1
|
Chen JB, Yu YH, Zhang HX, Zhang J. Cu(I)-Induced 'Click Reaction' Involving Coordination and Covalent Assembly of Hybrid Borates for the Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202412073. [PMID: 39266452 DOI: 10.1002/anie.202412073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
The design and synthesis of hybrid borates by the organic ligand modification method are urgent and undeveloped areas of research. It is difficult to directly integrate organoboronic acids within inorganic borate chemistry by adopting the traditional preparation approaches. This work reports a facile synthetic method to synthesize a large family of pyrazole molecule-protected borates in a rapid and precise manner under mild conditions. A unique cyclic eight-membered B4O4-ring has been identified as the cluster core for all these hybrid borates with two different conformations (boat and crown). This strategy can be applied to a system of pyrazolyl molecules to generate such hybrid borates in two independent routes from organoboronic or inorganic boric acids. Furtherly, the mechanism of 'click reaction' between boric acid and pyrazole induced by copper ions has been proposed based on the synthetic conditions and the structure of intermediate. Due to the bimetallic Cu sites and the functional surfaces, these materials can be used as electrocatalysts for CO2 reduction reaction and efficiently enhance the selectivity of HCOOH and C2H4. Our strategy can be regarded as a typical template technique for organic molecule-protected borates.
Collapse
Affiliation(s)
- Jian-Bing Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences., Fuzhou, Fujian 350002, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China)
| | - Ying-Hua Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences., Fuzhou, Fujian 350002, P. R. China
| | - Hai-Xia Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences., Fuzhou, Fujian 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences., Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
2
|
Zheng K, Hu DY, Wang C, Liang ZJ, Zhang XW, Xiao XX, Wu JX, Zhuo LL, Lin DY, Zhou DD, Zhang JP. Isomeric Cu(I) Azolate Frameworks Showing Contrasting Electrocatalytic CO 2 Reduction Selectivities and Stabilities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408510. [PMID: 39668410 DOI: 10.1002/smll.202408510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/15/2024] [Indexed: 12/14/2024]
Abstract
Metal‒organic frameworks have attracted wide interest in the electrocatalytic CO2 reduction reaction (eCO2RR), but their differences of performances originated from chemical composition and stabilities are rarely concerned. Here, isomeric Cu(I) triazolate frameworks (MAF-2Fa and MAF-2Fb) with similar thermal/chemical stabilities but very different coordination modes are used for eCO2RR studies. MAF-2Fa with monotypic planar dinuclear Cu(I) coordination mode achieves high selectivity for C2H4 (53%) and C2 products (70%), with almost unchanged over a wide potential window (‒1.1 to ‒1.5 V), making it among one of the best Cu-complex electrocatalysts. In contrast, MAF-2Fb with multiple Cu(I) coordination modes (including planar/bent dinuclear, linear mononuclear, and trigonal mononuclear ones) showed low C2/C1 products without significant differences. More interestingly, MAF-2Fa can maintain its performance for at least 8 h, whereas MAF-2Fb decomposed into inorganics with inferior performance after 1.5 h. The significant differences of eCO2RR selectivities and stabilities are elucidated by computational simulations and operando electrochemical tests.
Collapse
Affiliation(s)
- Kai Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ding-Yi Hu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chao Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zi-Jun Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xue-Wen Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xian-Xian Xiao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jun-Xi Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lin-Ling Zhuo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Duo-Yu Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dong-Dong Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jie-Peng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
3
|
Yu J, Xiao J, Guo L, Xie Z, Wang K, Wang Y, Hao F, Ma Y, Zhou J, Lu P, Wang G, Meng X, Zhu Z, Li Q, Ling C, Sun J, Wang Y, Song S, Fan Z. In Situ Phase Transformation-Enabled Metal-Organic Frameworks for Efficient CO 2 Electroreduction to Multicarbon Products in Strong Acidic Media. ACS NANO 2024; 18:33602-33613. [PMID: 39574319 DOI: 10.1021/acsnano.4c12245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) has been acknowledged as a promising strategy to relieve carbon emissions by converting CO2 to essential chemicals. Despite significant progresses that have been made in neutral and alkaline media, the implementation of CO2RR in acidic conditions remains challenging due to the harsh conditions, especially in producing high-value multicarbon products. Here, we report that Cu-btca (btca = benzotriazole-5-carboxylic acid) metal-organic framework (MOF) nanostructures can act as a stable catalyst for the CO2RR in an acidic environment. The Cu-btca MOF undergoes phase transformation and morphology evolution during electrolysis, forming a stable porous Cu-btca MOF network. The resultant MOF network exhibits excellent selectivity toward ethylene and multicarbon products with Faradaic efficiencies of 51.2% and 81.9%, respectively, in a strong acidic electrolyte with a flow cell at 300 mA/cm2. Mechanism studies uncover that the Cu-btca MOF network can limit the proton reduction to suppress hydrogen evolution and maintain high local *CO concentration to promote CO2RR. Theoretical calculations suggest that two adjacent Cu sites in the Cu-btca MOF provide a favorable microenvironment for carbon-carbon coupling, facilitating the multicarbon production. This work reveals that rational structure control of MOFs can enable highly selective and efficient CO2 electroreduction to multicarbon products in strong acidic conditions toward practical applications.
Collapse
Affiliation(s)
- Jinli Yu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Juan Xiao
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Lab, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Liang Guo
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Zezhong Xie
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Kun Wang
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Lab, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Guozhi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Qiang Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Jingying Sun
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Wang
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Lab, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuqin Song
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Lab, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
4
|
Chen M, Guo C, Qin L, Wang L, Qiao L, Chi K, Tang Z. Atomically Precise Cu Nanoclusters: Recent Advances, Challenges, and Perspectives in Synthesis and Catalytic Applications. NANO-MICRO LETTERS 2024; 17:83. [PMID: 39625605 PMCID: PMC11615184 DOI: 10.1007/s40820-024-01555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/30/2024] [Indexed: 12/06/2024]
Abstract
Atomically precise metal nanoclusters are an emerging type of nanomaterial which has diverse interfacial metal-ligand coordination motifs that can significantly affect their physicochemical properties and functionalities. Among that, Cu nanoclusters have been gaining continuous increasing research attentions, thanks to the low cost, diversified structures, and superior catalytic performance for various reactions. In this review, we first summarize the recent progress regarding the synthetic methods of atomically precise Cu nanoclusters and the coordination modes between Cu and several typical ligands and then discuss the catalytic applications of these Cu nanoclusters with some explicit examples to explain the atomical-level structure-performance relationship. Finally, the current challenges and future research perspectives with some critical thoughts are elaborated. We hope this review can not only provide a whole picture of the current advances regarding the synthesis and catalytic applications of atomically precise Cu nanoclusters, but also points out some future research visions in this rapidly booming field.
Collapse
Affiliation(s)
- Mengyao Chen
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Chengyu Guo
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Lubing Qin
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Lei Wang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Liang Qiao
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, 102206, People's Republic of China
| | - Kebin Chi
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, 102206, People's Republic of China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Harbin, 150001, People's Republic of China.
| |
Collapse
|
5
|
Shi Q, Zhang B, Wu Z, Yang D, Wu H, Shi J, Jiang Z. Cascade Catalytic Systems for Converting CO 2 into C 2+ Products. CHEMSUSCHEM 2024:e202401916. [PMID: 39564785 DOI: 10.1002/cssc.202401916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
The excessive emission and continuous accumulation of CO2 have precipitated serious social and environmental issues. However, CO2 can also serve as an abundant, inexpensive, and non-toxic renewable C1 carbon source for synthetic reactions. To achieve carbon neutrality and recycling, it is crucial to convert CO2 into value-added products through chemical pathways. Multi-carbon (C2+) products, compared to C1 products, offer a broader range of applications and higher economic returns. Despite this, converting CO2 into C2+ products is difficult due to its stability and the high energy required for C-C coupling. Cascade catalytic reactions offer a solution by coordinating active components, promoting intermediate transfers, and facilitating further transformations. This method lowers energy consumption. Recent advancements in cascade catalytic systems have allowed for significant progress in synthesizing C2+ products from CO2. This review highlights the features and advantages of cascade catalysis strategies, explores the synergistic effects among active sites, and examines the mechanisms within these systems. It also outlines future prospects for CO2 cascade catalytic synthesis, offering a framework for efficient CO2 utilization and the development of next-generation catalytic systems.
