1
|
Yang S, Hu F, Xu T, Lin F, Han J, Li F. Stacking Transformation-Triggered Circularly Polarized Luminescence Reversion in γ-Cyclodextrins-Pyrene Co-Assembly. Chemistry 2024; 30:e202402012. [PMID: 39072899 DOI: 10.1002/chem.202402012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Considerable attention has been directed towards cyclodextrins (CDs) in the creation of co-assembled CPL-active materials, owing to their intrinsic chiral host cavities and synergistic host-guest interactions. However, achieving reversed CPL emission regulation with single-handedness CDs moiety poses a significant challenge. In this study, we have devised a series of γ-CD-based host-guest complexes comprising dual pyrene imidazolium derivatives with multiple linkers, which exhibit reversed circularly polarized emission. We have uncovered that the transformation of excimer stacking within γ-CD/pyrene complexes contributes to the inverted CPL emissions originating from a single-handed chiral host. This research elucidates the phenomenon of (+)- and (-)-circularly polarized excimer emission (CPEE) within γ-CD, arising from right- and left-handed stacking conformations, respectively.
Collapse
Affiliation(s)
- Shijie Yang
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Jiangning District, Nanjing, 211198, China
| | - Fengqing Hu
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Jiangning District, Nanjing, 211198, China
| | - Tianjing Xu
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Jiangning District, Nanjing, 211198, China
| | - Fanjie Lin
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Jiangning District, Nanjing, 211198, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Jiangning District, Nanjing, 211198, China
| | - Fei Li
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Jiangning District, Nanjing, 211198, China
| |
Collapse
|
2
|
Li Q, Yang Y, Yu SM, Wu Z, Xing J, Lin Q, Miao Y, Wang H, Zhang DW, Wang W, Li ZT, Xu YX. Bispillar[5]arene-Based Slide-Ring Polyrotaxanation Enables Enhanced Toughness, Recyclability, Impact, and Puncture Resistance of Polyisoprene Elastomers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48342-48351. [PMID: 39216006 DOI: 10.1021/acsami.4c10680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A series of slide-ring polyrotaxanes (SRPs) have been constructed by the solvent-free blending of a ditopic pillar[5]arene (DP5A) and polyisoprene (PIP) after thermal annealing. Solid-state 13C NMR experiments supported the fact that the pillar[5]arene rings of DP5A were threaded by PIP chains to afford physically interlocked networks. Tensile tests revealed that 1% of DP5A can improve the elongation at break from 50 to 239%, the tensile modulus from 2.1 to 3.9 MPa, and the toughness from 0.35 to 4.5 MJ/m3. Impact and puncture resistance experiments show that the DP5A-doped materials exhibit remarkable enhancement of protective and impalement-resistant performance. The samples can be also recycled repeatedly due to their physical crosslinking nature. The important stress delocalization effects have been attributed to the pulley effect of DP5A in the SRP materials, which represents a supramolecular approach for improving the performance of PIP elastomers.
Collapse
Affiliation(s)
- Qian Li
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Ying Yang
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Si-Min Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhibo Wu
- Shaanxi Key Laboratory of Impact Dynamics and Its Engineering Application, School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jiabin Xing
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Qihan Lin
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Yinggang Miao
- Shaanxi Key Laboratory of Impact Dynamics and Its Engineering Application, School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Hui Wang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yun-Xiang Xu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Tang X, Zhang K, Xue R, Zheng Y, Chen S, Zheng S, Fan J, Zhang Y, Ye W, Zhang W, Cai S, Liu Y. Self-Standing Chiral Covalent Organic Framework Thin Films with Full-Color Tunable Guest-Induced Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024:e202413171. [PMID: 39193661 DOI: 10.1002/anie.202413171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Exploring self-standing chiral covalent organic framework (COF) thin films with controllable circularly polarized luminescence (CPL) is of paramount significance but remains a challenging task. Herein, we demonstrate the first example of self-standing chiral COF films employing a polymerization-dispersion-filtration strategy. Pristine, low-quality chiral COF films were produced by interfacial polymerization and then re-dispersed into COF colloidal solutions. Via vacuum assisted assembly, these COF colloids were densely stacked and assembled into self-standing, pure chiral COF films (L-/D-CCOF-F) that were transparent, smooth, crack-free and highly crystalline. These films were tunable in thicknesses, areas, and roughness, along with strong diffuse reflectance circular dichroism (DRCD) and cyan CPL signals, showing an intrinsic luminescence asymmetric factor (glum) of ~4.3×10-3. Furthermore, these COF films served as host adsorbents to load various achiral organic dye guests through adsorption. The effective chiral transfer and energy transfer between CCOF-F and achiral fluorescent dyes endowed the dyes with strong chirality and tunable DRCD, resulting in intense, full-color-tunable solid-state CPL. Notably, the ordered arrangement of dye guest molecules within the preferentially oriented chiral pores of CCOF-F contributed to an amplified |glum| factor of up to 7.2×10-2, which is state-of-the-art for COF-based CPL materials. This work provides new insights into the design and fabrication of self-standing chiral COF films, demonstrating their great potential for chiroptical applications.
