1
|
He X, Wang J, Liu X, Niu Q, Li Z, Chen B, Xiong Q. Hypoxia-Responsive Hydrogen-Bonded Organic Framework-Mediated Protein Delivery for Cancer Therapy. Adv Healthc Mater 2024; 13:e2400747. [PMID: 38652737 DOI: 10.1002/adhm.202400747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/21/2024] [Indexed: 04/25/2024]
Abstract
The efficient delivery of therapeutic proteins to tumor sites is a promising cancer treatment modality. Hydrogen-bonded organic frameworks (HOFs) are successfully used for the protective encapsulation of proteins; however, easy precipitation and lack of controlled release of existing HOFs limit their further application for protein delivery in vivo. Here, a hypoxia-responsive HOF, self-assembled from azobenzenedicarboxylate/polyethylene glycol-conjugated azobenzenedicarboxylate and tetrakis(4-amidiniumphenyl)methane through charge-assisted hydrogen-bonding, is developed for systemic protein delivery to tumor cells. The newly generated HOF platform efficiently encapsulates representative cytochrome C, demonstrating good dispersibility under physiological conditions. Moreover, it can respond to overexpressed reductases in the cytoplasm under hypoxic conditions, inducing fast intracellular protein release to exert therapeutic effects. The strategy presented herein can be applied to other therapeutic proteins and can be expanded to encompass more intrinsic tumor microenvironment stimuli. This offers a novel avenue for utilizing HOFs in protein-based cancer therapy.
Collapse
Affiliation(s)
- Xu He
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, China
| | - Jian Wang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiao Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, China
| | - Qingyu Niu
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, China
| | - Zhiqiang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Qingqing Xiong
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| |
Collapse
|
2
|
Di Z, Qi Y, Yu XX, Li HR, Zuo MX, Ren TT, Li CP, Zhao Y. Facile and scale-up syntheses of high-performance enzyme@meso-HOF biocatalysts. Chem Sci 2024:d4sc04619f. [PMID: 39355226 PMCID: PMC11440381 DOI: 10.1039/d4sc04619f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
Facile immobilization is essential for the wide application of enzymes in large-scale catalytic processes. However, exploration of suitable enzyme supports poses an unmet challenge, particularly in the context of scale-up biocatalyst fabrication. In this study, we present facile and scale-up syntheses of high-performance enzyme biocatalysts via in situ encapsulation of cytochrome c (Cyt-c) as mono-enzyme and glucose oxidase (GOx)-horseradish peroxidase (HRP) as dual-enzyme cascade (GOx&HRP) systems, respectively, into a stable mesoporous hydrogen-bonded organic framework (meso-HOF) matrix. In situ encapsulation reactions occur under ambient conditions, and facilitate scale up (∼3 g per reaction) of enzyme@meso-HOF within a very short period (5-10 min). The resultant biocatalysts not only exhibit high enzyme loading (37.9 wt% for mono-enzyme and 22.8 wt% for dual-enzyme) with minimal leaching, but also demonstrate high catalytic activity, superior reusability, and durability. This study represents an example of scale-up fabrication of enzyme@meso-HOF biocatalysts on the gram level and highlights superior meso-HOFs as suitable host matrices for biomolecular entities.
Collapse
Affiliation(s)
- Zhengyi Di
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Yu Qi
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Xin-Xin Yu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Hai-Ruo Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Meng-Xuan Zuo
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Tian-Tian Ren
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Cheng-Peng Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| |
Collapse
|
3
|
Hengge E, Steyskal EM, Dennig A, Nachtnebel M, Fitzek H, Würschum R, Nidetzky B. Electrochemically Induced Nanoscale Stirring Boosts Functional Immobilization of Flavocytochrome P450 BM3 on Nanoporous Gold Electrodes. SMALL METHODS 2024:e2400844. [PMID: 39300852 DOI: 10.1002/smtd.202400844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Indexed: 09/22/2024]
Abstract
Enzyme-modified electrodes are core components of electrochemical biosensors for diagnostic and environmental analytics and have promising applications in bioelectrocatalysis. Despite huge research efforts spanning decades, design of enzyme electrodes for superior performance remains challenging. Nanoporous gold (npAu) represents advanced electrode material due to high surface-to-volume ratio, tunable porosity, and intrinsic redox activity, yet its coupling with enzyme catalysis is complex. Here, the study reports a flexible-modular approach to modify npAu with functional enzymes by combined material and protein engineering and use a tailored assortment of surface and in-solution methodologies for characterization. Self-assembled monolayer (SAM) of mercaptoethanesulfonic acid primes the npAu surface for electrostatic adsorption of the target enzyme (flavocytochrome P450 BM3; CYT102A1) that is specially equipped with a cationic protein module for directed binding to anionic surfaces. Modulation of the SAM surface charge is achieved by electrochemistry. The electrode-adsorbed enzyme retains well the activity (33%) and selectivity (complete) from in-solution. Electrochemically triggered nanoscale stirring in the internal porous network of npAu-SAM enhances speed (2.5-fold) and yield (3.0-fold) of the enzyme immobilization. Biocatalytic reaction is fueled from the electrode via regeneration of its reduced coenzyme (NADPH). Collectively, the study presents a modular design of npAu-based enzyme electrode that can support flexible bioelectrochemistry applications.
Collapse
Affiliation(s)
- Elisabeth Hengge
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
- Institute of Materials Physics, Graz University of Technology, Petergasse 16, Graz, 8010, Austria
| | - Eva-Maria Steyskal
- Institute of Materials Physics, Graz University of Technology, Petergasse 16, Graz, 8010, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
| | - Manfred Nachtnebel
- Graz Centre for Electron Microscopy (ZFE), Steyrergasse 17, Graz, 8010, Austria
| | - Harald Fitzek
- Graz Centre for Electron Microscopy (ZFE), Steyrergasse 17, Graz, 8010, Austria
| | - Roland Würschum
- Institute of Materials Physics, Graz University of Technology, Petergasse 16, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, Graz, 8010, Austria
| |
Collapse
|
4
|
Li GL, Niu KK, Yang XZ, Liu H, Yu S, Xing LB. A Hydrogen-Bonded Organic Framework Based on Triphenylamine for Photocatalytic Silane Hydroxylation. Inorg Chem 2024; 63:16533-16540. [PMID: 39167756 DOI: 10.1021/acs.inorgchem.4c02886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Employing hydrogen-bonded organic frameworks (HOFs) as mild photocatalysts for organic conversions is still considerably challenging. In this work, we synthesized a hydrogen-bonded organic framework (HOF-16) and achieved the photocatalytic oxidation of silanes to generate silanols. Considering the constraints imposed by the framework structure, a significant improvement in the efficacy of singlet oxygen (1O2) generation is observed. HOF-16 exhibits remarkable photocatalytic performance when it comes to silane hydroxylation, displaying high efficiency, low catalyst loading, and good recyclability. This research highlights the immense potential of HOFs in the realm of organic photocatalysis.
