ species are present within these chains. This work provides detailed insight into the role of iodide, and its impact on the prevailing morphologies that exist during CO2RR.
Collapse
Affiliation(s)
- Aram Yoon
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin 14195 Germany
| | - Jeffrey Poon
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin 14195 Germany
| | - Philipp Grosse
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin 14195 Germany
| | - See Wee Chee
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin 14195 Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin 14195 Germany
| |
Collapse
|
31
|
Jia S, Zhu Q, Wu H, Han S, Chu M, Zhai J, Xing X, Xia W, He M, Han B. Preparation of trimetallic electrocatalysts by one-step co-electrodeposition and efficient CO 2 reduction to ethylene. Chem Sci 2022; 13:7509-7515. [PMID: 35872807 PMCID: PMC9241956 DOI: 10.1039/d1sc06964k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Use of multi-metallic catalysts to enhance reactions is an interesting research area, which has attracted much attention. In this work, we carried out the first work to prepare trimetallic electrocatalysts by a one-step co-electrodeposition process. A series of Cu-X-Y (X and Y denote different metals) catalysts were fabricated using this method. It was found that Cu10La1Cs1 (the content ratio of Cu2+, La3+, and Cs+ in the electrolyte is 10 : 1 : 1 in the deposition process), which had an elemental composition of Cu10La0.16Cs0.14 in the catalyst, formed a composite structure on three dimensional (3D) carbon paper (CP), which showed outstanding performance for CO2 electroreduction reaction (CO2RR) to produce ethylene (C2H4). The faradaic efficiency (FE) of C2H4 could reach 56.9% with a current density of 37.4 mA cm-2 in an H-type cell, and the partial current density of C2H4 was among the highest ones up to date, including those over the catalysts consisting of Cu and noble metals. Moreover, the FE of C2+ products (C2H4, ethanol, and propanol) over the Cu10La1Cs1 catalyst in a flow cell reached 70.5% with a high current density of 486 mA cm-2. Experimental and theoretical studies suggested that the doping of La and Cs into Cu could efficiently enhance the reaction efficiency via a combination of different effects, such as defects, change of electronic structure, and enhanced charge transfer rate. This work provides a simple method to prepare multi-metallic catalysts and demonstrates a successful example for highly efficient CO2RR using non-noble metals.
Collapse
Affiliation(s)
- Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Shitao Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Mengen Chu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Jianxin Zhai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Wei Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| |
Collapse
|
32
|
He M, Chang X, Chao TH, Li C, Goddard WA, Cheng MJ, Xu B, Lu Q. Selective Enhancement of Methane Formation in Electrochemical CO 2 Reduction Enabled by a Raman-Inactive Oxygen-Containing Species on Cu. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming He
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Tzu-Hsuan Chao
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Chunsong Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Dattila F, Seemakurthi RR, Zhou Y, López N. Modeling Operando Electrochemical CO 2 Reduction. Chem Rev 2022; 122:11085-11130. [PMID: 35476402 DOI: 10.1021/acs.chemrev.1c00690] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the seminal works on the application of density functional theory and the computational hydrogen electrode to electrochemical CO2 reduction (eCO2R) and hydrogen evolution (HER), the modeling of both reactions has quickly evolved for the last two decades. Formulation of thermodynamic and kinetic linear scaling relationships for key intermediates on crystalline materials have led to the definition of activity volcano plots, overpotential diagrams, and full exploitation of these theoretical outcomes at laboratory scale. However, recent studies hint at the role of morphological changes and short-lived intermediates in ruling the catalytic performance under operating conditions, further raising the bar for the modeling of electrocatalytic systems. Here, we highlight some novel methodological approaches employed to address eCO2R and HER reactions. Moving from the atomic scale to the bulk electrolyte, we first show how ab initio and machine learning methodologies can partially reproduce surface reconstruction under operation, thus identifying active sites and reaction mechanisms if coupled with microkinetic modeling. Later, we introduce the potential of density functional theory and machine learning to interpret data from Operando spectroelectrochemical techniques, such as Raman spectroscopy and extended X-ray absorption fine structure characterization. Next, we review the role of electrolyte and mass transport effects. Finally, we suggest further challenges for computational modeling in the near future as well as our perspective on the directions to follow.