Collapse
Affiliation(s)
- Xihao Tang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Kai Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | | | - Yuexin Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Simin Chen
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Shengrun Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., 511517, Qingyuan, P. R. China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., 511517, Qingyuan, P. R. China
| | - Yuwei Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Weiping Ye
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Weiguang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., 511517, Qingyuan, P. R. China
| | - Songliang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., 511517, Qingyuan, P. R. China
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| |
Collapse
|
4
|
Zhou C, Chang W, Liu L, Li J. Recent Progress in Circularly Polarized Luminescent Materials Based on Cyclodextrins. Polymers (Basel) 2024; 16:2140. [PMID: 39125166 PMCID: PMC11313814 DOI: 10.3390/polym16152140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Circularly polarized luminescence (CPL) materials have been widely used in the fields of bioimaging, optoelectronic devices, and optical communications. The supramolecular interaction, involving harnessing non-covalent interactions between host and guest molecules to control their arrangements and assemblies, represents an advanced approach for facilitating the development of CPL materials and finely constructing and tuning the desired CPL properties. Cyclodextrins (CDs) are cyclic natural polysaccharides, which have also been ubiquitous in various fields such as molecular recognition, drug encapsulation, and catalyst separation. By adjusting the interactions between CDs and guest molecules precisely, composite materials with CPL properties can be facilely generated. This review aims to outline the design strategies and performance of CD-based CPL materials comprehensively and provides a detailed illustration of the interactions between host and guest molecules.
Collapse
Affiliation(s)
- Chengkai Zhou
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China; (C.Z.); (W.C.)
| | - Weixing Chang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China; (C.Z.); (W.C.)
| | - Lingyan Liu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China; (C.Z.); (W.C.)
- National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China
| | - Jing Li
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China; (C.Z.); (W.C.)
- National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Yu JX, Duan BH, Chen Z, Liu N, Wu ZQ. Polymers with Circularly Polarized Luminescent Properties: Design, Synthesis, and Prospects. Chempluschem 2024; 89:e202300481. [PMID: 37955194 DOI: 10.1002/cplu.202300481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Chiral materials with circularly polarized luminescence (CPL) have garnered significant attention owing to their distinctive luminescent properties and wide array of applications. CPL enables the selective emission of left and right circularly polarized light. The fluorescence quantum yield and dissymmetry factor play pivotal roles in the generation of CPL. Helical polymers exhibit immense promise as CPL materials due to their inherent chirality, structural versatility, modifiability, and capacity to incorporate diverse chromophores. This Review provides a brief review of the synthesis of CPL materials based on helical polymers. The CPL can be realized by aggregation-induced CPL of non-emissive helical polymers, and helices bearing chromophores on the pendants and on the chain end. Furthermore, future challenges and potential applications of CPL materials are summarized and discussed.