Collapse
Affiliation(s)
- Guang-Lu Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo, Shandong 255000, P. R. China
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo, Shandong 255000, P. R. China
| | - Xuan-Zong Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo, Shandong 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo, Shandong 255000, P. R. China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo, Shandong 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo, Shandong 255000, P. R. China
| |
Collapse
|
5
|
Fan X, Zhai S, Xue S, Zhi L. Enzyme Immobilization using Covalent Organic Frameworks: From Synthetic Strategy to COFs Functional Role. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39072501 DOI: 10.1021/acsami.4c06556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Enzymes, a class of biocatalysts, exhibit remarkable catalytic efficiency, specificity, and selectivity, governing many reactions that are essential for various cascades within living cells. The immobilization of structurally flexible enzymes on appropriate supports holds significant importance in facilitating biomimetic transformations in extracellular environments. Covalent organic frameworks (COFs) have emerged as ideal candidates for enzyme immobilization due to high surface tunability, diverse chemical/structural designs, exceptional stability, and metal-free nature. Various immobilization techniques have been proposed to fabricate COF-enzyme biocomposites, offering significant enhancements in activity and reusability for COF-immobilized enzymes as well as new insights into developing advanced enzyme-based applications. In this review, we provide a comprehensive overview of state-of-the-art strategies for immobilizing enzymes within COFs by focusing on their applicability and versatility. These strategies are systematically summarized and compared by categorizing them into postsynthesis immobilization and in situ immobilization, where their respective strengths and limitations are thoroughly discussed. Combined with an overview of critical emerging applications, we further elucidate the multifaceted roles of COFs in enzyme immobilization and subsequent applications, highlighting the advanced biofunctionality achievable through COFs.
Collapse
Affiliation(s)
- Xiying Fan
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Shibo Zhai
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Song Xue
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Linjie Zhi
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
6
|
Huang C, Zhao C, Sun Y, Feng T, Ren J, Qu X. A Hydrogen-Bonded Organic Framework-Based Mitochondrion-Targeting Bioorthogonal Platform for the Modulation of Mitochondrial Epigenetics. NANO LETTERS 2024; 24:8929-8939. [PMID: 38865330 DOI: 10.1021/acs.nanolett.4c01794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Bioorthogonal chemistry represents a powerful tool in chemical biology, which shows great potential in epigenetic modulation. As a proof of concept, the epigenetic modulation model of mitochondrial DNA (mtDNA) is selected because mtDNA establishes a relative hypermethylation stage under oxidative stress, which impairs the mitochondrion-based therapeutic effect during cancer therapy. Herein, we design a new biocompatible hydrogen-bonded organic framework (HOF) for a HOF-based mitochondrion-targeting bioorthogonal platform TPP@P@PHOF-2. PHOF-2 can activate a prodrug (pro-procainamide) in situ, which can specifically inhibit DNA methyltransferase 1 (DNMT1) activity and remodel the epigenetic modification of mtDNA, making it more susceptible to ROS damage. In addition, PHOF-2 can also catalyze artemisinin to produce large amounts of ROS, effectively damaging mtDNA and achieving better chemodynamic therapy demonstrated by both in vitro and in vivo studies. This work provides new insights into developing advanced bioorthogonal therapy and expands the applications of HOF and bioorthogonal catalysis.
Collapse
Affiliation(s)
- Congcong Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yue Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tingting Feng
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
7
|
Ya J, Zhang H, Qin G, Huang C, Zhao C, Ren J, Qu X. A Biocompatible Hydrogen-Bonded Organic Framework (HOF) as Sonosensitizer and Artificial Enzyme for In-Depth Treatment of Alzheimer's Disease. Adv Healthc Mater 2024:e2402342. [PMID: 39031538 DOI: 10.1002/adhm.202402342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Current phototherapeutic approaches for Alzheimer's disease (AD) exhibit restricted clinical outcomes due to the limited physical penetration and comprised brain microenvironment of noninvasive nanomedicine. Herein, a hydrogen-bonded organic framework (HOF) based sonosensitizer is designed and synthesized. Mn-TCPP, a planar molecule where Mn2+ ion is chelated in the core with a large p-conjugated system and 4 carboxylate acid groups, has been successfully used as building blocks to construct an ultrasound-sensitive HOF (USI-MHOF), which can go deep in the brain of AD animal models. The both in vitro and in vivo studies indicate that USI-MHOF can generate singlet oxygen (1O2) and oxidize β-amyloid (Aβ) to inhibit aggregation, consequently attenuating Aβ neurotoxicity. More intriguingly, USI-MHOF exhibits catalase (CAT)- and superoxide dismutase (SOD)-like activities, mitigating neuron oxidative stress and reprograming the brain microenvironment. For better crossing the blood-brain barrier (BBB), the peptide KLVFFAED (KD8) has been covalently grafted to USI-MHOF for improving BBB permeability and Aβ selectivity. Further, in vivo experiments demonstrate a significant reduction of the craniocerebral Aβ plaques and improvement of the cognition deficits in triple-transgenic AD (3×Tg-AD) mice models following deep-penetration ultrasound treatment. The work provides the first example of an ultrasound-responsive biocompatible HOF as non-invasive nanomedicine for in-depth treatment of AD.
Collapse
Affiliation(s)
- Junlin Ya
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Haochen Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Congcong Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
8
|
Jash O, Srivastava A, Balasubramanian S. HP35 Protein in the Mesopore of MIL-101(Cr) MOF: A Model to Study Cotranslocational Unfolding. ACS OMEGA 2024; 9:31185-31194. [PMID: 39035967 PMCID: PMC11256354 DOI: 10.1021/acsomega.4c05452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
The immobilization of enzymes in metal-organic framework (MOF) cages is important in biotechnology. In this context, the mechanism of translocation of proteins through the cavities of the MOF and the roles played by confinement and MOF chemistry in giving rise to stable protein intermediates that are otherwise transiently populated in the physiological environment are important questions to be addressed. These unexplored aspects are examined with villin headpiece (HP35) as a model protein confined within a mesopore of MIL-101(Cr) using molecular dynamics simulations. At equilibrium, the protein is located farther from the center of the cavity and closer to the MOF surface. Molecular interactions with the MOF partially unfold helix-1 at its N-terminus. Umbrella sampling simulations inform the range of conformations that HP35 undertakes during translocation from one cavity to another and associated changes in free energy. Relative to its equilibrium state within the cavity, the free energy barrier for the unfolded protein at the cage window is estimated to be 16 kcal/mol. This study of MOF-based protein conformation can also be a general approach to observing intermediates in folding-unfolding pathways.