Collapse
Affiliation(s)
- Federico Dattila
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Ranga Rohit Seemakurthi
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Yecheng Zhou
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
34
|
Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat Rev Chem 2022; 6:303-319. [PMID: 37117934 DOI: 10.1038/s41570-022-00379-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2022] [Indexed: 12/24/2022]
Abstract
Energy-intensive thermochemical processes within chemical manufacturing are a major contributor to global CO2 emissions. With the increasing push for sustainability, the scientific community is striving to develop renewable energy-powered electrochemical technologies in lieu of CO2-emitting fossil-fuel-driven methods. However, to fully electrify chemical manufacturing, it is imperative to expand the scope of electrosynthetic technologies, particularly through the innovation of reactions involving nitrogen-based reactants. This Review focuses on a rapidly emerging area, namely the formation of C-N bonds through heterogeneous electrocatalysis. The C-N bond motif is found in many fertilizers (such as urea) as well as commodity and fine chemicals (with functional groups such as amines and amides). The ability to generate C-N bonds from reactants such as CO2, NO3- or N2 would provide sustainable alternatives to the thermochemical routes used at present. We start by examining thermochemical, enzymatic and molecular catalytic systems for C-N bond formation, identifying how concepts from these can be translated to heterogeneous electrocatalysis. Next, we discuss successful heterogeneous electrocatalytic systems and highlight promising research directions. Finally, we discuss the remaining questions and knowledge gaps and thus set the trajectory for future advances in heterogeneous electrocatalytic formation of C-N bonds.
Collapse
|
35
|
Jiménez C, Cerrillo MI, Martínez F, Camarillo R, Quiles R, Rincón J. Synthesis of Cu-based nanoparticulated electrocatalysts for CO2 electroreduction by supercritical fluid deposition. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Yan T, Wang P, Xu ZH, Sun WY. Copper(II) Frameworks with Varied Active Site Distribution for Modulating Selectivity of Carbon Dioxide Electroreduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13645-13652. [PMID: 35258933 DOI: 10.1021/acsami.2c00487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) can be utilized as electrocatalysts for CO2 reduction reaction (CO2RR) due to their well dispersed metal centers. However, the influence of metal node distribution on electrochemical CO2RR was rarely explored. Here, three Cu-MOFs with different copper(II) site distribution were employed for CO2 electroreduction. The Cu-MOFs [Cu(L)SO4]·H2O (Cu1), [Cu(L)2(H2O)2](CH3COO)2·H2O (Cu2), and [Cu(L)2(H2O)2](ClO4)2 (Cu3) were achieved by using the same ligand 1,3,5-tris(1-imidazolyl)benzene (L) but different Cu(II) salts. The results show that the Faraday efficiency of CO (FECO) for Cu1 is 4 times that of the FEH2, while the FECO of Cu2 is twice that of the FEH2. As for Cu3, there is not much difference between FECO and FEH2. Such difference may arise from the distinct electrochemical active surface area and charge transfer kinetics caused by different copper site distribution. Furthermore, the different framework structures also affect the activity of the copper sites, which was supported by the theoretically calculated Gibbs free energy and electron density, contributing to the selectivity of CO2RR. This study provides a strategy for modulating the selectivity of CO2RR by tuning the distribution of the active centers in MOFs.
Collapse
Affiliation(s)
- Tingting Yan
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Zou-Hong Xu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
37
|
Ruan YC, Xie YM, Chen XL, Dong L, Zhang FF, Yang TT, Luo XF, Cheng MY, Yin PF, Dong CK, Lin K, Li DJ, Liu H, Du XW. Exposing Cu(100) Surface via Ion-Implantation-Induced Oxidization and Etching for Promoting Hydrogen Evolution Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2993-2999. [PMID: 35212548 DOI: 10.1021/acs.langmuir.2c00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metallic materials with unique surface structure have attracted much attention due to their unique physical and chemical properties. However, it is hard to prepare bulk metallic materials with special crystal faces, especially at the nanoscale. Herein, we report an efficient method to adjust the surface structure of a Cu plate which combines ion implantation technology with the oxidation-etching process. The large number of vacancies generated by ion implantation induced the electrochemical oxidation of several atomic layers in depth; after chemical etching, the Cu(100) planes were exposed on the surface of the Cu plate. As a catalyst for acid hydrogen evolution reaction, the Cu plate with (100) planes merely needs 273 mV to deliver a current density of 10 mA/cm2 because the high-energy (100) surface has moderate hydrogen adsorption and desorption capability. This work provides an appealing strategy to engineer the surface structure of bulk metallic materials and improve their catalytic properties.