Collapse
Affiliation(s)
- Qiaochu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Boyu Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenhua Wu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Dong Yang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Hong Wu
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiafu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
6
|
Heng JM, Zhu HL, Zhao ZH, Liao PQ, Chen XM. Fabrication of Ultrahigh-Loading Dual Copper Sites in Nitrogen-Doped Porous Carbons Boosting Electroreduction of CO 2 to C 2H 4 Under Neutral Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2415101. [PMID: 39548939 DOI: 10.1002/adma.202415101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Indexed: 11/18/2024]
Abstract
Synthesis of high-loading atomic-level dispersed catalysts for highly efficient electrochemical CO2 reduction reaction (eCO2RR) to ethylene (C2H4) in neutral electrolyte remain challenging tasks. To address common aggregation issues, a host-guest strategy is employed, by using a metal-azolate framework (MAF-4) with nanocages as the host and a dinuclear Cu(I) complex as the guest, to form precursors for pyrolysis into a series of nitrogen-doped porous carbons (NPCs) with varying loadings of dual copper sites, namely NPCMAF-4-Cu2-21 (21.2 wt%), NPCMAF-4-Cu2-11 (10.6 wt%), and NPCMAF-4-Cu2-7 (6.9 wt%). Interestingly, as the loading of dual copper sites increased from 6.9 to 21.2 wt%, the partial current density for eCO2RR to yield C2H4 also gradually increased from 38.7 to 93.6 mA cm-2. In a 0.1 m KHCO3 electrolyte, at -1.4 V versus reversible hydrogen electrode (vs. RHE), NPCMAF-4-Cu2-21 exhibits the excellent performance with a Faradaic efficiency of 52% and a current density of 180 mA cm-2. Such performance can be attributed to the presence of ultrahigh-loading dual copper sites, which promotes C─C coupling and the formation of C2 products. The findings demonstrate the confinement effect of MAF-4 with nanocages is conducive to the preparation of high-loading atomic-level catalysts.
Collapse
Affiliation(s)
- Jin-Meng Heng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| |
Collapse
|
7
|
Ma F, Zhang P, Zheng X, Chen L, Li Y, Zhuang Z, Fan Y, Jiang P, Zhao H, Zhang J, Dong Y, Zhu Y, Wang D, Wang Y. Steering the Site Distance of Atomic Cu-Cu Pairs by First-Shell Halogen Coordination Boosts CO 2-to-C 2 Selectivity. Angew Chem Int Ed Engl 2024; 63:e202412785. [PMID: 39105415 DOI: 10.1002/anie.202412785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Electrocatalytic reduction of CO2 into C2 products of high economic value provides a promising strategy to realize resourceful CO2 utilization. Rational design and construct dual sites to realize the CO protonation and C-C coupling to unravel their structure-performance correlation is of great significance in catalysing electrochemical CO2 reduction reactions. Herein, Cu-Cu dual sites with different site distance coordinated by halogen at the first-shell are constructed and shows a higher intramolecular electron redispersion and coordination symmetry configurations. The long-range Cu-Cu (Cu-I-Cu) dual sites show an enhanced Faraday efficiency of C2 products, up to 74.1 %, and excellent stability. In addition, the linear relationships that the long-range Cu-Cu dual sites are accelerated to C2H4 generation and short-range Cu-Cu (Cu-Cl-Cu) dual sites are beneficial for C2H5OH formation are disclosed. In situ electrochemical attenuated total reflection surface enhanced infrared absorption spectroscopy, in situ Raman and theoretical calculations manifest that long-range Cu-Cu dual sites can weaken reaction energy barriers of CO hydrogenation and C-C coupling, as well as accelerating deoxygenation of *CH2CHO. This study uncovers the exploitation of site-distance-dependent electrochemical properties to steer the CO2 reduction pathway, as well as a potential generic tactic to target C2 synthesis by constructing the desired Cu-Cu dual sites.
Collapse
Affiliation(s)
- Fengya Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Pengfang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 252000, Liaocheng, China
| | - Xiaobo Zheng
- Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, 2522, Wollongong, NSW, Australia
| | - Liang Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, 100083, Beijing, China
| | - Yunrui Li
- Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yameng Fan
- Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, 2522, Wollongong, NSW, Australia
| | - Peng Jiang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Hui Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Jiawei Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, 214122, Wuxi, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yao Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, 214122, Wuxi, China
| |
Collapse
|
8
|
Wang J, Wa Q, Diao Q, Liu F, Hao F, Xiong Y, Wang Y, Zhou J, Meng X, Guo L, Fan Z. Atomic Design of Copper Active Sites in Pristine Metal-Organic Coordination Compounds for Electrocatalytic Carbon Dioxide Reduction. SMALL METHODS 2024; 8:e2400432. [PMID: 38767183 PMCID: PMC11579559 DOI: 10.1002/smtd.202400432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/16/2024] [Indexed: 05/22/2024]
Abstract
Electrocatalytic carbon dioxide reduction reaction (CO2RR) has emerged as a promising and sustainable approach to cut carbon emissions by converting greenhouse gas CO2 to value-added chemicals and fuels. Metal-organic coordination compounds, especially the copper (Cu)-based coordination compounds, which feature well-defined crystalline structures and designable metal active sites, have attracted much research attention in electrocatalytic CO2RR. Herein, the recent advances of electrochemical CO2RR on pristine Cu-based coordination compounds with different types of Cu active sites are reviewed. First, the general reaction pathways of electrocatalytic CO2RR on Cu-based coordination compounds are briefly introduced. Then the highly efficient conversion of CO2 on various kinds of Cu active sites (e.g., single-Cu site, dimeric-Cu site, multi-Cu site, and heterometallic site) is systematically discussed, along with the corresponding catalytic reaction mechanisms. Finally, some existing challenges and potential opportunities for this research direction are provided to guide the rational design of metal-organic coordination compounds for their practical application in electrochemical CO2RR.
Collapse
Affiliation(s)
- Juan Wang
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Qingbo Wa
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Qi Diao
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Fu Liu
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Fengkun Hao
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Yuecheng Xiong
- Department of ChemistryCity University of Hong KongHong Kong999077China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM)City University of Hong KongHong Kong999077China
| | - Yunhao Wang
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Jingwen Zhou
- Department of ChemistryCity University of Hong KongHong Kong999077China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM)City University of Hong KongHong Kong999077China
| | - Xiang Meng
- Department of ChemistryCity University of Hong KongHong Kong999077China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM)City University of Hong KongHong Kong999077China
| | - Liang Guo
- Department of ChemistryCity University of Hong KongHong Kong999077China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM)City University of Hong KongHong Kong999077China
| | - Zhanxi Fan
- Department of ChemistryCity University of Hong KongHong Kong999077China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM)City University of Hong KongHong Kong999077China
- Hong Kong Institute for Clean Energy (HKICE)City University of Hong KongHong Kong999077China
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
| |
Collapse
|
9
|
Mu WL, Li L, Cong XZ, Chen X, Xia P, Liu Q, Wang L, Yan J, Liu C. Hierarchical Assembly of High-Nuclearity Copper(I) Alkynide Nanoclusters: Highly Effective CO 2 Electroreduction Catalyst toward Hydrocarbons. J Am Chem Soc 2024. [PMID: 39365080 DOI: 10.1021/jacs.4c07518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The pursuit of precision in the engineering of metal nanoparticle assemblies has long fascinated scientists, but achieving atomic-level accuracy continues to pose a significant challenge. This research sheds light on the hierarchical assembly processes of two high-nuclearity Cu(I) nanoclusters (NCs). By employing a multiligand cooperative stabilization strategy, we have isolated a series of thiacalix[4]arene (TC4A)/alkynyl coprotected Cu(I) NCs (Cux, where x = 9, 13, 17, 22). These NCs are intricately coassembled from the fundamental building units of {Cu4(TC4A)} and alkynyl-stabilized Cu5L6 in various ratios. By capturing active anion templates such as O2-, Cl-, or C22- that are generated in situ, we have further explored the secondary structural self-assembly of these clusters. Cu13 serves as a secondary assembly module for constructing Cu38 and Cu43, which exhibit the highest nuclearity reported to date among Cu(I) NCs encased in macrocyclic ligands. Notably, Cu38 demonstrates an impressive Faradaic efficiency of 62.01% for hydrocarbons at -1.57 V vs RHE during CO2 electroreduction, with 34.03% for C2H4 and 27.98% for CH4. This performance establishes it as an exceptionally rare, large, atomically precise metal NC (nuclearity >30) capable of catalyzing the formation of highly electro-reduced hydrocarbon products. Our research has introduced a new approach for constructing high-nuclearity Cu(I) NCs through a hierarchical assembly method and investigating their potential in the electrocatalytic transformation of CO2 into hydrocarbons.