Collapse
Affiliation(s)
- Oishika Jash
- Chemistry
and Physics of Materials Unit, Jawaharlal
Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Anand Srivastava
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India
| | - Sundaram Balasubramanian
- Chemistry
and Physics of Materials Unit, Jawaharlal
Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| |
Collapse
|
9
|
Zheng G, Yang J, Zhou L, Sinelshchikova A, Lei Q, Lin J, Wuttke S, Jeffrey Brinker C, Zhu W. Multivariate Silicification-Assisted Single Enzyme Structure Augmentation for Improved Enzymatic Activity-Stability Trade-Off. Angew Chem Int Ed Engl 2024; 63:e202406110. [PMID: 38711195 DOI: 10.1002/anie.202406110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
The ability to finely tune/balance the structure and rigidity of enzymes to realize both high enzymatic activity and long-term stability is highly desired but highly challenging. Herein, we propose the concept of the "silicazyme", where solid inorganic silica undergoes controlled hybridization with the fragile enzyme under moderate conditions at the single-enzyme level, thus enabling simultaneous structure augmentation, long-term stability, and high enzymatic activity preservation. A multivariate silicification approach was utilized and occurred around individual enzymes to allow conformal coating. To realize a high activity-stability trade-off the structure flexibility/rigidity of the silicazyme was optimized by a component adjustment ternary (CAT) plot method. Moreover, the multivariate organosilica frameworks bring great advantages, including surface microenvironment adjustability, reversible modification capability, and functional extensibility through the rich chemistry of silica. Overall silicazymes represent a new class of enzymes with promise for catalysis, separations, and nanomedicine.
Collapse
Affiliation(s)
- Guansheng Zheng
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Junxian Yang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Liang Zhou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Anna Sinelshchikova
- BCMaterials, Basque Center for Materials Applications and Nanostructures, UPV/EHUSciencePark, Leioa, 48940, Spain
| | - Qi Lei
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials Applications and Nanostructures, UPV/EHUSciencePark, Leioa, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
10
|
Li L, Ma T, Wang M. Protein-Integrated Hydrogen-Bonded Organic Frameworks: Chemistry and Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202400926. [PMID: 38529812 DOI: 10.1002/anie.202400926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are porous nanomaterials that offer exceptional biocompatibility and versatility for integrating proteins for biomedical applications. This minireview concisely discusses recent advancements in the chemistry and functionality of protein-HOF interfaces. It particularly focuses on strategic methodologies, such as the careful selection of building blocks and the genetic engineering of proteins, to facilitate protein-HOF interactions. We examine the role of enzyme encapsulation within HOFs, highlighting its capability to preserve enzyme function, a crucial aspect for applications in biosensing and disease diagnosis. Moreover, we discuss the emerging utility of nanoscale HOFs for intracellular protein delivery, illustrating their applicability as nanoreactors for intracellular catalysis and neuroprotective biorthogonal catalysis within cellular compartments. We highlight the significant advancement of designing biodegradable HOFs tailored for cytosolic protein delivery, underscoring their promising application in targeted cancer therapies. Finally, we provide a perspective viewpoint on the design of biocompatible protein-HOF assemblies, underlining their promising prospects in drug delivery, disease diagnosis, and broader biomedical applications.
Collapse
Affiliation(s)
- Lijuan Li
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyu Ma
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Pei R, Liu J, Jing C, Zhang M. A Multienzyme Cascade Pathway Immobilized in a Hydrogen-Bonded Organic Framework for the Conversion of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306117. [PMID: 37994262 DOI: 10.1002/smll.202306117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/09/2023] [Indexed: 11/24/2023]
Abstract
The reduction of carbon dioxide to valuable chemicals through enzymatic processes is regarded as a promising approach for the reduction of carbon dioxide emissions. In this study, an in vitro multi-enzyme cascade pathway is constructed for the conversion of CO2 into dihydroxyacetone (DHA). This pathway, known as FFFP, comprises formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), formolase (FLS), and phosphite dehydrogenase (PTDH), with PTDH serving as the critical catalyst for regenerating the coenzyme NADH. Subsequently, the immobilization of the FFFP pathway within the hydrogen-bonded organic framework (HOF-101) is accomplished in situ. A 1.8-fold increase in DHA yield is observed in FFFP@HOF-101 compared to the free FFFP pathway. This enhancement can be explained by the fact that within FFFP@HOF-101, enzymes are positioned sufficiently close to one another, leading to the elevation of the local concentration of intermediates and an improvement in mass transfer efficiency. Moreover, FFFP@HOF-101 displays a high degree of stability. In addition to the establishment of an effective DHA production method, innovative concepts for the tailored synthesis of fine compounds from CO2 through the utilization of various multi-enzyme cascade developments are generated by this work.
Collapse
Affiliation(s)
- Rui Pei
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jing Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Min Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
12
|
Ye C, Zhou T, Deng Y, Wu S, Zeng T, Yang J, Shi YS, Yin Y, Li G. Enhanced performance of enzymes confined in biocatalytic hydrogen-bonded organic frameworks for sensing of glutamate in the central nervous system. Biosens Bioelectron 2024; 247:115963. [PMID: 38147717 DOI: 10.1016/j.bios.2023.115963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Glutamate (Glu) is a key excitatory neurotransmitter associated with various neurological disorders in the central nervous system, so its measurement is vital to both basic research and biomedical application. In this work, we propose the first example of using biocatalytic hydrogen-bonded organic frameworks (HOFs) as the hosting matrix to encapsulate glutamate oxidase (GLOD) via a de novo approach, fabricating a cascaded-enzyme nanoreactor for Glu biosensing. In this design, the ferriporphyrin ligands can assemble to form Fe-HOFs with high catalase-like activity, while offering a scaffold for the in-situ immobilization of GLOD. Moreover, the formed GLOD@Fe-HOFs are favorable for the efficient diffusion of Glu into the active sites of GLOD via the porous channels, accelerating the cascade reaction with neighboring Fe-HOFs. Consequently, the constructed nanoreactor can offer superior activity and operational stability in the catalytic cascade for Glu biosensing. More importantly, rapid and selective detection can be achieved in the cerebrospinal fluid (CSF) collected from mice in a low sample consumption. Therefore, the successful fabrication of enzyme@HOFs may offer promise to develop high-performance biosensor for further biomedical applications.