Collapse
Affiliation(s)
- Jia-Xin Yu
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Bing-Hui Duan
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Zheng Chen
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin, 130021, P.R. China
| | - Zong-Quan Wu
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| |
Collapse
|
6
|
Zhang G, Bao Y, Ma H, Wang N, Cheng X, He Z, Wang X, Miao T, Zhang W. Precise Modulation of Circularly Polarized Luminescence via Polymer Chiral Co-assembly and Contactless Dynamic Chiral Communication. Angew Chem Int Ed Engl 2024; 63:e202401077. [PMID: 38456382 DOI: 10.1002/anie.202401077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Circularly polarized luminescence (CPL) plays a pivotal role in cutting-edge display and information technologies. Currently achieving precise color control and dynamic signal regulation in CPL still remains challenging due to the elusory relationship between fluorescence and chirality. Inspired by the natural mechanisms governing color formation and chiral interaction, we proposed an addition-subtraction principle theory to address this issue. Three fluorene-based polymers synthesized by Suzuki polycondensation with different electron-deficient monomers exhibit similar structures and UV/Vis absorption, but distinct fluorescence emissions due to intramolecular charge transfer. Based on this, precise-color CPL-active films are obtained through quantitative supramolecular co-assembly directed by addition principle. Particularly, an ideal white-emitting CPL film (CIE coordinates: (0.33, 0.33)) is facilely fabricated with a high quantum yield of 80.8 % and a dissymmetry factor (glum) of 1.4×10-2. Structural analysis reveals that the ordered stacking orientation favors higher glum. Furthermore, to address the dynamically regulated challenge, the comparable subtraction principle is proposed, involving a contactless chiral communication between excited and ground states. The representative system consisting of as-prepared fluorene-based polymers and chirality-selective absorption azobenzene (Azo)-containing polymers is constructed, achieving CPL weakening, reversal, and enhancement. Finally, a switchable quick response code is realized based on trans-cis isomerization of Azo moiety.
Collapse
Affiliation(s)
- Gong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yinglong Bao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haotian Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nianwei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zixiang He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiang Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tengfei Miao
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Department School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| |
Collapse
|
7
|
Preda G, Jung S, Pescitelli G, Cupellini L, Armspach D, Pasini D. Enabling Stereochemical Communication and Stimuli-Responsive Chiroptical Properties in Biphenyl-Capped Cyclodextrins. Chemistry 2023; 29:e202302376. [PMID: 37668555 DOI: 10.1002/chem.202302376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Chiroptical materials are gaining increasing interest due to their innovative character and their applications in optoelectronics and data encryption technologies. Fully harnessing the potential of building blocks from the "chiral pool", such as native cyclodextrins (CDs), as they often lack chromophores suitable for the construction of materials with significant chiroptical properties. Here, we present the synthesis and characterization of a two-level molecular stack consisting of a point-chiral element (CD) and an axially chiral element (biphenyl), capable of effectively translating the overall stereochemical information contained in CDs into stimuli-responsive chiroptical properties. α- and β-permethylated CDs were efficiently capped with two different 2,2'-difunctionalized 1,1'-biphenyl units. In CD derivatives containing the rigid 2,2'-dihydroxy-1,1'-biphenyl cap, two intramolecular hydrogen bonds act synergistically as stereoselective actuators, enabling effective communication between the two levels and the transfer of nonchromophoric stereochemical information from the cyclic-oligosaccharide to the atropoisomeric cap. The chiroptical properties can be finely tuned by external stimuli such as temperature and solvent. The way chirality is transferred from the CD platform to the biphenyl cap was revealed thanks to crystallographic and computational analyses, together with electronic circular dichroism (ECD) studies.
Collapse
Affiliation(s)
- Giovanni Preda
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
- Équipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, Université de Strasbourg, UMR 7177 CNRS, 4 rue Blaise Pascal, CS90032, 67081, Strasbourg Cedex, France
| | - Sebastian Jung
- Équipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, Université de Strasbourg, UMR 7177 CNRS, 4 rue Blaise Pascal, CS90032, 67081, Strasbourg Cedex, France
| | - Gennaro Pescitelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, 56124, Pisa, Italy
| | - Dominique Armspach
- Équipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, Université de Strasbourg, UMR 7177 CNRS, 4 rue Blaise Pascal, CS90032, 67081, Strasbourg Cedex, France
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
8
|
Yin C, Yan ZA, Ma X. A supramolecular assembly strategy towards organic luminescent materials. Chem Commun (Camb) 2023; 59:13421-13433. [PMID: 37877212 DOI: 10.1039/d3cc04051h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Supramolecular organic luminescent materials with different dimensionalities usually exhibit different optical properties as well as their potential applications in various fields. Recent reports showed that non-covalent interactions are useful tools to obtain diverse luminescent materials due to their dynamicity and reversibility, including π-π stacking, host-guest interactions, hydrophobic effects, hydrogen bonding, electrostatic effects and so on. In this review, we summarized recent progress in zero-, one-, two-, three-dimensional and disordered organic luminescent materials using the aforementioned strategies, in order to provide a solution for designing luminescent materials with specific structures and morphologies. The relationship between assembly behavior and luminescent properties is discussed in detail, along with the existing difficulties hindering the development of supramolecular assembly systems and future research directions.