Collapse
Affiliation(s)
- Wen-Lei Mu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Lanyan Li
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, Hunan 410205, PR China
| | - Xu-Zi Cong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Xinyu Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Pengkun Xia
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Qingyi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| |
Collapse
|
10
|
Yue K, Qin Y, Huang H, Lv Z, Cai M, Su Y, Huang F, Yan Y. Stabilized Cu 0 -Cu 1+ dual sites in a cyanamide framework for selective CO 2 electroreduction to ethylene. Nat Commun 2024; 15:7820. [PMID: 39242556 PMCID: PMC11379946 DOI: 10.1038/s41467-024-52022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Electrochemical reduction of carbon dioxide to produce high-value ethylene is often limited by poor selectivity and yield of multi-carbon products. To address this, we propose a cyanamide-coordinated isolated copper framework with both metallic copper (Cu0) and charged copper (Cu1+) sites as an efficient electrocatalyst for the reduction of carbon dioxide to ethylene. Our operando electrochemical characterizations and theoretical calculations reveal that copper atoms in the Cuδ+NCN complex enhance carbon dioxide activation by improving surface carbon monoxide adsorption, while delocalized electrons around copper sites facilitate carbon-carbon coupling by reducing the Gibbs free energy for *CHC formation. This leads to high selectivity for ethylene production. The Cuδ+NCN catalyst achieves 77.7% selectivity for carbon dioxide to ethylene conversion at a partial current density of 400 milliamperes per square centimeter and demonstrates long-term stability over 80 hours in membrane electrode assembly-based electrolysers. This study provides a strategic approach for designing catalysts for the electrosynthesis of value-added chemicals from carbon dioxide.
Collapse
Affiliation(s)
- Kaihang Yue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyang Qin
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Honghao Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhuoran Lv
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingzhi Cai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yaqiong Su
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ya Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Zhang Y, Sun WY. Rational design of organic ligands for metal-organic frameworks as electrocatalysts for CO 2 reduction. Chem Commun (Camb) 2024; 60:8824-8839. [PMID: 39051620 DOI: 10.1039/d4cc02635g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Electrocatalytic carbon dioxide (CO2) reduction to valuable chemical compounds is a sustainable technology with enormous potential to facilitate carbon neutrality by transforming intermittent energy sources into stable fuels. Among various electrocatalysts, metal-organic frameworks (MOFs) have garnered increasing attention for the electrochemical CO2 reduction reaction (CO2RR) owing to their structural diversity, large surface area, high porosity and tunable chemical properties. Ligands play a vital role in MOFs, which can regulate the electronic structure and chemical environment of metal centers of MOFs, thereby influencing the activity and selectivity of products. This feature article discusses the strategies for the rational design of ligands and their impact on the CO2RR performance of MOFs to establish a structure-performance relationship. Finally, critical challenges and potential opportunities for MOFs with different ligand types in the CO2RR are mentioned with the aim to inspire the targeted design of advanced MOF catalysts in the future to achieve efficient electrocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Ya Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
- College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
12
|
Yang W, Mo Q, He QT, Li XP, Xue Z, Lu YL, Chen J, Zheng K, Fan Y, Li G, Su CY. Anion Modulation of Ag-Imidazole Cuboctahedral Cage Microenvironments for Efficient Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202406564. [PMID: 38766872 DOI: 10.1002/anie.202406564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
How to achieve CO2 electroreduction in high efficiency is a current challenge with the mechanism not well understood yet. The metal-organic cages with multiple metal sites, tunable active centers, and well-defined microenvironments may provide a promising catalyst model. Here, we report self-assembly of Ag4L4 type cuboctahedral cages from coordination dynamic Ag+ ion and triangular imidazolyl ligand 1,3,5-tris(1-benzylbenzimidazol-2-yl) benzene (Ag-MOC-X, X=NO3, ClO4, BF4) via anion template effect. Notably, Ag-MOC-NO3 achieves the highest CO faradaic efficiency in pH-universal electrolytes of 86.1 % (acidic), 94.1 % (neutral) and 95.3 % (alkaline), much higher than those of Ag-MOC-ClO4 and Ag-MOC-BF4 with just different counter anions. In situ attenuated total reflection Fourier transform infrared spectroscopy observes formation of vital intermediate *COOH for CO2-to-CO conversion. The density functional theory calculations suggest that the adsorption of CO2 on unsaturated Ag-site is stabilized by C-H⋅⋅⋅O hydrogen-bonding of CO2 in a microenvironment surrounded by three benzimidazole rings, and the activation of CO2 is dependent on the coordination dynamics of Ag-centers modulated by the hosted anions through Ag⋅⋅⋅X interactions. This work offers a supramolecular electrocatalytic strategy based on Ag-coordination geometry and host-guest interaction regulation of MOCs as high-efficient electrocatalysts for CO2 reduction to CO which is a key intermediate in chemical industry process.
Collapse
Affiliation(s)
- Wenqian Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Qijie Mo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Qi-Ting He
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Xiang-Ping Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Ziqian Xue
- School of Advanced Energy, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Yu-Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Jie Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Kai Zheng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yanan Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| |
Collapse
|
13
|
Ni W, Chen H, Tang N, Hu T, Zhang W, Zhang Y, Zhang S. High-purity ethylene production via indirect carbon dioxide electrochemical reduction. Nat Commun 2024; 15:6078. [PMID: 39030272 PMCID: PMC11271605 DOI: 10.1038/s41467-024-50522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
High-purity ethylene production from CO2 electroreduction (CO2RR) is a coveted, yet arduous feat because the product stream comprises a blend of unreacted CO2, H2, and other off-target CO2 reduction products. Here we present an indirect reduction strategy for CO2-to-ethylene conversion, one that employs 2-bromoethanol (Br-EO) as a mediator. Br-EO is initially generated from CO2RR and subsequently undergoes reduction to ethylene without the need for energy-intensive separation steps. The optimized AC-Ag/C catalyst with Cl incorporation reduces the energy barrier of the debromination step during Br-EO reduction, and accelerates the mass-transfer process, delivering a 4-fold decrease of the relaxation time constant. Resultantly, AC-Ag/C achieved a FEethylene of over 95.0 ± 0.36% at a low potential of -0.08 V versus reversible hydrogen electrode (RHE) in an H-type cell with 0.5 M KCl electrolyte, alongside a near 100% selectivity within the range of -0.38 to -0.58 V versus RHE. Through this indirect strategy, the average ethylene purity within 6-hour electrolysis was 98.00 ± 1.45 wt%, at -0.48 V (vs RHE) from the neutralized electrolyte after CO2 reduction over the Cu/Cu2O catalyst in a flow-cell.
Collapse
Affiliation(s)
- Wenpeng Ni
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Houjun Chen
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Naizhuo Tang
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Ting Hu
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Wei Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Yan Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, China.
| |
Collapse
|
14
|
Yin B, Wang C, Xie S, Gu J, Sheng H, Wang DX, Yao J, Zhang C. Regulating Spin Density using TEMPOL Molecules for Enhanced CO 2-to-Ethylene Conversion by HKUST-1 Framework Derived Electrocatalysts. Angew Chem Int Ed Engl 2024; 63:e202405873. [PMID: 38709722 DOI: 10.1002/anie.202405873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/08/2024]
Abstract
The selectivity of multicarbon products in the CO2 reduction reaction (CO2RR) depends on the spin alignment of neighboring active sites, which requires a spin catalyst that facilitates electron transfer with antiparallel spins for enhanced C-C coupling. Here, we design a radical-contained spin catalyst (TEMPOL@HKUST-1) to enhance CO2-to-ethylene conversion, in which spin-disordered (SDO) and spin-ordered (SO) phases co-exist to construct an asymmetric spin configuration of neighboring active sites. The replacement of axially coordinated H2O molecules with TEMPOL radicals introduces spin-spin interactions among the Cu(II) centers to form localized SO phases within the original H2O-mediated SDO phases. Therefore, TEMPOL@HKUST-1 derived catalyst exhibited an approximately two-fold enhancement in ethylene selectivity during the CO2RR at -1.8 V versus Ag/AgCl compared to pristine HKUST-1. In situ ATR-SEIRAS spectra indicate that the spin configuration at asymmetric SO/SDO sites significantly reduces the kinetic barrier for *CO intermediate dimerization toward the ethylene product. The performance of the spin catalyst is further improved by spin alignment under a magnetic field, resulting in a maximum ethylene selectivity of more than 50 %. The exploration of the spin-polarized kinetics of the CO2RR provides a promising path for the development of novel spin electrocatalysts with superior performance.