Collapse
Affiliation(s)
- Chang Ye
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, 210032, PR China
| | - Tianci Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ying Deng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Shuai Wu
- Women & Children Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Tianyu Zeng
- Women & Children Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China; Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, 210032, PR China.
| | - Yongmei Yin
- Women & Children Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China; Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
13
|
Li J, Li C, Zhao Z, Guo Y, Chen H, Liu P, Zhao M, Guo J. Biomolecules meet organic frameworks: from synthesis strategies to diverse applications. NANOSCALE 2024; 16:4529-4541. [PMID: 38293903 DOI: 10.1039/d3nr05586h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Biomolecules are essential in pharmaceuticals, biocatalysts, biomaterials, etc., but unfortunately they are extremely susceptible to extraneous conditions. When biomolecules meet porous organic frameworks, significantly improved thermal, chemical, and mechanical stabilities are not only acquired for raw biomolecules, but also molecule sieving, substrate enrichment, chirality property, and other functionalities are additionally introduced for application expansions. In addition, the intriguing synergistic effect stemming from elaborate and concerted interactions between biomolecules and frameworks can further enhance application performances. In this paper, the synthesis strategies of the so-called bio-organic frameworks (BOFs) in recent years are systematically reviewed and classified. Additionally, their broad applications in biomedicine, catalysis, separation, sensing, and imaging are introduced and discussed. Before ending, the current challenges and prospects in the future for this infancy-stage but significant research field are also provided. We hope that this review will offer a concise but comprehensive vision of designing and constructing multifunctional BOF materials as well as their full explorations in various fields.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Chunyan Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Zelong Zhao
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Yuxue Guo
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Hongli Chen
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tiangong University, Tianjin 300387, China
| | - Pai Liu
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Meiting Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Jun Guo
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
14
|
Li H, Cai Q, Xue Y, Jie G. HOF-101-based dual-mode biosensor for photoelectrochemical/electrochemiluminescence detection and imaging of oxytetracycline. Biosens Bioelectron 2024; 245:115835. [PMID: 37979549 DOI: 10.1016/j.bios.2023.115835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
A unique hydrogen-bonded organic frameworks (HOF-101)-based photoelectrochemical (PEC) and electrochemiluminescence (ECL) dual-mode biosensor using polydopamine nanoparticles (PDAs) as quencher was constructed for ultrasensitive detection and imaging of oxytetracycline (OXY). In particular, HOF-101 was a superior ECL material and can be observed with the naked eye. Furthermore, it also had outstanding PEC signal, so HOF-101 was a new dual-signal material with excellent performance, thus it was explored to realize dual-mode detection. As the main component of natural melanin, PDAs not only had good biocompatibility, but also contained rich functional groups on the surface. Additionally, PDAs had excellent light absorption ability and poor conductivity, which made it the excellent photoquencher. In this work, PDAs were introduced on the surface of HOF-101 to quench its ECL and PEC signals by using the dual-aptamer sandwich method, achieving ultrasensitive detection of antibiotic OXY. Particularly for ECL detection, HOF-101 was firstly used to visually detect OXY. The detection range can reach 0.1 pM-100 nM, and the limit of detection (LOD) can reach 0.04 pM. This work showed a great contribution to the development of new ECL-PEC materials and ECL visualization analysis, which had outstanding application potential in the fields of food safety and biochemical analysis.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yali Xue
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
15
|
Paul S, Gupta M, Kumar Mahato A, Karak S, Basak A, Datta S, Banerjee R. Covalent Organic Frameworks for the Purification of Recombinant Enzymes and Heterogeneous Biocatalysis. J Am Chem Soc 2024; 146:858-867. [PMID: 38159294 DOI: 10.1021/jacs.3c11169] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Recombinant enzymes have gained prominence due to their diverse functionalities and specificity and are often a greener alternative in biocatalysis. This context makes purifying recombinant enzymes from host cells and other impurities crucial. The primary goal is to isolate the pure enzyme of interest and ensure its stability under ambient conditions. Covalent organic frameworks (COFs), renowned for their well-ordered structure and permeability, offer a promising approach for purifying histidine-tagged (His-tagged) enzymes. Furthermore, immobilizing enzymes within COFs represents a growing field in heterogeneous biocatalysis. In this study, we have developed a flow-based technology utilizing a nickel-infused covalent organic framework (Ni-TpBpy COF) to combine two distinct processes: the purification of His-tagged enzymes and the immobilization of enzymes simultaneously. Our work primarily focuses on the purification of three His-tagged enzymes β-glucosidase, cellobiohydrolase, and endoglucanase as well as two proteins with varying molecular weights, namely, green fluorescent protein (27 kDa) and BG Rho (88 kDa). We employed Ni-TpBpy as a column matrix to showcase the versatility of our system. Additionally, we successfully obtained a Ni-TpBpy COF immobilized with enzymes, which can serve as a heterogeneous catalyst for the hydrolysis of p-nitrophenyl-β-d-glucopyranoside and carboxymethylcellulose. These immobilized enzymes demonstrated catalytic activity comparable to that of their free counterparts, with the added advantages of recyclability and enhanced stability under ambient conditions for an extended period, ranging from 60 to 90 days. This contrasts with the free enzymes, which do not maintain their activity as effectively over time.
Collapse
Affiliation(s)
- Satyadip Paul
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Mani Gupta
- Department of Biological Sciences and Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Ashok Kumar Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Shayan Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Ananda Basak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Supratim Datta
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Department of Biological Sciences and Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
16
|
Chen X, Zheng Q, Cai W, Sheng J, Wang M. Biodegradable Hydrogen-Bonded Organic Framework for Cytosolic Protein Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54346-54352. [PMID: 37967322 DOI: 10.1021/acsami.3c14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a novel class of porous nanomaterials that show great potential for intracellular delivery of protein therapeutics. However, the inherent challenges in interfacing protein with HOFs, and the need for spatiotemporally controlling the release of protein within cells, have constrained their therapeutic potential. In this study, we report novel biodegradable hydrogen-bonded organic frameworks, termed DS-HOFs, specially designed for the cytosolic delivery of protein therapeutics in cancer cells. The synthesis of DS-HOFs involves the self-assembly of 4-[tris(4-carbamimidoylphenyl) methyl] benzenecarboximidamide (TAM) and 4,4'-dithiobisbenzoic acid (DTBA), governed by intermolecular hydrogen-bonding interactions. DS-HOFs exhibit high efficiency in encapsulating a diverse range of protein cargos, underpinned by the hydrogen-bonding interactions between the protein residue and DS-HOF subcomponents. Notably, DS-HOFs are selectively degraded in cancer cells triggered by the distinct intracellular reductive microenvironments, enabling an enhanced and selective release of protein inside cancer cells. Additionally, we demonstrate that the efficient delivery of bacterial effector protein DUF5 using DS-HOFs depletes the mutant RAS in cancer cells to prohibit tumor cell growth both in vitro and in vivo. The design of biodegradable HOFs for cytosolic protein delivery provides a powerful and promising strategy to expand the therapeutic potential of proteins for cancer therapy.