Collapse
Affiliation(s)
- Yi-Chen Ruan
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Institution, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ya-Meng Xie
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Institution, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xin-Lin Chen
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Institution, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lei Dong
- College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
| | - Fei-Fei Zhang
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Institution, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tian-Tian Yang
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Institution, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xi-Feng Luo
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Institution, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Mei-Yue Cheng
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Institution, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peng-Fei Yin
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Institution, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Cun-Ku Dong
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Institution, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Kui Lin
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Institution, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - De-Jun Li
- College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
| | - Hui Liu
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Institution, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xi-Wen Du
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Institution, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
38
|
Wen J, Wan Z, Hu X, Huang J, Kang X. Restructuring of copper catalysts by potential cycling and enhanced two-carbon production for electroreduction of carbon dioxide. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Daems N, Choukroun D, Merino P, Rettenmaier C, Pacquets L, Bergmann A, Santoro G, Vázquez L, Martínez L, Roldan Cuenya B, Martín Gago JA, Breugelmans T. Steering Hydrocarbon Selectivity in CO 2 Electroreduction over Soft-Landed CuO x Nanoparticle-Functionalized Gas Diffusion Electrodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2691-2702. [PMID: 34985252 DOI: 10.1021/acsami.1c17998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of physical vapor deposition methods in the fabrication of catalyst layers holds promise for enhancing the efficiency of future carbon capture and utilization processes such as the CO2 reduction reaction (CO2RR). Following that line of research, we report in this work the application of a sputter gas aggregation source (SGAS) and a multiple ion cluster source type apparatus, for the controlled synthesis of CuOx nanoparticles (NPs) atop gas diffusion electrodes. By varying the mass loading, we achieve control over the balance between methanation and multicarbon formation in a gas-fed CO2 electrolyzer and obtain peak CH4 partial current densities of -143 mA cm-2 (mass activity of 7.2 kA/g) with a Faradaic efficiency (FE) of 48% and multicarbon partial current densities of -231 mA cm-2 at 76% FE (FEC2H4 = 56%). Using atomic force microscopy, electron microscopy, and quasi in situ X-ray photoelectron spectroscopy, we trace back the divergence in hydrocarbon selectivity to differences in NP film morphology and rule out the influence of both the NP size (3-15 nm, >20 μg cm-2) and in situ oxidation state. We show that the combination of the O2 flow rate to the aggregation zone during NP growth and deposition time, which affect the NP production rate and mass loading, respectively, gives rise to the formation of either densely packed CuOx NPs or rough three-dimensional networks made from CuOx NP building blocks, which in turn affects the governing CO2RR mechanism. This study highlights the potential held by SGAS-generated NP films for future CO2RR catalyst layer optimization and upscaling, where the NPs' tunable properties, homogeneity, and the complete absence of organic capping agents may prove invaluable.
Collapse
Affiliation(s)
- Nick Daems
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, 2610 Wilrijk, Belgium
| | - Daniel Choukroun
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, 2610 Wilrijk, Belgium
| | - Pablo Merino
- ESISNA Research Group, Institute of Materials Science of Madrid (CSIC), 28049 Madrid, Spain
| | - Clara Rettenmaier
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Lien Pacquets
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, 2610 Wilrijk, Belgium
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - Arno Bergmann
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Gonzalo Santoro
- ESISNA Research Group, Institute of Materials Science of Madrid (CSIC), 28049 Madrid, Spain
| | - Luis Vázquez
- ESISNA Research Group, Institute of Materials Science of Madrid (CSIC), 28049 Madrid, Spain
| | - Lidia Martínez
- ESISNA Research Group, Institute of Materials Science of Madrid (CSIC), 28049 Madrid, Spain
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Jose Angel Martín Gago
- ESISNA Research Group, Institute of Materials Science of Madrid (CSIC), 28049 Madrid, Spain