Collapse
Affiliation(s)
- Baipeng Yin
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Can Wang
- State Key Laboratory of Metastable Materials Science and Technology (MMST) Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
| | - Shijie Xie
- State Key Laboratory of Fine Chemical, Frontiers Science Center for Smart Materials Oriented Chemical Engineering School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jianmin Gu
- State Key Laboratory of Metastable Materials Science and Technology (MMST) Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
| | - Hua Sheng
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou, 350108, China
| | - Chuang Zhang
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
15
|
Lu H, Wang J, Li G, Liao B, Zhang X, Hu X, Yu N, Chen L. Tailoring Cu-Based Electrocatalysts for Enhanced Electrochemical CO 2 Reduction to Alcohols: Structure-Selectivity Relationship. Inorg Chem 2024; 63:11935-11943. [PMID: 38869984 DOI: 10.1021/acs.inorgchem.3c04239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The use of CO2 as a feedstock for the production of carbon-based fuels and value-added chemicals offers a promising route toward carbon neutrality. In this study, two Cu-based electrocatalysts, namely, Cu24/N-C and Cu2/N-C, are successfully prepared by thermal treatment of Cu24 metal-organic polyhedron-loaded zeolitic imidazolate framework-8 (ZIF-8) nanocrystals (Cu24/ZIF-8) and Cu2 dinuclear compound-loaded ZIF-8 nanocrystals (Cu2/ZIF-8), respectively. Extensive structural and compositional analyses were conducted to confirm the formation of Cu nanocluster-loaded N-doped porous carbon supports in both Cu24/N-C and Cu2/N-C and Cu nanoparticles encapsulated by graphitic carbons in Cu2/N-C as well. These two Cu-based electrocatalysts exhibited different behaviors in the electrochemical CO2 reduction reaction (CO2RR). The Cu24/N-C electrocatalyst showed high selectivity for CO production, while Cu2/N-C showed a preference for alcohol generation. The excellent stability of Cu2/N-C over a 30 h continuous electrochemical reduction further highlights its potential for practical applications. The difference in electrocatalytic performance observed in the two catalysts for CO2RR was attributed to distinct catalytic sites associated with Cu nanoclusters and nanoparticles. This research reveals the significance of their structures and compositions for the development of highly selective electrocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Haiyue Lu
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Jinfeng Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Gen Li
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Baicheng Liao
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Xiuli Zhang
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Xuefu Hu
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Nan Yu
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Liyong Chen
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu 233030, China
| |
Collapse
|
16
|
Wang J, Cai J, Ren KX, Liu L, Zheng SJ, Wang ZY, Zang SQ. Stepwise structural evolution toward robust carboranealkynyl-protected copper nanocluster catalysts for nitrate electroreduction. SCIENCE ADVANCES 2024; 10:eadn7556. [PMID: 38691609 PMCID: PMC11062576 DOI: 10.1126/sciadv.adn7556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
Atomically precise metal nanoclusters (NCs) are emerging as idealized model catalysts for imprecise metal nanoparticles to unveil their structure-activity relationship. However, the directional synthesis of robust metal NCs with accessible catalytic active sites remains a great challenge. In this work, we achieved bulky carboranealkynyl-protected copper NCs, the monomer Cu13·3PF6 and nido-carboranealkynyl bridged dimer Cu26·4PF6, with fair stability as well as accessible open metal sites step by step through external ligand shell modification and metal-core evolution. Both Cu13·3PF6 and Cu26·4PF6 demonstrate remarkable catalytic activity and selectivity in electrocatalytic nitrate (NO3-) reduction to NH3 reaction, with the dimer Cu26·4PF6 displaying superior performance. The mechanism of this catalytic reaction was elucidated through theoretical computations in conjunction with in situ FTIR spectra. This study not only provides strategies for accessing desired copper NC catalysts but also establishes a platform to uncover the structure-activity relationship of copper NCs.
Collapse
Affiliation(s)
| | | | - Kai-Xin Ren
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Su-Jun Zheng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | | | | |
Collapse
|
17
|
Li Z, Lv Y, Huang H, Li ZJ, Li T, Zhang L, Wang JQ. Efficient electrochemical reduction of CO 2 to CO in a flow cell device by a pristine Cu 5tz 6-cluster-based metal-organic framework. Dalton Trans 2024; 53:7067-7072. [PMID: 38566555 DOI: 10.1039/d4dt00189c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The electrochemical reduction of CO2 to CO is a powerful approach to achieving carbon neutrality. Herein, we report a five-nuclear copper cluster-based metal-azolate framework CuTz-1 as an electrocatalyst for the electrochemical CO2 reduction reaction. It achieved a faradaic efficiency (FE) of 62.7% for yielding CO with a partial current density of -35.1 mA cm-2 in flow cell device, which can be preserved for more than ten hours with negligible changes of the current density and FE(CO). Studies of electrocatalytic mechanism studies revealed that the distance of Cu-N was increased, and the coordination number of the Cu ion was reduced, while the oxidation state of Cu was decreased after the electrocatalysis. These findings offer valuable insights into structural changes that influence the performance of the catalyst during the process of the electrochemical reduction of CO2 process.
Collapse
Affiliation(s)
- Zijing Li
- Engineering Research Centre of Large-Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, China.
| | - Yingtong Lv
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, China.
| | - Haoliang Huang
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, China.
| | - Zi-Jian Li
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, China.
| | - Tao Li
- Engineering Research Centre of Large-Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, China.
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, China.
| |
Collapse
|
18
|
Zheng M, Zhang J, Wang P, Jin H, Zheng Y, Qiao SZ. Recent Advances in Electrocatalytic Hydrogenation Reactions on Copper-Based Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307913. [PMID: 37756435 DOI: 10.1002/adma.202307913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Hydrogenation reactions play a critical role in the synthesis of value-added products within the chemical industry. Electrocatalytic hydrogenation (ECH) using water as the hydrogen source has emerged as an alternative to conventional thermocatalytic processes for sustainable and decentralized chemical synthesis under mild conditions. Among the various ECH catalysts, copper-based (Cu-based) nanomaterials are promising candidates due to their earth-abundance, unique electronic structure, versatility, and high activity/selectivity. Herein, recent advances in the application of Cu-based catalysts in ECH reactions for the upgrading of valuable chemicals are systematically analyzed. The unique properties of Cu-based catalysts in ECH are initially introduced, followed by design strategies to enhance their activity and selectivity. Then, typical ECH reactions on Cu-based catalysts are presented in detail, including carbon dioxide reduction for multicarbon generation, alkyne-to-alkene conversion, selective aldehyde conversion, ammonia production from nitrogen-containing substances, and amine production from organic nitrogen compounds. In these catalysts, the role of catalyst composition and nanostructures toward different products is focused. The co-hydrogenation of two substrates (e.g., CO2 and NOx n, SO3 2-, etc.) via C─N, C─S, and C─C cross-coupling reactions are also highlighted. Finally, the critical issues and future perspectives of Cu-catalyzed ECH are proposed to accelerate the rational development of next-generation catalysts.
Collapse
Affiliation(s)
- Min Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Junyu Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Pengtang Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Huanyu Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
19
|
Lu P, Lv J, Chen Y, Ma Y, Wang Y, Lyu W, Yu J, Zhou J, Yin J, Xiong Y, Wang G, Ling C, Xi S, Zhang D, Fan Z. Steering the Selectivity of Carbon Dioxide Electroreduction from Single-Carbon to Multicarbon Products on Metal-Organic Frameworks via Facet Engineering. NANO LETTERS 2024; 24:1553-1562. [PMID: 38266492 DOI: 10.1021/acs.nanolett.3c04092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Although metal-organic frameworks (MOFs) have attracted more attention for the electrocatalytic CO2 reduction reaction (CO2RR), obtaining multicarbon products with a high Faradaic efficiency (FE) remains challenging, especially under neutral conditions. Here, we report the controlled synthesis of stable Cu(I) 5-mercapto-1-methyltetrazole framework (Cu-MMT) nanostructures with different facets by rationally modulating the reaction solvents. Significantly, Cu-MMT nanostructures with (001) facets are acquired using isopropanol as a solvent, which favor multicarbon production with an FE of 73.75% and a multicarbon:single-carbon ratio of 3.93 for CO2RR in a neutral electrolyte. In sharp contrast, Cu-MMT nanostructures with (100) facets are obtained utilizing water, promoting single-carbon generation with an FE of 63.98% and a multicarbon: single-carbon ratio of only 0.18. Furthermore, this method can be extended to other Cu-MMT nanostructures with different facets in tuning the CO2 reduction selectivity. This work opens up new opportunities for the highly selective and efficient CO2 electroreduction to multicarbon products on MOFs via facet engineering.