Collapse
Affiliation(s)
- Xianghan Chen
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qizhen Zheng
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Cai
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhan Sheng
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Tang J, Liu J, Zheng Q, Yao R, Wang M. Neuroprotective Bioorthogonal Catalysis in Mitochondria Using Protein-Integrated Hydrogen-Bonded Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202312784. [PMID: 37817650 DOI: 10.1002/anie.202312784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
Mitochondria-targeted bioorthogonal catalysis holds promise for controlling cell function precisely, yet achieving selective and efficient chemical reactions within organelles is challenging. In this study, we introduce a new strategy using protein-integrated hydrogen-bonded organic frameworks (HOFs) to enable synergistic bioorthogonal chemical catalysis and enzymatic catalysis within mitochondria. Utilizing catalytically active tris(4,4'-dicarboxylicacid-2,2'-bipyridyl) ruthenium(II) to self-assemble with [1,1'-biphenyl]-4,4'-biscarboximidamide, we synthesized nanoscale RuB-HOFs that exhibit high photocatalytic reduction activity. Notably, RuB-HOFs efficiently enter cells and preferentially localize to mitochondria, where they facilitate bioorthogonal photoreduction reactions. Moreover, we show that RuB-HOFs encapsulating catalase can produce hydrogen sulfide (H2 S) in mitochondria through photocatalytic reduction of pro-H2 S and degrade hydrogen peroxide through enzymatic catalysis simultaneously, offering a significant neuroprotective effect against oxidative stress. Our findings not only introduce a versatile chemical toolset for mitochondria-targeted bioorthogonal catalysis for prodrug activation but also pave the way for potential therapeutic applications in treating diseases related to cellular oxidative stress.
Collapse
Affiliation(s)
- Jiakang Tang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qizhen Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rui Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
18
|
Yang X, Shi F, Su X, Cavaco-Paulo A, Wang H, Su J. In-situ encapsulation and construction of Lac@HOFs/hydrogel composite for enhancing laccase stability and azo dyes decolorization efficiency. Carbohydr Polym 2023; 320:121157. [PMID: 37659832 DOI: 10.1016/j.carbpol.2023.121157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 09/04/2023]
Abstract
Enzymes with high catalytic activity and stability have been used for the sustainable development of green chemical applications, such as water remediation. Immobilized laccase can be used to construct a synergistic system for adsorption and degradation, which has great potential for water remediation. Herein, a hydrogen-bonded organic framework was installed onto laccase in-situ to form a net-carboxylate-arranged defective cage, which enhanced its catalytic stability. Thereafter, the CMC/PVA/Lac@HOF-101 hydrogel was fabricated by freeze-thaw cycles using sodium carboxymethylcellulose and polyvinyl alcohol as carriers and copper (II) as a cross-linker. Notably, the MOFs/hydrogel as a protective carrier of laccase maintain long-term recyclability and catalytic stability. After the fifth catalytic cycle, approximately 66.7 % activity of the CP-Lac@HOF-101 was retained. When both free laccase and CP-Lac@HOF-101 were used for decolorization of Acid Orange 7 (AO), the removal rates were 10.9 % and 82.5 % after 5 h, respectively. Furthermore, even in the presence of metal cations, almost 60.0 % of the AO removal efficiency was achieved. The relationship between the structure of the azo dyes and decolorization efficiency of the synergistic system was further investigated. This study offers a method for constructing enzyme@HOF-based composite hydrogels and provides a promising water remediation strategy.
Collapse
Affiliation(s)
- Xue Yang
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Fei Shi
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Xiaolei Su
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Artur Cavaco-Paulo
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China; Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Hongbo Wang
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China.
| | - Jing Su
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
19
|
Yu D, Zhang H, Ren J, Qu X. Hydrogen-bonded organic frameworks: new horizons in biomedical applications. Chem Soc Rev 2023; 52:7504-7523. [PMID: 37814831 DOI: 10.1039/d3cs00408b] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are an emerging attractive class of highly crystalline porous materials characterized by significant biocompatibility, rich chemical functionalities and well-defined porosity. The unique advantages including metal-free nature and reversible binding manner significantly distinguish HOFs from other porous materials in the biotechnology and biomedical field. However, the relevant HOF studies still remain in their infancy despite the promising and remarkable results that have been presented in recent years. Due to the intricate and dynamic nature of physiological conditions, the major challenge lies in the stability and structural diversity of HOFs in vivo. In this Tutorial Review, we summarize the common building blocks for the construction of HOF-based functional biomaterials and the latest developments in the biological field. Moreover, we highlight current challenges regarding the stability and functionalization of HOFs along with the corresponding potential solutions. This Tutorial Review will have a profound effect in future years on the design and applications of HOF-based biomaterials.
Collapse
Affiliation(s)
- Dongqin Yu
- Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haochen Zhang
- Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
20
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|
21
|
Chafiq M, Chaouiki A, Ko YG. Recent Advances in Multifunctional Reticular Framework Nanoparticles: A Paradigm Shift in Materials Science Road to a Structured Future. NANO-MICRO LETTERS 2023; 15:213. [PMID: 37736827 PMCID: PMC10516851 DOI: 10.1007/s40820-023-01180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 09/23/2023]
Abstract
Porous organic frameworks (POFs) have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials, both in their pristine state and when subjected to various chemical and structural modifications. Metal-organic frameworks, covalent organic frameworks, and hydrogen-bonded organic frameworks are examples of these emerging materials that have gained significant attention due to their unique properties, such as high crystallinity, intrinsic porosity, unique structural regularity, diverse functionality, design flexibility, and outstanding stability. This review provides an overview of the state-of-the-art research on base-stable POFs, emphasizing the distinct pros and cons of reticular framework nanoparticles compared to other types of nanocluster materials. Thereafter, the review highlights the unique opportunity to produce multifunctional tailoring nanoparticles to meet specific application requirements. It is recommended that this potential for creating customized nanoparticles should be the driving force behind future synthesis efforts to tap the full potential of this multifaceted material category.
Collapse
Affiliation(s)
- Maryam Chafiq
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Abdelkarim Chaouiki
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Young Gun Ko
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
22
|
Tang J, Shao L, Liu J, Zheng Q, Song X, Yi L, Wang M. Hydrogen-bonded organic framework-stabilized charge transfer cocrystals for NIR-II photothermal cancer therapy. J Mater Chem B 2023; 11:8649-8656. [PMID: 37623744 DOI: 10.1039/d3tb01475d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Charge-transfer (CT) cocrystals consisting of an electron donor and acceptor have gained attention for designing photothermal (PT) conversion materials with potential for biomedical and therapeutic use. However, the applicability of CT cocrystals is limited by their low stability and aqueous dispersity in biological settings. In this study, we present the self-assembly of CT cocrystals within hydrogen-bonded organic frameworks (HOFs), which not only allows for the dispersion and stabilization of cocrystals in aqueous solution but also promotes the CT interaction within the confined space of HOFs for photothermal conversion. We demonstrate that the CT interaction-driven self-assembly of tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) with PFC-1 HOFs results in the formation of cocrystal-encapsulated TQC@PFC-1 while retaining the crystalline structure of the cocrystal and PFC-1. TQC@PFC-1, in particular, exhibits significant absorption in the second near-infrared region (NIR-II) and excellent photothermal conversion efficiency, as high as 32%. Cellular delivery studies show that TQC@PFC-1 can be internalized in different types of cancer cells, leading to an effective NIR-II photothermal therapy effect both in cultured cells and in vivo. We anticipate that the strategy of self-assembly and stabilization of CT cocrystals in nanoscale HOFs opens the path for tuning their photophysical properties and interfacing cocrystals with biological settings for photothermal therapeutic applications.