| | - Tom Breugelmans
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
40
|
Deng B, Huang M, Li K, Zhao X, Geng Q, Chen S, Xie H, Dong X, Wang H, Dong F. The Crystal Plane is not the Key Factor for CO
2
‐to‐Methane Electrosynthesis on Reconstructed Cu
2
O Microparticles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Bangwei Deng
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| | - Ming Huang
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive 637457 Singapore Singapore
| | - Kanglu Li
- College of Architecture and Environment Sichuan University Chengdu 610065 P.R. China
| | - Xiaoli Zhao
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
| | - Qin Geng
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| | - Si Chen
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| | - Hongtao Xie
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| | - Xing'an Dong
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
| | - Hong Wang
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| |
Collapse
|
41
|
Deng B, Huang M, Li K, Zhao X, Geng Q, Chen S, Xie H, Dong X, Wang H, Dong F. The Crystal Plane is not the Key Factor for CO 2 -to-Methane Electrosynthesis on Reconstructed Cu 2 O Microparticles. Angew Chem Int Ed Engl 2021; 61:e202114080. [PMID: 34882934 DOI: 10.1002/anie.202114080] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 02/04/2023]
Abstract
Cu2 O microparticles with controllable crystal planes and relatively high stability have been recognized as a good platform to understand the mechanism of the electrocatalytic CO2 reduction reaction (CO2 RR). Herein, we demonstrate that the in situ generated Cu2 O/Cu interface plays a key role in determining the selectivity of methane formation, rather than the initial crystal plane of the reconstructed Cu2 O microparticles. Experimental results indicate that the methane evolution is dominated on all three different crystal planes with similar Tafel slopes and long-term stabilities. Density functional theory (DFT) calculations further reveal that *CO is protonated via a similar bridge configuration at the Cu2 O/Cu interface, regardless of the initial crystal planes of Cu2 O. The Gibbs free energy changes (ΔG) of *CHO on different reconstructed Cu2 O planes are close and more negative than that of *OCCOH, indicating the methane formation is more favorable than ethylene on all Cu2 O crystal planes.
Collapse
Affiliation(s)
- Bangwei Deng
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Ming Huang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore, Singapore
| | - Kanglu Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, P.R. China
| | - Xiaoli Zhao
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Qin Geng
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Si Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Hongtao Xie
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Xing'an Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Hong Wang
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| |
Collapse
|
42
|
Kunze S, Tănase LC, Prieto MJ, Grosse P, Scholten F, de Souza Caldas L, van Vörden D, Schmidt T, Cuenya BR. Plasma-assisted oxidation of Cu(100) and Cu(111). Chem Sci 2021; 12:14241-14253. [PMID: 34760210 PMCID: PMC8565394 DOI: 10.1039/d1sc04861a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Oxidized copper surfaces have attracted significant attention in recent years due to their unique catalytic properties, including their enhanced hydrocarbon selectivity during the electrochemical reduction of CO2. Although oxygen plasma has been used to create highly active copper oxide electrodes for CO2RR, how such treatment alters the copper surface is still poorly understood. Here, we study the oxidation of Cu(100) and Cu(111) surfaces by sequential exposure to a low-pressure oxygen plasma at room temperature. We used scanning tunnelling microscopy (STM), low energy electron microscopy (LEEM), X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure spectroscopy (NEXAFS) and low energy electron diffraction (LEED) for the comprehensive characterization of the resulting oxide films. O2-plasma exposure initially induces the growth of 3-dimensional oxide islands surrounded by an O-covered Cu surface. With ongoing plasma exposure, the islands coalesce and form a closed oxide film. Utilizing spectroscopy, we traced the evolution of metallic Cu, Cu2O and CuO species upon oxygen plasma exposure and found a dependence of the surface structure and chemical state on the substrate's orientation. On Cu(100) the oxide islands grow with a lower rate than on the (111) surface. Furthermore, while on Cu(100) only Cu2O is formed during the initial growth phase, both Cu2O and CuO species are simultaneously generated on Cu(111). Finally, prolonged oxygen plasma exposure results in a sandwiched film structure with CuO at the surface and Cu2O at the interface to the metallic support. A stable CuO(111) surface orientation is identified in both cases, aligned to the Cu(111) support, but with two coexisting rotational domains on Cu(100). These findings illustrate the possibility of tailoring the oxidation state, structure and morphology of metallic surfaces for a wide range of applications through oxygen plasma treatments. A low-pressure oxygen plasma oxidized Cu(100) and Cu(111) surfaces at room temperature. The time-dependent evolution of surface structure and chemical composition is reported in detail for a range of exposure times up to 30 min.![]()