Collapse
Affiliation(s)
- Chenjia Yin
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| | - Zi-Ang Yan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| |
Collapse
|
9
|
Wang JQ, Han XN, Han Y, Chen CF. Advances in circularly polarized luminescence materials based on chiral macrocycles. Chem Commun (Camb) 2023; 59:13089-13106. [PMID: 37830234 DOI: 10.1039/d3cc04187e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Development of circularly polarized luminescence (CPL) materials utilizing supramolecular strategies has recently attracted increasing interest in supramolecular chemistry and materials science. Chiral macrocycles, especially chiral macrocyclic hosts, have stable structures, adjustable internal cavities to encapsulate different guests, and host-guest complexation to induce special photophysical properties. Consequently, various CPL materials based on chiral macrocycles have been developed during the last decade. To gain a better understanding of this rapidly developing research area, it is necessary and also important to summarize the advances in CPL materials based on chiral macrocycles. In this review, CPL materials from different chiral macrocycles, especially classical and newly reported chiral macrocyclic hosts and their derivatives, will be comprehensively summarized. It is believed that this review will be of guiding significance and also very helpful for the development of macrocyclic chemistry and CPL materials.
Collapse
Affiliation(s)
- Jia-Qi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Feng X, Wang X, Redshaw C, Tang BZ. Aggregation behaviour of pyrene-based luminescent materials, from molecular design and optical properties to application. Chem Soc Rev 2023; 52:6715-6753. [PMID: 37694728 DOI: 10.1039/d3cs00251a] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Molecular aggregates are self-assembled from multiple molecules via weak intermolecular interactions, and new chemical and physical properties can emerge compared to their individual molecule. With the development of aggregate science, much research has focused on the study of the luminescence behaviour of aggregates rather than single molecules. Pyrene as a classical fluorophore has attracted great attention due to its diverse luminescence behavior depending on the solution state, molecular packing pattern as well as morphology, resulting in wide potential applications. For example, pyrene prefers to emit monomer emission in dilute solution but tends to form a dimer via π-π stacking in the aggregation state, resulting in red-shifted emission with quenched fluorescence and quantum yield. Over the past two decades, much effort has been devoted to developing novel pyrene-based fluorescent molecules and determining the luminescence mechanism for potential applications. Since the concept of "aggregation-induced emission (AIE)" was proposed by Tang et al. in 2001, aggregate science has been established, and the aggregated luminescence behaviour of pyrene-based materials has been extensively investigated. New pyrene-based emitters have been designed and synthesized not only to investigate the relationships between the molecular structure and properties and advanced applications but also to examine the effect of the aggregate morphology on their optical and electronic properties. Indeed, new aggregated pyrene-based molecules have emerged with unique properties, such as circularly polarized luminescence, excellent fluorescence and phosphorescence and electroluminescence, ultra-high mobility, etc. These properties are independent of their molecular constituents and allow for a number of cutting-edge technological applications, such as chemosensors, organic light-emitting diodes, organic field effect transistors, organic solar cells, Li-batteries, etc. Reviews published to-date have mainly concentrated on summarizing the molecular design and multi-functional applications of pyrene-based fluorophores, whereas the aggregation behaviour of pyrene-based luminescent materials has received very little attention. The majority of the multi-functional applications of pyrene molecules are not only closely related to their molecular structures, but also to the packing model they adopt in the aggregated state. In this review, we will summarize the intriguing optoelectronic properties of pyrene-based luminescent materials boosted by aggregation behaviour, and systematically establish the relationship between the molecular structure, aggregation states, and optoelectronic properties. This review will provide a new perspective for understanding the luminescence and electronic transition mechanism of pyrene-based materials and will facilitate further development of pyrene chemistry.