Collapse
Affiliation(s)
- Jiakang Tang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leihou Shao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qizhen Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Song
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Lanhua Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Paul S, Gupta M, Dey K, Mahato AK, Bag S, Torris A, Gowd EB, Sajid H, Addicoat MA, Datta S, Banerjee R. Hierarchical covalent organic framework-foam for multi-enzyme tandem catalysis. Chem Sci 2023; 14:6643-6653. [PMID: 37350839 PMCID: PMC10283510 DOI: 10.1039/d3sc01367g] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Covalent organic frameworks (COFs) are ideal host matrices for biomolecule immobilization and biocatalysis due to their high porosity, various functionalities, and structural robustness. However, the porosity of COFs is limited to the micropore dimension, which restricts the immobilization of enzymes with large volumes and obstructs substrate flow during enzyme catalysis. A hierarchical 3D nanostructure possessing micro-, meso-, and macroporosity could be a beneficial host matrix for such enzyme catalysis. In this study, we employed an in situ CO2 gas effervescence technique to induce disordered macropores in the ordered 2D COF nanostructure, synthesizing hierarchical TpAzo COF-foam. The resulting TpAzo foam matrix facilitates the immobilization of multiple enzymes with higher immobilization efficiency (approximately 1.5 to 4-fold) than the COF. The immobilized cellulolytic enzymes, namely β-glucosidase (BGL), cellobiohydrolase (CBH), and endoglucanase (EG), remain active inside the TpAzo foam. The immobilized BGL exhibited activity in organic solvents and stability at room temperature (25 °C). The enzyme-immobilized TpAzo foam exhibited significant activity towards the hydrolysis of p-nitrophenyl-β-d-glucopyranoside (BGL@TpAzo-foam: Km and Vmax = 23.5 ± 3.5 mM and 497.7 ± 28.0 μM min-1) and carboxymethylcellulose (CBH@TpAzo-foam: Km and Vmax = 18.3 ± 4.0 mg mL-1 and 85.2 ± 9.6 μM min-1 and EG@TpAzo-foam: Km and Vmax = 13.2 ± 2.0 mg mL-1 and 102.2 ± 7.1 μM min-1). Subsequently, the multi-enzyme immobilized TpAzo foams were utilized to perform a one-pot tandem conversion from carboxymethylcellulose (CMC) to glucose with high recyclability (10 cycles). This work opens up the possibility of synthesizing enzymes immobilized in TpAzo foam for tandem catalysis.
Collapse
Affiliation(s)
- Satyadip Paul
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| | - Mani Gupta
- Department of Biological Sciences, Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Kaushik Dey
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| | - Ashok Kumar Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| | - Saikat Bag
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road Pune 411008 India
| | - E Bhoje Gowd
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology Trivandrum 695 019 Kerala India
| | - Hasnain Sajid
- School of Science and Technology, Nottingham Trent University NG11 8NS Nottingham UK
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University NG11 8NS Nottingham UK
| | - Supratim Datta
- Department of Biological Sciences, Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| |
Collapse
|
24
|
Huang W, Yuan H, Yang H, Ma X, Huang S, Zhang H, Huang S, Chen G, Ouyang G. Green synthesis of stable hybrid biocatalyst using a hydrogen-bonded, π-π-stacking supramolecular assembly for electrochemical immunosensor. Nat Commun 2023; 14:3644. [PMID: 37339954 DOI: 10.1038/s41467-023-39364-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
Rational integration of native enzymes and nanoscaffold is an efficient means to access robust biocatalyst, yet remains on-going challenges due to the trade-off between fragile enzymes and harsh assembling conditions. Here, we report a supramolecular strategy enabling the in situ fusion of fragile enzymes into a robust porous crystal. A c2-symmetric pyrene tecton with four formic acid arms is utilized as the building block to engineer this hybrid biocatalyst. The decorated formic acid arms afford the pyrene tectons high dispersibility in minute amount of organic solvent, and permit the hydrogen-bonded linkage of discrete pyrene tectons to an extended supramolecular network around an enzyme in almost organic solvent-free aqueous solution. This hybrid biocatalyst is covered by long-range ordered pore channels, which can serve as the gating to sieve the catalytic substrate and thus enhance the biocatalytic selectivity. Given the structural integration, a supramolecular biocatalyst-based electrochemical immunosensor is developed, enabling the pg/mL detection of cancer biomarker.
Collapse
Affiliation(s)
- Wei Huang
- School of Chemical Engineering and Technology, Sun Yat-sen University, 519082, Zhuhai, China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Haitao Yuan
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), 518020, Shenzhen, China
| | - Huangsheng Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xiaomin Ma
- Cryo-EM Center, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Shuyao Huang
- Instrumental Analysis and Research Center, Sun Yat-sen University, 510275, Guangzhou, China
| | - Hongjie Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, 511436, Guangzhou, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China.
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, 519082, Zhuhai, China.
| |
Collapse
|
25
|
Baslyman WS, Alahmed O, Chand S, Qutub S, Khashab NM. Dynamic Hydrogen-Bonded Zinc Adeninate Framework (ZAF) for Immobilization of Catalytic DNA. Angew Chem Int Ed Engl 2023; 62:e202302840. [PMID: 37073945 DOI: 10.1002/anie.202302840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
Effective immobilization and delivery of genetic materials is at the forefront of biological and medical research directed toward tackling scientific challenges such as gene therapy and cancer treatment. Herein we present a biologically inspired hydrogen-bonded zinc adeninate framework (ZAF) consisting of zinc adeninate macrocycles that self-assemble into a 3D framework through adenine-adenine interactions. ZAF can efficiently immobilize DNAzyme with full protection against enzyme degradation and physiological conditions until it is successfully delivered into the nucleus. As compared to zeolitic imidazolate frameworks (ZIFs), ZAFs are twofold more biocompatible with a significant loading efficiency of 96 %. Overall, our design paves the way for expanding functional hydrogen-bonding-based systems as potential platforms for the loading and delivery of biologics.