Collapse
Affiliation(s)
- Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Jia Lv
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies and School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yu Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Weichao Lyu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Jinli Yu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Jinwen Yin
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Guozhi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore 627833
| | - Daliang Zhang
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies and School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre (NPMM), City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
20
|
Zhu HL, Huang JR, Zhang MD, Yu C, Liao PQ, Chen XM. Continuously Producing Highly Concentrated and Pure Acetic Acid Aqueous Solution via Direct Electroreduction of CO 2. J Am Chem Soc 2024; 146:1144-1152. [PMID: 38164902 DOI: 10.1021/jacs.3c12423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
It is crucial to achieve continuous production of highly concentrated and pure C2 chemicals through the electrochemical CO2 reduction reaction (eCO2RR) for artificial carbon cycling, yet it has remained unattainable until now. Despite one-pot tandem catalysis (dividing the eCO2RR to C2 into two catalytical reactions of CO2 to CO and CO to C2) offering the potential for significantly enhancing reaction efficiency, its mechanism remains unclear and its performance is unsatisfactory. Herein, we selected different CO2-to-CO catalysts and CO-to-acetate catalysts to construct several tandem catalytic systems for the eCO2RR to acetic acid. Among them, a tandem catalytic system comprising a covalent organic framework (PcNi-DMTP) and a metal-organic framework (MAF-2) as CO2-to-CO and CO-to-acetate catalysts, respectively, exhibited a faradaic efficiency of 51.2% with a current density of 410 mA cm-2 and an ultrahigh acetate yield rate of 2.72 mmol m-2 s-1 under neutral conditions. After electrolysis for 200 h, 1 cm-2 working electrode can continuously produce 20 mM acetic acid aqueous solution with a relative purity of 95+%. Comprehensive studies revealed that the performance of tandem catalysts is influenced not only by the CO supply-demand relationship and electron competition between the two catalytic processes in the one-pot tandem system but also by the performance of the CO-to-C2 catalyst under diluted CO conditions.
Collapse
Affiliation(s)
- Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Meng-Di Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Can Yu
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515021, China
| |
Collapse
|
21
|
Sun Y, Xie J, Fu Z, Zhang H, Yao Y, Zhou Y, Wang X, Wang S, Gao X, Tang Z, Li S, Wang X, Nie K, Yang Z, Yan Y. Boosting CO 2 Electroreduction to C 2H 4 via Unconventional Hybridization: High-Order Ce 4+ 4f and O 2p Interaction in Ce-Cu 2O for Stabilizing Cu . ACS NANO 2023. [PMID: 37410800 DOI: 10.1021/acsnano.3c03952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Efficient conversion of carbon dioxide (CO2) into value-added materials and feedstocks, powered by renewable electricity, presents a promising strategy to reduce greenhouse gas emissions and close the anthropogenic carbon loop. Recently, there has been intense interest in Cu2O-based catalysts for the CO2 reduction reaction (CO2RR), owing to their capabilities in enhancing C-C coupling. However, the electrochemical instability of Cu+ in Cu2O leads to its inevitable reduction to Cu0, resulting in poor selectivity for C2+ products. Herein, we propose an unconventional and feasible strategy for stabilizing Cu+ through the construction of a Ce4+ 4f-O 2p-Cu+ 3d network structure in Ce-Cu2O. Experimental results and theoretical calculations confirm that the unconventional orbital hybridization near Ef based on the high-order Ce4+ 4f and 2p can more effectively inhibit the leaching of lattice oxygen, thereby stabilizing Cu+ in Ce-Cu2O, compared with traditional d-p hybridization. Compared to pure Cu2O, the Ce-Cu2O catalyst increased the ratio of C2H4/CO by 1.69-fold during the CO2RR at -1.3 V. Furthermore, in situ and ex situ spectroscopic techniques were utilized to track the oxidation valency of copper under CO2RR conditions with time resolution, identifying the well-maintained Cu+ species in the Ce-Cu2O catalyst. This work not only presents an avenue to CO2RR catalyst design involving the high-order 4f and 2p orbital hybridization but also provides deep insights into the metal-oxidation-state-dependent selectivity of catalysts.
Collapse
Affiliation(s)
- Yanfei Sun
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhenzhen Fu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Huiying Zhang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yebo Yao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yixiang Zhou
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaoxuan Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shiyu Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xueying Gao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zheng Tang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shuyuan Li
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaojun Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhiyu Yang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yiming Yan
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
22
|
Han GH, Bang J, Park G, Choe S, Jang YJ, Jang HW, Kim SY, Ahn SH. Recent Advances in Electrochemical, Photochemical, and Photoelectrochemical Reduction of CO 2 to C 2+ Products. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205765. [PMID: 36592422 DOI: 10.1002/smll.202205765] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Environmental problems such as global warming are one of the most prominent global challenges. Researchers are investigating various methods for decreasing CO2 emissions. The CO2 reduction reaction via electrochemical, photochemical, and photoelectrochemical processes has been a popular research topic because the energy it requires can be sourced from renewable sources. The CO2 reduction reaction converts stable CO2 molecules into useful products such as CO, CH4 , C2 H4 , and C2 H5 OH. To obtain economic benefits from these products, it is important to convert them into hydrocarbons above C2 . Numerous investigations have demonstrated the uniqueness of the CC coupling reaction of Cu-based catalysts for the conversion of CO2 into useful hydrocarbons above C2 for electrocatalysis. Herein, the principle of semiconductors for photocatalysis is briefly introduced, followed by a description of the obstacles for C2+ production. This review presents an overview of the mechanism of hydrocarbon formation above C2 , along with advances in the improvement, direction, and comprehension of the CO2 reduction reaction via electrochemical, photochemical, and photoelectrochemical processes.
Collapse
Affiliation(s)
- Gyeong Ho Han
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Junbeom Bang
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Gaeun Park
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Seonghyun Choe
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Youn Jeong Jang
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sang Hyun Ahn
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
23
|
Liu JJ, Sun SN, Liu J, Kuang Y, Shi JW, Dong LZ, Li N, Lu JN, Lin JM, Li SL, Lan YQ. Achieving High-Efficient Photoelectrocatalytic Degradation of 4-Chlorophenol via Functional Reformation of Titanium-Oxo Clusters. J Am Chem Soc 2023; 145:6112-6122. [PMID: 36883963 DOI: 10.1021/jacs.2c11509] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Rational design of crystalline catalysts with superior light absorption and charge transfer for efficient photoelectrocatalytic (PEC) reaction coupled with energy recovery remains a great challenge. In this work, we elaborately construct three stable titanium-oxo clusters (TOCs, Ti10Ac6, Ti10Fc8, and Ti12Fc2Ac4) modified with a monofunctionalized ligand (9-anthracenecarboxylic acid (Ac) or ferrocenecarboxylic acid (Fc)) and bifunctionalized ligands (Ac and Fc). They have tunable light-harvesting and charge transfer capacities and thus can serve as outstanding crystalline catalysts to achieve efficient PEC overall reaction, that is, the integration of anodic organic pollutant 4-chlorophenol (4-CP) degradation and cathodic wastewater-to-H2 conversion. These TOCs can all exhibit very high PEC activity and degradation efficiency of 4-CP. Especially, Ti12Fc2Ac4 decorated with bifunctionalized ligands exhibits better PEC degradation efficiency (over 99%) and H2 generation than Ti10Ac6 and Ti10Fc8 modified with a monofunctionalized ligand. The study of the 4-CP degradation pathway and mechanism revealed that such better PEC performance of Ti12Fc2Ac4 is probably due to its stronger interactions with the 4-CP molecule and better •OH radical production. This work not only presents the effective combination of organic pollutant degradation and simultaneously H2 evolution reaction using crystalline coordination clusters as both anodic and cathodic catalyst but also develops a new PEC application for crystalline coordination compounds.