Collapse
Affiliation(s)
- Xing Feng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Xiaohui Wang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull, Yorkshire HU6 7RX, UK.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
11
|
Ye FY, Hu M, Zheng YS. Asymmetric Synthesis of Tetraphenylethylene Helicates and Their Full-Color CPL Emission with High glum and High Fluorescence Quantum Yield. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42056-42065. [PMID: 37624593 DOI: 10.1021/acsami.3c07431] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Tetraphenylethylene (TPE) helicates with single helical handedness not only owe high fluorescence quantum yield but also possess good helical chirality, showing an excellent circularly polarized luminescence active material. In this work, a new method for directly obtaining single-handed TPE helicates has been developed. By using chiral p-phenylenediamine derivatives as an intramolecular cyclization reagent of TPE, the single-handed propeller-like conformation and stable helical chirality of the TPE unit were obtained, avoiding complicated and expensive HPLC chiral column separation. The as-prepared chiral TPE helicates displayed strong emission with an almost quantitative fluorescence quantum yield (Φf) and strong circularly polarized luminescence (CPL). In addition, the chirality and CPL signals of the TPE helicates could be significantly magnified by the helical arrangement together with 4'-pentyl-4-biphenylcarbonitrile (5CB) liquid crystal molecules. Moreover, full-color CPL emissions with both a high absolute CPL dissymmetrical factor up to 0.43 and high Φf were afforded.
Collapse
Affiliation(s)
- Feng-Ying Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yan-Song Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
12
|
Xu H, Ma CS, Yu CY, Tong F, Qu DH. Reversible Inversion of Circularly Polarized Luminescence in a Coassembly Supramolecular Structure with Achiral Sulforhodamine B Dyes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25201-25211. [PMID: 37014285 DOI: 10.1021/acsami.2c22349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The dynamic control of circularly polarized luminescence (CPL) has far-reaching significance in optoelectronics, information storage, and data encryption. Herein, we reported the reversible inversion of CPL in a coassembly supramolecular system consisting of chiral molecules L4, which contain two positively charged viologen units, and achiral ionic surfactant sodium dodecyl sulfate (SDS) by introducing achiral sulforhodamine B (SRB) dye molecules. The chirality of CPL in the coassemblies can be efficiently regulated and inverted by simply adjusting the amount of SRB. A series of experimental characterization, including optical spectroscopy, electron microscope, 1H NMR, and X-ray scattering measurements, suggested that SRB could coassemble with L4/SDS to establish a new stable L4/SDS/SRB supramolecular structure through electrostatic interactions. Moreover, the negative-sign CPL could revert to the positive-sign CPL if titanium dioxide (TiO2) nanoparticles were used to decompose SRB molecules. The evolution of the CPL inversion process could be cycled at least 5 times without a significant decline in CPL signals when SRB was refueled to the system. Our results provide a facile approach to dynamically regulating the handedness of CPL in a multiple-component supramolecular system via achiral species.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chang-Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Cheng-Yuan Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fei Tong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
13
|
Yuan Y, Bang KT, Wang R, Kim Y. Macrocycle-Based Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210952. [PMID: 36608278 DOI: 10.1002/adma.202210952] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Macrocycles with well-defined cavities and the ability to undergo supramolecular interactions are classical materials that have played an essential role in materials science. However, one of the most substantial barriers limiting the utilization of macrocycles is their aggregation, which blocks the active regions. Among many attempted strategies to prevent such aggregation, installing macrocycles into covalent organic frameworks (COFs), which are porous and stable reticular networks, has emerged as an ideal solution. The resulting macrocycle-based COFs (M-COFs) preserve the macrocycles' unique activities, enabling applications in various fields such as single-atom catalysis, adsorption/separation, optoelectronics, phototherapy, and structural design of forming single-layered or mechanically interlocked COFs. The resulting properties are unmatchable by any combination of macrocycles with other substrates, opening a new chapter in advanced materials. This review focuses on the latest progress in the concepts, synthesis, properties, and applications of M-COFs, and presents an in-depth outlook on the challenges and opportunities in this emerging field.
Collapse
Affiliation(s)
- Yufei Yuan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ki-Taek Bang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Rui Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
14
|
Luo D, Yuan ZJ, Ping LJ, Zhu XW, Zheng J, Zhou CW, Zhou XC, Zhou XP, Li D. Tailor-Made Pd n L 2n Metal-Organic Cages through Covalent Post-Synthetic Modification. Angew Chem Int Ed Engl 2023; 62:e202216977. [PMID: 36753392 DOI: 10.1002/anie.202216977] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Post-synthetic modification (PSM) is an effective approach for the tailored functionalization of metal-organic architectures, but its generalizability remains challenging. Herein we report a general covalent PSM strategy to functionalize Pdn L2n metal-organic cages (MOCs, n=2, 12) through an efficient Diels-Alder cycloaddition between peripheral anthracene substituents and various functional motifs bearing a maleimide group. As expected, the solubility of functionalized Pd12 L24 in common solvents can be greatly improved. Interestingly, concentration-dependent circular dichroism and aggregation-induced emission are achieved with chiral binaphthol (BINOL)- and tetraphenylethylene-modified Pd12 L24 , respectively. Furthermore, Pd12 L24 can be introduced with two different functional groups (e.g., chiral BINOL and achiral pyrene) through a step-by-step PSM route to obtain chirality-induced circularly polarized luminescence. Moreover, similar results are readily observed with a smaller Pd2 L4 system.