Collapse
Affiliation(s)
- Walaa S Baslyman
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Othman Alahmed
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNG-HA), Riyadh, 11481, Saudi Arabia
| | - Santanu Chand
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Somayah Qutub
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
26
|
Chen G, Huang S, Ma X, He R, Ouyang G. Encapsulating and stabilizing enzymes using hydrogen-bonded organic frameworks. Nat Protoc 2023:10.1038/s41596-023-00828-5. [PMID: 37198321 DOI: 10.1038/s41596-023-00828-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/01/2023] [Indexed: 05/19/2023]
Abstract
Enzymes are outstanding natural catalysts with exquisite 3D structures, initiating countless life-sustaining biotransformations in living systems. The flexible structure of an enzyme, however, is highly susceptible to non-physiological environments, which greatly limits its large-scale industrial applications. Seeking suitable supports to immobilize fragile enzymes is one of the most efficient routes to ameliorate the stability problem. This protocol imparts a new bottom-up strategy for enzyme encapsulation using a hydrogen-bonded organic framework (HOF-101). In short, the surface residues of the enzyme can trigger the nucleation of HOF-101 around its surface through the hydrogen-bonded biointerface. As a result, a series of enzymes with different surface chemistries are able to be encapsulated within a highly crystalline HOF-101 scaffold, which has long-range ordered mesochannels. The details of experimental procedures are described in this protocol, which involve the encapsulating method, characterizations of materials and biocatalytic performance tests. Compared with other immobilization methods, this enzyme-triggering HOF-101 encapsulation is easy to operate and affords higher loading efficiency. The formed HOF-101 scaffold has an unambiguous structure and well-arranged mesochannels, favoring mass transfer and understanding of the biocatalytic process. It takes ~13.5 h for successful synthesis of enzyme-encapsulated HOF-101, 3-4 d for characterizations of materials and ~4 h for the biocatalytic performance tests. In addition, no specific expertise is necessary for the preparation of this biocomposite, although the high-resolution imaging requires a low-electron-dose microscope technology. This protocol can provide a useful methodology to efficiently encapsulate enzymes and design biocatalytic HOF materials.
Collapse
Affiliation(s)
- Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China.
| | - Siming Huang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Ma
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Rongwei He
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China.
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
27
|
Lin ZJ, Mahammed SAR, Liu TF, Cao R. Multifunctional Porous Hydrogen-Bonded Organic Frameworks: Current Status and Future Perspectives. ACS CENTRAL SCIENCE 2022; 8:1589-1608. [PMID: 36589879 PMCID: PMC9801510 DOI: 10.1021/acscentsci.2c01196] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Indexed: 05/20/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs), self-assembled from organic or metalated organic building blocks (also termed as tectons) by hydrogen bonding, π-π stacking, and other intermolecular interactions, have become an emerging class of multifunctional porous materials. So far, a library of HOFs with high porosity has been synthesized based on versatile tectons and supramolecular synthons. Benefiting from the flexibility and reversibility of H-bonds, HOFs feature high structural flexibility, mild synthetic reaction, excellent solution processability, facile healing, easy regeneration, and good recyclability. However, the flexible and reversible nature of H-bonds makes most HOFs suffer from poor structural designability and low framework stability. In this Outlook, we first describe the development and structural features of HOFs and summarize the design principles of HOFs and strategies to enhance their stability. Second, we highlight the state-of-the-art development of HOFs for diverse applications, including gas storage and separation, heterogeneous catalysis, biological applications, sensing, proton conduction, and other applications. Finally, current challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Zu-Jin Lin
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
- College
of Life Science, Fujian Agriculture and
Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Shaheer A. R. Mahammed
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
| | - Tian-Fu Liu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Rong Cao
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
28
|
3D Printed Porous Nanocellulose-Based Scaffolds As Carriers for Immobilization of Glycosyltransferases. ACS APPLIED BIO MATERIALS 2022; 5:5728-5740. [PMID: 36469033 PMCID: PMC9768809 DOI: 10.1021/acsabm.2c00763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biocatalysis is increasingly becoming an alternative method for the synthesis of industrially relevant complex molecules. This can be realized by using enzyme immobilized polysaccharide-based 3D scaffolds as compatible carriers, with defined properties. Especially, immobilization of either single or multiple enzymes on a 3D printed polysaccharide scaffold, exhibiting well-organized interconnected porous structure and morphology, is a versatile approach to access the performance of industrially important enzymes. Here, we demonstrated the use of nanocellulose-based 3D porous scaffolds for the immobilization of glycosyltransferases, responsible for glycosylation in natural biosynthesis. The scaffolds were produced using an ink containing nanofibrillated cellulose (NFC), carboxymethyl cellulose (CMC), and citric acid. Direct-ink-writing 3D printing followed by freeze-drying and dehydrothermal treatment at elevated temperature resulted in chemically cross-linked scaffolds, featuring tunable negative charges (2.2-5.0 mmol/g), pore sizes (10-800 μm), fluid uptake capacity, and exceptional dimensional and mechanical stability in the wet state. The negatively charged scaffolds were applied to immobilize two sugar nucleotide-dependent glycosyltransferases (C-glycosyltransferase, Zbasic2-CGT; sucrose synthase, Zbasic2-SuSy), each harboring a cationic binding module (Zbasic2) to promote charge-based enzyme adsorption. Both enzymes were immobilized at ∼30 mg of protein/g of dry carrier (∼20% yield), independent of the scaffold used. Their specific activities were 0.50 U/mg (Zbasic2-CGT) and 0.19 U/mg (Zbasic2-SuSy), corresponding to an efficacy of 37 and 18%, respectively, compared to the soluble enzymes. The glycosyltransferases were coimmobilized and shown to be active in a cascade reaction to give the natural C-glycoside nothofagin from phloretin (1.0 mM; ∼95% conversion). All enzyme bound scaffolds showed reusability of a maximum of 5 consecutive reactions. These results suggest that the 3D printed and cross-linked NFC/CMC-based scaffolds could present a class of solid carriers for enzyme (co)-immobilization, with promising applications in glycosyltransferase-catalyzed synthesis and other fields of biocatalysis.
Collapse
|
29
|
Ding X, Xie Y, Gao Q, Luo Y, Chen J, Ye G. Hydrogen-Bonded Organic Frameworks: Structural Design and Emerging Applications. Chemphyschem 2022; 24:e202200742. [PMID: 36461716 DOI: 10.1002/cphc.202200742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022]
Abstract
Constructing well-organized organic frameworks with tailor-made functionalities potentially boost multi-domain applications. Hydrogen bonding (H-bonding) is a category of general and weak intermolecular interactions when compared with covalent bonding or metal-ligand coordination. Porous frameworks mainly assembled by H-bonding (named hydrogen-bonded organic frameworks, HOFs) are intrinsically capable of decomposing and regenerating, a distinctive advantage to improve their processability while expanding the applicability. This paper summarizes the basic building concepts of HOFs, including feasible hydrogen bonded motifs, effective molecular structures, and their emerging applications.