Collapse
Affiliation(s)
- Jing-Jing Liu
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Sheng-Nan Sun
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jiang Liu
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Yi Kuang
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jing-Wen Shi
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Long-Zhang Dong
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ning Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jia-Ni Lu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jiao-Min Lin
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Shun-Li Li
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ya-Qian Lan
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
24
|
Ren Y, Sun X, Jing H, Xie Z, Zhao Z. Efficient Electrochemical Reduction of CO 2 on g-C 3 N 4 Monolayer-supported Metal Trimer Catalysts: A DFT Study. Chem Asian J 2023; 18:e202201232. [PMID: 36610011 DOI: 10.1002/asia.202201232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
The electrochemical reduction of CO2 into valuable chemicals and fuels is a promising but challenging method to realize the carbon cycle. In this work, a series of transition metal trimer clusters supported on g-C3 N4 catalysts (M3 @g-C3 N4 , M=Cr, Mn, Fe, Co, Ni, Cu, and Ru) for electrochemical CO2 reduction (CO2 RR) toward C1 and C2 products were systemically studied using density functional theory (DFT) calculations. Our results show that CO2 could be adsorbed and activated effectively on M3 @g-C3 N4 from adsorption configurations and electronic structures analyses. Cu3 @g-C3 N4 is a promising electrocatalyst for CH4 production with a limiting potential of -0.42 V. Cr3 @g-C3 N4 , Fe3 @g-C3 N4 , and Co3 @g-C3 N4 produce a low limiting potential of -0.64 V, -0.45 V, and -0.64 V for C2 H4 production, respectively. Hydrogen evolution reaction is refrained on Cu3 @g-C3 N4 , Cr3 @g-C3 N4 , and Co3 @ g-C3 N4 . This work provides useful insights into transition metal trimer cluster catalysts with enhanced activity and selectivity in CO2 RR.
Collapse
Affiliation(s)
- Yu Ren
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing, 102249, P. R. China
| | - Xiaoying Sun
- Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China
| | - Hongyu Jing
- Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China
| | - Zean Xie
- Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing, 102249, P. R. China.,Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China
| |
Collapse
|
25
|
Zheng S, Liang X, Pan J, Hu K, Li S, Pan F. Multi-Center Cooperativity Enables Facile C–C Coupling in Electrochemical CO 2 Reduction on a Ni 2P Catalyst. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Shisheng Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Xianhui Liang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Junjie Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Kang Hu
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Shunning Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
26
|
Heng JM, Zhu HL, Zhao ZH, Huang DS, Li JY, Liao PQ, Chen XM. A Conductive Dinuclear Cuprous Complex Mimicking the Active Edge Site of the Copper(100)/(111) Plane for Selective Electroreduction of CO 2 to C 2H 4 at Industrial Current Density. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0008. [PMID: 39290966 PMCID: PMC11407521 DOI: 10.34133/research.0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/16/2022] [Indexed: 09/19/2024]
Abstract
Inorganic solids are a kind of important catalysts, and their activities usually come from sparse active sites, which are structurally different from inactive bulk. Therefore, the rational optimization of activity depends on studying these active sites. Copper is a widely used catalyst and is expected to be a promising catalyst for the electroreduction of CO2 to C2H4. Here, we report a conductive dinuclear cuprous complex with a short Cu···Cu contact for the electroreduction of CO2 to C2H4. By using 1H-[1,10]phenanthrolin-2-one and Cu(I) ions, a dinuclear cuprous complex [Cu2(ophen)2] (Cuophen) with a remarkable conductivity (3.9 × 10-4 S m-1) and a short intramolecular Cu···Cu contact (2.62 Å) was obtained. Such a short Cu···Cu contact is close to the distance of 2.54 Å between 2 adjacent Cu atoms in the edge of the copper(100)/(111) plane. Detailed examination of Cuophen revealed a high activity for the electroreduction of CO2 to C2H4 with a Faradaic efficiency of 55(1)% and a current density of 580 mA cm-2, and no obvious degradation was observed over 50 h of continuous operation. Comparing the properties and mechanisms of Cuophen and 2 other copper complexes with different Cu···Cu distances, we found that the shorter Cu···Cu distance is conducive not only for a *CO species to bridge 2 copper ions into a more stable intermediate transition state but also for C-C coupling.
Collapse
Affiliation(s)
- Jin-Meng Heng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Da-Shuai Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun-Yi Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
27
|
Zhu HL, Huang JR, Liao PQ, Chen XM. Rational Design of Metal-Organic Frameworks for Electroreduction of CO 2 to Hydrocarbons and Carbon Oxygenates. ACS CENTRAL SCIENCE 2022; 8:1506-1517. [PMID: 36439306 PMCID: PMC9686201 DOI: 10.1021/acscentsci.2c01083] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 05/25/2023]
Abstract
Since CO2 can be reutilized by using renewable electricity in form of product diversity, electrochemical CO2 reduction (ECR) is expected to be a burgeoning strategy to tackle environmental problems and the energy crisis. Nevertheless, owing to the limited selectivity and reaction efficiency for a single component product, ECR is still far from a large-scale application. Therefore, designing high performance electrocatalysts is the key objective in CO2 conversion and utilization. Unlike most other types of electrocatalysts, metal-organic frameworks (MOFs) have clear, designable, and tunable catalytic active sites and chemical microenvironments, which are highly conducive to establish a clear structure-performance relationship and guide the further design of high-performance electrocatalysts. This Outlook concisely and critically discusses the rational design strategies of MOF catalysts for ECR in terms of reaction selectivity, current density, and catalyst stability, and outlines the prospects for the development of MOF electrocatalysts and industrial applications. In the future, more efforts should be devoted to designing MOF structures with high stability and electronic conductivity besides high activity and selectivity, as well as to develop efficient electrolytic devices suitable for MOF catalysts.
Collapse
Affiliation(s)
- Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
28
|
Wang P, Li T, Wu Q, Du R, Zhang Q, Huang WH, Chen CL, Fan Y, Chen H, Jia Y, Dai S, Qiu Y, Yan K, Meng Y, Waterhouse GIN, Gu L, Zhao Y, Zhao WW, Chen G. Molecular Assembled Electrocatalyst for Highly Selective CO 2 Fixation to C 2+ Products. ACS NANO 2022; 16:17021-17032. [PMID: 36223163 DOI: 10.1021/acsnano.2c07138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In certain metalloenzymes, multimetal centers with appropriate primary/secondary coordination environments allow carbon-carbon coupling reactions to occur efficiently and with high selectivity. This same function is seldom realized in molecular electrocatalysts. Herein we synthesized rod-shaped nanocatalysts with multiple copper centers through the molecular assembly of a triphenylphosphine copper complex (CuPPh). The assembled molecular CuPPh catalyst demonstrated excellent electrochemical CO2 fixation performance in aqueous solution, yielding high-value C2+ hydrocarbons (ethene) and oxygenates (ethanol) as the main products. Using density functional theory (DFT) calculations, in situ X-ray absorption spectroscopy (XAS) and quasi-in situ X-ray photoelectron spectroscopy (XPS), and reaction intermediate capture, we established that the excellent catalytic performance originated from the large number of double copper centers in the rod-shaped assemblies. Cu-Cu distances in the absence of CO2 were as long as 7.9 Å, decreasing substantially after binding CO2 molecules indicating dynamic and cooperative function. The double copper centers were shown to promote carbon-carbon coupling via a CO2 transfer-coupling mechanism involving an oxalate (OOC-COO) intermediate, allowing the efficient production of C2+ products. The assembled CuPPh nanorods showed high activity, excellent stability, and a high Faradaic efficiency (FE) to C2+ products (65.4%), with performance comparable to state-of-the-art copper oxide-based catalysts. To our knowledge, our findings demonstrate that harnessing metalloenzyme-like properties in molecularly assembled catalysts can greatly improve the selectivity of CO2RR, promoting the rational design of improved CO2 reduction catalysts.