Collapse
Affiliation(s)
- Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Zi-Jun Yuan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Lin-Jie Ping
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiao-Wei Zhu
- School of Chemistry and Environment, Guangdong Engineering Technology Developing Center of High-Performance CCL, Jiaying University, Meizhou, Guangdong, 514015, P. R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Chuang-Wei Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
15
|
Xu L, Wu YJ, Gao RT, Li SY, Liu N, Wu ZQ. Visible Helicity Induction and Memory in Polyallene toward Circularly Polarized Luminescence, Helicity Discrimination, and Enantiomer Separation. Angew Chem Int Ed Engl 2023; 62:e202217234. [PMID: 36745050 DOI: 10.1002/anie.202217234] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
Inspired by biological helices (e.g., DNA), artificial helical polymers have attracted intense attention. However, precise synthesis of one-handed helices from achiral materials remains a formidable challenge. Herein, a series of achiral poly(biphenyl allene)s with controlled molar mass and low dispersity were prepared and induced into one-handed helices using chiral amines and alcohols. The induced one-handed helix was simultaneously memorized, even after the chiral inducer was removed. The switchable induction processes were visible to naked eye; the achiral polymers exhibited blue emission (irradiated at 365 nm), whereas the induced one-handed helices exhibited cyan emission with clear circularly polarized luminescence. The induced helices formed stable gels in various solvents with helicity discrimination ability: the same-handed helix gels were self-healing, whereas the gels of opposite-handed helicity were self-sorted. Moreover, the induced helices could separate enantiomers via enantioselective crystallization with high efficiency and switchable enantioselectivity.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.,Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Yong-Jie Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin, 130021, P. R. China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
16
|
Guan Q, Zhou LL, Dong YB. Construction of Covalent Organic Frameworks via Multicomponent Reactions. J Am Chem Soc 2023; 145:1475-1496. [PMID: 36646043 DOI: 10.1021/jacs.2c11071] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multicomponent reactions (MCRs) combine at least three reactants to afford the desired product in a highly atom-economic way and are therefore viewed as efficient one-pot combinatorial synthesis tools allowing one to significantly boost molecular complexity and diversity. Nowadays, MCRs are no longer confined to organic synthesis and have found applications in materials chemistry. In particular, MCRs can be used to prepare covalent organic frameworks (COFs), which are crystalline porous materials assembled from organic monomers and exhibit a broad range of properties and applications. This synthetic approach retains the advantages of small-molecule MCRs, not only strengthening the skeletal robustness of COFs, but also providing additional driving forces for their crystallization, and has been used to prepare a series of robust COFs with diverse applications. The present perspective article provides the general background for MCRs, discusses the types of MCRs employed for COF synthesis to date, and addresses the related critical challenges and future perspectives to inspire the MCR-based design of new robust COFs and promote further progress in this emerging field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
17
|
Zhang Y, Yu W, Li H, Zheng W, Cheng Y. Induced CPL-Active Materials Based on Chiral Supramolecular Co-Assemblies. Chemistry 2023; 29:e202204039. [PMID: 36691189 DOI: 10.1002/chem.202204039] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023]
Abstract
Circularly polarized luminescence (CPL) has attracted much interest due to its potential applications on chiral photonic techniques and optoelectronic materials science. As known, dissymmetry factor (gem ) of CPL is one essential factor for evaluating the features of CPL-active materials. Much attention has focused on how to increase the gem value, which is one of the most important issues for CPL practical applications. Recently, more and more works have demonstrated that chiral supramolecular could provide the significant strategy to improve the gem value through the orderly helical superstructure of chiral building blocks. Normally, this kind of chiral supramolecular assembly process can be accompanied by chirality transfer and induction mechanism, which can promote the amplification effect on the induced CPL of achiral dyes. In this review, we fully summarized recent advances on the induced CPL-active materials of chiral supramolecular co-assemblies, their applications in circularly polarized organic light-emitting diodes (CP-OLEDs) and current challenges.