Collapse
Affiliation(s)
- Xiaojun Ding
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yi Xie
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Qiang Gao
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yilin Luo
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
30
|
Yu B, Meng T, Ding X, Liu X, Wang H, Chen B, Zheng T, Li W, Zeng Q, Jiang J. Hydrogen‐Bonded Organic Framework Ultrathin Nanosheets for Efficient Visible‐Light Photocatalytic CO
2
Reduction. Angew Chem Int Ed Engl 2022; 61:e202211482. [DOI: 10.1002/anie.202211482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Ting Meng
- CAS Key laboratory of standardization and Measurement for Nanotechnology CAS Center for Excellence in nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Baotong Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Wen Li
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Qingdao Zeng
- CAS Key laboratory of standardization and Measurement for Nanotechnology CAS Center for Excellence in nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
31
|
Yu B, Meng T, Ding X, Liu X, Wang H, Chen B, Zheng T, Li W, Zeng Q, Jiang J. Hydrogen‐Bonded Organic Framework Ultrathin Nanosheets for Efficient Visible Light Photocatalytic CO2 Reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Baoqiu Yu
- University of Science and Technology Beijing Chemistry 100083 Beijing CHINA
| | - Ting Meng
- NCNST: National Center for Nanoscience and Technology NCNST Beijing CHINA
| | - Xu Ding
- University of Science and Technology Beijing Chemistry Beijing CHINA
| | - Xiaolin Liu
- University of Science and Technology Beijing Chemistry 100083 Beijing CHINA
| | - Hailong Wang
- University of Science and Technology Beijing Chemistry 100083 Beijing CHINA
| | - Baotong Chen
- University of Science and Technology Beijing Chemistry 100083 Beijing CHINA
| | - Tianyu Zheng
- University of Science and Technology Beijing Chemistry 100083 Beijing CHINA
| | - Wen Li
- University of Science and Technology Beijing Chemistry 100083 Beijing CHINA
| | - Qingdao Zeng
- NCNST: National Center for Nanoscience and Technology NCNST Beijing CHINA
| | - Jianzhuang Jiang
- University of Science and Technology Beijing Chemistry Xueyuan Road 30 100083 Beijing CHINA
| |
Collapse
|
32
|
Li JJ, Yin L, Wang ZF, Jing YC, Jiang ZL, Ding Y, Wang HS. Enzyme-immobilized metal-organic frameworks: From preparation to application. Chem Asian J 2022; 17:e202200751. [PMID: 36029234 DOI: 10.1002/asia.202200751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/27/2022] [Indexed: 11/09/2022]
Abstract
As a class of widely used biocatalysts, enzymes possess advantages including high catalytic efficiency, strong specificity and mild reaction condition. However, most free enzymes have high requirements on the reaction environment and are easy to deactivate. Immobilization of enzymes on nanomaterial-based substrates is a good way to solve this problem. Metal-organic framework (MOFs), with ultra-high specific surface area and adjustable porosity, can provide a large space to carry enzymes. And the tightly surrounded protective layer of MOFs can stabilize the enzyme structure to a great extent. In addition, the unique porous network structure enables selective mass transfer of substrates and facilitates catalytic processes. Therefore, these enzyme-immobilized MOFs have been widely used in various research fields, such as molecule/biomolecule sensing and imaging, disease treatment, energy and environment protection. In this review, the preparation strategies and applications of enzymes-immobilized MOFs are illustrated and the prospects and current challenges are discussed.
Collapse
Affiliation(s)
- Jia-Jing Li
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Li Yin
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Zi-Fan Wang
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Yi-Chen Jing
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Zhuo-Lin Jiang
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Ya Ding
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Huai-Song Wang
- China Parmaceutical University, Pharmaceutical analysis, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing Jiangsu, CHINA
| |
Collapse
|
33
|
Chen G, Tong L, Huang S, Huang S, Zhu F, Ouyang G. Hydrogen-bonded organic framework biomimetic entrapment allowing non-native biocatalytic activity in enzyme. Nat Commun 2022; 13:4816. [PMID: 35974100 PMCID: PMC9381776 DOI: 10.1038/s41467-022-32454-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Nature programs the structural folding of an enzyme that allows its on-demand biofunctionality; however, it is still a long-standing challenge to manually modulate an enzyme’s conformation. Here, we design an exogenous hydrogen-bonded organic framework to modulate the conformation of cytochrome c, and hence allow non-native bioactivity for the enzyme. The rigid hydrogen-bonded organic framework, with net-arranged carboxylate inner cage, is in situ installed onto the native cytochrome c. The resultant hydrogen-bonded nano-biointerface changes the conformation to a previously not achieved catalase-like species within the reported cytochrome c-porous organic framework systems. In addition, the preserved hydrogen-bonded organic framework can stabilize the encapsulated enzyme and its channel-like pores also guarantee the free entrance of catalytic substrates. This work describes a conceptual nanotechnology for manoeuvring the flexible conformations of an enzyme, and also highlights the advantages of artificial hydrogen-bonded scaffolds to modulate enzyme activity. Heme units are immobilised in diverse heme enzymes for oxidation, and have been immobilised also in hydrogen-bonded organic frameworks. Here, the authors show the use of hydrogen-bonded organic framework to modulate the enzyme’s conformation and show different biofunction from the original.
Collapse
Affiliation(s)
- Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Linjing Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuyao Huang
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China. .,Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
34
|
Huang S, Chen G, Ouyang G. Confining enzymes in porous organic frameworks: from synthetic strategy and characterization to healthcare applications. Chem Soc Rev 2022; 51:6824-6863. [PMID: 35852480 DOI: 10.1039/d1cs01011e] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Enzymes are a class of natural catalysts with high efficiency, specificity, and selectivity unmatched by their synthetic counterparts and dictate a myriad of reactions that constitute various cascades in living cells. The development of suitable supports is significant for the immobilization of structurally flexible enzymes, enabling biomimetic transformation in the extracellular environment. Accordingly, porous organic frameworks, including metal organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), have emerged as ideal supports for the immobilization of enzymes because of their structural features including ultrahigh surface area, tailorable porosity, and versatile framework compositions. Specially, organic framework-encased enzymes have shown significant enhancement in stability and reusability, and their tailorable pore opening provides a gatekeeper-like effect for guest sieving, which is beneficial for mimicking intracellular biocatalysis processes. This immobilization technique brings new insight into the development of next-generation enzyme materials and shows huge potential in healthcare applications, such as biomarker diagnosis, biostorage, and cancer and antibacterial therapies. In this review, we describe the state-of-the-art strategies for the structural immobilization of enzymes using the well-explored MOFs and burgeoning COFs and HOFs as scaffolds, with special emphasis on how these porous framework-confined technologies can provide a favorable microenvironment for mimicking natural biocatalysis. Subsequently, advanced characterization techniques for enzyme conformation, the effect of the confined microenvironment on the activity of enzymes, and the emerging healthcare applications will be surveyed.
Collapse
Affiliation(s)
- Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
35
|
Zeng JY, Wang XS, Sun YX, Zhang XZ. Research progress in AIE-based crystalline porous materials for biomedical applications. Biomaterials 2022; 286:121583. [DOI: 10.1016/j.biomaterials.2022.121583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
|