Collapse
Affiliation(s)
- Sebastian Kunze
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany .,Department of Physics, Ruhr-University Bochum 44780 Bochum Germany
| | - Liviu C Tănase
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany
| | - Mauricio J Prieto
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany
| | - Philipp Grosse
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany .,Department of Physics, Ruhr-University Bochum 44780 Bochum Germany
| | - Fabian Scholten
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany .,Department of Physics, Ruhr-University Bochum 44780 Bochum Germany
| | - Lucas de Souza Caldas
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany
| | | | - Thomas Schmidt
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany
| |
Collapse
|
43
|
Raaijman S, Arulmozhi N, Koper MTM. Morphological Stability of Copper Surfaces under Reducing Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48730-48744. [PMID: 34612038 PMCID: PMC8532114 DOI: 10.1021/acsami.1c13989] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/26/2021] [Indexed: 05/28/2023]
Abstract
Though copper is a capable electrocatalyst for the CO2 reduction reaction (CO2RR), it rapidly deactivates to produce mostly hydrogen. A current hypothesis as to why this occurs is that potential-induced morphological restructuring takes place, leading to a redistribution of the facets at the interface resulting in a shift in the catalytic activity to favor the hydrogen evolution reaction over CO2RR. Here, we investigate the veracity of this hypothesis by studying the changes in the voltammetry of various copper surfaces, specifically the three principal orientations and a polycrystalline surface, after being subjected to strongly cathodic conditions. The basal planes were chosen as model catalysts, while polycrystalline copper was included as a means of investigating the overall behavior of defect-rich facets with many low coordination steps and kink sites. We found that all surfaces exhibited (perhaps surprisingly) high stability when subjected to strongly cathodic potentials in a concentrated alkaline electrolyte (10 M NaOH). Proof for morphological stability under CO2RR-representative conditions (60 min at -0.75 V in 0.5 M KHCO3) was obtained from identical location scanning electron microscopy, where the mesoscopic morphology for a nanoparticle-covered copper surface was found unchanged to within the instrument accuracy. Observed changes in voltammetry under such conditions, we found, were not indicative of a redistribution of surface sites but of electrode fouling. Besides impurities, we show that (brief) exposure to oxygen or oxidizing conditions (i.e., 1 min) leads to copper exhibiting changing morphology upon cathodic treatment which, we posit, is ultimately the reason why many groups report the evolution of copper morphology during CO2RR: accidental oxidation/reduction cycles.
Collapse
|
44
|
Liu Y, Qiu H, Li J, Guo L, Ager JW. Tandem Electrocatalytic CO 2 Reduction with Efficient Intermediate Conversion over Pyramid-Textured Cu-Ag Catalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40513-40521. [PMID: 34405982 DOI: 10.1021/acsami.1c08688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
If combined with renewably generated electricity, electrochemical CO2 reduction (E-CO2R) could be used as a sustainable source of chemicals and fuels. Tandem catalysis approaches are attractive for providing the product selectivity, which would be required for commercial applications. Here, we demonstrate a two-step tandem electrocatalytic E-CO2R with efficient conversion of the intermediate species. The catalyst scaffold is Si(100), which is etched to form a textured surface consisting of micron-sized pyramid structures with the {111} facets. Two metals are used in the electrocatalytic cascade: Ag is employed to perform a two-electron reduction of CO2 to the intermediate CO, and Cu performs conversion to more reduced products. Using high-angle physical vapor deposition, we form separated, micron-scale areas of the two electrocatalysts on opposite sides of the pyramids, with their relative surface coverages being tunable with the deposition angle. Compared to the textured scaffolds with blanket Ag and Cu used as controls, bimetallic pyramid tandem catalysts have higher current densities and much lower faradic efficiencies (FE) for CO. These effects are due to efficient conversion of the CO formed on Ag to more reduced products on Cu. Methane is the main product to be enhanced by the cascade pathway: a bimetallic catalyst with approximately equal coverages of Ag and Cu produces methane with a FE of 62% at -1.1 VRHE, corresponding to a partial current density of 12.7 mA cm-2. We estimate an intermediate conversion yield for the CO intermediate of 80-90%, which is close to the mass-transport limited value predicted by reaction-diffusion simulations.