Collapse
Affiliation(s)
- Peng Wang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| | - Tan Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| | - Qiqi Wu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| | - Ruian Du
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Taipei10607, Taiwan
| | - Chi-Liang Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Taipei10607, Taiwan
| | - Yan Fan
- Medical Device Research & Testing Center, South China University of Technology, Guangzhou510006, China
| | - Haonan Chen
- Medical Device Research & Testing Center, South China University of Technology, Guangzhou510006, China
| | - Yanyan Jia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai200237, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| | - Keyou Yan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| | - Yuanyuan Meng
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan030002, China
| | | | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Yun Zhao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| |
Collapse
|
29
|
TiO2-supported Single-atom Catalysts: Synthesis, Structure, and Application. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Qiu X, Huang J, Yu C, Zhao Z, Zhu H, Ke Z, Liao P, Chen X. A Stable and Conductive Covalent Organic Framework with Isolated Active Sites for Highly Selective Electroreduction of Carbon Dioxide to Acetate. Angew Chem Int Ed Engl 2022; 61:e202206470. [DOI: 10.1002/anie.202206470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Xiao‐Feng Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Jia‐Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Can Yu
- Institute of High Energy Physics Chinese Academy of Sciences (CAS) Beijing 100049 China
| | - Zhen‐Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Hao‐Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Zhuofeng Ke
- School of Materials Science & Engineering Sun Yat-sen University Guangzhou 510275 China
| | - Pei‐Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Xiao‐Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
31
|
Lu H, Wang G, Zhou Y, Wotango AS, Wu J, Meng Q, Li P. Concentration Optimization of Localized Cu 0 and Cu + on Cu-Based Electrodes for Improving Electrochemical Generation of Ethanol from Carbon Dioxide. Int J Mol Sci 2022; 23:ijms23169373. [PMID: 36012626 PMCID: PMC9409204 DOI: 10.3390/ijms23169373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Copper-based electrodes can catalyze electroreduction of CO2 to two-carbon products. However, obtaining a specific product with high efficiency depends on the oxidation state of Cu for the Cu-based materials. In this study, Cu-based electrodes were prepared on fluorinated tin oxide (FTO) using the one-step electrodeposition method. These electrodes were used as efficient electrocatalysts for CO2 reduction to ethanol. The concentration ratio of Cu0 and Cu+ on the electrodes was precisely modulated by adding monoethanolamine (MEA). The results of spectroscopic characterization showed that the concentration ratio of localized Cu+ and Cu0 (Cu+/Cu0) on the Cu-based electrodes was controlled from 1.24/1 to 1.54/1 by regulating the amount of MEA. It was found that the electrode exhibited the best electrochemical efficiency and ethanol production in the CO2 reduction reaction at the optimal concentration ratio Cu+/Cu0 of 1.42/1. The maximum faradaic efficiencies of ethanol and C2 were 48% and 77%, respectively, at the potential of -0.6 V vs. a reversible hydrogen electrode (RHE). Furthermore, the optimal concentration ratio of Cu+/Cu0 achieved the balance between Cu+ and Cu0 with the most favorable free energy for the formation of *CO intermediate. The stable existence of the *CO intermediate significantly contributed to the formation of the C-C bond for ethanol production.
Collapse
Affiliation(s)
- Hong Lu
- School of Flexible Electronics (SoFE) & Institution of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Guan Wang
- School of Flexible Electronics (SoFE) & Institution of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yong Zhou
- School of Flexible Electronics (SoFE) & Institution of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Aselefech Sorsa Wotango
- Center of Excellence in Sustainable Energy, Department of Industrial Chemistry, Addis Ababa Science and Technology University, Amist Kilo, Addis Ababa 16417, Ethiopia
| | - Jiahao Wu
- School of Physical and Mathematical Sciences, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Qi Meng
- School of Physical and Mathematical Sciences, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Ping Li
- School of Flexible Electronics (SoFE) & Institution of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
- Correspondence: ; Tel.:+86-18260086256
| |
Collapse
|
32
|
Wu Y, Chen C, Yan X, Wu R, Liu S, Ma J, Zhang J, Liu Z, Xing X, Wu Z, Han B. Enhancing CO 2 electroreduction to CH 4 over Cu nanoparticles supported on N-doped carbon. Chem Sci 2022; 13:8388-8394. [PMID: 35919725 PMCID: PMC9297438 DOI: 10.1039/d2sc02222b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022] Open
Abstract
The electroreduction of CO2 to CH4 has attracted extensive attention. However, it is still a challenge to achieve high current density and faradaic efficiency (FE) for producing CH4 because the reaction involves eight electrons and four protons. In this work, we designed Cu nanoparticles supported on N-doped carbon (Cu-np/NC). It was found that the catalyst exhibited outstanding performance for the electroreduction of CO2 to CH4. The FE toward CH4 could be as high as 73.4% with a high current density of 320 mA cm-2. In addition, the mass activity could reach up to 6.4 A mgCu -1. Both experimental and theoretical calculations illustrated that the pyrrolic N in NC could accelerate the hydrogenation of *CO to the *CHO intermediate, resulting in high current density and excellent selectivity for CH4. This work conducted the first exploration of the effect of N-doped species in composites on the electrocatalytic performance of CO2 reduction.
Collapse
Affiliation(s)
- Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ruizhi Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory Shantou 515063 China
| | - Jun Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xueqing Xing
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Zhonghua Wu
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
- Physical Science Laboratory, Huairou National Comprehensive Science Center Beijing 101400 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
33
|
Zhu HL, Chen HY, Han YX, Zhao ZH, Liao PQ, Chen XM. A Porous π-π Stacking Framework with Dicopper(I) Sites and Adjacent Proton Relays for Electroreduction of CO 2 to C 2+ Products. J Am Chem Soc 2022; 144:13319-13326. [PMID: 35776438 DOI: 10.1021/jacs.2c04670] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Crystalline porous materials sustained by supramolecular interactions (e.g., π-π stacking interactions) are a type of molecular crystals showing considerable stability, but their applications are rarely reported due to the high difficulty of their construction. Herein, a stable π-π stacking framework formed by a trinuclear copper(I) compound [Cu3(HBtz)3(Btz)Cl2] (CuBtz, HBtz = benzotriazole) with pyrazolate-bridged dicopper(I) sites is reported and employed for electrochemical CO2 reduction, showing an impressive performance of 73.7 ± 2.8% Faradaic efficiency for C2+ products [i.e., ethylene (44%), ethanol (21%), acetate (4.7%), and propanol (4%)] with a current density of 7.9 mA cm-2 at the potential of -1.3 V versus RHE in an H-type cell and a Faradic efficiency (61.6%) of C2+ products with a current density of ≈1 A cm-2 and a reaction rate of 5639 μmol m-2 s-1 at the potential of -1.6 V versus RHE in a flow cell device, representing an impressive performance reported to date. In-situ infrared spectroscopy, density functional theory calculations, and control experiments revealed that the uncoordinated nitrogen atoms of benzotriazolates in the immediate vicinity can act as proton relays and cooperate with the dicopper(I) site to promote the hydrogenation process of the *CO intermediate and the C-C coupling, resulting in the highly selective electroreduction of CO2 to C2+ products.
Collapse
Affiliation(s)
- Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hui-Ying Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Xuan Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
34
|
Huang DS, Zhu HL, Zhao ZH, Huang JR, Liao PQ, Chen XM. A Stable and Low-Cost Metal-Azolate Framework with Cyclic Tricopper Active Sites for Highly Selective CO 2 Electroreduction to C 2+ Products. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Da-Shuai Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
35
|
Qiu XF, Huang JR, Yu C, Zhao ZH, Zhu HL, Ke Z, Liao PQ, Chen XM. A Stable and Conductive Covalent Organic Framework with Isolated Active Sites for Highly Selective Electroreduction of Carbon Dioxide to Acetate. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Can Yu
- Chinses Academy of Science Institute of High Energy Physics CHINA
| | | | - Hao-Lin Zhu
- Sun Yat-Sen University School of Chemistry CHINA
| | - Zhuofeng Ke
- Sun Yat-sen University School of Chemistry CHINA
| | - Pei-Qin Liao
- Sun Yat-Sen University School of Chemistry No. 135, Xingang Xi Road 510275 Guangzhou CHINA
| | | |
Collapse
|
36
|
High-Performance of Electrocatalytic CO2 Reduction on Defective Graphene-Supported Cu4S2 Cluster. Catalysts 2022. [DOI: 10.3390/catal12050454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Electrochemical CO2 reduction reaction (CO2RR) to high-value chemicals is one of the most splendid approaches to mitigating environmental threats and energy shortage. In this study, the catalytic performance of CO2RR on defective graphene-supported Cu4S2 clusters as well as isolated Cu4Xn (X = O, S, Se; n = 2, 4) was systematically investigated based on density functional theory (DFT) computations. Calculation results revealed that the most thermodynamically feasible product is CH3OH among the C1 products on Cu4X2 clusters, in which the Cu4S2 cluster has the best activity concerning CH3OH synthesis with a limiting potential of −0.48 V. When the Cu4S2 cluster was further supported on defective graphene, the strong interaction between cluster and substrate could greatly improve the performance via tuning the electronic structure and improving the stability of the Cu4S2 cluster. The calculated free energy diagram indicated that it is also more energetically preferable for CH3OH production with a low limiting potential of −0.35 V. Besides, the defective graphene support has a significant ability to suppress the competing reactions, such as the hydrogen evolution reaction (HER) and CO and HCOOH production. Geometric structures, limiting potentials, and reduction pathways were also discussed to gain insight into the reaction mechanism and to find the minimum-energy pathway for C1 products. We hope this work will provide theoretical reference for designing and developing advanced supported Cu-based electrocatalysts for CO2 reduction.