Collapse
Affiliation(s)
- Yuxia Zhang
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China.,Nanjing University of Posts and Telecommunications, Key Laboratory for Organic Electronics &, Information Displays (KLOEID) and, Institute of Advanced Materials, National Synergistic Innovation Center for, Advanced Materials (SICAM), Nanjing, 210023, P. R. China
| | - Wenting Yu
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China
| | - Hang Li
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China
| | - Wenhua Zheng
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China
| | - Yixiang Cheng
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China
| |
Collapse
|
18
|
Cai S, Huang Y, Xie S, Wang S, Guan Y, Wan X, Zhang J. 2D Hexagonal Assemblies of Amphiphilic Double-Helical Poly(phenylacetylene) Homopolymers with Enhanced Circularly Polarized Luminescence and Chiral Self-Sorting. Angew Chem Int Ed Engl 2022; 61:e202214293. [PMID: 36305302 DOI: 10.1002/anie.202214293] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Two-dimensional (2D) chiral materials have been attracting immense attentions owing to their unique properties. Herein, we successfully developed a unique assembly strategy of amphiphilic homopolymers to construct stable free-standing 2D chiral nanosheets in solution. The amphiphilic poly(phenylacetylene) (PPA) homopolymers bearing the hydrophobic and hydrophilic dendritic side chains adopt a DNA-like double-helical conformation. The regular hexagonal nanosheets were formed in THF/EtOH through nucleation and epitaxial growth. The sizes of the nanosheets can be modulated from nanometers to submillimeters upon varying the ratio of binary solvents, while the thickness is linearly correlated with the molecular weights. The 2D architecture can significantly enhance the CPL of polymers with a high dissymmetry factor ≈0.1. Driven by a discrimination of helical conformation, the PPAs can self-sort into homochiral 2D nanosheets, as directly visualized by using fluorescent microscopy.
Collapse
Affiliation(s)
- Siliang Cai
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yihan Huang
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Siyu Xie
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Sheng Wang
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yan Guan
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
19
|
Harada K, Sekiya R, Haino T. Chirality Induction on a Coordination Capsule for Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202209340. [DOI: 10.1002/anie.202209340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Kentaro Harada
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Ryo Sekiya
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Takeharu Haino
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| |
Collapse
|
20
|
Wang Y, Gong J, Wang X, Li W, Wang X, He X, Wang W, Yang H. Multistate Circularly Polarized Luminescence Switching through Stimuli‐Induced Co‐Conformation Regulations of Pyrene‐Functionalized Topologically Chiral [2]Catenane. Angew Chem Int Ed Engl 2022; 61:e202210542. [DOI: 10.1002/anie.202210542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Jiacheng Gong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xianwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xiao He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming Shanghai 202162 China
| |
Collapse
|
21
|
Wang C, Xu L, Zhou L, Liu N, Wu Z. Asymmetric Living Supramolecular Polymerization: Precise Fabrication of One‐Handed Helical Supramolecular Polymers. Angew Chem Int Ed Engl 2022; 61:e202207028. [DOI: 10.1002/anie.202207028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Chao Wang
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Lei Xu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Li Zhou
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Na Liu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Zong‐Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
22
|
Harada K, Sekiya R, Haino T. Chirality Induction on a Coordination Capsule for Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kentaro Harada
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku chemistry 1-3-1 Kagamiyama 739-8526 Higashi-Hiroshima JAPAN
| | - Ryo Sekiya
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku Chemistry 1-3-1 Kagamiayam 739-8526 Higashi-Hiroshima JAPAN
| | - Takeharu Haino
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku Department of Chemistry 1-3-1 Kagamiyama 739-8526 Higashi-Hiroshima JAPAN
| |
Collapse
|
23
|
Wang C, Xu L, Zhou L, Liu N, Wu ZQ. Asymmetric Living Supramolecular Polymerization: Precise Fabrication of One‐handed Helical Supramolecular Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chao Wang
- Hefei University of Technology Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Lei Xu
- Hefei University of Technology Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Li Zhou
- Hefei University of Technology Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Na Liu
- Hefei University of Technology Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Zong-Quan Wu
- Jilin University Polymer Chemistry and Physis Qianjin Street 2699 130012 Changchun CHINA
| |
Collapse
|