Collapse
Affiliation(s)
- Ya Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haoran Qiu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinghan Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liejin Guo
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | | |
Collapse
|
45
|
Scholten F, Nguyen KC, Bruce JP, Heyde M, Roldan Cuenya B. Identifying Structure-Selectivity Correlations in the Electrochemical Reduction of CO 2 : A Comparison of Well-Ordered Atomically Clean and Chemically Etched Copper Single-Crystal Surfaces. Angew Chem Int Ed Engl 2021; 60:19169-19175. [PMID: 34019726 PMCID: PMC8457179 DOI: 10.1002/anie.202103102] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/23/2021] [Indexed: 11/10/2022]
Abstract
The identification of the active sites for the electrochemical reduction of CO2 (CO2 RR) to specific chemical products is elusive, owing in part to insufficient data gathered on clean and atomically well-ordered electrode surfaces. Here, ultrahigh vacuum based preparation methods and surface science characterization techniques are used with gas chromatography to demonstrate that subtle changes in the preparation of well-oriented Cu(100) and Cu(111) single-crystal surfaces drastically affect their CO2 RR selectivity. Copper single crystals with clean, flat, and atomically ordered surfaces are predicted to yield hydrocarbons; however, these were found experimentally to favor the production of H2 . Only when roughness and defects are introduced, for example by electrochemical etching or a plasma treatment, are significant amounts of hydrocarbons generated. These results show that structural and morphological effects are the key factors determining the catalytic selectivity of CO2 RR.
Collapse
Affiliation(s)
- Fabian Scholten
- Interface Science DepartmentFritz-Haber Institute of the Max Planck Society14195BerlinGermany
| | - Khanh‐Ly C. Nguyen
- Interface Science DepartmentFritz-Haber Institute of the Max Planck Society14195BerlinGermany
| | - Jared P. Bruce
- Interface Science DepartmentFritz-Haber Institute of the Max Planck Society14195BerlinGermany
| | - Markus Heyde
- Interface Science DepartmentFritz-Haber Institute of the Max Planck Society14195BerlinGermany
| | - Beatriz Roldan Cuenya
- Interface Science DepartmentFritz-Haber Institute of the Max Planck Society14195BerlinGermany
| |
Collapse
|
46
|
Bruce JP, Nguyen KLC, Scholten F, Arán-Ais RM, Navarro JJ, Hartmann J, Heyde M, Cuenya BR. Development of a single crystal sample holder for interfacing ultrahigh vacuum and electrochemical experimentation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:074104. [PMID: 34340410 DOI: 10.1063/5.0057822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Electrocatalyst surfaces prepared under ultrahigh vacuum (UHV) conditions can create model surfaces to better connect theoretical calculations with experimental studies. The development of a single crystal sample holder and inert electrochemical cells prepared with modularity and chemical stability in mind would allow for expensive single crystals to be reused indefinitely in both UHV and electrochemical settings. This sample holder shows reproducible surface preparations for single crystal samples and consistent electrochemical experiments without the introduction of impurities into the surface. The presented setup has been used as a critical piece for the characterization of Cu(111) surfaces under CO2 electrochemical reduction reaction conditions as a test case.
Collapse
Affiliation(s)
- Jared P Bruce
- Fritz Haber Institute of the Max Planck Society, Department of Interface Science, Faradayweg 4-6, Berlin 14195, Germany
| | - Khanh-Ly C Nguyen
- Fritz Haber Institute of the Max Planck Society, Department of Interface Science, Faradayweg 4-6, Berlin 14195, Germany
| | - Fabian Scholten
- Fritz Haber Institute of the Max Planck Society, Department of Interface Science, Faradayweg 4-6, Berlin 14195, Germany
| | - Rosa M Arán-Ais
- Fritz Haber Institute of the Max Planck Society, Department of Interface Science, Faradayweg 4-6, Berlin 14195, Germany
| | - Juan J Navarro
- Fritz Haber Institute of the Max Planck Society, Department of Interface Science, Faradayweg 4-6, Berlin 14195, Germany
| | - Jens Hartmann
- Fritz Haber Institute of the Max Planck Society, Department of Interface Science, Faradayweg 4-6, Berlin 14195, Germany
| | - Markus Heyde
- Fritz Haber Institute of the Max Planck Society, Department of Interface Science, Faradayweg 4-6, Berlin 14195, Germany
| | - Beatriz Roldan Cuenya
- Fritz Haber Institute of the Max Planck Society, Department of Interface Science, Faradayweg 4-6, Berlin 14195, Germany
| |
Collapse
|