Collapse
|
37
|
Zhan P, Yang S, Chu M, Zhu Q, Zhuang Y, Ren C, Chen Z, Lu L, Qin P. Amorphous Copper‐modified gold interface promotes selective CO2 electroreduction to CO. ChemCatChem 2022. [DOI: 10.1002/cctc.202200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peng Zhan
- Beijing University of Chemical Technology National Energy R&D Center for Biorefinery CHINA
| | - Shuai Yang
- Beijing University of Chemical Technology National Energy R&D Center for Biorefinery CHINA
| | - Mengen Chu
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Qian Zhu
- Beijing University of Chemical Technology National Energy R&D Center for Biorefinery CHINA
| | - Yan Zhuang
- Beijing University of Chemical Technology National Energy R&D Center for Biorefinery CHINA
| | - Cong Ren
- Beijing University of Chemical Technology National Energy R&D Center for Biorefinery CHINA
| | - Ziyi Chen
- Beijing University of Chemical Technology Paris Curie Engineer School CHINA
| | - Lu Lu
- Beijing University of Chemical Technology No.15,Beisanhuandong Road,Chaoyang District,Beijing,China Beijing CHINA
| | - Peiyong Qin
- Beijing University of Chemical Technology National Energy R&D Center for Biorefinery CHINA
| |
Collapse
|
38
|
Ling P, Liu Y, Wang Z, Li L, Hu J, Zhu J, Yan W, Jiang H, Hou Z, Sun Y, Xie Y. Surface Engineering on Commercial Cu Foil for Steering C 2H 4/CH 4 Ratio in CO 2 Electroreduction. NANO LETTERS 2022; 22:2988-2994. [PMID: 35324202 DOI: 10.1021/acs.nanolett.2c00189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Designing catalysts with high selectivity toward C2 products in CO2 electroreduction is crucial to energy storage and sustainable development. Here, we propose a Cu foil kinetic model with abundant nanocavities possessing higher reaction rate constant k to steer the ratio of C2H4 to the competing CH4 during CO2 electroreduction. Chemical kinetic simulation demonstrates that the nanocavities could enrich the adsorbed CO surface concentration (θCOad), while the higher k helps to lower the C-C coupling barrier for CO intermediates, thus favoring the formation of C2H4. The commercial Cu foil treated with cyclic voltammetry is used to match this model, displaying a remarkable C2H4/CH4 ratio of 4.11, which is 18 times larger than that on the pristine Cu foil. This work offers a handy strategy for surface modification and provides new insights into the C-C coupling and the C2H4 selectivity in terms of mass transfer flux and energy barrier.
Collapse
Affiliation(s)
- Peiquan Ling
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yinghuan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhiqiang Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Li Li
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Jun Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Junfa Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Wensheng Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Huijun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhonghuai Hou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yongfu Sun
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
39
|
Mehta G, Cornell SE, Krief A, Hopf H, Matlin SA. A shared future: chemistry's engagement is essential for resilience of people and planet. ROYAL SOCIETY OPEN SCIENCE 2022; 9:212004. [PMID: 35601450 PMCID: PMC9039782 DOI: 10.1098/rsos.212004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 05/03/2023]
Abstract
Strengthening resilience-elasticity or adaptive capacity-is essential in responding to the wide range of natural hazards and anthropogenic changes humanity faces. Chemistry's roles in resilience are explored for the first time, with its technical capacities set in the wider contexts of cross-disciplinary working and the intersecting worlds of science, society and policy. The roles are framed by chemistry's contributions to the sustainability of people and planet, examined via the human security framework's four material aspects of food, health, economic and environmental security. As the science of transformation of matter, chemistry is deeply involved in these material aspects and in their interfacing with human security's three societal and governance aspects of personal, community and political security. Ultimately, strengthening resilience requires making choices about the present use of resources as a hedge against future hazards and adverse events, with these choices being co-determined by technical capacities and social and political will. It is argued that, to intensify its contributions to resilience, chemistry needs to take action along at least three major lines: (i) taking an integrative approach to the field of 'chemistry and resilience'; (ii) rethinking how the chemical industry operates; and (iii) engaging more with society and policy-makers.
Collapse
Affiliation(s)
- Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad, Telangana 500046, India
- International Organization for Chemical Sciences in Development, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Sarah E. Cornell
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691 Stockholm, Sweden
| | - Alain Krief
- International Organization for Chemical Sciences in Development, 61 rue de Bruxelles, 5000 Namur, Belgium
- Department of Chemistry, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Henning Hopf
- International Organization for Chemical Sciences in Development, 61 rue de Bruxelles, 5000 Namur, Belgium
- Institute of Organic Chemistry, Technical University of Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Stephen A. Matlin
- International Organization for Chemical Sciences in Development, 61 rue de Bruxelles, 5000 Namur, Belgium
- Institute of Global Health Innovation, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
40
|
Yan T, Wang P, Xu ZH, Sun WY. Copper(II) Frameworks with Varied Active Site Distribution for Modulating Selectivity of Carbon Dioxide Electroreduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13645-13652. [PMID: 35258933 DOI: 10.1021/acsami.2c00487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) can be utilized as electrocatalysts for CO2 reduction reaction (CO2RR) due to their well dispersed metal centers. However, the influence of metal node distribution on electrochemical CO2RR was rarely explored. Here, three Cu-MOFs with different copper(II) site distribution were employed for CO2 electroreduction. The Cu-MOFs [Cu(L)SO4]·H2O (Cu1), [Cu(L)2(H2O)2](CH3COO)2·H2O (Cu2), and [Cu(L)2(H2O)2](ClO4)2 (Cu3) were achieved by using the same ligand 1,3,5-tris(1-imidazolyl)benzene (L) but different Cu(II) salts. The results show that the Faraday efficiency of CO (FECO) for Cu1 is 4 times that of the FEH2, while the FECO of Cu2 is twice that of the FEH2. As for Cu3, there is not much difference between FECO and FEH2. Such difference may arise from the distinct electrochemical active surface area and charge transfer kinetics caused by different copper site distribution. Furthermore, the different framework structures also affect the activity of the copper sites, which was supported by the theoretically calculated Gibbs free energy and electron density, contributing to the selectivity of CO2RR. This study provides a strategy for modulating the selectivity of CO2RR by tuning the distribution of the active centers in MOFs.
Collapse
Affiliation(s)
- Tingting Yan
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Zou-Hong Xu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
41
|
Woldu AR, Huang Z, Zhao P, Hu L, Astruc D. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214340] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Electrocatalytic CO2 Reduction and H2 Evolution by a Copper (II) Complex with Redox-Active Ligand. Molecules 2022; 27:molecules27041399. [PMID: 35209188 PMCID: PMC8874443 DOI: 10.3390/molecules27041399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
The process of electrocatalytic CO2 reduction and H2 evolution from water, regarding renewable energy, has become one of the global solutions to problems related to energy consumption and environmental degradation. In order to promote the electrocatalytic reactivity, the study of the role of ligands in catalysis has attracted more and more attention. Herein, we have developed a copper (II) complex with redox-active ligand [Cu(L1)2NO3]NO3 (1, L1 = 2-(6-methoxypyridin-2-yl)-6-nitro-1h-benzo [D] imidazole). X-ray crystallography reveals that the Cu ion in cation of complex 1 is coordinated by two redox ligands L1 and one labile nitrate ligand, which could assist the metal center for catalysis. The longer Cu-O bond between the metal center and the labile nitrate ligand would break to provide an open coordination site for the binding of the substrate during the catalytic process. The electrocatalytic investigation combined with DFT calculations demonstrate that the copper (II) complex could homogeneously catalyze CO2 reduction towards CO and H2 evolution, and this could occur with great performance due to the cooperative effect between the central Cu (II) ion and the redox- active ligand L1. Further, we discovered that the added proton source H2O and TsOH·H2O (p-Toluenesulfonic acid) could greatly enhance its electrocatalytic activity for CO2 reduction and H2 evolution, respectively.
Collapse
|
43
|
Sun L, Reddu V, Wang X. Multi-atom cluster catalysts for efficient electrocatalysis. Chem Soc Rev 2022; 51:8923-8956. [DOI: 10.1039/d2cs00233g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents recent developments in the synthesis, modulation and characterization of multi-atom cluster catalysts for electrochemical energy applications.
Collapse
Affiliation(s)
- Libo Sun
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore 138602, Singapore
| | - Vikas Reddu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xin Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|